KR102394115B1 - RuSi막의 형성 방법 및 기판 처리 시스템 - Google Patents

RuSi막의 형성 방법 및 기판 처리 시스템 Download PDF

Info

Publication number
KR102394115B1
KR102394115B1 KR1020200084028A KR20200084028A KR102394115B1 KR 102394115 B1 KR102394115 B1 KR 102394115B1 KR 1020200084028 A KR1020200084028 A KR 1020200084028A KR 20200084028 A KR20200084028 A KR 20200084028A KR 102394115 B1 KR102394115 B1 KR 102394115B1
Authority
KR
South Korea
Prior art keywords
film
forming
silicon
rusi
gas
Prior art date
Application number
KR1020200084028A
Other languages
English (en)
Other versions
KR20210009278A (ko
Inventor
다다히로 이시자카
나오타카 노로
Original Assignee
도쿄엘렉트론가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도쿄엘렉트론가부시키가이샤 filed Critical 도쿄엘렉트론가부시키가이샤
Publication of KR20210009278A publication Critical patent/KR20210009278A/ko
Application granted granted Critical
Publication of KR102394115B1 publication Critical patent/KR102394115B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal carbonyl compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4488Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by in situ generation of reactive gas by chemical or electrochemical reaction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32051Deposition of metallic or metal-silicide layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67167Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers surrounding a central transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68792Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • H01L21/76858After-treatment introducing at least one additional element into the layer by diffusing alloying elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/75Electrodes comprising two or more layers, e.g. comprising a barrier layer and a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

본 발명은, 단차 피복성이 양호한 RuSi막을 형성할 수 있는 기술을 제공한다. 본 개시의 일 양태에 의한 RuSi막의 형성 방법은, 절연막을 포함하는 오목부를 갖는 기판에 실리콘 함유 가스를 공급해서 상기 오목부에 실리콘을 흡착시키는 공정과, 상기 실리콘이 흡착된 상기 오목부에 Ru 함유 전구체를 공급해서 상기 오목부에 Ru막을 형성하는 공정과, Ru막이 형성된 상기 오목부에 실리콘 함유 가스를 공급해서 RuSi막을 형성하는 공정을 갖는다.

Description

RuSi막의 형성 방법 및 기판 처리 시스템{METHOD FOR FORMING RuSi FILM AND SUBSTRATE PROCESSING SYSTEM}
본 개시는, RuSi막의 형성 방법 및 기판 처리 시스템에 관한 것이다.
하나의 재료가 인접하는 재료에 확산하는 것을 방지하기 위해서 사용되는 확산 배리어층으로서 RuSix층을 사용하는 기술이 알려져 있다(예를 들어, 특허문헌 1 참조).
일본 특허 공표 제2002-524847호 공보
본 개시는, 단차 피복성이 양호한 RuSi막을 형성할 수 있는 기술을 제공한다.
본 개시의 일 양태에 의한 RuSi막의 형성 방법은, 절연막을 포함하는 오목부를 갖는 기판에 실리콘 함유 가스를 공급해서 상기 오목부에 실리콘을 흡착시키는 공정과, 상기 실리콘이 흡착된 상기 오목부에 Ru 함유 전구체를 공급해서 상기 오목부에 Ru막을 형성하는 공정과, Ru막이 형성된 상기 오목부에 실리콘 함유 가스를 공급해서 RuSi막을 형성하는 공정을 갖는다.
본 개시에 의하면, 단차 피복성이 양호한 RuSi막을 형성할 수 있다.
도 1은 일 실시 형태의 RuSi막의 형성 방법을 나타내는 흐름도이다.
도 2는 일 실시 형태의 RuSi막의 형성 방법을 도시하는 공정 단면도이다.
도 3은 기판 처리 시스템의 구성예를 도시하는 개략도이다.
도 4는 기판 처리 시스템이 구비하는 처리 장치의 일례를 도시하는 개략도이다.
도 5는 기판 처리 시스템이 구비하는 처리 장치의 다른 예를 도시하는 개략도이다.
도 6은 SiO2막의 표면에 실리콘을 흡착시킴으로 인한 작용을 설명하기 위한 도면이다.
도 7은 Ru 함유 전구체의 공급 시간과 Ru막의 막 두께의 관계를 도시하는 도면이다.
이하, 첨부의 도면을 참조하면서, 본 개시의 한정적이지 않은 예시의 실시 형태에 대해서 설명한다. 첨부의 전체 도면 중, 동일하거나 또는 대응하는 부재 또는 부품에 대해서는, 동일하거나 또는 대응하는 참조 부호를 붙이고, 중복되는 설명을 생략한다.
〔RuSi막에 대해서〕
반도체 디바이스의 미세화에 수반하여, 배선의 미세화도 진행되고 있다. 그래서, 배선 재료로서, 루테늄실리사이드(RuSi)막이 검토되어 있다. RuSi막은, 구리(Cu)막과 달리 절연막으로 확산하기 어렵기 때문에, RuSi막의 하지막에는 배리어성은 요구되지 않는다. 그러나, 절연막 상에 직접, 밀착성 좋게 RuSi막을 형성할 것이 요구된다.
그런데, RuSi막을 형성할 때는, Ru 함유 전구체로서, η4-2,3-디메틸부타디엔루테늄트리카르보닐(Ru(DMBD)(CO)3)이나 도데카카르보닐트리루테늄(Ru3(CO)12) 등이 사용된다.
Ru(DMBD)(CO)3을 사용하는 경우, 절연막 상에 직접, 밀착성 좋게, 또한 양호한 스텝 커버리지(단차 피복성)로 RuSi막을 형성할 수 있다. 그러나, Ru(DMBD)(CO)3에 더하여 산소(O2) 가스가 필요하기 때문에, 형성될 RuSi막의 막 중에 불순물로서 산소(O)가 도입되기 쉽다. 또한, 형성될 RuSi막의 막 중에 Ru(DMBD)(CO)3에 기인하는 탄소(C)가 불순물로서 도입되기 쉽다. 그 때문에, 순도가 높은(불순물 농도가 낮은) RuSi막을 형성하는 것은 곤란하다.
Ru3(CO)12를 사용하는 경우, 절연막 상에 직접, 밀착성 좋게 RuSi막을 형성하는 것은 곤란하다. 또한, Ru3(CO)12는 증기압이 낮은 원료 가스이기 때문에, 대유량으로 Ru3(CO)12를 공급하는 것이 어렵다. 그 때문에, 고애스펙트비의 오목부에 대하여 RuSi막을 형성하는 경우, 오목부의 저부에 Ru3(CO)12가 도달하지 않기 때문에, 고애스펙트비의 오목부에 대하여 양호한 단차 피복성으로 RuSi막을 형성하는 것은 곤란하다.
그래서, 본 발명자들은, 종래 기술에 대한 문제점을 예의 검토한 결과, 절연막 상에 실리콘(Si)을 흡착시킨 후, Ru 함유 전구체를 공급해서 Ru막을 형성함으로써, 단차 피복성이 양호하고, 순도가 높은 RuSi막을 형성할 수 있음을 알아내었다. 이하, 단차 피복성이 양호하고, 순도가 높은 RuSi막을 형성할 수 있는 일 실시 형태의 RuSi막의 형성 방법에 대해서 상세하게 설명한다.
〔RuSi막의 형성 방법〕
일 실시 형태의 RuSi막의 형성 방법에 대해서 설명한다. 도 1은, 일 실시 형태의 RuSi막의 형성 방법을 나타내는 흐름도이다. 도 2는, 일 실시 형태의 RuSi막의 형성 방법을 도시하는 공정 단면도이다.
일 실시 형태의 RuSi막의 형성 방법은, 기판을 실리콘 함유 가스에 폭로하는 공정 S11과, 기판 상에 Ru막을 형성하는 공정 S12와, Ru막을 실리콘 함유 가스에 폭로하는 공정 S13을 갖는다. 또한, 공정 S11 내지 S13 각각의 전후에, 질소(N2) 가스, 아르곤(Ar) 가스 등의 불활성 가스를 공급해서 처리 용기 내를 퍼지하는 퍼지 공정을 행해도 된다. 또한, 공정 S11 후, 공정 S12와 공정 S13을 반복해서 행해도 된다. 이하, 각 공정에 대해서 설명한다.
공정 S11은, 감압 가능한 처리 용기 내에, 절연막을 포함하는 오목부를 갖는 기판을 수용하고, 기판을 소정 온도로 가열한 상태에서, 처리 용기 내에 실리콘 함유 가스를 공급해서 오목부에 실리콘을 흡착시키는 공정이다. 공정 S11에서는, 도 2의 (a)에 도시된 바와 같이, 표면에 절연막(F2)이 형성된 오목부(T)에 실리콘 함유 가스를 공급함으로써, 도 2의 (b)에 도시된 바와 같이, 오목부(T)에 컨포멀하게 실리콘(F3)을 흡착시킨다.
기판은, 예를 들어 Si 웨이퍼이다. 오목부는, 예를 들어 트렌치, 홀이다. 실리콘 함유 가스는, 예를 들어 모노실란(SiH4) 가스, 디실란(Si2H6) 가스 등의 수소화실리콘 가스, 모노메틸실란, 디메틸실란, 트리메틸실란 등이다. 소정 온도는, 오목부(T)에 실리콘(F3)이 흡착되는 온도이면 되고, 실리콘 함유 가스의 종류에 따라 설정할 수 있다. 예를 들어, 실리콘 함유 가스로서 SiH4 가스를 사용하는 경우의 적합한 온도 범위는 300℃ 내지 500℃이고, 예를 들어 400℃이다.
처리 용기 내에 실리콘 함유 가스를 공급하는 방법으로서는, 예를 들어 저류 탱크에 저류된 실리콘 함유 가스를, 처리 용기와 저류 탱크의 사이에 마련된 밸브의 개폐에 의해 처리 용기 내에 공급하는 방법을 이용할 수 있다. 이렇게 저류 탱크에 저류된 실리콘 함유 가스를, 처리 용기와 저류 탱크의 사이에 마련된 밸브의 개폐에 의해 처리 용기 내에 공급하는 경우, 밸브의 개폐 시간·횟수에 따라 실리콘 함유 가스의 유량 및 유속을 제어할 수 있다. 그 때문에, 실리콘 함유 가스의 유량 및 유속의 제어성이 향상된다. 또한, 실리콘 함유 가스를 저류 탱크에 일단 저류해서 승압한 상태에서 처리 용기 내에 공급함으로써, 애스펙트비가 높은 오목부(T)의 바닥까지 SiH4 가스가 도달하기 때문에, 오목부(T)에 컨포멀하게 실리콘(F3)이 흡착되기 쉽다.
또한, 처리 용기 내에 실리콘 함유 가스를 공급하는 방법으로서는, 예를 들어 실리콘 함유 가스를 연속해서 처리 용기 내에 공급하는 방법을 이용해도 된다. 바꾸어 말하면, 실리콘 함유 가스를 저류 탱크에 저류하지 않고 처리 용기 내에 공급하는 방법을 이용해도 된다. 이렇게 실리콘 함유 가스를 저류 탱크에 저류하지 않고 처리 용기 내에 공급하는 경우, 연속해서 실리콘 함유 가스를 공급할 수 있으므로 단시간에 오목부에 실리콘을 흡착시킬 수 있다.
공정 S12는, 감압 가능한 처리 용기 내에, 오목부에 실리콘이 흡착된 기판을 수용하고, 기판을 소정 온도로 가열한 상태에서, 처리 용기 내에 가스화한 Ru 함유 전구체를 공급해서 오목부에 Ru막을 형성하는 공정이다. 공정 S12에서는, 오목부(T)에 흡착된 실리콘(F3)이 Ru 함유 전구체의 흡착 사이트로서 기능하여, 실리콘(F3) 상에 Ru 함유 전구체가 화학 흡착된다. 이때, 실리콘(F3)이 오목부(T)에 컨포멀하게 형성되어 있기 때문에, 도 2의 (c)에 도시된 바와 같이, Ru막(F4)도 오목부(T)에 컨포멀하게 형성된다. 또한, Ru막(F4)의 일부는 실리콘(F3)과 화학 흡착해서 RuSi막이 된다. 이하, 가스화한 Ru 함유 전구체를 간단히 Ru 함유 전구체라고도 칭한다.
Ru 함유 전구체는, 예를 들어 Ru3(CO)12, cis-dicarbonyl bis(5-methylhexane-2,4-dionate)ruthenium(II) 등이다. 소정 온도는, Ru 함유 전구체가 열분해하는 온도이면 되고, Ru 함유 전구체의 종류에 따라 설정할 수 있다. 예를 들어, Ru 함유 전구체로서 Ru3(CO)12를 사용하는 경우의 적합한 온도 범위는 150℃ 내지 200℃이고, 예를 들어 185℃이다.
처리 용기 내에 Ru 함유 전구체를 공급하는 방법으로서는, 예를 들어 Ru 함유 전구체를 연속해서 처리 용기 내에 공급하는 방법을 이용할 수 있다. 바꾸어 말하면, Ru 함유 전구체를 저류 탱크에 저류하지 않고 처리 용기 내에 공급하는 방법을 이용할 수 있다. 이렇게 Ru 함유 전구체를 저류 탱크에 저류하지 않고 처리 용기 내에 공급하는 경우, 연속해서 Ru막을 성막할 수 있으므로 성막 레이트가 향상된다.
또한, 처리 용기 내에 Ru 함유 전구체를 공급하는 방법으로서는, 예를 들어 저류 탱크에 저류된 Ru 함유 전구체를, 처리 용기와 저류 탱크의 사이에 마련된 밸브의 개폐에 의해 처리 용기 내에 공급하는 방법을 이용해도 된다. 이렇게 저류 탱크에 저류된 Ru 함유 전구체를, 처리 용기와 저류 탱크의 사이에 마련된 밸브의 개폐에 의해 처리 용기 내에 공급하는 경우, 밸브의 개폐 시간·횟수에 따라서 막 두께를 단계적으로 조정할 수 있으므로 막 두께 제어성이 향상된다.
공정 S13은, 감압 가능한 처리 용기 내에, 오목부에 Ru막이 형성된 기판을 수용하고, 기판을 소정 온도로 가열한 상태에서, 처리 용기 내에 실리콘 함유 가스를 공급해서 RuSi막을 형성하는 공정이다. 공정 S13에서는, 오목부(T)에 Ru막(F4)이 형성된 기판(F1)에 실리콘 함유 가스를 공급함으로써, 도 2의 (d)에 도시된 바와 같이, 오목부(T)에 형성된 Ru막(F4)에 실리콘 함유 가스를 반응시켜서 RuSi막(F5)을 형성한다. 이때, Ru막(F4)이 오목부(T)에 컨포멀하게 형성되어 있기 때문에, RuSi막(F5)도 오목부(T)에 컨포멀하게 형성된다.
실리콘 함유 가스는, 공정 S11에서 사용되는 가스와 동일해도 되고, 예를 들어 SiH4 가스, Si2H6 가스 등의 수소화실리콘 가스, 모노메틸실란, 디메틸실란, 트리메틸실란 등이다. 소정 온도는, 오목부에 형성된 Ru막과 반응해서 RuSi막을 형성 가능한 온도이면 되고, 실리콘 함유 가스의 종류에 따라 설정할 수 있다. 예를 들어, 실리콘 함유 가스로서 SiH4 가스를 사용하는 경우의 적합한 온도 범위는 300℃ 내지 500℃이고, 예를 들어 400℃이다.
처리 용기 내에 실리콘 함유 가스를 공급하는 방법으로서는, 공정 S11과 마찬가지로, 예를 들어 저류 탱크에 저류된 실리콘 함유 가스를, 처리 용기와 저류 탱크의 사이에 마련된 밸브의 개폐에 의해 처리 용기 내에 공급하는 방법을 이용할 수 있다. 이렇게 저류 탱크에 저류된 실리콘 함유 가스를, 처리 용기와 저류 탱크의 사이에 마련된 밸브의 개폐에 의해 처리 용기 내에 공급하는 경우, 밸브의 개폐시간·횟수에 따라 실리콘 함유 가스의 유량 및 유속을 제어할 수 있다. 그 때문에, 실리콘 함유 가스의 유량 및 유속의 제어성이 향상된다. 또한, 밸브를 열어 가스 덩어리가 처리 용기 내에 도입된 후, 단시간에 밸브가 폐쇄되기 때문에, 연속해서 가스를 공급하는 경우에 비해, 후속 가스의 압력의 영향을 받지 않아, 상기 가스 덩어리가 처리 용기 내에서 보다 균등하게 확산한다. 그 때문에, 실리사이드화의 면내 균일성이 향상된다.
또한, 처리 용기 내에 실리콘 함유 가스를 공급하는 방법으로서는, 공정 S11과 마찬가지로, 예를 들어 실리콘 함유 가스를 연속해서 처리 용기 내에 공급하는 방법을 이용해도 된다. 바꾸어 말하면, 실리콘 함유 가스를 저류 탱크에 저류하지 않고 처리 용기 내에 공급하는 방법을 이용해도 된다. 이렇게 실리콘 함유 가스를 저류 탱크에 저류하지 않고 처리 용기 내에 공급하는 경우, 연속해서 실리콘 함유 가스를 공급할 수 있으므로 실리사이드화 레이트가 향상된다.
이상으로 설명한 공정 S11, 공정 S12 및 공정 S13을 이 차례로 실행함으로써, 오목부(T)에 RuSi막을 형성할 수 있다.
일 실시 형태의 RuSi막의 형성 방법에 의하면, 공정 S12에서 절연막 상에 Ru막을 형성하기 전에, 공정 S11에서 절연막을 실리콘 함유 가스에 폭로한다. 이에 의해, 절연막 상에 실리콘막이 형성되고, 실리콘막이 Ru 함유 전구체의 흡착 사이트로서 기능하므로, 절연막 상에 Ru막 및 RuSi막을 형성할 수 있다.
또한, 일 실시 형태의 RuSi막의 형성 방법에 의하면, 공정 S11에서 기판을 실리콘 함유 가스에 폭로하여, 오목부에 컨포멀하게 실리콘막을 형성한다. 이에 의해, 오목부에 컨포멀하게 형성된 실리콘막을 흡착 사이트로 해서 Ru 함유 전구체로부터 Ru막이 형성되므로, 오목부에 Ru막을 컨포멀하게 형성할 수 있다. 즉, 오목부에 양호한 단차 피복성으로 Ru막 및 RuSi막을 형성할 수 있다.
또한, 일 실시 형태의 RuSi막의 형성 방법에 의하면, Ru 함유 전구체로서 Ru3(CO)12, cis-dicarbonyl bis(5-methylhexane-2,4-dionate)ruthenium(II)를 사용하므로, Ru막 및 RuSi막의 형성에 O2 가스가 불필요하다. 그 때문에, 형성되는 Ru막 및 RuSi막의 막 중에 O가 불순물로서 도입되기 어렵다. 그 결과, 불순물 농도가 낮은 Ru막 및 RuSi막을 형성하는 것이 가능하다.
〔기판 처리 시스템〕
일 실시 형태의 RuSi막의 형성 방법을 실현하는 기판 처리 시스템의 일례에 대해서 설명한다. 도 3은, 기판 처리 시스템의 구성예를 도시하는 개략도이다.
도 3에 도시된 바와 같이, 기판 처리 시스템은, 처리 장치(101 내지 104)와, 진공 반송실(200)과, 로드 로크실(301 내지 303)과, 대기 반송실(400)과, 로드 포트(601 내지 603)와, 전체 제어부(700)를 구비한다.
처리 장치(101 내지 104)는, 각각 게이트 밸브(G11 내지 G14)를 통해서 진공 반송실(200)과 접속되어 있다. 처리 장치(101 내지 104) 내는 소정의 진공 분위기로 감압되어, 그 내부에서 기판의 일례인 웨이퍼(W)에 원하는 처리를 실시한다. 일 실시 형태에서는, 처리 장치(101)는, Si막을 형성 가능한 장치이며, 처리 장치(102 내지 104)는 Ru막을 형성 가능한 장치이다. 단, 처리 장치(101 내지 104) 각각이 Ru막 및 Si막을 형성 가능한 장치로서 구성되어 있어도 된다. 또한, 처리 장치(102 내지 104)의 일부는, 별도의 처리를 행하는 장치로서 구성되어도 된다. 또한, 처리 장치(103, 104)를 Si막을 형성 가능한 장치, 처리 장치(101, 102)를 Ru막을 형성 가능한 장치로 해도 된다. 생산성이나 가동률 등을 고려해서 적절히 구성 가능하다.
진공 반송실(200) 내는, 소정의 진공 분위기로 감압되어 있다. 진공 반송실(200)에는, 감압 상태에서 웨이퍼(W)를 반송 가능한 반송 기구(201)가 마련되어 있다. 반송 기구(201)는, 처리 장치(101 내지 104), 로드 로크실(301 내지 303)에 대하여 웨이퍼(W)를 반송한다. 반송 기구(201)는, 예를 들어 독립적으로 이동 가능한 2개의 반송 암(202a, 202b)을 갖는다.
로드 로크실(301 내지 303)은, 각각 게이트 밸브(G21 내지 G23)를 통해서 진공 반송실(200)과 접속되고, 게이트 밸브(G31 내지 G33)를 통해서 대기 반송실(400)과 접속되어 있다. 로드 로크실(301 내지 303) 내는, 대기 분위기와 진공 분위기를 전환할 수 있게 되어 있다.
대기 반송실(400) 내는, 대기 분위기로 되어 있어, 예를 들어 청정 공기의 다운 플로우가 형성되어 있다. 대기 반송실(400) 내에는, 웨이퍼(W)의 얼라인먼트를 행하는 얼라이너(401)가 마련되어 있다. 또한, 대기 반송실(400)에는, 반송 기구(402)가 마련되어 있다. 반송 기구(402)는, 로드 로크실(301 내지 303), 후술하는 로드 포트(601, 602)의 캐리어(C), 얼라이너(401)에 대하여 웨이퍼(W)를 반송한다.
로드 포트(601 내지 603)는, 대기 반송실(400)의 긴 변의 벽면에 마련되어 있다. 로드 포트(601 내지 603)는, 웨이퍼(W)가 수용된 캐리어(C) 또는 빈 캐리어(C)가 설치된다. 캐리어(C)로서는, 예를 들어 FOUP(Front Opening Unified Pod)를 이용할 수 있다.
전체 제어부(700)는, 기판 처리 시스템의 각 부를 제어한다. 예를 들어, 전체 제어부(700)는, 처리 장치(101 내지 104)의 동작, 반송 기구(201, 402)의 동작, 게이트 밸브(G11 내지 G14, G21 내지 G23, G31 내지 G33)의 개폐, 로드 로크실(301 내지 303) 내의 분위기의 전환 등을 실행한다. 전체 제어부(700)는, 예를 들어 컴퓨터이면 된다.
〔처리 장치〕
상술한 기판 처리 시스템이 구비하는 처리 장치(101)의 구성예에 대해서 설명한다. 도 4는, 기판 처리 시스템이 구비하는 처리 장치의 일례를 도시하는 개략도이다. 도 4에 도시되는 처리 장치(101)는, 예를 들어 기판을 실리콘 함유 가스에 폭로하는 공정 S11 및 Ru막을 실리콘 함유 가스에 폭로하는 공정 S13을 실행하는 장치이다.
도 4에 도시된 바와 같이, 처리 장치(101)는, 처리 용기(1)와, 적재대(2)와, 샤워 헤드(3)와, 배기부(4)와, 가스 공급 기구(5)와, 제어부(9)를 갖고 있다.
처리 용기(1)는, 알루미늄 등의 금속에 의해 구성되고, 대략 원통형을 갖고 있다. 처리 용기(1)는 웨이퍼(W)를 수용한다. 처리 용기(1)의 측벽에는 웨이퍼(W)를 반입 또는 반출하기 위한 반입출구(11)가 형성되고, 반입출구(11)는 게이트 밸브(12)에 의해 개폐된다. 게이트 밸브(12)는, 도 3에서는 게이트 밸브(G11)로서 도시하고 있다. 처리 용기(1)의 본체 상에는, 단면이 직사각 형상을 이루는 원환형의 배기 덕트(13)가 마련되어 있다. 배기 덕트(13)에는, 내주면을 따라서 슬릿(13a)이 형성되어 있다. 배기 덕트(13)의 외벽에는, 배기구(13b)가 형성되어 있다. 배기 덕트(13)의 상면에는, 처리 용기(1)의 상부 개구를 막도록 천장벽(14)이 마련되어 있다. 배기 덕트(13)와 천장벽(14)의 사이는 시일 링(15)으로 기밀하게 밀봉되어 있다.
적재대(2)는, 처리 용기(1) 내에서 웨이퍼(W)를 수평하게 지지한다. 적재대(2)는, 웨이퍼(W)에 대응한 크기의 원판형으로 형성되어 있고, 지지 부재(23)에 지지되어 있다. 적재대(2)는, AlN 등의 세라믹스 재료나, 알루미늄이나 니켈 합금 등의 금속 재료로 형성되어 있고, 내부에 웨이퍼(W)를 가열하기 위한 히터(21)가 매립되어 있다. 히터(21)는, 히터 전원(도시하지 않음)으로부터 급전되어 발열한다. 그리고, 적재대(2)의 상면의 근방에 마련된 열전쌍(도시하지 않음)의 온도 신호에 의해 히터(21)의 출력을 제어함으로써, 웨이퍼(W)가 소정의 온도로 제어된다. 적재대(2)에는, 상면의 외주 영역 및 측면을 덮도록 알루미나 등의 세라믹스에 의해 형성된 커버 부재(22)가 마련되어 있다.
적재대(2)의 저면에는, 적재대(2)를 지지하는 지지 부재(23)가 마련되어 있다. 지지 부재(23)는, 적재대(2)의 저면의 중앙으로부터 처리 용기(1)의 저벽에 형성된 구멍부를 관통해서 처리 용기(1)의 하방으로 연장되고, 그 하단이 승강 기구(24)에 접속되어 있다. 승강 기구(24)에 의해 적재대(2)가 지지 부재(23)를 통해서, 도 4에 도시하는 처리 위치와, 그 하방의 이점쇄선으로 나타내는 웨이퍼(W)의 반송이 가능한 반송 위치의 사이에서 승강한다. 지지 부재(23)의 처리 용기(1)의 하방에는, 플랜지부(25)가 설치되어 있고, 처리 용기(1)의 저면과 플랜지부(25)의 사이에는, 처리 용기(1) 내의 분위기를 외기와 구획하고, 적재대(2)의 승강 동작에 따라 신축하는 벨로우즈(26)가 마련되어 있다.
처리 용기(1)의 저면의 근방에는, 승강판(27a)으로부터 상방으로 돌출되도록 3개(2개만 도시)의 웨이퍼 지지 핀(27)이 마련되어 있다. 웨이퍼 지지 핀(27)은, 처리 용기(1)의 하방에 마련된 승강 기구(28)에 의해 승강판(27a)을 통해서 승강한다. 웨이퍼 지지 핀(27)은, 반송 위치에 있는 적재대(2)에 마련된 관통 구멍(2a)에 삽입 관통되어 적재대(2)의 상면에 대하여 돌출 함몰 가능하게 되어 있다. 웨이퍼 지지 핀(27)을 승강시킴으로써, 반송 기구(도시하지 않음)와 적재대(2)의 사이에서 웨이퍼(W)의 전달이 행하여진다.
샤워 헤드(3)는, 처리 용기(1) 내에 처리 가스를 샤워 형상으로 공급한다. 샤워 헤드(3)는 금속제이며, 적재대(2)에 대향하도록 마련되어 있고, 적재대(2)와 거의 동일한 직경을 갖고 있다. 샤워 헤드(3)는, 처리 용기(1)의 천장벽(14)에 고정된 본체부(31)와, 본체부(31) 아래에 접속된 샤워 플레이트(32)를 갖고 있다. 본체부(31)와 샤워 플레이트(32)의 사이에는 가스 확산 공간(33)이 형성되어 있고, 가스 확산 공간(33)에는 처리 용기(1)의 천장벽(14) 및 본체부(31)의 중앙을 관통하도록 가스 도입 구멍(36, 37)이 마련되어 있다. 샤워 플레이트(32)의 주연부에는 하방으로 돌출되는 환형 돌기부(34)가 형성되어 있다. 환형 돌기부(34)의 내측의 평탄면에는, 가스 토출 구멍(35)이 형성되어 있다. 적재대(2)가 처리 위치에 존재한 상태에서는, 적재대(2)와 샤워 플레이트(32)의 사이에 처리 공간(38)이 형성되고, 커버 부재(22)의 상면과 환형 돌기부(34)가 근접해서 환형 간극(39)이 형성된다.
배기부(4)는, 처리 용기(1)의 내부를 배기한다. 배기부(4)는, 배기구(13b)에 접속된 배기관(41)과, 배기관(41)에 접속된 진공 펌프나 압력 제어 밸브 등을 갖는 배기 기구(42)를 갖는다. 처리 시에는, 처리 용기(1) 내의 가스가 슬릿(13a)을 통해서 배기 덕트(13)에 이르고, 배기 덕트(13)로부터 배기관(41)을 통해서 배기 기구(42)에 의해 배기된다.
가스 공급 기구(5)는, 처리 용기(1) 내에 처리 가스를 공급한다. 가스 공급 기구(5)는, SiH4 가스 공급원(51a), N2 가스 공급원(53a), SiH4 가스 공급원(55a) 및 N2 가스 공급원(57a)을 갖는다.
SiH4 가스 공급원(51a)은, 가스 공급 라인(51b)을 통해서 실리콘 함유 가스의 일례인 SiH4 가스를 처리 용기(1) 내에 공급한다. 가스 공급 라인(51b)에는, 상류측으로부터 유량 제어기(51c), 저류 탱크(51d) 및 밸브(51e)가 개재 설치되어 있다. 가스 공급 라인(51b)의 밸브(51e)의 하류측은, 가스 도입 구멍(36)에 접속되어 있다. SiH4 가스 공급원(51a)으로부터 공급되는 SiH4 가스는 처리 용기(1) 내에 공급되기 전에 저류 탱크(51d)에서 일단 저류되어, 저류 탱크(51d) 내에서 소정의 압력으로 승압된 후, 처리 용기(1) 내에 공급된다. 저류 탱크(51d)로부터 처리 용기(1)에의 SiH4 가스의 공급 및 정지는, 밸브(51e)의 개폐에 의해 행하여진다. 이렇게 저류 탱크(51d)에 SiH4 가스를 일단 저류함으로써, 비교적 큰 유량의 SiH4 가스를 처리 용기(1) 내에 안정되게 공급할 수 있다.
N2 가스 공급원(53a)은, 가스 공급 라인(53b)을 통해서 캐리어 가스인 N2 가스를 처리 용기(1) 내에 공급한다. 가스 공급 라인(53b)에는, 상류측으로부터 유량 제어기(53c), 밸브(53e) 및 오리피스(53f)가 개재 설치되어 있다. 가스 공급 라인(53b)의 오리피스(53f)의 하류측은, 가스 공급 라인(51b)에 접속되어 있다. N2 가스 공급원(53a)으로부터 공급되는 N2 가스는 웨이퍼(W)의 성막 중에 연속해서 처리 용기(1) 내에 공급된다. N2 가스 공급원(53a)으로부터 처리 용기(1)에의 N2 가스의 공급 및 정지는, 밸브(53e)의 개폐에 의해 행하여진다. 저류 탱크(51d)에 의해 가스 공급 라인(51b)에는 비교적 큰 유량으로 가스가 공급되지만, 오리피스(53f)에 의해 가스 공급 라인(51b)에 공급되는 가스가 N2 가스 공급 라인(53b)으로 역류하는 것이 억제된다.
SiH4 가스 공급원(55a)은, 가스 공급 라인(55b)을 통해서 실리콘 함유 가스인 SiH4 가스를 처리 용기(1) 내에 공급한다. 가스 공급 라인(55b)에는, 상류측으로부터 유량 제어기(55c), 저류 탱크(55d) 및 밸브(55e)가 개재 설치되어 있다. 가스 공급 라인(55b)의 밸브(55e)의 하류측은, 가스 도입 구멍(37)에 접속되어 있다. SiH4 가스 공급원(55a)으로부터 공급되는 SiH4 가스는 처리 용기(1) 내에 공급되기 전에 저류 탱크(55d)에서 일단 저류되어, 저류 탱크(55d) 내에서 소정의 압력으로 승압된 후, 처리 용기(1) 내에 공급된다. 저류 탱크(55d)로부터 처리 용기(1)에의 SiH4 가스의 공급 및 정지는, 밸브(55e)의 개폐에 의해 행하여진다. 이렇게 저류 탱크(55d)에 SiH4 가스를 일단 저류함으로써, 비교적 큰 유량의 SiH4 가스를 처리 용기(1) 내에 안정되게 공급할 수 있다.
N2 가스 공급원(57a)은, 가스 공급 라인(57b)을 통해서 캐리어 가스인 N2 가스를 처리 용기(1) 내에 공급한다. 가스 공급 라인(57b)에는, 상류측으로부터 유량 제어기(57c), 밸브(57e) 및 오리피스(57f)가 개재 설치되어 있다. 가스 공급 라인(57b)의 오리피스(57f)의 하류측은, 가스 공급 라인(55b)에 접속되어 있다. N2 가스 공급원(57a)으로부터 공급되는 N2 가스는 웨이퍼(W)의 성막 중에 연속해서 처리 용기(1) 내에 공급된다. N2 가스 공급원(57a)으로부터 처리 용기(1)에의 N2 가스의 공급 및 정지는, 밸브(57e)의 개폐에 의해 행하여진다. 저류 탱크(55d)에 의해 가스 공급 라인(55b)에는 비교적 큰 유량으로 가스가 공급되지만, 오리피스(57f)에 의해 가스 공급 라인(55b)에 공급되는 가스가 N2 가스 공급 라인(57b)으로 역류하는 것이 억제된다.
제어부(9)는, 예를 들어 컴퓨터이며, CPU(Central Processing Unit), RAM(Random Access Memory), ROM(Read Only Memory), 보조 기억 장치 등을 구비한다. CPU는, ROM 또는 보조 기억 장치에 저장된 프로그램에 기초하여 동작하고, 처리 장치(101)의 동작을 제어한다. 제어부(9)는, 처리 장치(101)의 내부에 마련되어 있어도 되고, 외부에 마련되어 있어도 된다. 제어부(9)가 처리 장치(101)의 외부에 마련되어 있을 경우, 제어부(9)는, 유선 또는 무선 등의 통신 수단에 의해, 처리 장치(101)를 제어할 수 있다.
처리 장치(101)의 동작의 일례에 대해서 설명한다. 또한, 개시 시에 있어서, 밸브(51e, 53e, 55e, 57e)는 폐쇄되고, 처리 용기(1) 내는 배기 기구(42)에 의해 진공 분위기로 되어 있다. 또한, 적재대(2)는 반송 위치에 이동되어 있다.
제어부(9)는 게이트 밸브(12)를 연다. 여기서, 외부의 반송 기구(201)(도 3 참조)에 의해, 웨이퍼(W)가 처리 용기(1) 내에 반송되어 적재대(2)에 적재된다. 반송 기구(201)(도 3 참조)가 처리 용기(1) 내로부터 퇴피하면, 제어부(9)는, 게이트 밸브(12)를 닫는다. 제어부(9)는, 히터(21)를 제어하여, 웨이퍼(W)를 소정의 온도로 가열한다. 또한, 제어부(9)는, 승강 기구(24)를 제어하여, 적재대(2)를 처리 위치까지 상승시켜, 처리 공간(38)을 형성한다. 또한, 제어부(9)는, 배기 기구(42)의 압력 제어 밸브를 제어하여, 처리 용기(1) 내를 소정의 압력으로 조정한다.
계속해서, 제어부(9)는, 밸브(53e, 57e)를 개방함으로써, N2 가스 공급원(53a, 57a)으로부터 각각 가스 공급 라인(53b, 57b)에 소정의 유량의 캐리어 가스(N2 가스)를 공급한다. 또한, 제어부(9)는, SiH4 가스 공급원(51a, 55a)으로부터 SiH4 가스를 가스 공급 라인(51b, 55b)에 소정의 유량으로 공급한다. 이때, 밸브(51e, 55e)가 폐쇄되어 있으므로, SiH4 가스는, 저류 탱크(51d, 55d)에 저류되어, 저류 탱크(51d, 55d) 내가 승압한다.
계속해서, 제어부(9)는, 밸브(51e)를 개방함으로써, 저류 탱크(51d)에 저류된 SiH4 가스를 처리 용기(1) 내에 공급하여, 웨이퍼(W)의 표면에 흡착시킨다.
밸브(51e)를 개방하고 나서 소정의 시간이 경과한 후, 제어부(9)는, 밸브(51e)를 폐쇄함과 함께, 밸브(55e)를 개방함으로써, 저류 탱크(55d)에 저류된 SiH4 가스를 처리 용기(1) 내에 공급하여, 웨이퍼(W)의 표면에 흡착시킨다. 이때, 밸브(51e)가 폐쇄됨으로써, SiH4 가스 공급원(51a)으로부터 가스 공급 라인(51b)에 공급되는 SiH4 가스가 저류 탱크(51d)에 저류되어, 저류 탱크(51d) 내가 승압한다.
밸브(55e)를 개방하고 나서 소정의 시간이 경과한 후, 제어부(9)는, 밸브(55e)를 폐쇄함과 함께, 밸브(51e)를 개방함으로써, 저류 탱크(51d)에 저류된 SiH4 가스를 처리 용기(1) 내에 공급하여, 웨이퍼(W)의 표면에 흡착시킨다. 이때, 밸브(55e)가 폐쇄됨으로써, SiH4 가스 공급원(55a)으로부터 가스 공급 라인(55b)에 공급되는 SiH4 가스가 저류 탱크(55d)에 저류되어, 저류 탱크(55d) 내가 승압한다. 이후, 반복해서, 밸브(51e)와 밸브(55e)를 교대로 개방함으로써, SiH4 가스를 저류 탱크(51d, 55d)에 저류해서 승압한 상태로 처리 용기(1) 내에 공급한다.
이와 같이, 밸브(51e)와 밸브(55e)를 교대로 열어서 SiH4 가스를 저류 탱크(51d, 55d)에 일단 저류해서 승압한 상태로 처리 용기(1) 내에 공급함으로써, 애스펙트비가 높은 오목부의 바닥까지 SiH4 가스가 도달한다.
제어부(9)는 밸브(51e)와 밸브(55e)를 교대로 여는 동작을 소정의 시간 행한 후, 처리 용기(1) 내의 반입 시와는 역의 수순으로 웨이퍼(W)를 처리 용기(1)로부터 반출한다.
또한, 처리 장치(101)에 의해 실행되는 기판을 실리콘 함유 가스에 폭로하는 공정 S11 및 Ru막을 실리콘 함유 가스에 폭로하는 공정 S13에서의 프로세스 조건의 일례는 이하이다.
(공정 S11)
웨이퍼(W)의 온도: 300 내지 600℃
처리 용기(1) 내의 압력: 1.33 내지 1333Pa
(공정 S13)
웨이퍼(W)의 온도: 300 내지 600℃
처리 용기(1) 내의 압력: 1.33 내지 1333Pa
또한, 상기 예에서는, 처리 용기(1) 내에 복수의 가스 공급 라인(51b, 55b)으로부터 교대로 SiH4 가스를 공급하는 경우를 설명했지만, 본 개시는 이것에 한정되지 않는다. 예를 들어, 처리 용기(1) 내에 복수의 가스 공급 라인(51b, 55b)으로부터 동시에 SiH4 가스를 공급해도 된다.
다음에, 상술한 기판 처리 시스템이 구비하는 처리 장치(102)의 구성예에 대해서 설명한다. 또한, 처리 장치(103, 104)에 대해서도, 처리 장치(102)와 마찬가지의 구성이면 된다. 도 5는, 기판 처리 시스템이 구비하는 처리 장치의 다른 예를 도시하는 개략도이다.
도 5에 도시되는 처리 장치(102)는, CVD(Chemical Vapor Deposition) 장치이며, 예를 들어 기판 상에 Ru막을 형성하는 공정 S12를 행하는 장치이다. 처리 장치(102)에서는, 예를 들어 Ru 함유 전구체를 공급하여, 웨이퍼(W)에 Ru막을 성막하는 처리를 행한다.
본체 용기(501)는, 상측에 개구를 갖는 바닥이 있는 용기이다. 지지 부재(502)는 가스 토출 기구(503)를 지지한다. 또한, 지지 부재(502)가 본체 용기(501)의 상측의 개구를 막음으로써, 본체 용기(501)는 밀폐되어, 처리실을 형성한다. 가스 공급부(504)는, 지지 부재(502)를 관통하는 공급관(502a)을 통해서, 가스 토출 기구(503)에 Ru 함유 가스 등의 프로세스 가스나 캐리어 가스를 공급한다. 가스 공급부(504)로부터 공급된 Ru 함유 가스나 캐리어 가스는, 가스 토출 기구(503)로부터 본체 용기(501) 내에 공급된다.
스테이지(505)는, 웨이퍼(W)를 적재하는 부재이다. 스테이지(505)의 내부에는, 웨이퍼(W)를 가열하기 위한 히터(506)가 마련되어 있다. 또한, 스테이지(505)는, 스테이지(505)의 하면 중심부로부터 하방을 향해서 신장되어, 본체 용기(501)의 저부를 관통하는 일단이 승강판(509)을 통해서 승강 기구에 지지된 지지부(505a)를 갖는다. 또한, 스테이지(505)는, 단열 링(507)을 통하여, 온도 조절 부재인 온도 조절 재킷(508) 상에 고정된다. 온도 조절 재킷(508)은, 스테이지(505)를 고정하는 판부와, 판부로부터 하방으로 연장되어, 지지부(505a)를 덮도록 구성된 축부와, 판부로부터 축부를 관통하는 구멍부를 갖고 있다.
온도 조절 재킷(508)의 축부는, 본체 용기(501)의 저부를 관통한다. 온도 조절 재킷(508)의 하단부는, 본체 용기(501)의 하방에 배치된 승강판(509)을 통해서 승강 기구(510)에 지지된다. 본체 용기(501)의 저부와 승강판(509)의 사이에는, 벨로우즈(511)가 마련되어 있어, 승강판(509)의 상하 이동에 의해서도 본체 용기(501) 내의 기밀성은 유지된다.
승강 기구(510)가 승강판(509)을 승강시키면, 스테이지(505)는, 웨이퍼(W)의 처리가 행하여지는 처리 위치(도 5 참조)와, 반입출구(501a)를 통해서 외부의 반송 기구(201)(도 3 참조)의 사이에서 웨이퍼(W)의 전달을 행하는 전달 위치(도시하지 않음)의 사이를 승강한다.
승강 핀(512)은, 외부의 반송 기구(201)(도 3 참조)와의 사이에서 웨이퍼(W)의 전달을 행할 때, 웨이퍼(W)의 하면으로부터 지지하여, 스테이지(505)의 적재면으로부터 웨이퍼(W)를 들어 올린다. 승강 핀(512)은, 축부와, 축부보다도 직경 확대된 헤드부를 갖고 있다. 스테이지(505) 및 온도 조절 재킷(508)의 판부에는, 승강 핀(512)의 축부가 삽입 관통하는 관통 구멍이 형성되어 있다. 또한, 스테이지(505)의 적재면측에 승강 핀(512)의 헤드부를 수납하는 홈부가 형성되어 있다. 승강 핀(512)의 하방에는, 맞닿음 부재(513)가 배치되어 있다.
스테이지(505)를 웨이퍼(W)의 처리 위치(도 5 참조)까지 이동시킨 상태에서, 승강 핀(512)의 헤드부는 홈부 내에 수납되고, 웨이퍼(W)는 스테이지(505)의 적재면에 적재된다. 또한, 승강 핀(512)의 헤드부가 홈부에 걸림 지지되고, 승강 핀(512)의 축부는 스테이지(505) 및 온도 조절 재킷(508)의 판부를 관통하여, 승강 핀(512)의 축부의 하단은 온도 조절 재킷(508)의 판부로부터 돌출되어 있다. 한편, 스테이지(505)를 웨이퍼(W)의 전달 위치(도시하지 않음)까지 이동시킨 상태에서, 승강 핀(512)의 하단이 맞닿음 부재(513)와 맞닿아, 승강 핀(512)의 헤드부가 스테이지(505)의 적재면으로부터 돌출된다. 이에 의해, 승강 핀(512)의 헤드부가 웨이퍼(W)의 하면으로부터 지지하여, 스테이지(505)의 적재면으로부터 웨이퍼(W)를 들어 올린다.
환상 부재(514)는, 스테이지(505)의 상방에 배치되어 있다. 스테이지(505)를 웨이퍼(W)의 처리 위치(도 5 참조)까지 이동시킨 상태에서, 환상 부재(514)는, 웨이퍼(W)의 상면 외주부와 접촉하여, 환상 부재(514)의 자중에 의해 웨이퍼(W)를 스테이지(505)의 적재면에 압박한다. 한편, 스테이지(505)를 웨이퍼(W)의 전달 위치(도시하지 않음)까지 이동시킨 상태에서, 환상 부재(514)는, 반입출구(501a)보다도 상방에서 도시하지 않은 걸림 지지부에 의해 걸림 지지된다. 이에 의해, 반송 기구(201)(도 3 참조)에 의한 웨이퍼(W)의 전달을 저해하지 않게 되어 있다.
칠러 유닛(515)은, 배관(515a, 515b)을 통해서, 온도 조절 재킷(508)의 판부에 형성된 유로(508a)에 냉매, 예를 들어 냉각수를 순환시킨다.
전열 가스 공급부(516)는, 배관(516a)을 통해서, 스테이지(505)에 적재된 웨이퍼(W)의 이면과 스테이지(505)의 적재면의 사이에, 예를 들어 He 가스 등의 전열 가스를 공급한다.
퍼지 가스 공급부(517)는, 배관(517a), 지지부(505a)와 온도 조절 재킷(508)의 구멍부의 간극, 스테이지(505)와 단열 링(507)의 사이에 형성되어 직경 방향 외측을 향해서 연장되는 유로, 스테이지(505)의 외주부에 형성된 상하 방향의 유로에 퍼지 가스를 흘린다. 그리고, 이들 유로를 통해서, 환상 부재(514)의 하면과 스테이지(505)의 상면의 사이에, 예를 들어 CO2 가스 등의 퍼지 가스를 공급한다. 이에 의해, 환상 부재(514)의 하면과 스테이지(505)의 상면의 사이의 공간에 프로세스 가스가 유입되는 것을 방지하여, 환상 부재(514)의 하면이나 스테이지(505)의 외주부의 상면에 성막되는 것을 방지한다.
본체 용기(501)의 측벽에는, 웨이퍼(W)를 반출입하기 위한 반입출구(501a)와, 반입출구(501a)를 개폐하는 게이트 밸브(518)가 마련되어 있다. 게이트 밸브(518)는, 도 3에서는 게이트 밸브(G12)로서 도시하고 있다.
본체 용기(501)의 하방의 측벽에는, 배기관(501b)을 통해서, 진공 펌프 등을 포함하는 배기부(519)가 접속된다. 배기부(519)에 의해 본체 용기(501) 내가 배기되어, 본체 용기(501) 내가 소정의 진공 분위기로 설정, 유지된다.
제어 장치(520)는, 가스 공급부(504), 히터(506), 승강 기구(510), 칠러 유닛(515), 전열 가스 공급부(516), 퍼지 가스 공급부(517), 게이트 밸브(518), 배기부(519) 등을 제어함으로써, 처리 장치(102)의 동작을 제어한다. 여기서, 제어 장치(520)는, 전체 제어부(700)(도 3 참조)와 독립적으로 마련되어 있어도 되고, 전체 제어부(700)가 제어 장치(520)를 겸해도 된다.
처리 장치(102)의 동작의 일례에 대해서 설명한다. 또한, 개시 시에 있어서, 본체 용기(501) 내는, 배기부(519)에 의해 진공 분위기로 되어 있다. 또한, 스테이지(505)는 전달 위치로 이동하고 있다.
제어 장치(520)는 게이트 밸브(518)를 연다. 여기서, 외부의 반송 기구(201)(도 3 참조)에 의해, 승강 핀(512) 상에 웨이퍼(W)가 적재된다. 반송 기구(201)(도 3 참조)가 반입출구(501a)로부터 나오면, 제어 장치(520)는 게이트 밸브(518)를 닫는다.
제어 장치(520)는, 승강 기구(510)를 제어해서 스테이지(505)를 처리 위치로 이동시킨다. 이때, 스테이지(505)가 상승함으로써, 승강 핀(512) 상에 적재된 웨이퍼(W)가 스테이지(505)의 적재면에 적재된다. 또한, 환상 부재(514)가 웨이퍼(W)의 상면 외주부와 접촉하여, 환상 부재(514)의 자중에 의해 웨이퍼(W)를 스테이지(505)의 적재면에 압박한다.
처리 위치에 있어서, 제어 장치(520)는, 히터(506)를 동작시킴과 함께, 가스 공급부(504)를 제어하여, Ru 함유 가스 등의 프로세스 가스나 캐리어 가스를 가스 토출 기구(503)로부터 본체 용기(501) 내에 공급시킨다. 이에 의해, 기판 상에 Ru막을 형성하는 공정 S12의 처리 등의 소정의 처리가 행하여진다. 처리 후의 가스는, 환상 부재(514)의 상면측의 유로를 통과하여, 배기관(501b)을 통해서 배기부(519)에 의해 배기된다.
이때, 제어 장치(520)는, 전열 가스 공급부(516)를 제어하여, 스테이지(505)에 적재된 웨이퍼(W)의 이면과 스테이지(505)의 적재면의 사이에 전열 가스를 공급한다. 또한, 제어 장치(520)는, 퍼지 가스 공급부(517)를 제어하여, 환상 부재(514)의 하면과 스테이지(505)의 상면의 사이에 퍼지 가스를 공급한다. 퍼지 가스는, 환상 부재(514)의 하면측의 유로를 통과하여, 배기관(501b)을 통해서 배기부(519)에 의해 배기된다.
소정의 처리가 종료되면, 제어 장치(520)는, 승강 기구(510)를 제어해서 스테이지(505)를 전달 위치로 이동시킨다. 이때, 스테이지(505)가 하강함으로써, 환상 부재(514)가 도시하지 않은 걸림 지지부에 의해 걸림 지지된다. 또한, 승강 핀(512)의 하단이 맞닿음 부재(513)와 맞닿음으로써, 승강 핀(512)의 헤드부가 스테이지(505)의 적재면으로부터 돌출되어, 스테이지(505)의 적재면으로부터 웨이퍼(W)를 들어 올린다.
제어 장치(520)는 게이트 밸브(518)를 연다. 여기서, 외부의 반송 기구(201)(도 3 참조)에 의해, 승강 핀(512) 상에 적재된 웨이퍼(W)가 반출된다. 반송 기구(201)(도 3 참조)가 반입출구(501a)로부터 나오면, 제어 장치(520)는 게이트 밸브(518)를 닫는다.
이와 같이, 도 5에 도시되는 처리 장치(102)에 의하면, 기판 상에 Ru막을 형성하는 공정 S12의 처리 등의 소정의 처리를 행할 수 있다.
또한, 처리 장치(102)에 의해 실행되는 기판 상에 Ru막을 형성하는 공정 S12에서의 프로세스 조건의 일례는 이하이다.
(공정 S12)
웨이퍼(W)의 온도: 130 내지 200℃
본체 용기(501) 내의 압력: 0.133 내지 133Pa
〔기판 처리 시스템의 동작〕
기판 처리 시스템의 동작의 일례에 대해서 설명한다.
먼저, 전체 제어부(700)는, 게이트 밸브(G31)를 개방함과 함께, 반송 기구(402)를 제어하여, 예를 들어 로드 포트(601)의 캐리어(C)에 수용된 웨이퍼(W)를 로드 로크실(301)에 반송시킨다. 전체 제어부(700)는, 게이트 밸브(G31)를 닫고, 로드 로크실(301) 내를 진공 분위기로 한다.
전체 제어부(700)는, 게이트 밸브(G11, G21)를 개방함과 함께, 반송 기구(201)를 제어하여, 로드 로크실(301)의 웨이퍼(W)를 처리 장치(101)에 반송시킨다. 전체 제어부(700)는, 게이트 밸브(G11, G21)를 닫고, 처리 장치(101)를 동작시킴으로써, 처리 장치(101)에서 웨이퍼(W)를 실리콘 함유 가스에 폭로하는 공정 S11을 행한다.
계속해서, 전체 제어부(700)는, 게이트 밸브(G11, G12)를 개방함과 함께, 반송 기구(201)를 제어하여, 처리 장치(101)에서 처리된 웨이퍼(W)를 처리 장치(102)에 반송시킨다. 전체 제어부(700)는, 게이트 밸브(G11, G12)를 닫고, 처리 장치(102)를 동작시킴으로써, 처리 장치(102)에서 웨이퍼(W) 상에 Ru막을 형성하는 공정 S12를 행한다.
계속해서, 전체 제어부(700)는, 게이트 밸브(G12, G11)를 개방함과 함께, 반송 기구(201)를 제어하여, 처리 장치(102)에서 처리된 웨이퍼(W)를 처리 장치(101)에 반송시킨다. 전체 제어부(700)는, 게이트 밸브(G12, G11)를 닫고, 처리 장치(101)를 동작시킴으로써, 처리 장치(103)에서 Ru막을 실리콘 함유 가스에 폭로하는 공정 S13을 행한다.
계속해서, 전체 제어부(700)는, 처리 장치(101)에서 처리된 웨이퍼(W)를, 반송 기구(201)를 제어하여, 예를 들어 로드 로크실(303)에 반송시킨다. 전체 제어부(700)는, 로드 로크실(303) 내를 대기 분위기로 한다. 전체 제어부(700)는, 게이트 밸브(G33)를 개방함과 함께, 반송 기구(402)를 제어하여, 로드 로크실(303)의 웨이퍼(W)를 예를 들어 로드 포트(603)의 캐리어(C)에 반송해서 수용시킨다.
이와 같이, 도 3에 도시되는 기판 처리 시스템에 의하면, 각 처리 장치에 의해 웨이퍼(W)에 처리가 실시되는 동안에, 웨이퍼(W)를 대기에 폭로하지 않고, 즉, 진공을 깨트리지 않고 웨이퍼(W)에 소정의 처리를 실시할 수 있다.
또한, 상기 예에서는, 기판을 실리콘 함유 가스에 폭로하는 공정 S11, 기판 상에 Ru막을 형성하는 공정 S12 및 Ru막을 실리콘 함유 가스에 폭로하는 공정 S13을 이 순서로 1회씩 행하는 경우를 설명했지만, 본 개시는 이것에 한정되지 않는다. 예를 들어, 기판을 실리콘 함유 가스에 폭로하는 공정 S11 후에, 기판 상에 Ru막을 형성하는 공정 S12 및 Ru막을 실리콘 함유 가스에 폭로하는 공정 S13을 복수회씩 반복해서 행해도 된다.
또한, 상기 예에서는, 기판을 실리콘 함유 가스에 폭로하는 공정 S11 및 Ru막을 실리콘 함유 가스에 폭로하는 공정 S13을 동일한 처리 장치(101)에서 행하고, 기판 상에 Ru막을 형성하는 공정 S12를 처리 장치(101)와는 다른 처리 장치(102)에서 행하는 경우를 설명하였다. 그러나, 본 개시는 이것에 한정되지 않는다. 예를 들어, 기판을 실리콘 함유 가스에 폭로하는 공정 S11, 기판 상에 Ru막을 형성하는 공정 S12 및 Ru막을 실리콘 함유 가스에 폭로하는 공정 S13을 동일한 처리 장치에서 행해도 된다. 또한, 예를 들어 기판을 실리콘 함유 가스에 폭로하는 공정 S11, 기판 상에 Ru막을 형성하는 공정 S12 및 Ru막을 실리콘 함유 가스에 폭로하는 공정 S13을 각각 다른 처리 장치에서 행해도 된다. 또한, 기판을 실리콘 함유 가스에 폭로하는 공정 S11과 기판 상에 Ru막을 형성하는 공정 S12의 사이에서, 기판이 대기에 폭로되어도 된다. 또한, 기판 상에 Ru막을 형성하는 공정 S12와 Ru막을 실리콘 함유 가스에 폭로하는 공정 S13의 사이에서, 기판이 대기에 폭로되어도 된다.
〔실시예〕
일 실시 형태의 RuSi막의 형성 방법에 의해 발휘되는 효과를 확인하기 위해서 행한 실시예에 대해서 설명한다.
실시예에서는, 처리 장치(101, 102)를 사용해서 상술한 RuSi막의 형성 방법에서의 공정 S11 및 공정 S12를 행함으로써, 절연막인 실리콘 산화(SiO2)막 상에 Ru막을 형성하였다. 또한, 비교예로서, 처리 장치(102)를 사용해서 상술한 RuSi막의 형성 방법에서의 공정 S11을 행하지 않고 공정 S12를 행함으로써, 절연막인 SiO2막 상에 Ru막을 형성하였다. 또한, 비교예에서의 공정 S12의 처리 조건은, 실시예에서의 공정 S12의 처리 조건과 동일하다. 또한, 공정 S11에서는 실리콘 함유 가스를 연속해서 처리 용기 내에 공급하는 방법을 이용하고, 공정 S12에서는 Ru 함유 전구체를 연속해서 처리 용기 내에 공급하는 방법을 이용하였다. 또한, 실시예 및 비교예에서는, 공정 S12에서의 Ru 함유 전구체의 공급 시간을 10초, 20초, 30초, 60초로 설정하였다.
계속해서, 실시예 및 비교예에서 형성한 각각의 Ru막에 대해서, 주사형 전자 현미경(SEM: Scanning Electron Microscope)에 의해 막 표면의 상태를 관찰하였다. 도 6은, SiO2막의 표면에 실리콘을 흡착시킴으로 인한 작용을 설명하기 위한 도면이며, 실시예 및 비교예에서 형성한 Ru막의 표면을 관찰한 SEM상이다. 도 6의 (a)는 실시예 중 공정 S12에서의 Ru 함유 전구체의 공급 시간을 10초로 설정했을 때의 평가 결과를 도시하고, 도 6의 (b)는 비교예 중 공정 S12에서의 Ru 함유 전구체의 공급 시간을 10초로 설정했을 때의 평가 결과를 도시한다. 도 6의 (a) 및 도 6의 (b) 중, 백색 영역이 Ru를 나타내고, 흑색 영역이 SiO2막을 나타낸다. 또한, SEM상을 공지된 화상 처리 기술에 의해 화상 처리함으로써, SiO2막이 Ru막에 의해 덮여 있는 비율(이하, 「피복률」이라고 함)을 산출하였다.
도 6의 (a)에 도시된 바와 같이, SiO2막을 실리콘 함유 가스에 폭로한 후에 Ru 함유 전구체를 10초간 공급해서 Ru막을 형성한 실시예에서는, Ru의 핵 형성 밀도가 높고, 피복률은 19.8%이었다. 한편, 도 6의 (b)에 도시된 바와 같이, SiO2막을 실리콘 함유 가스에 폭로하지 않고 Ru 함유 전구체를 10초간 공급해서 Ru막을 형성한 비교예에서는, Ru의 핵 형성 밀도가 낮고, 피복률은 13.8%이었다. 또한, 실시예에서, Ru 함유 전구체의 공급 시간을 20초, 30초로 설정한 경우의 피복률은, 각각 49.3%, 90.3%이었다. 한편, 비교예에서, Ru 함유 전구체의 공급 시간을 20초, 30초로 설정한 경우의 피복률은, 각각 48.3%, 62.0%이었다. 이들 결과로부터, SiO2막을 실리콘 함유 가스에 폭로한 후에 Ru 함유 전구체를 공급해서 Ru막을 형성함으로써, SiO2막을 실리콘 함유 가스에 폭로하지 않고 Ru 함유 전구체를 공급해서 Ru막을 형성하는 것보다도 피복률을 높게 할 수 있다고 할 수 있다.
또한, 실시예 및 비교예에서 형성한 각각의 Ru막에 대해서, 형광 X선 분석(XRF: X-ray Fluorescence)법에 의해 막 두께를 측정하였다. 또한, Ru 함유 전구체의 공급 시간과 측정한 Ru막의 막 두께에 기초하여, Ru 함유 전구체의 공급의 개시 후, Ru막의 성막이 시작될 때까지의 시간의 지연(이하, 「인큐베이션 시간」이라고 함)을 평가하였다.
도 7은, Ru 함유 전구체의 공급 시간과 Ru막의 막 두께의 관계를 도시하는 도면이다. 도 7 중, 횡축은 공정 S12에서의 Ru 함유 전구체의 공급 시간[초]을 나타내고, 종축은 XRF법에 의해 측정한 Ru막의 막 두께[nm]를 나타낸다. 또한, 도 7에서는, 실시예의 결과를 삼각 표시로 나타내고, 비교예의 결과를 원 표시로 나타낸다.
도 7에 도시된 바와 같이, 실시예에서는 인큐베이션 시간이 약 1초인 것에 반해, 비교예에서는 인큐베이션 시간이 약 6초인 것을 알 수 있다. 이 결과로부터, SiO2막을 실리콘 함유 가스에 폭로한 후에 Ru 함유 전구체를 공급해서 Ru막을 형성함으로써, SiO2막을 실리콘 함유 가스에 폭로하지 않고 Ru 함유 전구체를 공급해서 Ru막을 형성하는 것보다도 인큐베이션 시간을 짧게 할 수 있다고 할 수 있다.
이상으로 설명한 SEM상, 피복률 및 인큐베이션 시간의 평가 결과에 의하면, 실리콘막이 Ru 함유 전구체의 흡착 사이트로서 기능하고 있다고 생각된다. 이와 같이, 실리콘막이 Ru 함유 전구체의 흡착 사이트로서 기능함으로써, 설계 막 두께가 얇은 경우에도 절연막 상에 Ru막의 연속막을 형성할 수 있다.
금회 개시된 실시 형태는 모든 점에서 예시이며 제한적인 것은 아니라고 생각되어야 한다. 상기 실시 형태는, 첨부의 청구범위 및 그 취지를 일탈하지 않고, 다양한 형태로 생략, 치환, 변경되어도 된다.

Claims (15)

  1. 절연막을 포함하는 오목부를 갖는 기판에 실리콘 함유 가스를 공급해서 상기 오목부에 실리콘을 흡착시키는 공정과,
    상기 실리콘이 흡착된 상기 오목부에 Ru 함유 전구체를 공급해서 상기 오목부에 Ru막을 형성하는 공정과,
    Ru막이 형성된 상기 오목부에 실리콘 함유 가스를 공급해서 RuSi막을 형성하는 공정
    을 포함하는, RuSi막의 형성 방법.
  2. 제1항에 있어서, 상기 RuSi막을 형성하는 공정은, 상기 기판을 가열한 상태에서 행하여지는, RuSi막의 형성 방법.
  3. 제1항 또는 제2항에 있어서, 상기 실리콘을 흡착시키는 공정과 상기 RuSi막을 형성하는 공정은, 동일한 온도에서 행하여지는, RuSi막의 형성 방법.
  4. 제1항 또는 제2항에 있어서, 상기 실리콘을 흡착시키는 공정 및 상기 RuSi막을 형성하는 공정과, 상기 Ru막을 형성하는 공정은, 다른 온도에서 행하여지는, RuSi막의 형성 방법.
  5. 제1항 또는 제2항에 있어서, 상기 실리콘을 흡착시키는 공정 및 상기 RuSi막을 형성하는 공정은, 300 내지 500℃의 온도에서 행하여지는, RuSi막의 형성 방법.
  6. 제1항 또는 제2항에 있어서, 상기 Ru막을 형성하는 공정은, 150 내지 200℃의 온도에서 행하여지는, RuSi막의 형성 방법.
  7. 제1항 또는 제2항에 있어서, 상기 Ru막을 형성하는 공정과 상기 RuSi막을 형성하는 공정은, 교대로 반복해서 행하여지는, RuSi막의 형성 방법.
  8. 제1항 또는 제2항에 있어서, 상기 실리콘을 흡착시키는 공정과 상기 Ru막을 형성하는 공정은, 진공 반송실을 통해서 접속된 별도의 처리 용기 내에서 행하여지는, RuSi막의 형성 방법.
  9. 제1항 또는 제2항에 있어서, 상기 실리콘을 흡착시키는 공정과 상기 Ru막을 형성하는 공정은, 동일한 처리 용기 내에서 행하여지는, RuSi막의 형성 방법.
  10. 제1항 또는 제2항에 있어서, 상기 실리콘을 흡착시키는 공정과 상기 RuSi막을 형성하는 공정은, 동일한 처리 용기 내에서 행하여지는, RuSi막의 형성 방법.
  11. 제1항 또는 제2항에 있어서, 상기 실리콘을 흡착시키는 공정과 상기 RuSi막을 형성하는 공정은, 별도의 처리 용기 내에서 행하여지는, RuSi막의 형성 방법.
  12. 제1항 또는 제2항에 있어서, 상기 실리콘 함유 가스는, SiH4 가스이며,
    상기 Ru 함유 전구체는, Ru3(CO)12인, RuSi막의 형성 방법.
  13. 제1항 또는 제2항에 있어서, 상기 실리콘을 흡착시키는 공정 및 상기 RuSi막을 형성하는 공정에서는, 복수의 가스 공급 라인으로부터 동시에 실리콘 함유 가스가 공급되는, RuSi막의 형성 방법.
  14. 제1항 또는 제2항에 있어서, 상기 실리콘을 흡착시키는 공정 및 상기 RuSi막을 형성하는 공정에서는, 복수의 가스 공급 라인으로부터 교대로 실리콘 함유 가스가 공급되는, RuSi막의 형성 방법.
  15. 감압 상태에서 기판을 반송 가능한 반송 기구를 내부에 갖는 진공 반송실과,
    상기 진공 반송실에 접속된 제1 처리 장치와,
    상기 진공 반송실에 접속된 제2 처리 장치와,
    제어부
    를 포함하고,
    상기 제어부는,
    절연막을 포함하는 오목부를 갖는 기판을 상기 제1 처리 장치에 반송하고, 상기 제1 처리 장치에서 감압 상태에서 상기 기판에 실리콘 함유 가스를 공급해서 상기 오목부에 실리콘을 흡착시키는 공정과,
    상기 기판을 상기 제1 처리 장치로부터 상기 진공 반송실을 통해서 상기 제2 처리 장치에 반송하고, 상기 제2 처리 장치에서 감압 상태에서 상기 실리콘이 흡착된 상기 오목부에 Ru 함유 전구체를 공급해서 상기 오목부에 Ru막을 형성하는 공정과,
    상기 기판을 상기 제2 처리 장치로부터 상기 진공 반송실을 통해서 상기 제1 처리 장치에 반송하고, 상기 제1 처리 장치에서 감압 상태에서 상기 Ru막이 형성된 상기 오목부에 실리콘 함유 가스를 공급해서 RuSi막을 형성하는 공정
    을 실행하도록, 상기 진공 반송실, 상기 제1 처리 장치 및 상기 제2 처리 장치를 제어하는,
    기판 처리 시스템.
KR1020200084028A 2019-07-16 2020-07-08 RuSi막의 형성 방법 및 기판 처리 시스템 KR102394115B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019131423A JP7296806B2 (ja) 2019-07-16 2019-07-16 RuSi膜の形成方法及び基板処理システム
JPJP-P-2019-131423 2019-07-16

Publications (2)

Publication Number Publication Date
KR20210009278A KR20210009278A (ko) 2021-01-26
KR102394115B1 true KR102394115B1 (ko) 2022-05-04

Family

ID=74310406

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200084028A KR102394115B1 (ko) 2019-07-16 2020-07-08 RuSi막의 형성 방법 및 기판 처리 시스템

Country Status (3)

Country Link
US (1) US11981992B2 (ko)
JP (1) JP7296806B2 (ko)
KR (1) KR102394115B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11236424B2 (en) * 2019-11-01 2022-02-01 Applied Materials, Inc. Process kit for improving edge film thickness uniformity on a substrate
JP2023113404A (ja) 2022-02-03 2023-08-16 東京エレクトロン株式会社 基板の表面にルテニウムシリサイド膜を形成する方法、及び装置
WO2024070843A1 (ja) * 2022-09-29 2024-04-04 東京エレクトロン株式会社 基板処理方法及び基板処理装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040187784A1 (en) 2003-03-28 2004-09-30 Fluens Corporation Continuous flow deposition system
US20090257170A1 (en) 2008-04-10 2009-10-15 Vishwanath Bhat Method for Forming a Ruthenium Film

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172955A (ja) * 1996-12-06 1998-06-26 Shibaura Eng Works Co Ltd 真空処理装置
US6197628B1 (en) * 1998-08-27 2001-03-06 Micron Technology, Inc. Ruthenium silicide diffusion barrier layers and methods of forming same
US20020076507A1 (en) * 2000-12-15 2002-06-20 Chiang Tony P. Process sequence for atomic layer deposition
JP2007523994A (ja) * 2003-06-18 2007-08-23 アプライド マテリアルズ インコーポレイテッド バリヤ物質の原子層堆積
US20050287806A1 (en) * 2004-06-24 2005-12-29 Hiroyuki Matsuura Vertical CVD apparatus and CVD method using the same
JP4889227B2 (ja) * 2005-03-23 2012-03-07 東京エレクトロン株式会社 基板処理方法および成膜方法
JP5046506B2 (ja) * 2005-10-19 2012-10-10 東京エレクトロン株式会社 基板処理装置,基板処理方法,プログラム,プログラムを記録した記録媒体
JP2007258390A (ja) * 2006-03-23 2007-10-04 Sony Corp 半導体装置、および半導体装置の製造方法
US8202367B2 (en) 2006-03-30 2012-06-19 Mitsui Engineering & Shipbuilding Co., Ltd. Atomic layer growing apparatus
US7557047B2 (en) 2006-06-09 2009-07-07 Micron Technology, Inc. Method of forming a layer of material using an atomic layer deposition process
JP2009024252A (ja) * 2007-05-15 2009-02-05 Applied Materials Inc タングステン材料の原子層堆積法
TW200951241A (en) 2008-05-30 2009-12-16 Sigma Aldrich Co Methods of forming ruthenium-containing films by atomic layer deposition
US8491967B2 (en) * 2008-09-08 2013-07-23 Applied Materials, Inc. In-situ chamber treatment and deposition process
US20100227476A1 (en) * 2009-03-04 2010-09-09 Peck John D Atomic layer deposition processes
JP2012172171A (ja) * 2011-02-18 2012-09-10 Hitachi Kokusai Electric Inc 基板処理装置及び薄膜成膜方法
US20140124788A1 (en) * 2012-11-06 2014-05-08 Intermolecular, Inc. Chemical Vapor Deposition System
US9994954B2 (en) 2013-07-26 2018-06-12 Versum Materials Us, Llc Volatile dihydropyrazinly and dihydropyrazine metal complexes
WO2015126139A1 (en) 2014-02-19 2015-08-27 Samsung Electronics Co., Ltd. Wiring structure and electronic device employing the same
JP6757624B2 (ja) * 2016-08-12 2020-09-23 東京エレクトロン株式会社 被処理体を処理する方法
TWI758363B (zh) 2016-12-06 2022-03-21 美商應用材料股份有限公司 用於ald及cvd薄膜沉積之釕前驅物及其用法
JP6807251B2 (ja) * 2017-03-02 2021-01-06 東京エレクトロン株式会社 ルテニウム配線の製造方法
JP2019062142A (ja) * 2017-09-28 2019-04-18 東京エレクトロン株式会社 選択成膜方法および半導体装置の製造方法
TWI790320B (zh) * 2017-12-16 2023-01-21 美商應用材料股份有限公司 釕的選擇性原子層沉積

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040187784A1 (en) 2003-03-28 2004-09-30 Fluens Corporation Continuous flow deposition system
US20090257170A1 (en) 2008-04-10 2009-10-15 Vishwanath Bhat Method for Forming a Ruthenium Film

Also Published As

Publication number Publication date
US11981992B2 (en) 2024-05-14
KR20210009278A (ko) 2021-01-26
JP7296806B2 (ja) 2023-06-23
US20210017642A1 (en) 2021-01-21
TW202121510A (zh) 2021-06-01
JP2021015947A (ja) 2021-02-12

Similar Documents

Publication Publication Date Title
KR102394115B1 (ko) RuSi막의 형성 방법 및 기판 처리 시스템
US11387112B2 (en) Surface processing method and processing system
KR102029538B1 (ko) 성막 장치 및 성막 방법
JP2016225396A (ja) 金属膜のストレス低減方法および金属膜の成膜方法
KR101210456B1 (ko) 반도체 장치의 제조 방법, 기판 처리 방법 및 기판 처리 장치
US11152260B2 (en) Embedding method and processing system
US10490443B2 (en) Selective film forming method and method of manufacturing semiconductor device
KR102202989B1 (ko) 성막 방법
KR20200097646A (ko) 기판 처리 방법 및 성막 시스템
KR102388169B1 (ko) RuSi막의 형성 방법 및 성막 장치
KR102361907B1 (ko) 성막 방법 및 기판 처리 시스템
CN110923659B (zh) 成膜方法及基板处理***
US10784110B2 (en) Tungsten film forming method, film forming system and film forming apparatus
JP2021080536A (ja) 基板処理方法及び基板処理装置
JPWO2006090645A1 (ja) 半導体装置の製造方法および基板処理装置
US11551933B2 (en) Substrate processing method and substrate processing apparatus
US20220372618A1 (en) Method for manufacturing semiconductor device, and film-forming device
US20240003002A1 (en) Tungsten Film-Forming Method, Film-Forming System and Storage Medium
US20240153818A1 (en) Embedding method and processing system
KR20230078781A (ko) 매립 방법 및 성막 장치
JP2022143537A (ja) 成膜方法及び基板処理方法

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right