KR102545738B1 - 플라즈마 포인트 소스들의 어레이를 갖는, 작업물을 프로세싱하기 위한 플라즈마 반응기 - Google Patents

플라즈마 포인트 소스들의 어레이를 갖는, 작업물을 프로세싱하기 위한 플라즈마 반응기 Download PDF

Info

Publication number
KR102545738B1
KR102545738B1 KR1020160102451A KR20160102451A KR102545738B1 KR 102545738 B1 KR102545738 B1 KR 102545738B1 KR 1020160102451 A KR1020160102451 A KR 1020160102451A KR 20160102451 A KR20160102451 A KR 20160102451A KR 102545738 B1 KR102545738 B1 KR 102545738B1
Authority
KR
South Korea
Prior art keywords
array
plasma
plasma reactor
gas
power
Prior art date
Application number
KR1020160102451A
Other languages
English (en)
Other versions
KR20170039557A (ko
Inventor
카르틱 라마스와미
로렌스 웡
스티븐 레인
양 양
스리니바스 디. 네마니
프라부람 고파라자
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Publication of KR20170039557A publication Critical patent/KR20170039557A/ko
Application granted granted Critical
Publication of KR102545738B1 publication Critical patent/KR102545738B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/36Contacts characterised by the manner in which co-operating contacts engage by sliding
    • H01H1/46Contacts characterised by the manner in which co-operating contacts engage by sliding self-aligning contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32422Arrangement for selecting ions or species in the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3322Problems associated with coating
    • H01J2237/3323Problems associated with coating uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

플라즈마 소스는 플라즈마 포인트 소스들의 어레이로 구성되며, 이는, 사용자 정의 영역에 걸쳐서, 라디칼들 및 하전 입자들의 생성을 공간적으로 그리고 시간적으로 제어한다.

Description

플라즈마 포인트 소스들의 어레이를 갖는, 작업물을 프로세싱하기 위한 플라즈마 반응기{A PLASMA REACTOR FOR PROCESSING A WORKPIECE WITH AN ARRAY OF PLASMA POINT SOURCES}
관련 출원들에 대한 상호-참조
[1] 본 출원은, Kartik Ramaswamy, 외에 의해, A PLASMA REACTOR FOR PROCESSING A WORKPIECE WITH AN ARRAY OF PLASMA POINT SURFACES 라는 명칭으로 2015년 9월 28일에 출원된 미국 출원 제 14/867,240 호의 우선권을 주장한다.
[2] 본 개시물은 작업물(workpiece), 예컨대, 반도체 웨이퍼의 플라즈마 프로세싱, 및 프로세스 불-균일성들(non-uniformities)의 감소에 관한 것이다.
[3] 종래의 플라즈마 프로세싱에서, 프로세싱되는 웨이퍼들은 불-균일한 응력(stress)으로 인한 국부적인(local) 불-균일성들-, 불-균일한 필름 조성(film composition)(증착 프로세스의 경우), 상이한 에칭 환경들에 기인한 불-균일한 CD들(피쳐들의 임계 치수들(critical dimensions of features))을 겪을 수 있다. 이는, 들어오는 웨이퍼들 사이의 차이들 또는 프로세싱 챔버(예컨대, 회전식(rotating) 웨이퍼가, 리딩(leading) 엣지와 트레일링(trailing) 엣지 라디칼 드웰 시간(dwell time) 차이 또는 상이한 국부적인 온도를 보여주는 캐러셀 형태(carousel style)의 프로세싱 챔버에서)의 특성의 차이들에 기인할 수 있다.
[4] 플라즈마 반응기(plasma reactor)는: 프로세싱 챔버 및 프로세싱 챔버의 작업물 지지부 - 챔버는 작업물 지지부를 향하는(facing) 하부 천장(lower ceiling)을 포함함 -; 하부 천장 위에 놓이고(overlying) 하부 천장을 향하는 상부 천장 및 상부 천장 위에 놓인 가스 분배기(gas distributor); 상부 천장과 하부 천장 사이에 복수의 공동들(cavities)을 정의하는 복수의 공동 벽들(cavity walls) - 가스 분배기는 복수의 공동들 중 각각의 공동들로의 복수의 가스 유동 경로들을 포함함 -; 복수의 공동들 중 각각의 공동들과 정렬된, 하부 천장의 복수의 배출구 홀들(outlet holes); 및 복수의 공동들 중 각각의 공동들에 인접한 각각의 파워 어플리케이터들(power applicators), 파워 소스, 파워 어플리케이터들 중 각각의 파워 어플리케이터들에 커플링된 복수의 파워 컨덕터들(power conductors), 및 파워 소스와 복수의 파워 컨덕터들 사이에 커플링된 파워 분배기(power distributor)를 포함한다.
[5] 일 실시예에서, 복수의 공동 벽들은 유전체 공동 벽들(dielectric cavity walls)을 포함한다.
[6] 추가적인 실시예에서, 파워 소스는 RF 파워 생성기(generator)를 포함하고, 각각의 파워 어플리케이터들 각각은, 복수의 공동 벽들 중 대응하는 공동 벽에 의해, 복수의 공동들 중 대응하는 공동의 내부로부터 분리된다.
[7] 일 실시예에서, 파워 어플리케이터는, RF 파워를 복수의 공동들 중 대응하는 공동 내에 용량 결합하기(capacitively coupling) 위한 전극을 포함한다. 이러한 실시예에서, 각각의 전극은 복수의 공동들 중 대응하는 공동의 섹션(section)을 둘러쌀 수 있다.
[8] 다른 실시예에서, 파워 어플리케이터는, RF 파워를 복수의 공동들 중 대응하는 공동 내에 유도 결합하기(inductively coupling) 위한 코일 안테나(coil antenna)를 포함한다. 이러한 실시예에서, 코일 안테나는, 복수의 공동들 중 대응하는 공동의 섹션 주위에 코일링된(coiled) 컨덕터를 포함할 수 있다.
[9] 더 추가적인 실시예에서, 파워 소스는 D.C. 파워 생성기이고, 파워 어플리케이터들 각각은 D.C. 방전(discharge)을 위한 전극을 포함하며, 유전체 공동 벽들 각각은, 대응하는 전극을, 복수의 공동들 중 대응하는 공동의 내부에 노출시키도록 구성된다.
[10] 일 실시예에서, 파워 분배기는, 파워 생성기의 출력부와 파워 컨덕터들 중 각각의 파워 컨덕터 사이에 커플링된 복수의 스위치들을 포함한다.
[11] 일 실시예에서, 플라즈마 반응기는, 사용자-정의 명령들(user-defined instructions)에 따라 복수의 스위치들을 개별적으로 제어하는 프로세서를 더 포함한다.
[12] 일 실시예에서, 플라즈마 반응기는 프로세스 가스 소스, 및 프로세스 가스 소스와 복수의 공동들 중 각각의 공동들 사이에 커플링된 복수의 밸브들을 포함하는 가스 분배기를 더 포함한다. 프로세스 가스 소스는 상이한 가스 종(species)의 복수의 가스 소스들을 포함할 수 있고, 복수의 밸브들 중 각각의 밸브들은 복수의 가스 소스들 중 각각의 가스 소스들과 복수의 공동들 중 각각의 공동들 사이에 커플링된다. 일 실시예에서, 플라즈마 반응기는 사용자-정의 명령들에 따라 복수의 밸브들을 개별적으로 제어하는 프로세서를 더 포함한다.
[13] 일 실시예에서, 플라즈마 반응기는, 플라즈마 부산물들(by-products)을 복수의 공동들에 전달하도록 커플링된 원격 플라즈마 소스를 더 포함한다.
[14] 일 실시예에서, 프로세싱 챔버는 원통형 측벽(side wall)을 더 포함하고, 반응기는, 원통형 측벽 주위에 와인딩된 코일 안테나, 및 임피던스 매치(impedance match)를 통해 코일 안테나에 커플링된 RF 파워 생성기를 포함하는 유도 결합 플라즈마 소스를 더 포함한다.
[15] 일 실시예에서, 플라즈마 반응기는: 프로세싱 챔버 및 프로세싱 챔버의 작업물 지지부; 작업물 지지부 위에 놓인 가스 분배기; 가스 분배기 아래에 놓인(underlying) 복수의 공동들을 정의하는 복수의 공동 벽들 - 가스 분배기는 복수의 공동들 중 각각의 공동들로의 복수의 가스 유동 경로들을 포함함 -; 복수의 공동들 중 각각의 공동들에 인접한 각각의 파워 어플리케이터들, 파워 소스, 파워 어플리케이터들 중 각각의 파워 어플리케이터들에 커플링된 복수의 파워 컨덕터들, 및 파워 소스와 복수의 파워 컨덕터들 사이에 커플링된 파워 분배기; 및 프로세스 가스 소스, 및 복수의 공동들 중 각각의 공동들과 프로세스 가스 소스 사이에 커플링된 복수의 밸브들을 포함하는 가스 분배기를 포함한다.
[16] 추가적인 실시예에서, 작업물의 표면에 걸쳐서 분포된 플라즈마 포인트 소스들의 어레이를 포함하는 플라즈마 반응기에서 작업물을 프로세싱하는 방법은: 작업물에 대해 플라즈마 프로세스를 수행하는 단계; 작업물의 표면에 걸친 프로세스 레이트(process rate)의 공간 분포(spatial distribution)에서의 불-균일성을 관찰하는 단계; 및
(a) 플라즈마 포인트 소스들의 어레이 사이의 플라즈마 소스 파워 레벨들(levels)의 할당(apportionment)을 조정하는 것, 또는
(b) 플라즈마 포인트 소스들의 어레이 사이의 가스 유동들의 할당을 조정하는 것 중 적어도 하나를 수행하는 것에 의해 불-균일성을 감소시키는 단계를 포함한다.
[17] 달성되는 본 발명의 예시적인 실시예들이 상세히 이해될 수 있는 방식으로, 앞서 간략히 요약된, 본 발명의 보다 구체적인 설명이 본 발명의 실시예들을 참조로 하여 이루어질 수 있는데, 이러한 실시예들은 첨부된 도면들에 예시되어 있다. 본 발명을 모호하게 하지 않기 위해, 특정한 잘 알려진 프로세스들은 본원에서 논의되지 않는다는 점이 인지되어야 한다.
[18] 도 1a는 플라즈마 포인트 소스들의 어레이를 갖는 제 1 실시예의 간략화된 도면이다.
[19] 도 1b는 도 1a의 실시예에서의 플라즈마 포인트 소스의 확대 평면도이다.
[20] 도 2a 및 2b는 플라즈마 포인트 소스들의 어레이의 상이한 배열들을 도시한다.
[21] 도 3은, 플라즈마 포인트 소스들이 플라즈마 D.C. 방전을 채용하는 실시예를 도시한다.
[22] 도 4는, 플라즈마 포인트 소스들이 유도 결합을 채용하는 실시예를 도시한다.
[23] 도 5는, 원격 플라즈마 소스를 채용하는, 도 1a의 실시예의 수정예를 도시한다.
[24] 도 6은, 원격 플라즈마 소스를 채용하는, 도 4의 실시예의 수정예를 도시한다.
[25] 도 7은, 플라즈마 포인트 소스들의 어레이에 부가하여, 챔버-폭의(chamber-wide) 유도 결합 소스를 갖는, 도 1a의 실시예의 수정예를 도시한다.
[26] 이해를 용이하게 하기 위하여, 가능하면, 도면들에 공통되는 동일한 엘리먼트들을 나타내는데 동일한 참조번호들이 사용되었다. 일 실시예의 엘리먼트들 및 특징들이, 추가적인 언급 없이 다른 실시예들에 유익하게 통합될 수 있다는 점이 고려된다. 그러나, 첨부된 도면들은 본 발명의 단지 예시적인 실시예들을 도시하는 것이므로 본 발명의 범위를 제한하는 것으로 간주되지 않아야 한다는 것이 주목되어야 하는데, 이는 본 발명이, 다른 균등하게 유효한 실시예들을 허용할 수 있기 때문이다.
도입:
[27] 플라즈마 소스는, 다수의 독립적으로 제어되는 국부적인 플라즈마 포인트 소스들 또는 독립적으로 제어되는 국부적인 플라즈마 포인트 소스들의 어레이로 구성되며, 이는, 사용자 정의 영역(user defined region)에 걸쳐서, 하전 입자 종(charged particle species)(전자들, 음 및 양 이온들) 및 라디칼들의 공간적(spatial) 및 시간적(temporal) 제어를 허용한다.
[28] 공간적 및 시간적 제어를 가능하게 하는 플라즈마 소스를 사용하는 것은 국부적인 불-균일성들의 보정(correction)을 가능하게 한다. 이는, 하전 입자들 및 라디칼들이 생성되는 상이한 플라즈마 포인트 소스들에서 플라즈마 생성을 스위칭 온(ON) 또는 오프(OFF)하는 것에 의해 달성될 수 있다. 대안적으로 또는 부가적으로, 이는, 상이한 플라즈마 포인트 소스들로의 프로세스 가스 유동들을 변화시키는 것에 의해 달성될 수 있다. 예컨대, 가스 유동은 스위칭 온 또는 오프될 수 있고 그리고/또는 각각의 플라즈마 포인트 소스에 대한 가스 혼합물(mixture)이 변화될 수 있다. 사용자는 국부적인 플라즈마 포인트 소스에서 이온화될(ionized) 또는 분해될(broken down) 가스를 선택할 수 있다. 사용자는 방출 시간(time) 또는 지속 기간(duration)을 추가로 선택할 수 있다.
[29] 상이한 동시적인 국부적인 가스 방출들에서 상이한 가스 케미스트리들을 동시에(in parallel) 작동시킴으로써(공간적 제어) 또는 동일한 국부적인 방출에서 가스 케미스트리를 국부적으로 교번함으로써(alternating), 국부적인 방출 케미스트리를 변경할 수 있다.
[30] 임플란트(implant), 에칭, 또는 증착하기 위해서, 전체 작업물(웨이퍼)은 일정한(constant) 음 DC 바이어스(bias)를 겪게 하지만 국부적으로는 이온들을 끌어당길(attract) 수 있다.
[31] 플라즈마 포인트 소스들의 어레이는 종래의 비-국부적인(non-local) 플라즈마 소스(예컨대, 용량 결합 대형(large) 전극 플라즈마 소스 또는 유도 결합 플라즈마 소스)와 결합될 수 있고, 실시간으로(in real time), 플라즈마 생성에서 국부적인 불-균일성들을 보정할 수 있다.
[32] 플라즈마 포인트 소스들의 어레이는 원격 플라즈마 소스(예컨대, 원격 라디칼 소스)와 결합될 수 있다. 라디칼 프로세싱 단계에는, 조성 및 국부적인 드웰 시간을 변경할 수 있는 플라즈마 처리 단계가 후속할 수 있다. 과거의 해결법들은, 기판 홀더들의 국부적인 가열 엘리먼트들을 통하는 전류를 변화시키는 것에 의한 온도의 국부적인 변화에 치중해왔다. 본원에서 설명되는 실시예들은, 반응들을 고속화하기(speed up) 위해 오직 온도들에만 의존하기 보다는, 기존의 해결법을 늘리고(add to), 국부적인 케미스트리들을 가능하게 하며, 하전 입자들 및 라디칼들의 생성에 영향을 준다.
실시예들:
[33] 도 1a 및 1b는, RF 주파수를 사용하여 용량 결합된 다수의 플라즈마 포인트 소스들(90)을 갖는 실시예를 도시한다. 포인트 소스들(90)은 다양한 구성들, 예컨대, 원형(도 2a) 또는 파이 형상(pie shaped)(도 2b)으로 배열될 수 있다. 도 1a의 실시예는 원통형 측벽(102), 하부 천장(104) 및 플로어(106)에 의해 에워싸인 프로세싱 구역(92)을 갖는 프로세스 챔버 본체(100)를 포함한다. 작업물 지지부(94)는 프로세싱 구역(92) 내에서 작업물(96)을 지지한다. 진공 펌프(108)는 플로어(106)를 통해 프로세싱 구역(92)에 커플링될 수 있다. 상부 원통형 측벽(126) 상에 지지되는 상부 천장(110)은 하부 천장(104) 위에 놓이며 가스 분배기(112)를 지지한다. 하부 천장(104)은 가스 배출구 홀들(114)의 어레이를 포함한다. 도 1a의 실시예에서, 포인트 소스들(90)은 유전체 원통형 공동 벽들(116)에 의해 에워싸인 원통형 공동들(115)의 어레이이며, 각각은 원통형 측벽(102)의 대칭 축에 대해 평행하고 가스 배출구 홀들(114) 중 각각의 홀과 정렬된다. 유전체 원통형 공동 벽들(116)은 각각의 원통형 전극들(118)에 의해 링이 끼워진다(ringed).
[34] 각각의 플라즈마 포인트 소스(90)는 국부적이며, 각각의 가스 배출구 홀(114)의 면적(area)은 하부 천장(104) 또는 상부 천장(110)의 면적에 비해 또는 챔버 본체(100)의 직경에 비해 작다. 일 실시예에서, 각각의 가스 배출구 홀(114)의 면적은 하부 천장(104) 또는 상부 천장(110)의 면적 또는 챔버 본체(100)의 면적의 5%를 넘지 않는다.
[35] 도 1a 및 1b의 예시된 실시예에서, 각각의 가스 배출구 개구부(114)의 형상은 원형이고 원통형 공동(115)의 형상과 일치한다(conform). 그러나, 다른 실시예들에서, 각각의 가스 배출구 홀(114)은 임의의 형상일 수 있고, 원통형 공동(115)의 형상과 일치하지 않을 수 있다. 예컨대, 각각의 가스 배출구 홀(114)은 비-원형 형상(예컨대, 타원형)일 수 있거나, 다각형 형상 또는 선형 슬롯 형상 또는 전술한 형상들 중 일부의 조합들일 수 있다. 일 실시예에서, 가스 배출구 홀(114)의 형상이 원통형 공동(115)과 일치하지 않는 경우, 가스 배출구 홀(114)과 원통형 공동(115) 사이에 가스 밀봉(seal)을 제공하기 위해 어댑터(adapter)(예시되지 않음)가 도입될 수 있다.
[36] 상부 천장(110)은, 각각, 원통형 공동들(115) 중 각각의 원통형 공동과 정렬되는 가스 유입구 개구부들(119)의 어레이를 갖는다. 가스 분배기(112)는 프로세스 가스들을 가스 유입구 개구부들(119)을 통해 원통형 공동들(115) 내로 제공한다. 개별 파워 컨덕터들(120)은 파워를 각각의 원통형 전극들(118) 중 개별 원통형 전극들에 전도한다(conduct). 파워 분배기(122)는 파워를 파워 소스(124)로부터 파워 컨덕터들(120)로 분배한다. 일 실시예에서, 파워 소스(124)는 교류(AC) 파워 생성기 또는 RF 임피던스 매치를 갖는 무선 주파수(RF) 파워 생성기이다. 관련된 실시예들에서, 파워 소스(124)의 주파수는, 예컨대, D.C. 내지 UHF에서 임의의 것일 수 있다. 일 실시예에서, 플라즈마는, 원통형 전극들(118)로부터 유전체 원통형 공동 벽들(116)을 통해 원통형 공동들(115) 내로의 RF 파워의 용량 결합에 의해서, 원통형 공동들(115)에서 생성된다. 하부 천장(104)은 원통형 전극들(118)을 플라즈마로부터 격리한다.
[37] 가스 분배기(112)는 복수의 가스 공급부들(250)로부터 상이한 가스 종을 수용하고, 상이한 원통형 공동들(115)에 대한 상이한 사용자-지정(user specified) 가스 레시피들(recipes)에 따라서, 상이한 가스 혼합물들을 각각의 가스 유입구 개구부들(119)을 통해 원통형 공동들(115) 중 상이한 원통형 공동들에 분배한다. 예컨대, 가스 분배기(112)는, 개별 원통형 공동들(115)에 대한 가스 혼합물들을 정의하는 사용자-정의 명령들에 따라, 프로세서(254)에 의해 개별적으로 제어되는 가스 밸브들(252)의 어레이를 포함할 수 있다. 가스 밸브들(252)의 어레이는 복수의 가스 공급부들(250)과 가스 유입구 개구부들(119) 사이에서 원통형 공동들(115)에 커플링된다.
[38] 일 실시예에서, 파워 분배기(122)는 각각의 파워 컨덕터(120)에 공급되는 파워를 개별적으로 제어한다. 예컨대, 파워 분배기(122)는, 사용자-정의 명령들에 따라 프로세서(254)에 의해 개별적으로 제어되는 전기 스위치들(262)의 어레이를 포함할 수 있다. 파워는 펄스 폭 변조(pulse width modulation)에 의해 제어될 수 있고, 사용자-정의 명령들은 개별 원통형 공동들(115)에 대한 파워의 개별 온/오프 지속 기간들(또는 듀티 사이클들(duty cycles))을 정의할 수 있다. 전기 스위치들(262)의 어레이는 파워 소스(124)와 파워 컨덕터들(120) 사이에 커플링된다.
[39] 제 1 실시예에서, 하부 천장(104)은 유전체 재료로 형성되는 반면, 상부 천장(110)은 전도성 재료로 형성된다. 제 2 실시예에서, 하부 천장(104)은 전도성 재료로 형성된 하부 플레이트(190)에 인접하고, 하부 플레이트(190) 및 상부 천장(110) 양자 모두는 접지된다(grounded). 이러한 방식에서, 플라즈마 소스는 2개의 접지된 플레이트들, 즉, 하부 플레이트(190)와 상부 천장(110) 사이에 로케이팅된다.
[40] 도 3은, 플라즈마가 D.C. 방전에 의해 생성되고, 파워 소스(124)는 D.C. 파워 생성기인 실시예를 도시한다. 유전체 원통형 공동 벽들(116) 각각은 원통형 전극들(118) 중 대응하는 원통형 전극 위에서 종결된다. 이러한 특징은, D.C. 방전을 용이하게 하기 위해, 각각의 원통형 전극(118)을 플라즈마에 직접적으로 노출시킬 수 있다.
[41] 도 4는, 각각의 원통형 공동(115) 내에서 유도 결합 플라즈마를 생성하기 위해, 원통형 전극들(118)이 개별 유도 코일들(210)로 대체되는, 도 1a의 실시예의 수정예를 도시한다. 각각의 유도 코일(210)은, 도 4에 도시된 바와 같이, 대응하는 원통형 유전체 벽(116)의 바닥부 섹션 주위에 랩핑된다(wrapped). 도 4의 실시예에서, 변화하는 자기장(changing magnetic field)은, 변화하는 전기장을 원통형 공동(115)에서 생성하고, 이는 결과적으로, 폐쇄 턴 진동 플라즈마 전류(closed turn oscillating plasma current)를 생성한다.
[42] 도 5는, 원격 플라즈마 소스(220) 및 라디칼 분배 플레이트(280)를 포함하는, 도 1a의 실시예의 다른 수정예를 도시한다. 라디칼 분배 플레이트(280)는 라디칼들을 원격 플라즈마 소스(220)로부터 개별 원통형 공동들(115)로 지향시킨다. 원격 플라즈마 소스(220)는, 파워 소스(224)에 의해 구동되는 플라즈마 소스 파워 어플리케이터(222)를 포함할 수 있다. 원격 플라즈마 소스(220)는 원하는 라디칼 종의 전구체들을 함유하는 제어되는 가스 소스들(226)을 더 포함할 수 있다. 원격으로 생성된 화학적 활성(chemically active) 라디칼들이 웨이퍼들의 프로세싱에서 중요한 역할을 담당하는 몇몇 프로세스들이 존재한다. 그러나, 라디칼 처리 다음에 플라즈마 처리 단계를 후속시킬 필요가 있을 수 있다. 공간적으로 그리고 시간적으로 제어 가능한 플라즈마 소스를 갖는 것은 라디칼 불-균일성을 다루는 것을 돕는다. 단명하는(short lived)(불활성 중성들(inert neutrals)로 재결합하는(recombine)) 라디칼들의 경우에, 제어 가능한 플라즈마 밀도를 갖는 것이, 중요한(important) 라디칼들을 재생성하는 것을 도울 수 있다.
[43] 도 6은, 원격 플라즈마 소스(220) 및 라디칼 분배 플레이트(280)를 포함하는, 도 4의 실시예의 수정예를 도시한다. 도 6의 실시예에서, 원격 플라즈마 소스(220)는 도 4의 유도 결합 플라즈마 소스들(즉, 유도 결합 코일들(210))과 결합된다. 유도 결합 플라즈마 소스들(코일들(210))은, 도 1a의 실시예의 용량 결합 플라즈마 소스와 비교하여, 상이한(더 낮은) 압력 체제들(예컨대, 25 mTorr 미만)에서의 동작을 가능하게 한다.
[44] 도 7은, 플라즈마 포인트 소스들의 어레이(90)가, 더 큰 비-국부적인 유도 결합 플라즈마 소스와 결합되는, 도 1a의 실시예의 수정예를 도시한다. 도 7의 비-국부적인 유도 결합 플라즈마 소스는 원통형 측벽(102)을 둘러싸는 나선형으로 와인딩된 코일 안테나(240)를 포함한다. 나선형으로 와인딩된 코일 안테나(240)는 RF 임피던스 매치(244)를 통해 RF 파워 생성기(242)에 의해서 구동된다. 도 7의 실시예에서, 원통형 측벽(102)은, 원통형 측벽(102)을 통한 RF 파워의 유도 결합을 가능하게 하기 위해 비-금속성 재료로 형성된다. 하부 플레이트(190)는 (개별 원통형 공동들(115)에 대응하는) 개별 플라즈마 포인트 소스들을 (나선형으로 와인딩된 코일 안테나(240)에 대응하는) 더 큰 유도 결합 플라즈마 소스로부터 보호한다.
[45] (개별 원통형 공동들(115)에 대응하는) 개별 플라즈마 포인트 소스들(90)은 개별적으로 제어 가능하다. 이는, 플라즈마 분배의 공간적 및 시간적 제어를 가능하게 한다. 그러한 제어는 플라즈마 분배 불-균일성을 감소시키는 방식으로 실시될 수 있다.
제어 모드들:
[46] 파워 소스(124)는, 상이한 모드들에서 각각의 플라즈마 포인트 소스(90)에 파워를 공급할(power) 수 있다. 제 1 모드에서, 각각의 플라즈마 포인트 소스(90)는 정량(fixed amount)의 파워를 소모하고(dissipate), 제어 시스템은 전기 스위치들(262)의 어레이를 사용하여, 플라즈마 포인트 소스에 제공되는 파워를 스위칭 온 또는 오프한다. 일 예에서, 각각의 포인트 소스는, 온 상태일 때, 약 3와트의 일정한 양을 소모한다. 전기 스위치들(262)의 어레이는 본질적으로, 명령에 따라 개별 플라즈마 포인트 소스들(90)에 파워를 인가한다. 플라즈마 밀도는 얼마나 많은 플라즈마 포인트 소스들(90)이 턴 온 되었는지(turned on)에 따른다. 이러한 방식에서, 각각의 플라즈마 포인트 소스(90)에 전달되는 순(net) 파워는 펄스 폭 변조에 의해 제어될 수 있다.
[47] 제 2 모드에서는, 각각의 플라즈마 포인트 소스(90)에 전달되는 파워의 레벨(level)이 제어된다. 또한, 개별 플라즈마 포인트 소스들(90)(또는 플라즈마 포인트 소스들(90)의 그룹들)에 대한 가스 조성이, 가스 분배기(112)에 의해 변화될 수 있다. 따라서, 상이한 플라즈마 포인트 소스들(90)은 동일한 가스 방출 조성을 가질 필요가 없다. 각각의 플라즈마 포인트 소스(90)는 정해진 어드레스(fixed address)를 갖는다. 각각의 플라즈마 포인트 소스(90)로의 파워 및/또는 가스 유동은, 개별적으로 턴 온 또는 오프할 대상이 될 수 있다(targeted).
[48] 일 방법에 따르면, 작업물의 표면에 걸친 프로세스 레이트의 공간 분포가 측정된다. 프로세스 레이트 분포에서의 불-균일성들은, 사실상(in effect), 측정된 프로세스 레이트 공간 분포의 역(inverse)인, 플라즈마 포인트 소스들의 어레이(90)에 공급되는 파워의 온/오프 듀티 사이클들의 공간 분포를 확립함으로써(establishing) 보상된다. 다시 말해서, 온/오프 파워 듀티 사이클들의 분포는, 측정된 프로세스 레이트 분포가 최소치들(minima)을 갖는 위치들에서 최대치들(maxima)을 갖고, 측정된 프로세스 레이트 분포가 최대치들을 갖는 위치들에서 최소치들을 갖는다.
[49] 다른 방법에 따르면, 프로세스 레이트 분포에서의 불-균일성들은, 사실상, 측정된 프로세스 레이트 공간 분포의 역인, 플라즈마 포인트 소스들의 어레이(90)에 공급되는 프로세스 가스 유동들의 온/오프 듀티 사이클들의 공간 분포를 확립함으로써 보상된다. 다시 말해서, 온/오프 가스 유동 듀티 사이클들의 분포는, 측정된 프로세스 레이트 분포가 최소치들을 갖는 위치들에서 최대치들을 갖고, 측정된 프로세스 레이트 분포가 최대치들을 갖는 위치들에서 최소치들을 갖는다.
장점들:
[50] 일차적인 장점은, 고에너지 라디칼들(energetic radicals) 및 하전 입자들의 생성에 대한 공간적으로 그리고 시간적으로 완전한 제어이다. 이는, 국부적인 하전 입자들 및 고에너지 라디칼들의 분포에 대한 공간적 및 시간적 제어를 가능하게 한다.
[51] 전술한 내용은 본 발명의 실시예들에 관한 것이지만, 본 발명의 다른 그리고 추가적인 실시예들은 본 발명의 기본적인 범위로부터 벗어나지 않고 안출될 수 있으며, 본 발명의 범위는 이하의 청구항들에 의해서 결정된다.

Claims (15)

  1. 플라즈마 반응기(plasma reactor)로서:
    대칭축을 가지는 하부 프로세싱 부분 및 상기 하부 프로세싱 부분으로부터 위로 연장되는 공동들(cavities)의 어레이(array)를 포함하는 플라즈마 포인트 소스들을 가지는 프로세싱 챔버 ― 각 공동은 상기 하부 프로세싱 부분의 대칭축에 평행하게 길어지도록(elongated) 연장되며, 각 공동은 각 다른 공동의 외부에 위치됨 ― ;
    상기 프로세싱 챔버의 상기 하부 프로세싱 부분에 있는 작업물 지지부;
    상이한 가스 종들(species)의 복수의 가스 소스들;
    개별 공동 내로 각 가스 유입구 개구부를 가지는 복수의 가스 유입구들;
    상기 복수의 가스 소스들을 상기 복수의 가스 유입구들에 커플링시키는 가스 분배기(gas distributor) ― 상기 가스 분배기는 각 개별 가스 유입구에 대한 개별 밸브를 가지는 복수의 밸브들을 포함하고, 각 개별 밸브는 개별 가스 유입구를 상기 복수의 가스 소스들 중 하나에 선택적으로 연결함 ― ;
    파워 소스(power source);
    각 개별 공동에 대한 개별 컨덕터(conductor)를 포함하는 컨덕터들의 어레이 ― 각 개별 컨덕터는 상기 공동들의 어레이의 개별 단일 공동에 인접하고 상기 공동들의 어레이의 개별 단일 공동을 둘러쌈 ― ;
    상기 파워 소스와 상기 컨덕터들의 어레이 사이에 커플링된 파워 분배기 ― 상기 파워 분배기는 파워 소스의 출력부(output)와 상기 컨덕터들의 어레이 사이에 커플링된 복수의 스위치들을 포함하고, 상기 복수의 스위치들은 각 개별 컨덕터에 대한 스위치를 포함함 ― ; 및
    상기 프로세싱 챔버의 상기 하부 프로세싱 부분으로부터 위로 연장되는 상기 공동들의 어레이의 각 공동에서 가스 종들 및 플라즈마 생성의 독립적인 제어를 제공하도록 사용자-정의 명령들(user-defined instructions)에 따라 상기 복수의 스위치들을 개별적으로 제어하고 상기 복수의 밸브들을 개별적으로 제어하는 프로세서를 포함하는,
    플라즈마 반응기.
  2. 제 1 항에 있어서,
    상기 프로세싱 챔버는 상기 하부 프로세싱 부분으로부터 위로 연장되는 상기 공동들의 어레이를 규정하는 복수의 유전체 공동 벽들을 포함하는,
    플라즈마 반응기.
  3. 제 2 항에 있어서,
    상기 프로세싱 챔버는 상기 복수의 유전체 공동 벽들의 하부 에지들에 고정되고 상기 하부 프로세싱 부분에 대한 천정(ceiling)을 제공하는 전도성 하부 플레이트를 포함하는,
    플라즈마 반응기.
  4. 제 3 항에 있어서,
    상기 프로세싱 챔버는 상기 복수의 유전체 공동 벽들의 상부 에지들에 고정되고 상기 공동들의 어레이에 대한 천정을 제공하는 전도성 상부 플레이트를 포함하는,
    플라즈마 반응기.
  5. 제 2 항에 있어서,
    상기 파워 소스는 RF 파워 생성기(generator)를 포함하고, 각 개별 컨덕터는 상기 유전체 공동 벽들 중 대응하는 개별 유전체 공동 벽에 의해 대응하는 개별 공동의 내부로부터 분리되는,
    플라즈마 반응기.
  6. 제 5 항에 있어서,
    상기 컨덕터들의 어레이는 RF 파워를 상기 공동들의 어레이로 용량 결합하는(capacitively couple) 전극들의 어레이인,
    플라즈마 반응기.
  7. 제 6 항에 있어서,
    상기 전극들의 어레이의 각 전극은 상기 대칭축에 평행한 축을 가지며 상기 개별 공동을 둘러싸는 실린더를 형성하는,
    플라즈마 반응기.
  8. 제 5 항에 있어서,
    상기 컨덕터들의 어레이는 상기 공동들의 어레이에 RF 파워를 유도 결합하는(inductively couple) 코일 안테나들의 어레이인,
    플라즈마 반응기.
  9. 제 8 항에 있어서,
    상기 코일 안테나들의 어레이의 각 코일 안테나는 상기 대칭축에 평행한 축을 가지는 실린더에 감긴 코일을 형성하는,
    플라즈마 반응기.
  10. 제 1 항에 있어서,
    상기 프로세싱 챔버는 상기 하부 프로세싱 부분으로부터 위로 연장되는 상기 공동들의 어레이의 부분들을 규정하는 복수의 전도성 공동 벽들을 포함하고, 상기 전도성 공동 벽들은 상기 컨덕터들의 어레이를 제공하는,
    플라즈마 반응기.
  11. 제 10 항에 있어서,
    상기 파워 소스는 D.C. 파워 생성기이고, 상기 컨덕터들의 어레이의 각 컨덕터는 D.C. 방전(discharge)을 위한 전극인,
    플라즈마 반응기.
  12. 제 10 항에 있어서,
    상기 프로세싱 챔버는 상기 전도성 공동 벽의 위와 아래에 위치된 유전체 공동 벽들을 갖는 복수의 유전체 공동 벽들을 포함하는,
    플라즈마 반응기.
  13. 제 1 항에 있어서,
    상기 프로세싱 챔버는 원통형 측벽을 포함하고, 상기 플라즈마 반응기는 상기 원통형 측벽 주위에 감겨진 코일 안테나 및 임피던스 매치를 통해 상기 코일 안테나에 커플링된 RF 파워 생성기를 포함하는 유도 결합 플라즈마 소스(inductively coupled plasma source)를 더 포함하는,
    플라즈마 반응기.
  14. 삭제
  15. 삭제
KR1020160102451A 2015-09-28 2016-08-11 플라즈마 포인트 소스들의 어레이를 갖는, 작업물을 프로세싱하기 위한 플라즈마 반응기 KR102545738B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/867,240 US20170092470A1 (en) 2015-09-28 2015-09-28 Plasma reactor for processing a workpiece with an array of plasma point sources
US14/867,240 2015-09-28

Publications (2)

Publication Number Publication Date
KR20170039557A KR20170039557A (ko) 2017-04-11
KR102545738B1 true KR102545738B1 (ko) 2023-06-19

Family

ID=58409895

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160102451A KR102545738B1 (ko) 2015-09-28 2016-08-11 플라즈마 포인트 소스들의 어레이를 갖는, 작업물을 프로세싱하기 위한 플라즈마 반응기

Country Status (5)

Country Link
US (2) US20170092470A1 (ko)
JP (3) JP6831644B2 (ko)
KR (1) KR102545738B1 (ko)
CN (3) CN106558468B (ko)
TW (2) TWI709995B (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170092470A1 (en) * 2015-09-28 2017-03-30 Applied Materials, Inc. Plasma reactor for processing a workpiece with an array of plasma point sources
US20180174801A1 (en) * 2016-12-21 2018-06-21 Ulvac Technologies, Inc. Apparatuses and methods for surface treatment
JP6763815B2 (ja) 2017-03-31 2020-09-30 三菱重工コンプレッサ株式会社 遠心圧縮機及びターボ冷凍機
US10431427B2 (en) 2017-05-26 2019-10-01 Applied Materials, Inc. Monopole antenna array source with phase shifted zones for semiconductor process equipment
TWI794240B (zh) * 2017-06-22 2023-03-01 美商應用材料股份有限公司 用於電漿處理的處理工具及電漿反應器
TWI788390B (zh) 2017-08-10 2023-01-01 美商應用材料股份有限公司 用於電漿處理的分佈式電極陣列
GB201813451D0 (en) * 2018-08-17 2018-10-03 Spts Technologies Ltd Plasma apparatus
US11094508B2 (en) * 2018-12-14 2021-08-17 Applied Materials, Inc. Film stress control for plasma enhanced chemical vapor deposition
JP7221115B2 (ja) * 2019-04-03 2023-02-13 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
KR102610445B1 (ko) * 2020-12-08 2023-12-05 세메스 주식회사 플라즈마를 이용한 기판 처리 장치 및 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091320A (ja) * 1998-09-10 2000-03-31 Foi:Kk プラズマ処理装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5683517A (en) * 1995-06-07 1997-11-04 Applied Materials, Inc. Plasma reactor with programmable reactant gas distribution
US5702530A (en) * 1995-06-23 1997-12-30 Applied Materials, Inc. Distributed microwave plasma reactor for semiconductor processing
US6054013A (en) * 1996-02-02 2000-04-25 Applied Materials, Inc. Parallel plate electrode plasma reactor having an inductive antenna and adjustable radial distribution of plasma ion density
US5683548A (en) * 1996-02-22 1997-11-04 Motorola, Inc. Inductively coupled plasma reactor and process
US6267074B1 (en) * 1997-02-24 2001-07-31 Foi Corporation Plasma treatment systems
US6632322B1 (en) * 2000-06-30 2003-10-14 Lam Research Corporation Switched uniformity control
JP2004296953A (ja) * 2003-03-28 2004-10-21 Matsushita Electric Ind Co Ltd ドライエッチング装置および方法
IES20050301A2 (en) * 2005-05-11 2006-11-15 Univ Dublin City Plasma source
JP2007095905A (ja) * 2005-09-28 2007-04-12 Matsushita Electric Ind Co Ltd ドライエッチング装置
JP4784977B2 (ja) * 2005-09-29 2011-10-05 国立大学法人名古屋大学 ラジカル発生装置
JP4810281B2 (ja) * 2006-03-31 2011-11-09 東京エレクトロン株式会社 プラズマ処理装置
JP5168907B2 (ja) * 2007-01-15 2013-03-27 東京エレクトロン株式会社 プラズマ処理装置、プラズマ処理方法及び記憶媒体
US7976674B2 (en) * 2007-06-13 2011-07-12 Tokyo Electron Limited Embedded multi-inductive large area plasma source
TWI440405B (zh) * 2007-10-22 2014-06-01 New Power Plasma Co Ltd 電容式耦合電漿反應器
JP2010103455A (ja) * 2008-09-26 2010-05-06 Mitsubishi Electric Corp プラズマ処理装置
KR20110028414A (ko) * 2009-09-12 2011-03-18 위순임 다중 외부 방전관을 이용한 스퍼터 장치
KR101161169B1 (ko) * 2010-02-25 2012-07-02 (주)젠 다중 용량 결합 전극 어셈블리 및 이를 구비한 플라즈마 처리장치
US9190289B2 (en) * 2010-02-26 2015-11-17 Lam Research Corporation System, method and apparatus for plasma etch having independent control of ion generation and dissociation of process gas
JP5689294B2 (ja) * 2010-11-25 2015-03-25 東京エレクトロン株式会社 処理装置
US8900403B2 (en) * 2011-05-10 2014-12-02 Lam Research Corporation Semiconductor processing system having multiple decoupled plasma sources
WO2012142038A1 (en) 2011-04-11 2012-10-18 Lam Research Corporation E-beam enhanced decoupled source for semiconductor processing
CN103620729B (zh) * 2011-04-11 2016-10-12 朗姆研究公司 用于半导体处理的电子束增强解耦源
US8980046B2 (en) * 2011-04-11 2015-03-17 Lam Research Corporation Semiconductor processing system with source for decoupled ion and radical control
US20120255678A1 (en) * 2011-04-11 2012-10-11 Lam Research Corporation Multi-Frequency Hollow Cathode System for Substrate Plasma Processing
KR101947844B1 (ko) * 2011-05-10 2019-02-13 램 리써치 코포레이션 다수의 디커플링된 플라즈마 소스들을 갖는 반도체 프로세싱 시스템
JP5792563B2 (ja) * 2011-08-31 2015-10-14 東京エレクトロン株式会社 プラズマエッチング方法及びプラズマエッチング装置
KR101246191B1 (ko) * 2011-10-13 2013-03-21 주식회사 윈텔 플라즈마 장치 및 기판 처리 장치
KR101504532B1 (ko) * 2012-03-09 2015-03-24 주식회사 윈텔 플라즈마 처리 방법 및 기판 처리 장치
JP5713043B2 (ja) * 2012-05-07 2015-05-07 株式会社デンソー 半導体基板の製造方法
US10049948B2 (en) * 2012-11-30 2018-08-14 Lam Research Corporation Power switching system for ESC with array of thermal control elements
US9431218B2 (en) * 2013-03-15 2016-08-30 Tokyo Electron Limited Scalable and uniformity controllable diffusion plasma source
US20170092470A1 (en) * 2015-09-28 2017-03-30 Applied Materials, Inc. Plasma reactor for processing a workpiece with an array of plasma point sources

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091320A (ja) * 1998-09-10 2000-03-31 Foi:Kk プラズマ処理装置

Also Published As

Publication number Publication date
TWI778429B (zh) 2022-09-21
CN206546813U (zh) 2017-10-10
US20200312630A1 (en) 2020-10-01
JP2021093363A (ja) 2021-06-17
CN106558468A (zh) 2017-04-05
JP2017069540A (ja) 2017-04-06
US10957518B2 (en) 2021-03-23
US20170092470A1 (en) 2017-03-30
JP6831644B2 (ja) 2021-02-17
TWI709995B (zh) 2020-11-11
TW202125572A (zh) 2021-07-01
JP2023100969A (ja) 2023-07-19
KR20170039557A (ko) 2017-04-11
CN106558468B (zh) 2020-07-17
TW201712722A (zh) 2017-04-01
JP7313387B2 (ja) 2023-07-24
CN207503911U (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
KR102545738B1 (ko) 플라즈마 포인트 소스들의 어레이를 갖는, 작업물을 프로세싱하기 위한 플라즈마 반응기
US10163610B2 (en) Extreme edge sheath and wafer profile tuning through edge-localized ion trajectory control and plasma operation
KR102478896B1 (ko) 이온-이온 플라즈마 원자 층 에칭 프로세스 및 반응기
TWI645443B (zh) Plasma processing device and plasma processing method
KR101358779B1 (ko) 멀티 코어 플라즈마 발생 플레이트를 구비한 플라즈마반응기
JP7474651B2 (ja) プラズマ処理装置
KR20170024922A (ko) 플라즈마 발생 장치
KR20090068233A (ko) 플라즈마 처리 장치 및 방법
JP4601104B2 (ja) プラズマ処理装置
US10388528B2 (en) Non-ambipolar electric pressure plasma uniformity control
US20130098873A1 (en) Overhead electron beam source for plasma ion generation in a workpiece processing region
JP7264576B2 (ja) 製造プロセスにおける超局所化及びプラズマ均一性制御
KR20210119879A (ko) 기판 지지기 및 플라즈마 처리 장치
US11195696B2 (en) Electron beam generator, plasma processing apparatus having the same and plasma processing method using the same
CN110047725B (zh) 独立控制自由基密度、离子密度和离子能量的方法和***
KR102299885B1 (ko) 샤워 헤드 유닛 및 이를 포함하는 기판 처리 장치
US20170140900A1 (en) Uniform low electron temperature plasma source with reduced wafer charging and independent control over radical composition
KR100785404B1 (ko) 유도 결합형 플라즈마 안테나 및 이를 이용한 기판 처리장치와 방법
US20190096636A1 (en) Plasma processing apparatus, plasma processing method and method of manufacturing semiconductor device using the same
KR100760026B1 (ko) 플라즈마 발생기를 위한 페라이트 코어 조립체 및 이를구비한 플라즈마 처리 시스템
JP7278896B2 (ja) プラズマ処理方法及びプラズマ処理装置
KR101237400B1 (ko) 플라즈마 식각 장치
KR20090033648A (ko) 플라즈마 처리장치 및 이의 구동방법
KR20140131187A (ko) 기판 처리 장치 및 기판 처리 방법
KR20080058626A (ko) 유도 결합형 플라즈마 안테나와, 이를 이용한 기판 처리장치 및 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant