KR102395004B1 - Method for manufacturing self-healing conductive polymer composite and self-healing conductive polymer composite prepared thereby - Google Patents

Method for manufacturing self-healing conductive polymer composite and self-healing conductive polymer composite prepared thereby Download PDF

Info

Publication number
KR102395004B1
KR102395004B1 KR1020200078465A KR20200078465A KR102395004B1 KR 102395004 B1 KR102395004 B1 KR 102395004B1 KR 1020200078465 A KR1020200078465 A KR 1020200078465A KR 20200078465 A KR20200078465 A KR 20200078465A KR 102395004 B1 KR102395004 B1 KR 102395004B1
Authority
KR
South Korea
Prior art keywords
self
polymer composite
healing
conductive polymer
composite material
Prior art date
Application number
KR1020200078465A
Other languages
Korean (ko)
Other versions
KR20220000618A (en
Inventor
황지영
강승범
이민욱
양철민
김희진
Original Assignee
재단법인 한국탄소산업진흥원
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 한국탄소산업진흥원, 한국과학기술연구원 filed Critical 재단법인 한국탄소산업진흥원
Priority to KR1020200078465A priority Critical patent/KR102395004B1/en
Priority to PCT/KR2020/011769 priority patent/WO2021261657A1/en
Publication of KR20220000618A publication Critical patent/KR20220000618A/en
Application granted granted Critical
Publication of KR102395004B1 publication Critical patent/KR102395004B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C08L23/22Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/28Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C09D123/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C09D123/22Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/26Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/26Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers modified by chemical after-treatment
    • C09D123/28Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular

Abstract

본 발명은 자가치유성 전도성 고분자 복합소재의 제조방법으로, (A) 브로모부틸고무(BIIR)와 헥산을 혼합하는 단계; (B) 탄소나노튜브(CNT), 카본블랙, 인조흑연 및 금속 섬유로 이루어진 군에서 선택된 1종인 전도성 필러와 이소프로필알코올을 혼합하여 초음파 처리하는 단계; (C) 상기 (B)단계에서 혼합된 혼합물에 디메틸 실리콘 오일(MEP) 용액을 첨가하여 초음파 처리하는 단계; 및 (D) 상기 (C)단계에서 혼합된 혼합물에 상기 (A)단계에서 혼합된 혼합물을 첨가하여 교반하는 단계를 포함하는 것을 특징으로 한다.The present invention provides a method for producing a self-healing conductive polymer composite material, comprising the steps of: (A) mixing bromobutyl rubber (BIIR) and hexane; (B) sonicating by mixing isopropyl alcohol with one type of conductive filler selected from the group consisting of carbon nanotubes (CNT), carbon black, artificial graphite, and metal fibers; (C) sonicating by adding a dimethyl silicone oil (MEP) solution to the mixture mixed in step (B); and (D) adding the mixture mixed in step (A) to the mixture mixed in step (C) and stirring the mixture.

Description

자가치유성 전도성 고분자 복합소재의 제조방법 및 이에 따라 제조된 자가치유성 전도성 고분자 복합소재{Method for manufacturing self-healing conductive polymer composite and self-healing conductive polymer composite prepared thereby}Method for manufacturing self-healing conductive polymer composite and self-healing conductive polymer composite prepared thereby

본 발명은 자가치유성, 전도성 및 발열성이 우수한 자가치유성 전도성 고분자 복합소재의 제조방법 및 이에 따라 제조된 자가치유성 전도성 고분자 복합소재에 관한 것이다.The present invention relates to a method for producing a self-healing conductive polymer composite material having excellent self-healing properties, conductivity and heat, and to a self-healing conductive polymer composite material manufactured thereby.

탄소나노튜브(CNT)는 1991년 일본인 과학자에 의해서 발견되어 특성이 구리보다 높은 전기적 특성과 다이아몬드보다 높은 열적특성, 강철의 수 천 배되는 기계적 특성을 가지는 물질을 양산하고 적용하기 위한 기간이 20년 이상이 되었으며 이물질은 다양한 물질의 첨가제로 응용되고 있다.Carbon nanotubes (CNT) were discovered by a Japanese scientist in 1991, and it took 20 years to mass-produce and apply a material with electrical properties higher than copper, thermal properties higher than diamond, and mechanical properties thousands of times that of steel. It has become an abnormality, and foreign substances are being applied as additives to various substances.

또한, Bromobutyl rubber(BIIR)는 높은 인장강도, 진동의 감소, 낮은 투과성, 노화 및 풍화에 대한 높은 저항성 등의 특성을 가지고 있어서 산업분야에 폭넓게 사용되고 있는 고분자 물질이다.In addition, bromobutyl rubber (BIIR) has characteristics such as high tensile strength, vibration reduction, low permeability, and high resistance to aging and weathering, so it is a polymer material widely used in industrial fields.

그러나 이러한 탄소나노튜브(CNT)를 고분자 매트릭스 내에 안정적으로 분산하는 기술과 적용방법의 개발이 부족하여, 좀 더 다방면에 적용하지 못하고 있는 것이 현실이다.However, the reality is that the technology for stably dispersing the carbon nanotubes (CNTs) in the polymer matrix and the development of the application method are insufficient, so that it cannot be applied in more various fields.

한편, 자가치유 시스템이란 외부의 환경적 요인으로 소재의 구조가 파괴되거나 물성 등이 저하되었을 때 수동적인 수리가 아닌 분자 내 스스로 구조를 복원하여 수명연장 및 물성회복 등을 할 수 있는 지능형 시스템이다.On the other hand, the self-healing system is an intelligent system that can extend the lifespan and restore properties by restoring the structure within the molecule itself rather than passively repairing it when the structure of the material is destroyed or the physical properties are deteriorated due to external environmental factors.

최근 반복적 치료가 어려운 캡슐 시스템에 비하여 분자단위의 결합에 의하여 치료가 가능한 가역적 화학 메카니즘 시스템을 이용하여 자가치유 소재를 제조하고자 하는 연구가 진행되고 있다. 이에 따라 개별 화합물에 대한 연구가 진행되고 있으나, 자가치유 성능을 갖더라도 높은 온도에서만 반응하거나, 반복적인 복원이 되지 않거나, 복원속도가 느리거나, 연성 혹은 기계적 물성적인 측면에서 우수한 성능을 보이지 못하는 등의 화합물이 많아 연성 디바이스 등과 같은 소자, 항공 우주용 소재, 건축소재, 의료 소재 등에서 적용하기 어려운 문제점이 존재하였다.Recently, research is being conducted to manufacture self-healing materials using a reversible chemical mechanism system that can be treated by molecular bonding compared to the capsule system, which is difficult to repeatedly treat. Accordingly, research on individual compounds is being conducted, but even if they have self-healing performance, they respond only at high temperatures, do not repeatedly restore, have slow restoration rates, do not show excellent performance in terms of ductility or mechanical properties, etc. There were problems in that it was difficult to apply to devices such as flexible devices, aerospace materials, building materials, medical materials, etc. because there are many compounds of

이에 따라, 탄소나노튜브(CNT)를 고분자 내에 균일하고 안정된 상태로 분산시켜 보다 높은 전도성, 발열 특성 및 기계적 특성을 가지면서도 우수한 자가치유 성능을 보이는 복합소재에 대한 개발이 절실히 요구되고 있다.Accordingly, there is an urgent need for the development of a composite material in which carbon nanotubes (CNTs) are dispersed in a uniform and stable state in a polymer to exhibit superior self-healing performance while having higher conductivity, heat generation and mechanical properties.

KR 10-2019-0083551 AKR 10-2019-0083551 A

본 발명의 목적은 탄소나노튜브(CNT)를 고분자 내에 균일하고 안정된 상태로 분산시켜 자가치유성, 전도성 및 발열성이 우수한 자가치유성 전도성 고분자 복합소재의 제조방법을 제공하는데 있다.It is an object of the present invention to provide a method for manufacturing a self-healing conductive polymer composite material having excellent self-healing properties, conductivity and exothermic properties by dispersing carbon nanotubes (CNTs) in a uniform and stable state in a polymer.

또한, 본 발명의 다른 목적은 상기에 따라 제조된 자가치유성 전도성 고분자 복합소재를 응용하는데 있다.In addition, another object of the present invention is to apply the self-healing conductive polymer composite material prepared according to the above.

본 발명은 상기 과제를 해결하기 위해, (A) 브로모부틸고무(BIIR)와 헥산을 혼합하는 단계, (B) 탄소나노튜브(CNT), 카본블랙, 인조흑연 및 금속 섬유로 이루어진 군에서 선택된 1종인 전도성 필러와 이소프로필알코올을 혼합하여 초음파 처리하는 단계, (C) 상기 (B)단계에서 혼합된 혼합물에 디메틸 실리콘 오일(MEP) 용액을 첨가하여 초음파 처리하는 단계 및(D) 상기 (C)단계에서 혼합된 혼합물에 상기 (A)단계에서 혼합된 혼합물을 첨가하여 교반하는 단계를 포함하는 자가치유성 전도성 고분자 복합소재의 제조방법을 제공한다.The present invention is selected from the group consisting of (A) mixing bromobutyl rubber (BIIR) and hexane, (B) carbon nanotubes (CNT), carbon black, artificial graphite, and metal fibers in order to solve the above problems Sonicating by mixing one type of conductive filler with isopropyl alcohol, (C) sonicating by adding a dimethyl silicone oil (MEP) solution to the mixture mixed in step (B), and (D) above (C) ) provides a method for producing a self-healing conductive polymer composite material comprising the step of adding and stirring the mixture mixed in step (A) to the mixture mixed in step (A).

또한, 상기 (D)단계에서 혼합된 혼합물에 헥산과 이소프로필알코올의 부피비가 5:1 내지 1:1이 되도록 헥산을 추가적으로 첨가하는 단계를 더 포함하는 자가치유성 전도성 고분자 복합소재의 제조방법을 제공한다.In addition, the method of manufacturing a self-healing conductive polymer composite material further comprising the step of additionally adding hexane so that the volume ratio of hexane and isopropyl alcohol to the mixture mixed in step (D) is 5:1 to 1:1 to provide.

또한, 상기 (A)단계에서 브로모부틸고무(BIIR)는 1~10 w/v% 조성비로 혼합되는 자가치유성 전도성 고분자 복합소재의 제조방법을 제공한다.In addition, in the step (A), bromobutyl rubber (BIIR) is mixed in a composition ratio of 1 to 10 w/v% to provide a method for producing a self-healing conductive polymer composite material.

또한, 상기 (B)단계에서 전도성 필러와 이소프로필알코올은 1:50 내지 1:500의 중량비로 혼합되는 자가치유성 전도성 고분자 복합소재의 제조방법을 제공한다.In addition, in the step (B), the conductive filler and isopropyl alcohol are mixed in a weight ratio of 1:50 to 1:500 to provide a method for producing a self-healing conductive polymer composite material.

또한, 상기 (B)단계의 탄소나노튜브(CNT)의 함량은 1~35 wt% 으로 하는 자가치유성 전도성 고분자 복합소재의 제조방법을 제공한다.In addition, the content of the carbon nanotubes (CNT) in step (B) provides a method of manufacturing a self-healing conductive polymer composite material of 1 to 35 wt%.

또한, 상기 (D)단계에서 혼합된 혼합물을 스프레이 타입의 자가치유 페인트 로 제조하는 단계를 더 포함하는 자가치유성 전도성 고분자 복합소재의 제조방법을 제공한다.In addition, it provides a method for producing a self-healing conductive polymer composite material further comprising the step of preparing the mixture mixed in step (D) as a spray-type self-healing paint.

또한, 상기 스프레이 타입의 자가치유 페인트를 기판에 분무하여 캐스팅함으로써 필름 형태로 제조하는 단계를 더 포함하는 자가치유성 전도성 고분자 복합소재의 제조방법을 제공한다.In addition, it provides a method of manufacturing a self-healing conductive polymer composite material further comprising the step of producing a film form by spraying the spray-type self-healing paint on a substrate and casting.

또한, 상기 제조방법에 따라 제조된 자가치유성 전도성 고분자 복합소재를 제공한다.In addition, there is provided a self-healing conductive polymer composite material manufactured according to the above manufacturing method.

또한, 상기 자가치유성 전도성 고분자 복합소재를 포함하는 스프레이를 제공한다.In addition, it provides a spray containing the self-healing conductive polymer composite material.

본 발명은 높은 전도성과 발열성 및 우수한 자가치유성을 통하여 타이어나 선박의 실금이나 비정형 구멍을 용이하게 메울 수 있다. 또한, 본 발명은 스프레이 타입으로 제조되어 장소에 구애받지 않고 용이하게 도포할 수 있어 여러 산업분야에서 활용이 가능하다.The present invention can easily fill incontinence or irregular holes in tires or ships through high conductivity, heat generation and excellent self-healing properties. In addition, since the present invention is manufactured in a spray type, it can be easily applied regardless of a location, so that it can be utilized in various industrial fields.

도 1은 본 발명에 따른 자가치유성 전도성 고분자 복합소재의 제조방법을 나타내는 블록도이다.
도 2는 실시예 1 내지 4 및 비교예에 따라 제조된 자가치유성 전도성 고분자 복합소재를 시차주사열량계분석기(DSC, 도 2a), 열중량분석기(TGA, 도 2b) 및 파생열중량분석기(DTG, 도 2c)로 측정한 그래프이다.
도 3은 실시예 1 내지 4 및 비교예에 따라 제조된 자가치유성 전도성 고분자 복합소재를 레이저플래시분석기(LFA)로 측정한 그래프이다.
도 4는 실시예 1 내지 4 및 비교예에 따라 제조된 자가치유성 전도성 고분자 복합소재의 Stress-Strain 곡선(a), Young's modulus(b), Storage modulus(c) 및 Tan delta(d)를 나타내는 그래프이다.
도 5는 실시예 1 내지 4에 따라 제조된 자가치유성 전도성 고분자 복합소재의 표면 저항(a) 및 전기전도도(b)를 나타내는 그래프이다.
도 6은 실시예 1 내지 4에 따라 제조된 자가치유성 전도성 고분자 복합소재의 열 분산 맵 이미지(a-d) 및 발열 속도를 나타내는 그래프(e)이다.
도 7은 실시예 5 및 6에 따라 제조된 자가치유성 전도성 고분자 복합소재의 Joule heating 및 IR contoure image를 나타내는 도면이다.
도 8 및 9는 각각 healing을 통한 복합소재의 형태 및 전류와 발열특성을 나타내는 도면이다.
1 is a block diagram showing a method of manufacturing a self-healing conductive polymer composite material according to the present invention.
2 is a differential scanning calorimeter analyzer (DSC, FIG. 2a), a thermogravimetric analyzer (TGA, FIG. 2b) and a derivative thermogravimetric analyzer (DTG) of the self-healing conductive polymer composite material prepared according to Examples 1 to 4 and Comparative Examples. , is a graph measured in FIG. 2c).
3 is a graph of the self-healing conductive polymer composite materials prepared according to Examples 1 to 4 and Comparative Examples measured with a laser flash analyzer (LFA).
4 shows the stress-strain curves (a), Young's modulus (b), Storage modulus (c) and Tan delta (d) of the self-healing conductive polymer composite materials prepared according to Examples 1 to 4 and Comparative Examples; It is a graph.
5 is a graph showing the surface resistance (a) and electrical conductivity (b) of the self-healing conductive polymer composite material prepared according to Examples 1 to 4;
6 is a graph (e) showing a heat dissipation map image (ad) and heat generation rate of the self-healing conductive polymer composite material prepared according to Examples 1 to 4 (e).
7 is a view showing Joule heating and IR contoure images of the self-healing conductive polymer composite material prepared according to Examples 5 and 6;
8 and 9 are diagrams showing the shape of the composite material through healing, and current and heating characteristics, respectively.

본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는바, 이하 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.The present invention can apply various transformations and can have various embodiments. Hereinafter, specific embodiments are illustrated in the drawings and will be described in detail in the detailed description. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the present invention, if it is determined that a detailed description of a related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.

본 발명은 자가치유성, 전도성 및 발열성이 우수한 자가치유성 전도성 고분자 복합소재의 제조방법 및 이에 따라 제조된 자가치유성 전도성 고분자 복합소재에 관한 것이다. The present invention relates to a method for producing a self-healing conductive polymer composite material having excellent self-healing properties, conductivity and heat, and to a self-healing conductive polymer composite material manufactured thereby.

특히, 본 발명은 분산도가 높으며, 간략한 제조방법에 의하여 동일한 물성을 갖는 자가치유성 전도성 고무 복합소재를 제공할 수 있다.In particular, the present invention can provide a self-healing conductive rubber composite material having a high degree of dispersion and having the same physical properties by a simple manufacturing method.

본 발명에서 브로모부틸고무(BIIR), 헥산, 탄소나노튜브(CNT), 카본블랙, 금속 섬유, 이소프로필알코올 및 디메틸 실리콘 오일(MEP)은 이 기술분야에서 널리 사용되는 것이므로 자세한 설명은 생략한다. In the present invention, bromobutyl rubber (BIIR), hexane, carbon nanotube (CNT), carbon black, metal fiber, isopropyl alcohol and dimethyl silicone oil (MEP) are widely used in this technical field, so detailed description will be omitted. .

이하, 본 발명을 도 1을 참조하여 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to FIG. 1 .

도 1은 본 발명에 따른 자가치유성 전도성 고분자 복합소재의 제조방법을 나타내는 블록도이다.1 is a block diagram showing a method of manufacturing a self-healing conductive polymer composite material according to the present invention.

도 1을 참조하면, 본 발명의 자가치유성 전도성 고분자 복합소재를 제조하는 방법은 (A) 브로모부틸고무(BIIR)와 헥산을 혼합하는 단계; (B) 탄소나노튜브(CNT), 카본블랙, 인조흑연 및 금속 섬유로 이루어진 군에서 선택된 1종인 전도성 필러와 이소프로필알코올을 혼합하여 초음파 처리하는 단계; (C) 상기 (B)단계에서 혼합된 혼합물에 디메틸 실리콘 오일(MEP) 용액을 첨가하여 초음파 처리하는 단계; 및 (D) 상기 (C)단계에서 혼합된 혼합물에 상기 (A)단계에서 혼합된 혼합물을 첨가하여 교반하는 단계를 포함할 수 있다.Referring to Figure 1, the method for preparing the self-healing conductive polymer composite material of the present invention comprises the steps of (A) mixing bromobutyl rubber (BIIR) and hexane; (B) sonicating by mixing isopropyl alcohol with one type of conductive filler selected from the group consisting of carbon nanotubes (CNT), carbon black, artificial graphite, and metal fibers; (C) sonicating by adding a dimethyl silicone oil (MEP) solution to the mixture mixed in step (B); and (D) adding the mixture mixed in step (A) to the mixture mixed in step (C) and stirring the mixture.

먼저, 상기 (A)단계에서는 헥산에 브로모부틸고무(BIIR)를 첨가한 후, 휘저어 혼합한다.First, in step (A), bromobutyl rubber (BIIR) is added to hexane, and then stirred and mixed.

상기 브로모부틸고무(BIIR)는 유연성, 신축성, 화학적 안정성 및 가용성이 우수한 고분자 중 하나로서, 특히 자가치유성이 우수하여 타이어나 선박의 균열이나 비정형 구멍 등을 메우기 위한 물질로서 사용된다.The bromobutyl rubber (BIIR) is one of the polymers with excellent flexibility, elasticity, chemical stability and solubility, and in particular, has excellent self-healing properties and is used as a material to fill cracks or irregular holes in tires or ships.

상기 헥산은 비극성 용매 중 하나로서, 상기 브로모부틸고무(BIIR)를 균일하게 분산시키기 위한 용매로 사용된다.The hexane is one of the non-polar solvents, and is used as a solvent for uniformly dispersing the bromobutyl rubber (BIIR).

상기 (A)단계에서 브로모부틸고무(BIIR)는 1~10 w/v% 조성비로 혼합되며, 바람직하게는 4 w/v% 조성비로 혼합될 수 있다. 상기 4 w/v% 조성비에서 헥산 내 브로모부틸고무(BIIR)의 분산도가 높고 핸들링이 용이하여 보다 효과적으로 브로모부틸고무(BIIR)을 균일하게 분산시킬 수 있다.In step (A), bromobutyl rubber (BIIR) is mixed in a composition ratio of 1 to 10 w/v%, and preferably may be mixed in a composition ratio of 4 w/v%. At the 4 w/v% composition ratio, the dispersion degree of bromobutyl rubber (BIIR) in hexane is high and handling is easy, so that bromobutyl rubber (BIIR) can be more effectively dispersed uniformly.

다음으로, 상기 (B)단계에서는 전도성 필러와 이소프로필알코올을 혼합하여 초음파로 10 내지 60분 동안 처리하며, 바람직하게는 30분 동안 처리될 수 있다.Next, in step (B), the conductive filler and isopropyl alcohol are mixed and treated with ultrasonic waves for 10 to 60 minutes, preferably for 30 minutes.

상기 전도성 필러로는 탄소나노튜브(CNT), 카본블랙, 인조흑연, 금속 섬유 및 그래핀으로 이루어진 군에서 선택된 1종을 들 수 있다. 상기 건조된 전도성 필러는 강하게 응집하려고 하는 경향이 있으며, 이는 반 데르 발스 힘(van der waals force)에 의해 전도성 필러가 다발을 형성하고 응집되어, 용매에 계면 접촉을 최소화함으로써 표면 에너지를 최소화하기 위한 작용이다.The conductive filler may include one selected from the group consisting of carbon nanotubes (CNT), carbon black, artificial graphite , metal fibers, and graphene. The dried conductive filler tends to agglomerate strongly, which is a method for minimizing the surface energy by minimizing interfacial contact with the solvent by forming bundles and agglomeration of the conductive filler by van der waals force. it works

본 발명에서는 상기 응집된 전도성 필러를 분산시키기 위하여 응집된 전도성 필러를 이소프로필알코올과 혼합한 후 이를 초음파 처리하여 전도성 필러를 분산시킨다.In the present invention, in order to disperse the agglomerated conductive filler, the agglomerated conductive filler is mixed with isopropyl alcohol and then sonicated to disperse the conductive filler.

상기 전도성 필러와 혼합되는 용매는 추후 용매의 증발 시 우수한 전도성을 위하여 공기를 남기지 말고 증발되어야 하므로 이소프로필알코올을 사용하는 것이 바람직하다. 구체적으로, 상기 이소프로필알코올은 3개의 탄소와 1개의 산소로 구성된 안정한 구조를 가지고 있어서 소수성 파트 또는 친수성 파트를 갖는 물질이 전도성 필러의 표면에 접촉하기에 용이하다. Since the solvent mixed with the conductive filler should be evaporated without leaving air for excellent conductivity when the solvent is evaporated later, it is preferable to use isopropyl alcohol. Specifically, the isopropyl alcohol has a stable structure composed of three carbons and one oxygen, so that a material having a hydrophobic part or a hydrophilic part easily contacts the surface of the conductive filler.

또한, 부분적으로 이소프로필알코올에 용해된 전도성 필러는 초음파를 통해 완전하게 혼합된다.In addition, the conductive filler partially dissolved in isopropyl alcohol is thoroughly mixed through ultrasonic waves.

상기 초음파 처리는 물리적인 힘이 가해짐으로써 응집되어 있는 전도성 필러 뭉치(bundle)의 서로 간 표면 사이의 반 데르 발스 힘을 파괴하고 전도성 필러를 단일 전도성 필러로 분리한다. 본 발명에서 초음파 처리 방법은 욕조 초음파 법으로 10 내지 60분의 시간 내에 실온 이하, 바람직하게는 10 내지 23 ℃를 유지하면서 초음파 처리를 수행해야 전도성 필러의 손상을 최소화할 뿐만 아니라 분산을 안정화시킬 수 있다.The ultrasonic treatment breaks the van der Waals force between the mutual surfaces of the aggregated conductive filler bundles by applying a physical force, and separates the conductive filler into a single conductive filler. In the present invention, the ultrasonic treatment method is the bath sonication method, and the ultrasonic treatment should be performed while maintaining the room temperature or lower, preferably 10 to 23 ° C. within a time of 10 to 60 minutes to minimize damage to the conductive filler as well as to stabilize the dispersion. there is.

상기 초음파는 주파수 약 40 ~ 5,000 kHz 범위에서 강도(spatial peak pulse average intensity: ISPPA)가 약 50 ~ 1,000 mW/ 사이를 변하는 초음파를 사용함으로써 전도성 필러가 골고루 분산된 안정한 분산액을 얻을 수 있다.The ultrasonic wave intensity (spatial peak pulse average intensity: ISPPA) in the frequency range of about 40 ~ 5,000 kHz by using ultrasonic waves that change between about 50 ~ 1,000 mW / It is possible to obtain a stable dispersion in which the conductive filler is evenly dispersed.

또한, 상기 용매로 이소프로필알코올 및 초음파 방법이 아닌 다른 용매 및 다른 물리적인 방법을 사용하는 경우에는 전도성 필러를 완전히 분리하여 용매에 안정하게 분산시킬 수 없으므로, 이소프로필알코올과 초음파 처리를 함께 수행하는 것이 바람직하다.In addition, when using a solvent other than isopropyl alcohol and ultrasonic method as the solvent and other physical method, the conductive filler cannot be completely separated and dispersed stably in the solvent. it is preferable

상기 전도성 필러와 이소프로필알코올은 1 : 50 내지 500의 중량비, 바람직하게는 1 : 95 내지 450의 중량비로 혼합된다. 전도성 필러를 기준으로 이소프로필알코올의 중량비가 상기 범위를 벗어나는 경우에는 응집된 전도성 필러가 분리되지 않을 뿐만 아니라 분리된 전도성 필러도 이소프로필알코올에 안정하게 분산되지 못할 수 있다.The conductive filler and isopropyl alcohol are mixed in a weight ratio of 1:50 to 500, preferably 1:95 to 450 by weight. When the weight ratio of isopropyl alcohol based on the conductive filler is out of the above range, the aggregated conductive filler may not be separated, and the separated conductive filler may not be stably dispersed in isopropyl alcohol.

또한, 상기 전도성 필러가 탄소나노튜브(CNT)인 경우, 혼합물 내 탄소나노튜브(CNT)의 함량은 1 ~ 35wt% 이며, 바람직하게는 5 ~ 20wt% 일 수 있다. 상기 범위 내에서 탄소나노튜브(CNT)가 균일하게 분산되며, 탄소나노튜브(CNT)의 우수한 전기전도도, 열전도도 및 탄성 등의 특성을 유지하는 자가치유성 전도성 고무 복합소재를 제조할 수 있다.In addition, when the conductive filler is carbon nanotube (CNT), the content of carbon nanotube (CNT) in the mixture is 1 to 35 wt%, preferably 5 to 20 wt%. It is possible to prepare a self-healing conductive rubber composite material in which carbon nanotubes (CNT) are uniformly dispersed within the above range, and maintain properties such as excellent electrical conductivity, thermal conductivity, and elasticity of carbon nanotubes (CNT).

다음으로, 상기 (C)단계에서는 상기 (B)단계에서 혼합된 혼합물에 디메틸 실리콘 오일(MEP) 용액을 첨가한 후, 초음파 처리한다.Next, in step (C), a dimethyl silicone oil (MEP) solution is added to the mixture mixed in step (B), and then sonicated.

상기 디메틸 실리콘 오일(MEP)은 이소프로필알코올의 소수성 파트와 접촉하게 되고, 초음파 처리에 의해 상기 분산된 전도성 필러를 감싼다.The dimethyl silicone oil (MEP) comes into contact with the hydrophobic part of isopropyl alcohol, and surrounds the dispersed conductive filler by sonication.

상기 디메틸 실리콘 오일(MEP)의 점도는 70 내지 200 cSt, 바람직하게는 100 내지 150 cSt로서, 점도가 상기 하한치 미만인 경우에는 전도성 필러를 감쌀 수 없으며, 상기 상한치 초과인 경우에는 전도성 필러를 용액 내에 분산시키기 어려울 수 있다.The viscosity of the dimethyl silicone oil (MEP) is 70 to 200 cSt, preferably 100 to 150 cSt, and when the viscosity is less than the lower limit, the conductive filler cannot be wrapped, and when it exceeds the upper limit, the conductive filler is dispersed in the solution it can be difficult to do

상기 디메틸 실리콘 오일(MEP) 용액은 농도가 0.1 내지 1%, 바람직하게는 0.2 내지 0.5%인 디메틸 실리콘 오일(MEP) 용액이다. 디메틸 실리콘 오일(MEP) 용액의 농도가 상기 하한치 미만인 경우에는 전도성 필러를 감쌀 수 없으며, 상기 상한치 초과인 경우에는 더욱 안정된 분산액을 얻을 수 없다.The dimethyl silicone oil (MEP) solution is a dimethyl silicone oil (MEP) solution having a concentration of 0.1 to 1%, preferably 0.2 to 0.5%. When the concentration of the dimethyl silicone oil (MEP) solution is less than the lower limit, the conductive filler cannot be wrapped, and when it exceeds the upper limit, a more stable dispersion cannot be obtained.

상기 (C)단계에서 수행되는 초음파 처리는 상기 (B)단계와 동일한 조건으로 수행하되 5 내지 20분, 바람직하게는 10 내지 15분 동안 수행한다. 초음파 처리시간이 상기 하한치 미만인 경우에는 디메틸 실리콘 오일(MEP)이 전도성 필러를 감쌀 수 없으며, 상기 상한치 초과인 경우에는 오히려 디메틸 실리콘 오일(MEP)이 전도성 필러를 감싸는 것을 방해할 수 있으며, 향후 브로모부틸고무(BIIR)와 섞일 수 없다.The ultrasonic treatment performed in step (C) is performed under the same conditions as in step (B), but is performed for 5 to 20 minutes, preferably 10 to 15 minutes. If the ultrasonic treatment time is less than the lower limit, dimethyl silicone oil (MEP) cannot wrap the conductive filler, and if it exceeds the upper limit, it may rather prevent dimethyl silicone oil (MEP) from wrapping the conductive filler, and in the future, bromo Immiscible with butyl rubber (BIIR).

다음으로, 상기 (D)단계에서는 상기 (C)단계에서 혼합된 혼합물에 상기 (A)단계에서 혼합된 혼합물을 첨가하여 교반한다.Next, in step (D), the mixture mixed in step (A) is added to the mixture mixed in step (C) and stirred.

상기 전도성 필러가 고분자 매트릭스 내에 안정되고 고르게 분산되기 위해서는 고분자 매트릭스의 침전을 방지해야 하며, 이는 고분자 매트릭스의 침전이 전도성 필러의 전열 특성의 품질을 저하시키기 때문이다. 구체적으로, 이소프로필알코올과 헥산은 서로 섞이지만 브로모부틸고무(BIIR)는 이소프로필알코올 내에서 침전되므로, 상기 (A)단계에서 혼합된 혼합물인 브로모부틸고무(BIIR) 용액을 상기 (C)단계에서 혼합된 혼합물인 전도성 필러 용액에 천천히 첨가하고 헥산과 이소프로필알코올의 부피비가 5:1 내지 1:1, 바람직하게는 2:1이 되도록 헥산을 추가적으로 첨가하여 브로모부틸고무(BIIR)의 침전을 방지할 수 있다. In order for the conductive filler to be stably and evenly dispersed in the polymer matrix, it is necessary to prevent precipitation of the polymer matrix, since the precipitation of the polymer matrix deteriorates the quality of heat transfer properties of the conductive filler. Specifically, isopropyl alcohol and hexane are mixed with each other, but bromobutyl rubber (BIIR) is precipitated in isopropyl alcohol. ), the mixture is slowly added to the conductive filler solution, and hexane is additionally added so that the volume ratio of hexane and isopropyl alcohol is 5:1 to 1:1, preferably 2:1, to obtain bromobutyl rubber (BIIR). precipitation can be prevented.

이후, 상기 (D)단계에서 혼합된 혼합물을 500~1500 rpm에서 30분동안 처리하여 과량의 헥산과 이소프로필알코일이 먼저 섞이게 하고 브로모부틸고무(BIIR)가 전도성 필러 용액에 완전히 용해되도록 하여 안정되고 균일하게 분산된 자가치유성 전도성 고분자 복합재료를 얻을 수 있다.After that, the mixture mixed in step (D) is treated at 500 to 1500 rpm for 30 minutes to mix excess hexane and isopropyl alcohol first, and bromobutyl rubber (BIIR) is completely dissolved in the conductive filler solution. A stable and uniformly dispersed self-healing conductive polymer composite material can be obtained.

상기 자가치유성 전도성 고분자 복합재료는 용액(solution) 방식으로 제조가 진행되므로 핸들링이 용이하며, 챔버내에서 진공 조건에서 제조되던 진공 방식과 달리 고가의 진공 장비가 필요하지 아니하여, 공정이 단순하고 공정 단가가 저렴한 효과가 있다. 또한, 본 발명에 따른 자가치유성 전도성 고분자 복합재료는 용액(solution) 상태이므로, 스프레이 타입, 예를 들어 에어, 질소 또는 아르곤 스프레이 타입이나 페인트 브러쉬(Paint brush), 드랍 캐스팅(Drop casting), 닥터 블레이드(Doctor blade) 등 다양한 방식을 통해 구멍이나 균열 등에 분사되어 코팅됨으로써, 구멍이나 균열 등을 메울 수 있으나, 상기 방식에 한정되는 것은 아니다.The self-healing conductive polymer composite material is manufactured in a solution method, so it is easy to handle. There is an effect that the unit cost of the process is low. In addition, since the self-healing conductive polymer composite material according to the present invention is in a solution state, a spray type, for example, an air, nitrogen or argon spray type, or a paint brush, drop casting, or doctor By spraying and coating holes or cracks through various methods such as a blade (Doctor blade), the holes or cracks may be filled, but the method is not limited thereto.

본 발명의 일 실시예에 따른 자가치유성 전도성 고분자 복합소재의 제조방법은 상기 (D)단계에서 혼합된 혼합물을 핫프레스에 주입한 후 경화시키는 단계를 더 포함할 수 있다. 구체적으로, 상기 (D)단계에서 혼합된 혼합물을 성형틀인 핫프레스에 주입한 후 120℃, 4000 psi에서 10분 동안 경화시켜 자가치유성 전도성 고분자 복합재료를 제조할 수 있다.The method of manufacturing a self-healing conductive polymer composite material according to an embodiment of the present invention may further include the step of hardening after injecting the mixture mixed in step (D) into a hot press. Specifically, the self-healing conductive polymer composite material can be prepared by injecting the mixture mixed in step (D) into a hot press, which is a molding mold, and then curing the mixture at 120° C. and 4000 psi for 10 minutes.

또한, 상기 (D)단계에서 혼합된 혼합물을 자가치유 페인트 형태로 제조함으로써, 장소에 구애받지 않고 용이하게 타이어나 선박 등의 곡면에 형성된 균열이나 구멍에 분무할 수 있다. 이러한 스프레이 방식에 의한 분무는 상기 스프레이에 주입된 혼합물이 보다 작은 크기 및 보다 높은 표면 장력으로 분무될 때 동일한 부피의 용매가 더 빠르게 증발될 수 있다. 또한, 스프레이 노즐에서 공기중으로 배출되는 동안 혼합물 중 용매가 증발됨에 따라 자가치유성 전도성 고분자 복합재료가 타이어나 선박 등의 곡면에 형성된 균열이나 구멍에 분무되어 균일한 막을 형성할 수 있다.In addition, by preparing the mixture mixed in step (D) in the form of a self-healing paint, it can be easily sprayed on cracks or holes formed on curved surfaces of tires or ships, regardless of location. In this spray method, when the mixture injected into the spray is sprayed with a smaller size and higher surface tension, the same volume of solvent can be evaporated faster. In addition, as the solvent in the mixture evaporates while being discharged from the spray nozzle into the air, the self-healing conductive polymer composite material is sprayed into cracks or holes formed on curved surfaces of tires or ships to form a uniform film.

또한, 상기 스프레이에 주입된 자가치유 페인트 형태의 혼합물을 실온, 60 psi에서 스프레이 노즐을 통해 유리 기판에 분무하여 캐스팅함으로써 필름 형태로 제조할 수 있다.In addition, the mixture in the form of self-healing paint injected into the spray can be sprayed onto a glass substrate through a spray nozzle at room temperature and 60 psi and cast to form a film.

또한, 본 발명에 따라 제조된 자가치유성 전도성 고분자 복합재료는 용액 상태로서 스프레이 등 분사장치에 내에 포함되어 분사됨으로써, 용이하게 각종 구멍이나 균열 등을 메울 수 있다.In addition, the self-healing conductive polymer composite material prepared according to the present invention is included in a spraying device such as a spray in a solution state and sprayed, so that various holes or cracks can be easily filled.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are presented to help the understanding of the present invention, but the following examples are merely illustrative of the present invention, and it will be apparent to those skilled in the art that various changes and modifications are possible within the scope and spirit of the present invention, It goes without saying that such variations and modifications fall within the scope of the appended claims.

<실시예><Example>

실시예 1. CNT 5 중량% 및 핫프레스에 의한 성형Example 1. Molding by CNT 5% by weight and hot press

균일한 용액을 수득하기 위해, 헥산에 4% (w/v)의 브로모부틸고무(BIIR)를 첨가한 후 80℃에서 밤새 교반하여 용액을 제조하였다. 이후, 5% (w/w)의 탄소나노튜브(CNT)를 100mL의 이소프로필알코올에 첨가하여 분산시키고 30분 동안 초음파 처리 하였다. 이후, 상기 탄소나노튜브(CNT) 용액에 4% (w/w)의 디메틸 실리콘 오일(MEP) 용액을 첨가하고 10분 동안 초음파 처리 하였다. 이어서, 상기 브로모부틸고무(BIIR) 용액 100mL와 헥산 100mL를 상기 탄소나노튜브(CNT) 용액에 천천히 첨가한 후 30분동안 최대 속도로 혼합하였다. 이후, 용매로 사용된 이소프로필알코올과 헥산을 80℃에서 밤새 방치하여 증발시켰다. 이후, 탄소나노튜브(CNT)-브로모부틸고무(BIIR) 복합재를 핫프레스에 주입하고 0.5 마이크론의 두께 게이지를 이용하여 120℃, 4000 psi에서 10분간 경화시켜 자가치유성 전도성 고분자 복합소재를 제조하였다.In order to obtain a uniform solution, 4% (w/v) of bromobutyl rubber (BIIR) was added to hexane and stirred at 80° C. overnight to prepare a solution. Thereafter, 5% (w/w) carbon nanotubes (CNTs) were added to 100 mL of isopropyl alcohol to disperse and sonicate for 30 minutes. Then, a 4% (w/w) dimethyl silicone oil (MEP) solution was added to the carbon nanotube (CNT) solution and sonicated for 10 minutes. Then, 100 mL of the bromobutyl rubber (BIIR) solution and 100 mL of hexane were slowly added to the carbon nanotube (CNT) solution and mixed at the maximum speed for 30 minutes. Then, isopropyl alcohol and hexane used as solvents were left at 80° C. overnight to evaporate. Thereafter, the carbon nanotube (CNT)-bromobutyl rubber (BIIR) composite was injected into a hot press and cured at 120° C. and 4000 psi for 10 minutes using a thickness gauge of 0.5 micron to prepare a self-healing conductive polymer composite material. did

실시예 2. CNT 10 중량% 및 핫프레스에 의한 성형Example 2. Molding by CNT 10% by weight and hot press

상기 실시예 1과 동일하게 실시하되, 10% (w/w)의 탄소나노튜브(CNT)를 사용하여 자가치유성 전도성 고분자 복합소재를 제조하였다.A self-healing conductive polymer composite material was prepared in the same manner as in Example 1, except that 10% (w/w) carbon nanotube (CNT) was used.

실시예 3. CNT 15 중량% 및 핫프레스에 의한 성형Example 3. CNT 15% by weight and molding by hot press

상기 실시예 1과 동일하게 실시하되, 15% (w/w)의 탄소나노튜브(CNT)를 사용하여 자가치유성 전도성 고분자 복합소재를 제조하였다.A self-healing conductive polymer composite material was prepared in the same manner as in Example 1, except that 15% (w/w) carbon nanotube (CNT) was used.

실시예 4. CNT 20 중량% 및 핫프레스에 의한 성형Example 4. Forming by CNT 20% by weight and hot press

상기 실시예 1과 동일하게 실시하되, 20% (w/w)의 탄소나노튜브(CNT)를 사용하여 자가치유성 전도성 고분자 복합소재를 제조하였다.A self-healing conductive polymer composite material was prepared in the same manner as in Example 1, except that 20% (w/w) carbon nanotube (CNT) was used.

실시예 5. CNT 5 중량% 및 스프레이에 의한 성형Example 5. CNT 5% by weight and molding by spraying

상기 실시예 1과 동일하게 실시하되, 탄소나노튜브(CNT)-브로모부틸고무(BIIR) 복합재를 에어스프레이에 주입한 후 실온, 60 psi에서 스프레이 노즐을 통해 유리 기판에 분무하여 캐스팅함으로써 자가치유성 전도성 고분자 복합소재를 제조하였다.Performed in the same manner as in Example 1, but after injecting a carbon nanotube (CNT)-bromobutyl rubber (BIIR) composite into an air spray, spraying it on a glass substrate through a spray nozzle at room temperature, 60 psi, and casting An oil-based conductive polymer composite material was prepared.

실시예 6. CNT 10 중량% 및 스프레이에 의한 성형Example 6. Molding by spraying with 10 wt % CNT

상기 실시예 5와 동일하게 실시하되, 10% (w/w)의 탄소나노튜브(CNT)를 사용하여 자가치유성 전도성 고분자 복합소재를 제조하였다.A self-healing conductive polymer composite material was prepared in the same manner as in Example 5, except that 10% (w/w) carbon nanotube (CNT) was used.

비교예.comparative example.

상기 실시예 1과 동일하게 실시하되, 탄소나노튜브(CNT)를 사용하지 않고 자가치유성 전도성 고분자 복합소재를 제조하였다.A self-healing conductive polymer composite material was prepared in the same manner as in Example 1, except that carbon nanotubes (CNTs) were not used.

<실험예><Experimental example>

실험예 1. 녹는점, 분해온도 및 분해 활성화에너지 측정Experimental Example 1. Measurement of melting point, decomposition temperature and decomposition activation energy

1-1. 녹는점 측정: Differential Scanning Calorimetry(DSC, Q20, TA Instrument)를 10℃/min 의 속도로 -60 내지 250 ℃의 가열 온도에서 50ml/min 의 N2 가스 유량하에 적용하여 자가치유성 전도성 고분자 복합소재의 녹는점을 측정하였다.1-1. Melting point measurement: Differential Scanning Calorimetry (DSC, Q20, TA Instrument) was applied at a rate of 10°C/min at a heating temperature of -60 to 250°C under a N2 gas flow rate of 50ml/min to obtain a self-healing conductive polymer composite material. The melting point was measured.

1-2. 분해온도 및 분해 활성화에너지 측정: Thermal Gravimetric Analysis (TGA, Q50, TA Instrument) 및 Derivative Thermo-gravimetric Analsis (DTG)를 90ml/min 의 N2 가스 유량하에 적용하여 자가치유성 전도성 고분자 복합소재의 분해온도 및 분해 활성화에너지를 측정하였다.1-2. Decomposition temperature and decomposition activation energy measurement: Thermal Gravimetric Analysis (TGA, Q50, TA Instrument) and Derivative Thermo-gravimetric Analysis (DTG) were applied under a N2 gas flow rate of 90 ml/min to determine the decomposition temperature and The decomposition activation energy was measured.

도 2는 실시예 1 내지 4 및 비교예에 따라 제조된 자가치유성 전도성 고분자 복합소재를 시차주사열량계분석기(DSC, 도 2a), 열중량분석기(TGA, 도 2b) 및 파생열중량분석기(DTG, 도 2c)로 측정한 그래프이고, 표 1은 탄소나노튜브(CNT) 함량에 따른 자가치유성 전도성 고분자 복합소재의 녹는점 및 분해온도를 나타내는 표이다.2 is a differential scanning calorimeter analyzer (DSC, FIG. 2a), a thermogravimetric analyzer (TGA, FIG. 2b) and a derivative thermogravimetric analyzer (DTG) of the self-healing conductive polymer composite material prepared according to Examples 1 to 4 and Comparative Examples. , FIG. 2c), and Table 1 is a table showing the melting point and decomposition temperature of the self-healing conductive polymer composite material according to the carbon nanotube (CNT) content.

CNT conc. (wt%)CNT conc. (wt%) Melting point (Tm, °C) Melting point (Tm, °C) Degradation temperature (Td, °C) Degradation temperature (Td, °C) 00 117.65117.65 400.34400.34 55 122.58122.58 404.85404.85 1010 125.03125.03 408.66408.66 1515 125.70125.70 409.10409.10 2020 126.92126.92 410.95410.95

표 1 및 도 2를 참조하면, 탄소나노튜브(CNT)의 함량이 증가함에 따라 자가치유성 전도성 고분자 복합소재의 녹는점은 증가하며(a), 이를 통해 브로모부틸고무(BIIR) 사슬과 탄소나노튜브(CNT) 표면 사이의 상호 작용이 브로모부틸고무(BIIR) 사슬의 분절(segmental) 운동을 제한하여 열적 안정성이 생겼음을 확인하였다. Referring to Table 1 and Figure 2, the melting point of the self-healing conductive polymer composite material increases as the content of carbon nanotubes (CNT) increases (a), through which the bromobutyl rubber (BIIR) chain and carbon It was confirmed that the interaction between the nanotube (CNT) surfaces restricted the segmental motion of bromobutyl rubber (BIIR) chains, resulting in thermal stability.

또한, 탄소나노튜브(CNT)의 함량이 증가함에 따라 자가치유성 전도성 고분자 복합소재의 분해온도는 증가하고(b), 자가치유성 전도성 고분자 복합소재를 열분해하는데 필요한 활성화 에너지가 증가함을 알 수 있으며(c), 이를 통해 탄소나노튜브(CNT)가 탄소나노튜브(CNT)와 브로모부틸고무(BIIR) 사이의 강한 계면 접착력을 바탕으로 자가치유성 전도성 고분자 복합소재에 열적 안정성을 제공함을 확인하였다.In addition, it can be seen that as the content of carbon nanotubes (CNT) increases, the decomposition temperature of the self-healing conductive polymer composite material increases (b), and the activation energy required to thermally decompose the self-healing conductive polymer composite material increases. and (c), through this, it was confirmed that carbon nanotubes (CNTs) provide thermal stability to self-healing conductive polymer composites based on strong interfacial adhesion between carbon nanotubes (CNTs) and bromobutyl rubber (BIIR). did

실험예 2. 열전도도 및 열확산도 측정Experimental Example 2. Measurement of thermal conductivity and thermal diffusivity

Laser Flash Analysis (LFA 467 HT hyperflash, NETZSCH)를 사용하여 자가치유성 전도성 고분자 복합소재의 열전도도 및 열확산도를 측정하였다. The thermal conductivity and thermal diffusivity of the self-healing conductive polymer composite were measured using Laser Flash Analysis (LFA 467 HT hyperflash, NETZSCH).

도 3은 실시예 1 내지 4 및 비교예에 따라 제조된 자가치유성 전도성 고분자 복합소재를 레이저플래시분석기(LFA)로 측정한 그래프이다.3 is a graph of the self-healing conductive polymer composite materials prepared according to Examples 1 to 4 and Comparative Examples measured with a laser flash analyzer (LFA).

도 3을 참조하면, 탄소나노튜브(CNT)의 함량이 증가함에 따라 열전도도 및 열확산도는 선형적으로 증가하며, 이를 통해 열전달장치인 포논(phonon)이 덜 산란되고 탄소나노튜브(CNT)가 열 에너지를 효율적으로 전달할 수 있음을 확인하였다.Referring to FIG. 3 , as the content of carbon nanotubes (CNTs) increases, thermal conductivity and thermal diffusivity linearly increase, through which phonons, which are heat transfer devices, are less scattered and carbon nanotubes (CNTs) It was confirmed that thermal energy can be efficiently transferred.

실험예 3. Stress-Strain, Young's modulus, Storage modulus 및 Tan delta 측정Experimental Example 3. Measurement of Stress-Strain, Young's modulus, Storage modulus and Tan delta

0.01% 변형률 및 1Hz 주파수에서 Dynamic Mechanical Analyzer (DMA, Q800, TA Instrument)를 사용하여 완전히 파괴될 때까지 10mm/min 의 일정한 변형률로 하여 자가치유성 전도성 고분자 복합소재의 기계적 특성을 분석하였다.The mechanical properties of the self-healing conductive polymer composite were analyzed at a constant strain rate of 10 mm/min until completely fractured using a Dynamic Mechanical Analyzer (DMA, Q800, TA Instrument) at a strain of 0.01% and a frequency of 1 Hz.

도 4는 실시예 1 내지 4 및 비교예에 따라 제조된 자가치유성 전도성 고분자 복합소재의 Stress-Strain 곡선(a), Young's modulus(b), Storage modulus(c) 및 Tan delta(d)를 나타내는 그래프이다. 4 shows the stress-strain curves (a), Young's modulus (b), Storage modulus (c) and Tan delta (d) of the self-healing conductive polymer composite materials prepared according to Examples 1 to 4 and Comparative Examples; It is a graph.

도 4를 참조하면, 탄소나노튜브(CNT)의 함량이 증가함에 따라 강도 및 Young's modulus 값이 높아지며(a, b), 특히 실시예 4가 비교예에 비하여 Young's modulus 값이 60배로 현저히 증가한 것을 확인하였다. 또한, 탄소나노튜브(CNT)의 함량이 증가함에 따라 -100 내지 80 ℃ 의 범위에 대한 Storage modulus 값이 높아지며(c), 이를 통해 자가치유성 전도성 고분자 복합소재가 더 단단해짐을 확인하였다. 또한, 탄소나노튜브(CNT)의 함량이 증가함에 따라 Tan delta 값은 감소하며(d), 이를 통해 탄소나노튜브(CNT)가 부분적으로 균일하게 분산되어 있음을 확인하였다.4, as the content of carbon nanotubes (CNT) increases, the strength and Young's modulus values increase (a, b), and in particular, it was confirmed that Example 4 significantly increased the Young's modulus value by 60 times compared to the comparative example. did. In addition, as the content of carbon nanotubes (CNT) increased, the storage modulus value for the range of -100 to 80 ℃ increased (c), and it was confirmed that the self-healing conductive polymer composite material became harder. In addition, as the content of carbon nanotubes (CNTs) increased, the tan delta value decreased (d), and it was confirmed that carbon nanotubes (CNTs) were partially and uniformly dispersed through this (d).

실험예 4. 표면 저항 및 전기전도도 측정Experimental Example 4. Measurement of surface resistance and electrical conductivity

표 2 및 도 5는 각각 실시예 1 내지 4에 따라 제조된 자가치유성 전도성 고분자 복합소재의 표면 저항(a) 및 전기전도도(b)를 나타내는 표와 그래프이다.Tables 2 and 5 are tables and graphs showing the surface resistance (a) and electrical conductivity (b) of the self-healing conductive polymer composite material prepared according to Examples 1 to 4, respectively.

CNT/BIIR (wt%)CNT/BIIR (wt%) Surface resistivity (Ω/sq)Surface resistivity (Ω/sq) Electrical conductivity (S/cm) Electrical conductivity (S/cm) 55 35.95 ± 5.63 35.95 ± 5.63 0.56 ± 0.08 0.56 ± 0.08 1010 10.45 ± 1.35 10.45 ± 1.35 1.83 ± 0.25 1.83 ± 0.25 1515 5.44 ± 0.29 5.44 ± 0.29 2.86 ± 0.16 2.86 ± 0.16 2020 3.33 ± 0.20 3.33 ± 0.20 3.93 ± 0.23 3.93 ± 0.23

표 2 및 도 5를 참조하면, 탄소나노튜브(CNT)의 함량이 증가함에 따라 표면 저항은 35.95 ± 5.63 에서 3.33 ± 0.20 Ω/sq 로 감소하며, 전기전도도는 0.56 ± 0.08 에서 3.93 ± 0.2 S/cm 로 증가한다. 이를 통해, 브로모부틸고무(BIIR) 매트릭스에 균일하게 분산된 탄소나노튜브(CNT)는 전기전도성 엘라스토머 복합 필름에 효율적인 전기적 특성을 제공하여 튜브 사이의 균일한 연결을 유지하고 전도성 탄소나노튜브(CNT) 네트워크를 효과적으로 여과시킴을 확인하였다.Referring to Table 2 and Figure 5, as the content of carbon nanotubes (CNT) increases, the surface resistance decreases from 35.95 ± 5.63 to 3.33 ± 0.20 Ω/sq, and the electrical conductivity is from 0.56 ± 0.08 to 3.93 ± 0.2 S/ increase in cm. Through this, carbon nanotubes (CNTs) uniformly dispersed in a bromobutyl rubber (BIIR) matrix provide efficient electrical properties to the electrically conductive elastomer composite film to maintain a uniform connection between the tubes and conductive carbon nanotubes (CNTs). ) was confirmed to effectively filter the network.

실험예 5. 발열 특성 분석Experimental Example 5. Analysis of exothermic characteristics

5-1. 발열 조건: 실시예 1 내지 4를 25×75 mm2 의 크기로 절단하고 전도성 구리 테이프를 양쪽 끝에 붙여 연결한 후, DC 전원 공급 장치(Toyotech TDP-3010B, Tokyo, Japan)로 고정 전압 10V 및 전류 0.05 내지 14.6A 를 공급하여 발열시켰다.5-1. Exothermic conditions: Examples 1 to 4 were cut to a size of 25 × 75 mm 2 , and conductive copper tape was attached to both ends to connect, and then to a DC power supply (Toyotech TDP-3010B, Tokyo, Japan) with a fixed voltage of 10V and a current 0.05 to 14.6A was supplied to exotherm.

5-2. 온도 변화 측정: MSX 향상 기능이 있는 FLIR E5 IR 카메라(FLIR System, Oregon, USA)를 사용하여 적외선 열 이미지를 촬영하여 온도 변화를 측정하였다.5-2. Temperature change measurement: The temperature change was measured by taking infrared thermal images using a FLIR E5 IR camera with MSX enhancement (FLIR System, Oregon, USA).

5-3. 발열 속도 측정: 실시예 1 내지 4 및 비교예의 발열 속도는 23℃, 30 % 상대습도에서 측정하였다.5-3. Measurement of exothermic rate: The exothermic rates of Examples 1 to 4 and Comparative Examples were measured at 23° C. and 30% relative humidity.

표 3은 실시예 1 내지 4에 따라 제조된 자가치유성 전도성 고분자 복합소재의 발열 특성을 나타내는 표이고, 도 6은 실시예 1 내지 4에 따라 제조된 자가치유성 전도성 고분자 복합소재의 열 분산 맵 이미지(a-d) 및 발열 속도를 나타내는 그래프(e)이다.Table 3 is a table showing the exothermic characteristics of the self-healing conductive polymer composite material prepared according to Examples 1 to 4, and FIG. 6 is a heat dissipation map of the self-healing conductive polymer composite material prepared according to Examples 1 to 4 Images (a-d) and graphs (e) showing the exothermic rate.

CNT/BIIR
(wt %)
CNT/BIIR
(wt%)
Applied Power
(W)
Applied Power
(W)
Time to reach 100 ºC
(sec)
Time to reach 100 ºC
(sec)
Heating rate
(ºC/min)
Heating rate
(ºC/min)
Max. Temp. after 5 min
(ºC)
Max. Temp. after 5 min
(ºC)
55 0.5 ± 0.1 0.5 ± 0.1 -- 41.4 ± 0.4 41.4 ± 0.4 46.5 ± 1.5 46.5 ± 1.5 1010 3.8 ± 0.3 3.8 ± 0.3 101.7 ± 33.0 101.7 ± 33.0 102.2 ± 21.9 102.2 ± 21.9 115.0 ± 4.4 115.0 ± 4.4 1515 8.5 ± 1.2 8.5 ± 1.2 65.3 ± 22.6 65.3 ± 22.6 85.8 ± 18.5 85.8 ± 18.5 162.7 ± 32.0 162.7 ± 32.0 2020 14.5 ± 0.1 14.5 ± 0.1 32.0 ± 6.1 32.0 ± 6.1 97.3 ± 3.9 97.3 ± 3.9 189.7 ± 5.9 189.7 ± 5.9

표 3 및 도 6을 참조하면, 온도 증가는 탄소나노튜브(CNT)-브로모부틸고무(BIIR) 복합소재 내에서 공간적으로 비편재화되고 시간에 대해 선형적으로 비례하는 반면, 열은 필름의 전체 공간에 균일하게 분포된다. 이를 통해 탄소나노튜브(CNT)-브로모부틸고무(BIIR) 필름이 자가치유의 적용 가능성이 높다는 것을 확인하였다.Referring to Table 3 and Figure 6, the temperature increase is spatially delocalized within the carbon nanotube (CNT)-bromobutyl rubber (BIIR) composite and is linearly proportional to time, whereas heat is evenly distributed in space. Through this, it was confirmed that the carbon nanotube (CNT)-bromobutyl rubber (BIIR) film had a high potential for self-healing.

실험예 6. Joule heating 및 IR contour image 분석Experimental Example 6. Joule heating and IR contour image analysis

도 7은 실시예 5 및 6에 따라 제조된 자가치유성 전도성 고분자 복합소재의 Joule heating 및 IR contoure image를 나타내는 도면이다.7 is a view showing Joule heating and IR contoure images of the self-healing conductive polymer composite material prepared according to Examples 5 and 6;

도 7을 참조하면, 실시예 5는 30V, 0.08A(a), 실시예 6은 30V, 0.09A(b)의 조건에서 측정하였으며, 이를 통해 실시예 6의 10 wt% 용액과 실시예 5의 5 wt% 용액이 모두 스프레이 방식으로 도포 및 발열 필름 형성이 가능하다는 사실을 확인하였다.7, Example 5 was measured under the conditions of 30V, 0.08A (a), and Example 6 was 30V, 0.09A (b), through which the 10 wt% solution of Example 6 and Example 5 were It was confirmed that all of the 5 wt% solutions were applied by a spray method and that it was possible to form a heating film.

실험예 7. Healing TestExperimental Example 7. Healing Test

본 발명에 따른 자가치유성 전도성 고분자 복합소재의 자가치유성을 분석하기 위해, 필름형태의 복합소재를 제조한 후, 임의로 커터칼을 이용해 균열을 내었다. 이후, 스프레이 타입으로 제조된 CNT를 헥산에 분산시킨 용액을 균열이 생긴 부분의 앞, 뒷면에 각각 분사하여 healing 전후의 전류 및 발열특성을 분석하였다.In order to analyze the self-healing properties of the self-healing conductive polymer composite material according to the present invention, a film-type composite material was prepared, and then cracks were arbitrarily cut using a cutter knife. Thereafter, a solution obtained by dispersing CNTs prepared in a spray type in hexane was sprayed on the front and back sides of the cracked area, respectively, to analyze the current and heating characteristics before and after healing.

도 8 및 9는 각각 healing을 통한 복합소재의 형태 및 전류와 발열특성을 나타내는 도면이다.8 and 9 are diagrams showing the shape of the composite material through healing, and current and heating characteristics, respectively.

도 8을 참조하면, 균열이 생긴 부분에 스프레이 타입으로 제조된 CNT를 헥산에 분산시킨 용액을 분사한 결과, 비정형 균열이 효과적으로 메워지며 회복되는 것을 확인할 수 있다. 또한, 7V 전압에서 healing 전후 각각의 전류를 측정한 결과, 전류값은 healing 전 0.03A 에서 healing 후 0.04A 로 증가하여 회복되는 것을 확인할 수 있다. Referring to FIG. 8 , as a result of spraying a solution obtained by dispersing CNTs prepared in a spray type in hexane to a cracked area, it can be confirmed that the atypical cracks are effectively filled and recovered. In addition, as a result of measuring each current before and after healing at a voltage of 7V, it can be confirmed that the current value increases from 0.03A before healing to 0.04A after healing and is restored.

나아가, 도 9를 참조하면, 20V 전압에서 Joule heating을 측정한 결과, 균열 발생 시 균열 부분의 저항이 증가하여 발열 분포가 불균일하였으나, 분사 이후 발열 분포가 균일하게 회복되어 일정하게 유지되고 있음을 확인할 수 있다. 이를 통해 본 발명에 따라 제조된 고분자 복합소재의 자가치유성이 뛰어나며, 특히 스프레이 타입으로 제조됨에 따라 비정형 구멍이나 균열을 효과적으로 메울 수 있고 발열특성도 회복되는 것을 확인하였다.Further, referring to FIG. 9 , as a result of measuring Joule heating at a voltage of 20V, it was confirmed that the heat distribution was uneven due to an increase in the resistance of the cracked portion when the crack occurred, but it was confirmed that the heat distribution after spraying was uniformly restored and maintained constant. can Through this, it was confirmed that the self-healing properties of the polymer composite material prepared according to the present invention were excellent, and in particular, as it was manufactured as a spray type, it was confirmed that the irregular holes or cracks could be effectively filled and the heating properties were also recovered.

Claims (9)

(A) 브로모부틸고무(BIIR)와 헥산을 혼합하는 단계;
(B) 탄소나노튜브(CNT), 카본블랙, 인조흑연 및 금속 섬유로 이루어진 군에서 선택된 1종인 전도성 필러와 이소프로필알코올을 혼합하여 초음파 처리하는 단계;
(C) 상기 (B)단계에서 혼합된 혼합물에 디메틸 실리콘 오일(MEP) 용액을 첨가하여 초음파 처리하는 단계; 및
(D) 상기 (C)단계에서 혼합된 혼합물에 상기 (A)단계에서 혼합된 혼합물을 첨가하여 교반하는 단계를 포함하며,
상기 (D)단계에서 혼합된 혼합물에 헥산과 이소프로필알코올의 부피비가 5:1 내지 1:1이 되도록 헥산을 추가적으로 첨가하는 단계를 더 포함하는 것을 특징으로 하는 자가치유성 전도성 고분자 복합소재의 제조방법.
(A) mixing bromobutyl rubber (BIIR) and hexane;
(B) mixing with isopropyl alcohol and a conductive filler selected from the group consisting of carbon nanotubes (CNT), carbon black, artificial graphite, and metal fibers and sonicating;
(C) sonicating by adding a dimethyl silicone oil (MEP) solution to the mixture mixed in step (B); and
(D) adding the mixture mixed in step (A) to the mixture mixed in step (C) and stirring,
Preparation of a self-healing conductive polymer composite material, characterized in that it further comprises the step of additionally adding hexane so that the volume ratio of hexane and isopropyl alcohol to the mixture mixed in step (D) is 5:1 to 1:1 Way.
삭제delete 제1항에 있어서,
상기 (A)단계에서 브로모부틸고무(BIIR)는 1~10 w/v% 조성비로 혼합되는 것을 특징으로 하는 자가치유성 전도성 고분자 복합소재의 제조방법.
According to claim 1,
In the step (A), bromobutyl rubber (BIIR) is a method for producing a self-healing conductive polymer composite material, characterized in that it is mixed in a composition ratio of 1 to 10 w/v%.
제1항에 있어서,
상기 (B)단계에서 전도성 필러와 이소프로필알코올은 1:50 내지 1:500의 중량비로 혼합되는 것을 특징으로 하는 자가치유성 전도성 고분자 복합소재의 제조방법.
According to claim 1,
Method for producing a self-healing conductive polymer composite material, characterized in that in the step (B), the conductive filler and isopropyl alcohol are mixed in a weight ratio of 1:50 to 1:500.
제1항에 있어서,
상기 (B)단계의 탄소나노튜브(CNT)의 함량은 1~35 wt% 인 것을 특징으로 하는 자가치유성 전도성 고분자 복합소재의 제조방법.
According to claim 1,
The method for producing a self-healing conductive polymer composite material, characterized in that the content of carbon nanotubes (CNT) in step (B) is 1 to 35 wt%.
제1항에 있어서,
상기 (D)단계에서 혼합된 혼합물을 스프레이 타입의 자가치유 페인트 로 제조하는 단계를 더 포함하는 것을 특징으로 하는 자가치유성 전도성 고분자 복합소재의 제조방법.
According to claim 1,
Method for producing a self-healing conductive polymer composite material, characterized in that it further comprises the step of preparing the mixture mixed in step (D) as a spray-type self-healing paint.
제6항에 있어서,
상기 스프레이 타입의 자가치유 페인트를 기판에 분무하여 캐스팅함으로써 필름 형태로 제조하는 단계를 더 포함하는 것을 특징으로 하는 자가치유성 전도성 고분자 복합소재의 제조방법.
7. The method of claim 6,
Method for producing a self-healing conductive polymer composite material, characterized in that it further comprises the step of producing a film form by spraying the spray-type self-healing paint on a substrate and casting.
제1항 및 제3항 내지 제7항 중 어느 한 항의 제조방법에 따라 제조된 자가치유성 전도성 고분자 복합소재.A self-healing conductive polymer composite material manufactured according to the manufacturing method of any one of claims 1 and 3 to 7. 제8항의 자가치유성 전도성 고분자 복합소재를 포함하는 스프레이.A spray comprising the self-healing conductive polymer composite material of claim 8.
KR1020200078465A 2020-06-26 2020-06-26 Method for manufacturing self-healing conductive polymer composite and self-healing conductive polymer composite prepared thereby KR102395004B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020200078465A KR102395004B1 (en) 2020-06-26 2020-06-26 Method for manufacturing self-healing conductive polymer composite and self-healing conductive polymer composite prepared thereby
PCT/KR2020/011769 WO2021261657A1 (en) 2020-06-26 2020-09-02 Method for preparing self-healing conductive polymer composite, and self-healing conductive polymer composite prepared thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200078465A KR102395004B1 (en) 2020-06-26 2020-06-26 Method for manufacturing self-healing conductive polymer composite and self-healing conductive polymer composite prepared thereby

Publications (2)

Publication Number Publication Date
KR20220000618A KR20220000618A (en) 2022-01-04
KR102395004B1 true KR102395004B1 (en) 2022-05-09

Family

ID=79281454

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200078465A KR102395004B1 (en) 2020-06-26 2020-06-26 Method for manufacturing self-healing conductive polymer composite and self-healing conductive polymer composite prepared thereby

Country Status (2)

Country Link
KR (1) KR102395004B1 (en)
WO (1) WO2021261657A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101647925B1 (en) 2015-08-24 2016-08-11 주식회사 이앤코리아 Method for manufacuring film comprising graphite and carbon nanotube and composite film comprising graphite and carbon nanotube
KR101753845B1 (en) * 2015-03-06 2017-07-04 고려대학교 산학협력단 Method for preparing conductive polymer composite and conductive polymer composite prepared therefrom

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101296616B1 (en) * 2011-01-24 2013-08-14 주식회사 엘지화학 Secondary Battery Having Self Healing Layer on Battery Case and Battery Pack Employed with the Same
KR101735654B1 (en) * 2015-10-06 2017-05-15 넥쌍 Self healing elastomeric nanocomposite, its crosslinked product, and kit thereof
KR20170109425A (en) * 2016-03-21 2017-09-29 금호석유화학 주식회사 Method for manufacturing electrically conductive rubber composite
KR102012761B1 (en) 2018-01-04 2019-10-21 한국과학기술연구원 Self healing elastomer, self healing complex and self healing film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101753845B1 (en) * 2015-03-06 2017-07-04 고려대학교 산학협력단 Method for preparing conductive polymer composite and conductive polymer composite prepared therefrom
KR101647925B1 (en) 2015-08-24 2016-08-11 주식회사 이앤코리아 Method for manufacuring film comprising graphite and carbon nanotube and composite film comprising graphite and carbon nanotube

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Heejin Kim et al., Self-healing corrosion protection film for marine environment. Composites Part B: Engineering, Volume 182, 1 Feb. 2020.*

Also Published As

Publication number Publication date
WO2021261657A1 (en) 2021-12-30
KR20220000618A (en) 2022-01-04

Similar Documents

Publication Publication Date Title
JP6813641B2 (en) Heat conductive sheet, manufacturing method of heat conductive sheet, heat dissipation member and semiconductor device
Yu et al. Electrical and dielectric properties of polypropylene nanocomposites based on carbon nanotubes and barium titanate nanoparticles
US9757496B2 (en) Thermally healable and reshapable conductive hydrogel composite
EP2036941A1 (en) Process for the preparation of a conductive polymer composition
US20050127329A1 (en) Method of forming nanocomposite materials
Lonjon et al. High electrically conductive composites of Polyamide 11 filled with silver nanowires: Nanocomposites processing, mechanical and electrical analysis
CN101781461B (en) Electrostriction composite material and preparation method thereof
KR100895696B1 (en) A Method for Preparation of Silicone Rubber/Carbon Nanotube Composites with Electrical Insulating Properties
JP6259064B2 (en) HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE SHEET MANUFACTURING METHOD, HEAT DISSIBLING MEMBER AND SEMICONDUCTOR DEVICE
JP7046689B2 (en) Thermally conductive composite particles and resin composition containing them
JP2010045025A (en) Exothermic body using fine carbon fiber, and manufacturing method thereof
Jin et al. Electrical and rheological properties of polycarbonate/multiwalled carbon nanotube nanocomposites
KR101753845B1 (en) Method for preparing conductive polymer composite and conductive polymer composite prepared therefrom
KR102395004B1 (en) Method for manufacturing self-healing conductive polymer composite and self-healing conductive polymer composite prepared thereby
EP2937869B1 (en) Self-healing materials and cables
CN110655069A (en) High-thermal-conductivity and high-insulation graphene film applied to electronic component
Liu et al. Modified carbon nanotubes/polyvinyl alcohol composite electrothermal films
Shar et al. 3D Printable One‐Part Carbon Nanotube‐Elastomer Ink for Health Monitoring Applications
CN106633170A (en) Nano-diamond filled polyimide based compound aerogel material and preparation method thereof
KR101612454B1 (en) Heat-dissipating sheet including composite layer of filler and polymer resin and method for preparing the same
Abdolmaleki et al. Development of carboxylated multi-walled carbon nanotubes reinforced potentially biodegradable poly (amide–imide) based on N-trimellitylimido-S-valine matrixes: Preparation, processing, and thermal properties
WO2017122817A1 (en) Thermal conducting sheet, method for manufacturing thermal conducting sheet, heat dissipation member, and semiconductor device
Maldonado et al. Enhanced thermally conductive TPU/graphene filaments for 3D printing produced by melt compounding
CN112552648B (en) Three-dimensional ordered controllable carbon fiber heat-conducting composite material and preparation method thereof
WO2017130740A1 (en) Thermally conductive sheet, production method for thermally conductive sheet, heat dissipation member, and semiconductor device

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant