KR102368311B1 - 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치, 및 프로그램 - Google Patents

반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치, 및 프로그램 Download PDF

Info

Publication number
KR102368311B1
KR102368311B1 KR1020200030173A KR20200030173A KR102368311B1 KR 102368311 B1 KR102368311 B1 KR 102368311B1 KR 1020200030173 A KR1020200030173 A KR 1020200030173A KR 20200030173 A KR20200030173 A KR 20200030173A KR 102368311 B1 KR102368311 B1 KR 102368311B1
Authority
KR
South Korea
Prior art keywords
substrate
film
gas
pseudo
catalyst
Prior art date
Application number
KR1020200030173A
Other languages
English (en)
Other versions
KR20200112686A (ko
Inventor
다카시 나카가와
다카유키 와세다
기미히코 나카타니
모토무 데가이
Original Assignee
가부시키가이샤 코쿠사이 엘렉트릭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 코쿠사이 엘렉트릭 filed Critical 가부시키가이샤 코쿠사이 엘렉트릭
Publication of KR20200112686A publication Critical patent/KR20200112686A/ko
Application granted granted Critical
Publication of KR102368311B1 publication Critical patent/KR102368311B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/32Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers using masks

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

본 발명은, 반도체 장치의 제조 공정을 간소화시킨다. (a) 표면에 제1 하지와 제2 하지가 노출된 기판에 대하여, 불소 함유 가스로부터 발생시킨 불소 함유 라디칼을 공급함으로써, 제1 하지 및 제2 하지 중 한쪽의 하지의 표면을, F 종단시키도록 개질시키는 공정과, (b) 한쪽의 하지의 표면을 개질시킨 후의 기판에 대하여 성막 가스를 공급함으로써, 제1 하지 및 제2 하지 중 한쪽의 하지와는 상이한 다른 쪽의 하지의 표면 상에 막을 형성하는 공정을 갖는다.

Description

반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치, 및 프로그램{METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE, SUBSTRATE PROCESSING METHOD, SUBSTRATE PROCESSING APPARATUS, AND PROGRAM}
본 개시는, 반도체 장치 제조 방법, 기판 처리 장치, 및 프로그램에 관한 것이다.
반도체 장치의 제조 공정의 일 공정으로서, 기판의 표면에 노출된 복수 종류의 하지 중 특정 하지의 표면 상에 선택적으로 막을 성장시켜 형성하는 처리(이하, 이 처리를 선택 성장 또는 선택 성막이라고도 함)가 행하여지는 경우가 있다(예를 들어 특허문헌 1 참조).
일본 특허 공개 제2013-243193호 공보
본 개시의 목적은, 반도체 장치의 제조 공정을 간소화시키는 것이 가능한 기술을 제공하는 데 있다.
본 개시의 일 형태에 의하면,
(a) 표면에 제1 하지와 제2 하지가 노출된 기판에 대하여, 불소 함유 가스로부터 발생시킨 불소 함유 라디칼을 공급함으로써, 상기 제1 하지 및 상기 제2 하지 중 한쪽의 하지의 표면을, F 종단시키도록 개질시키는 공정과,
(b) 상기 한쪽의 하지의 표면을 개질시킨 후의 상기 기판에 대하여 성막 가스를 공급함으로써, 상기 제1 하지 및 상기 제2 하지 중 상기 한쪽의 하지와는 상이한 다른 쪽의 하지의 표면 상에 막을 형성하는 공정
을 행하는 기술이 제공된다.
본 개시에 의하면, 반도체 장치의 제조 공정을 간소화시키는 것이 가능하게 된다.
도 1은 본 개시의 일 형태에서 적합하게 사용되는 기판 처리 장치의 종형 처리로의 개략 구성도이며, 처리로(202) 부분을 종단면도로 도시하는 도면이다.
도 2는 본 개시의 일 형태에서 적합하게 사용되는 기판 처리 장치의 종형 처리로의 개략 구성도이며, 처리로(202) 부분을 도 1의 A-A선 단면도로 도시하는 도면이다.
도 3은 본 개시의 일 형태에서 적합하게 사용되는 기판 처리 장치의 컨트롤러(121)의 개략 구성도이며, 컨트롤러(121)의 제어계를 블록도로 도시하는 도면이다.
도 4는 본 개시의 일 형태의 선택 성장에서의 처리 시퀀스를 도시하는 도면이다.
도 5(a)는, 표면에, 실리콘 산화막을 포함하는 하지(200a) 및 실리콘 질화막을 포함하는 하지(200b)가 각각 노출된 웨이퍼(200)의 표면에서의 단면 부분 확대도이다. 도 5(b)는, 하지(200a)의 표면을, 불소 함유 가스로부터 발생시킨 불소 함유 라디칼을 사용해서 선택적으로 개질시킨 후의 웨이퍼(200)의 표면에서의 단면 부분 확대도이다. 도 5(c)는, 하지(200b)의 표면 상에 실리콘 질화막을 선택적으로 형성한 후의 웨이퍼(200)의 표면에서의 단면 부분 확대도이다. 도 5(d)는, 도 5(c)에 도시하는 웨이퍼(200)를 대기 폭로한 후의 웨이퍼(200)의 표면에서의 단면 부분 확대도이다.
도 6은 개질 처리 전의 웨이퍼(200)에서의 하지(200a)의 표면의 단면 부분 확대도이다.
도 7(a) 내지 도 7(d)는, 각각, 개질 처리 후의 웨이퍼(200)에서의 하지(200a)의 표면의 단면 부분 확대도이다.
도 8은 웨이퍼 상에 형성된 실리콘 질화막의 두께의 측정 결과를 각각 도시하는 도면이다.
<본 개시의 일 형태>
이하, 본 개시의 일 형태에 대해서, 주로 도 1 내지 도 4를 참조하면서 설명한다.
(1) 기판 처리 장치의 구성
도 1에 도시한 바와 같이, 처리로(202)는 가열 기구(온도 조정부)로서의 히터(207)를 갖는다. 히터(207)는 원통 형상이며, 보유 지지판에 지지됨으로써 수직으로 설치되어 있다. 히터(207)는, 가스를 열로 활성화(여기)시키는 활성화 기구(여기부)로서도 기능한다.
히터(207)의 내측에는, 히터(207)와 동심원형으로 반응관(203)이 배치되어 있다. 반응관(203)은, 예를 들어 석영(SiO2) 또는 탄화실리콘(SiC) 등의 내열성 재료에 의해 구성되고, 상단이 폐색되고 하단이 개구된 원통 형상으로 형성되어 있다. 반응관(203)의 하방에는, 반응관(203)과 동심원형으로, 매니폴드(209)가 배치되어 있다. 매니폴드(209)는, 예를 들어 스테인리스강(SUS) 등의 금속 재료에 의해 구성되고, 상단 및 하단이 개구된 원통 형상으로 형성되어 있다. 매니폴드(209)의 상단부는, 반응관(203)의 하단부에 걸림 결합하고 있어, 반응관(203)을 지지하도록 구성되어 있다. 매니폴드(209)와 반응관(203)의 사이에는, 시일 부재로서의 O링(220a)이 마련되어 있다. 반응관(203)은 히터(207)와 마찬가지로 수직으로 설치되어 있다. 주로, 반응관(203)과 매니폴드(209)에 의해 처리 용기(반응 용기)가 구성된다. 처리 용기의 통 중공부에는 처리실(201)이 형성된다. 처리실(201)은, 기판으로서의 웨이퍼(200)를 수용 가능하게 구성되어 있다. 이 처리실(201) 내에서 웨이퍼(200)에 대한 처리가 행하여진다.
처리실(201) 내에는, 제1 내지 제3 공급부로서의 노즐(249a 내지 249c)이, 매니폴드(209)의 측벽을 관통하도록 각각 마련되어 있다. 노즐(249a 내지 249c)을, 각각 제1 내지 제3 노즐이라고도 칭한다. 노즐(249a 내지 249c)은, 예를 들어 석영 또는 SiC 등의 내열성 재료에 의해 구성되어 있다. 노즐(249a 내지 249c)에는, 가스 공급관(232a 내지 232c)이 각각 접속되어 있다. 노즐(249a 내지 249c)은 각각 상이한 노즐이며, 노즐(249a, 249c) 각각은, 노즐(249b)에 인접해서 마련되어 있다.
가스 공급관(232a 내지 232c)에는, 가스류의 상류측부터 순서대로, 유량 제어기(유량 제어부)인 매스 플로우 컨트롤러(MFC)(241a 내지 241c) 및 개폐 밸브인 밸브(243a 내지 243c)가 각각 마련되어 있다. 가스 공급관(232a 내지 232c)의 밸브(243a 내지 243c)보다도 하류측에는, 가스 공급관(232d 내지 232f)이 각각 접속되어 있다. 가스 공급관(232d 내지 232f)에는, 가스류의 상류측부터 순서대로, MFC(241d 내지 241f) 및 밸브(243d 내지 243f)가 각각 마련되어 있다. 가스 공급관(232a 내지 232f)은, 예를 들어, SUS 등의 금속 재료에 의해 구성되어 있다.
도 2에 도시한 바와 같이, 노즐(249a 내지 249c)은, 반응관(203)의 내벽과 웨이퍼(200)의 사이에서의 평면으로 보아 원환형 공간에, 반응관(203)의 내벽의 하부로부터 상부를 따라, 웨이퍼(200)의 배열 방향 상방을 향해서 직립하도록 각각 마련되어 있다. 즉, 노즐(249a 내지 249c)은, 웨이퍼(200)가 배열되는 웨이퍼 배열 영역의 측방의, 웨이퍼 배열 영역을 수평하게 둘러싸는 영역에, 웨이퍼 배열 영역을 따르도록 각각 마련되어 있다. 평면으로 보아, 노즐(249b)은, 처리실(201) 내에 반입되는 웨이퍼(200)의 중심을 사이에 두고 후술하는 배기구(231a)와 일직선 상으로 대향하도록 배치되어 있다. 노즐(249a, 249c)은, 노즐(249b)과 배기구(231a)의 중심을 통과하는 직선 L을, 반응관(203)의 내벽(웨이퍼(200)의 외주부)을 따라 양측으로부터 사이에 두도록 배치되어 있다. 직선 L은, 노즐(249b)과 웨이퍼(200)의 중심을 통과하는 직선이기도 하다. 즉, 노즐(249c)은, 직선 L을 사이에 두고 노즐(249a)과 반대측에 마련되어 있다고 할 수도 있다. 노즐(249a, 249c)은, 직선 L을 대칭 축으로 해서 선 대칭으로 배치되어 있다. 노즐(249a 내지 249c)의 측면에는, 가스를 공급하는 가스 공급 구멍(250a 내지 250c)이 각각 마련되어 있다. 가스 공급 구멍(250a 내지 250c)은, 각각이, 평면으로 보아 배기구(231a)와 대향(대면)하도록 개구하고 있어, 웨이퍼(200)를 향해서 가스를 공급하는 것이 가능하게 되어 있다. 가스 공급 구멍(250a 내지 250c)은, 반응관(203)의 하부로부터 상부에 걸쳐 복수 마련되어 있다.
가스 공급관(232a)으로부터는, 웨이퍼(200) 상에 형성되는 막을 구성하는 주 원소로서의 실리콘(Si)과 할로겐 원소를 포함하는 가스, 즉, 할로실란계 가스가, MFC(241a), 밸브(243a), 노즐(249a)을 통해서 처리실(201) 내에 공급된다. 할로실란계 가스는, 성막 가스, 즉, Si 소스(원료 가스)로서 작용한다. 할로겐 원소에는, 염소(Cl), 불소(F), 브롬(Br), 요오드(I) 등이 포함된다. 할로실란계 가스로서는, 예를 들어 Si 및 Cl을 포함하는 클로로실란계 가스를 사용할 수 있고, 예를 들어 실리콘테트라클로라이드(SiCl4) 가스를 사용할 수 있다.
가스 공급관(232b)으로부터는, 불소(F) 함유 가스가, MFC(241b), 밸브(243b), 노즐(249b)을 통해서 처리실(201) 내에 공급된다. F 함유 가스로서는, 예를 들어 3불화염소(ClF3) 가스를 사용할 수 있다.
가스 공급관(232c)으로부터는, 질소(N) 함유 가스인 질화수소계 가스가, MFC(241c), 밸브(243c), 노즐(249c)을 통해서 처리실(201) 내에 공급된다. 질화수소계 가스는, 성막 가스, 즉, N 소스(질화 가스, 질화제)로서 작용한다. 질화수소계 가스로서는, 예를 들어 암모니아(NH3) 가스를 사용할 수 있다.
가스 공급관(232d 내지 232f)으로부터는, 불활성 가스로서, 예를 들어 질소(N2) 가스가, 각각 MFC(241d 내지 241f), 밸브(243d 내지 243f), 가스 공급관(232a 내지 232c), 노즐(249a 내지 249c)을 통해서 처리실(201) 내에 공급된다. N2 가스는, 퍼지 가스, 캐리어 가스, 희석 가스 등으로서 작용한다.
주로, 가스 공급관(232a, 232c), MFC(241a, 241c), 밸브(243a, 243c)에 의해, 성막 가스 공급계(원료 가스 공급계, 반응 가스 공급계)가 구성된다. 주로, 가스 공급관(232b), MFC(241b), 밸브(243b)에 의해, 불소 함유 가스 공급계가 구성된다. 주로, 가스 공급관(232d 내지 232f), MFC(241d 내지 241f), 밸브(243d 내지 243f)에 의해, 불활성 가스 공급계가 구성된다.
상술한 각종 공급계 중 어느 것, 혹은 모든 공급계는, 밸브(243a 내지 243f)나 MFC(241a 내지 241f) 등이 집적되어 이루어지는 집적형 공급 시스템(248)으로서 구성되어 있어도 된다. 집적형 공급 시스템(248)은, 가스 공급관(232a 내지 232f) 각각에 대하여 접속되어, 가스 공급관(232a 내지 232f) 내에의 각종 가스의 공급 동작, 즉, 밸브(243a 내지 243f)의 개폐 동작이나 MFC(241a 내지 241f)에 의한 유량 조정 동작 등이, 후술하는 컨트롤러(121)에 의해 제어되도록 구성되어 있다. 집적형 공급 시스템(248)은, 일체형, 혹은 분할형의 집적 유닛으로서 구성되어 있고, 가스 공급관(232a 내지 232f) 등에 대하여 집적 유닛 단위로 착탈을 행할 수 있어, 집적형 공급 시스템(248)의 메인터넌스, 교환, 증설 등을, 집적 유닛 단위로 행하는 것이 가능하게 구성되어 있다.
반응관(203)의 측벽 하방에는, 처리실(201) 내의 분위기를 배기하는 배기구(231a)가 마련되어 있다. 도 2에 도시한 바와 같이, 배기구(231a)는, 평면으로 보아, 웨이퍼(200)를 사이에 두고 노즐(249a 내지 249c)(가스 공급 구멍(250a 내지 250c))과 대향(대면)하는 위치에 마련되어 있다. 배기구(231a)는, 반응관(203)의 측벽의 하부로부터 상부를 따라, 즉, 웨이퍼 배열 영역을 따라 마련되어 있어도 된다. 배기구(231a)에는 배기관(231)이 접속되어 있다. 배기관(231)에는, 처리실(201) 내의 압력을 검출하는 압력 검출기(압력 검출부)로서의 압력 센서(245) 및 압력 조정기(압력 조정부)로서의 APC(Auto Pressure Controller) 밸브(244)를 거쳐서, 진공 배기 장치로서의 진공 펌프(246)가 접속되어 있다. APC 밸브(244)는, 진공 펌프(246)를 작동시킨 상태에서 밸브를 개폐함으로써, 처리실(201) 내의 진공 배기 및 진공 배기 정지를 행할 수 있고, 또한, 진공 펌프(246)를 작동시킨 상태에서, 압력 센서(245)에 의해 검출된 압력 정보에 기초하여 밸브 개방도를 조절함으로써, 처리실(201) 내의 압력을 조정할 수 있도록 구성되어 있다. 주로, 배기관(231), APC 밸브(244), 압력 센서(245)에 의해 배기계가 구성된다. 진공 펌프(246)를 배기계에 포함해서 생각해도 된다.
매니폴드(209)의 하방에는, 매니폴드(209)의 하단 개구를 기밀하게 폐색 가능한 노구 덮개로서의 시일 캡(219)이 마련되어 있다. 시일 캡(219)은, 예를 들어 SUS 등의 금속 재료에 의해 구성되고, 원반 형상으로 형성되어 있다. 시일 캡(219)의 상면에는, 매니폴드(209)의 하단과 맞닿는 시일 부재로서의 O링(220b)이 마련되어 있다. 시일 캡(219)의 하방에는, 후술하는 보트(217)를 회전시키는 회전 기구(267)가 설치되어 있다. 회전 기구(267)의 회전축(255)은, 시일 캡(219)을 관통해서 보트(217)에 접속되어 있다. 회전 기구(267)는, 보트(217)를 회전시킴으로써 웨이퍼(200)를 회전시키도록 구성되어 있다. 시일 캡(219)은, 반응관(203)의 외부에 설치된 승강 기구로서의 보트 엘리베이터(115)에 의해 수직 방향으로 승강되도록 구성되어 있다. 보트 엘리베이터(115)는, 시일 캡(219)을 승강시킴으로써, 웨이퍼(200)를 처리실(201) 내외로 반입 및 반출(반송)하는 반송 장치(반송 기구)로서 구성되어 있다. 매니폴드(209)의 하방에는, 시일 캡(219)을 강하시켜 보트(217)를 처리실(201) 내로부터 반출한 상태에서, 매니폴드(209)의 하단 개구를 기밀하게 폐색 가능한 노구 덮개로서의 셔터(219s)가 마련되어 있다. 셔터(219s)는, 예를 들어 SUS 등의 금속 재료에 의해 구성되고, 원반 형상으로 형성되어 있다. 셔터(219s)의 상면에는, 매니폴드(209)의 하단과 맞닿는 시일 부재로서의 O링(220c)이 마련되어 있다. 셔터(219s)의 개폐 동작(승강 동작이나 회동 동작 등)은, 셔터 개폐 기구(115s)에 의해 제어된다.
기판 지지구로서의 보트(217)는, 복수매, 예를 들어 25 내지 200매의 웨이퍼(200)를, 수평 자세이면서 또한 서로 중심을 맞춘 상태에서 수직 방향으로 정렬시켜 다단으로 지지하도록, 즉, 간격을 두고 배열시키도록 구성되어 있다. 보트(217)는, 예를 들어 석영이나 SiC 등의 내열성 재료에 의해 구성된다. 보트(217)의 하부에는, 예를 들어 석영이나 SiC 등의 내열성 재료에 의해 구성되는 단열판(218)이 다단으로 지지되어 있다.
반응관(203) 내에는, 온도 검출기로서의 온도 센서(263)가 설치되어 있다. 온도 센서(263)에 의해 검출된 온도 정보에 기초하여 히터(207)에의 통전 상태를 조정함으로써, 처리실(201) 내의 온도가 원하는 온도 분포로 된다. 온도 센서(263)는, 반응관(203)의 내벽을 따라 마련되어 있다.
도 3에 도시한 바와 같이, 제어부(제어 수단)인 컨트롤러(121)는, CPU(Central Processing Unit)(121a), RAM(Random Access Memory)(121b), 기억 장치(121c), I/O 포트(121d)를 구비한 컴퓨터로서 구성되어 있다. RAM(121b), 기억 장치(121c), I/O 포트(121d)는, 내부 버스(121e)를 통해서, CPU(121a)와 데이터 교환 가능하게 구성되어 있다. 컨트롤러(121)에는, 예를 들어 터치 패널 등으로서 구성된 입출력 장치(122)가 접속되어 있다.
기억 장치(121c)는, 예를 들어 플래시 메모리, HDD(Hard Disk Drive) 등으로 구성되어 있다. 기억 장치(121c) 내에는, 기판 처리 장치의 동작을 제어하는 제어 프로그램이나, 후술하는 기판 처리의 수순이나 조건 등이 기재된 프로세스 레시피 등이, 판독 가능하게 저장되어 있다. 프로세스 레시피는, 후술하는 기판 처리에서의 각 수순을 컨트롤러(121)에 실행시켜, 소정의 결과를 얻을 수 있도록 조합된 것이며, 프로그램으로서 기능한다. 이하, 프로세스 레시피나 제어 프로그램 등을 총칭하여, 간단히 프로그램이라고도 한다. 또한, 프로세스 레시피를, 간단히 레시피라고도 한다. 본 명세서에서 프로그램이라는 말을 사용한 경우는, 레시피 단체만을 포함하는 경우, 제어 프로그램 단체만을 포함하는 경우, 또는 그들 양쪽을 포함하는 경우가 있다. RAM(121b)은, CPU(121a)에 의해 판독된 프로그램이나 데이터 등이 일시적으로 보유되는 메모리 영역(워크 에어리어)으로서 구성되어 있다.
I/O 포트(121d)는, 상술한 MFC(241a 내지 241f), 밸브(243a 내지 243f), 압력 센서(245), APC 밸브(244), 진공 펌프(246), 온도 센서(263), 히터(207), 회전 기구(267), 보트 엘리베이터(115), 셔터 개폐 기구(115s) 등에 접속되어 있다.
CPU(121a)는, 기억 장치(121c)로부터 제어 프로그램을 판독해서 실행함과 함께, 입출력 장치(122)로부터의 조작 커맨드의 입력 등에 따라서 기억 장치(121c)로부터 레시피를 판독하도록 구성되어 있다. CPU(121a)는, 판독한 레시피의 내용을 따르도록, MFC(241a 내지 241f)에 의한 각종 가스의 유량 조정 동작, 밸브(243a 내지 243f)의 개폐 동작, APC 밸브(244)의 개폐 동작 및 압력 센서(245)에 기초하는 APC 밸브(244)에 의한 압력 조정 동작, 진공 펌프(246)의 기동 및 정지, 온도 센서(263)에 기초하는 히터(207)의 온도 조정 동작, 회전 기구(267)에 의한 보트(217)의 회전 및 회전 속도 조절 동작, 보트 엘리베이터(115)에 의한 보트(217)의 승강 동작, 셔터 개폐 기구(115s)에 의한 셔터(219s)의 개폐 동작 등을 제어하도록 구성되어 있다.
컨트롤러(121)는, 외부 기억 장치(123)에 저장된 상술한 프로그램을, 컴퓨터에 인스톨함으로써 구성할 수 있다. 외부 기억 장치(123)는, 예를 들어 HDD 등의 자기 디스크, CD 등의 광 디스크, MO 등의 광자기 디스크, USB 메모리 등의 반도체 메모리 등을 포함한다. 기억 장치(121c)나 외부 기억 장치(123)는, 컴퓨터 판독 가능한 기록 매체로서 구성되어 있다. 이하, 이들을 총칭하여, 간단히 기록 매체라고도 한다. 본 명세서에서 기록 매체라는 말을 사용한 경우는, 기억 장치(121c) 단체만을 포함하는 경우, 외부 기억 장치(123) 단체만을 포함하는 경우, 또는 그들 양쪽을 포함하는 경우가 있다. 또한, 컴퓨터에의 프로그램의 제공은, 외부 기억 장치(123)를 사용하지 않고, 인터넷이나 전용 회선 등의 통신 수단을 사용해서 행해도 된다.
(2) 기판 처리 공정
상술한 기판 처리 장치를 사용하여, 반도체 장치의 제조 공정의 일 공정으로서, 기판으로서의 웨이퍼(200)의 표면에 노출된 복수 종류의 하지 중 특정 하지의 표면 상에 선택적으로 막을 성장시켜 형성하는 선택 성장(선택 성막)의 처리 시퀀스 예에 대해서, 주로, 도 4, 도 5(a) 내지 도 5(d)를 사용해서 설명한다. 이하의 설명에서, 기판 처리 장치를 구성하는 각 부의 동작은 컨트롤러(121)에 의해 제어된다.
도 4에 도시하는 성막 시퀀스에서는,
표면에 실리콘 산화막(SiO막)을 포함하는 제1 하지(하지(200a))와 실리콘 질화막(SiN막)을 포함하는 제2 하지(하지(200b))가 노출된 웨이퍼(200)에 대하여, 불소 함유 가스로서의 ClF3 가스로부터 발생시킨 F 함유 라디칼을 공급함으로써, 하지(200a) 및 하지(200b) 중 한쪽의 하지(여기서는 하지(200a))의 표면을 F 종단시키도록 개질시키는 스텝 A와,
하지(200a)의 표면을 개질시킨 후의 웨이퍼(200)에 대하여 성막 가스로서 SiCl4 가스 및 NH3 가스를 공급함으로써, 하지(200a) 및 하지(200b) 중 상술한 한쪽의 하지와는 상이한 다른 쪽의 하지(여기서는 하지(200b))의 표면 상에, 막으로서, Si 및 N을 포함하는 막인 SiN막을 형성하는 스텝 B를 행한다.
또한, 도 4는, 스텝 B에서, 웨이퍼(200)에 대하여 SiCl4 가스를 공급하는 스텝 B1과, 웨이퍼(200)에 대하여 NH3 가스를 공급하는 스텝 B2를 비동시로 행하는 사이클을 소정 횟수(n회, n은 1 이상의 정수) 행하는 경우를 나타내고 있다.
본 명세서에서는, 도 4에 도시하는 성막 시퀀스를, 편의상, 이하와 같이 나타내는 경우도 있다. 이하의 변형예 등의 설명에서도, 마찬가지의 표기를 사용한다.
ClF3→(SiCl4→NH3)×n ⇒ SiN
본 명세서에서 「웨이퍼」라는 말을 사용한 경우는, 웨이퍼 그 자체를 의미하는 경우나, 웨이퍼와 그 표면에 형성된 소정의 층이나 막의 적층체를 의미하는 경우가 있다. 본 명세서에서 「웨이퍼의 표면」이라는 말을 사용한 경우는, 웨이퍼 그 자체의 표면을 의미하는 경우나, 웨이퍼 상에 형성된 소정의 층 등의 표면을 의미하는 경우가 있다. 본 명세서에서 「웨이퍼 상에 소정의 층을 형성한다」라고 기재한 경우는, 웨이퍼 그 자체의 표면 상에 소정의 층을 직접 형성하는 것을 의미하는 경우나, 웨이퍼 상에 형성되어 있는 층 등의 위에 소정의 층을 형성하는 것을 의미하는 경우가 있다. 본 명세서에서 「기판」이라는 말을 사용한 경우도, 「웨이퍼」라는 말을 사용한 경우와 동의이다.
(웨이퍼 차지 및 보트 로드)
복수매의 웨이퍼(200)가 보트(217)에 장전(웨이퍼 차지)되면, 셔터 개폐 기구(115s)에 의해 셔터(219s)가 이동되어, 매니폴드(209)의 하단 개구가 개방된다(셔터 오픈). 그 후, 도 1에 도시한 바와 같이, 복수매의 웨이퍼(200)를 지지한 보트(217)는, 보트 엘리베이터(115)에 의해 들어 올려져서 처리실(201) 내에 반입(보트 로드)된다. 이 상태에서, 시일 캡(219)은, O링(220b)을 통하여 매니폴드(209)의 하단을 시일한 상태가 된다.
도 5(a)에 도시하는 바와 같이, 웨이퍼(200)의 표면에는, 복수 종류의 하지, 여기에서는 일례로서, 산소(O) 함유막, 즉 산화막으로서의 SiO막을 포함하는 하지(200a)와, O 비함유막, 즉 비산화막인 질화막으로서의 SiN막을 포함하는 하지(200b)가 미리 노출된 상태로 되어 있다. 하지(200a)는, 전역(전체면)에 걸쳐, 도 6에 도시한 바와 같은 수산기(OH) 종단된 표면을 갖고 있다. 하지(200b)는, 많은 영역이 OH 종단되어 있지 않은 표면, 즉, 일부 영역이 OH 종단된 표면을 갖고 있다.
(압력 조정 및 온도 조정)
처리실(201) 내, 즉, 웨이퍼(200)가 존재하는 공간이 원하는 압력(진공도)으로 되도록, 진공 펌프(246)에 의해 진공 배기(감압 배기)된다. 이때, 처리실(201) 내의 압력은 압력 센서(245)로 측정되고, 이 측정된 압력 정보에 기초하여 APC 밸브(244)가 피드백 제어된다. 또한, 처리실(201) 내의 웨이퍼(200)가 원하는 처리 온도로 되도록, 히터(207)에 의해 가열된다. 이때, 처리실(201) 내가 원하는 온도 분포로 되도록, 온도 센서(263)가 검출한 온도 정보에 기초하여 히터(207)에의 통전 상태가 피드백 제어된다. 또한, 회전 기구(267)에 의한 웨이퍼(200)의 회전을 개시한다. 처리실(201) 내의 배기, 웨이퍼(200)의 가열 및 회전은, 모두, 적어도 웨이퍼(200)에 대한 처리가 종료될 때까지의 동안에는 계속해서 행하여진다.
(선택 성장)
그 후, 다음의 스텝 A, B를 순차 실행한다.
[스텝 A]
이 스텝에서는, 처리실(201) 내의 웨이퍼(200), 즉, 표면에 하지(200a)와 하지(200b)가 노출된 웨이퍼(200)에 대하여 ClF3 가스를 공급한다.
구체적으로는, 밸브(243b)를 개방하여, 가스 공급관(232b) 내에 ClF3 가스를 흘린다. ClF3 가스는, MFC(241b)에 의해 유량 조정되어, 노즐(249b)을 통해서 처리실(201) 내에 공급되고, 배기구(231a)로부터 배기된다. 이때, 웨이퍼(200)에 대하여 ClF3 가스가 공급된다(ClF3 가스 공급). 이때, 밸브(243d, 243f)를 개방하여, 노즐(249a, 249c) 각각을 통해서 처리실(201) 내에 N2 가스를 공급한다. N2 가스의 공급은 실시하지 않아도 된다.
본 스텝에서의 처리 조건으로서는,
ClF3 가스 공급 유량: 1 내지 2000sccm, 바람직하게는 1 내지 500sccm
ClF3 가스 공급 시간: 1초 내지 60분
N2 가스 공급 유량(가스 공급관마다): 0 내지 10000sccm
처리 온도: 실온(25℃) 내지 300℃, 바람직하게는 실온 내지 200℃
처리 압력: 1 내지 2000Pa, 바람직하게는 1 내지 1000Pa
이 예시된다. 여기에서 설명한 조건은, 하지(200a)의 표면을 에칭하지 않는 조건이며, 또한, 후술하는 바와 같이 하지(200a)의 표면을, F 종단시키도록 개질(모디피케이션)시키는 것이 가능한 조건이다.
또한, 본 명세서에서의 「1 내지 2000Pa」과 같은 수치 범위의 표기는, 하한값 및 상한값이 그 범위에 포함되는 것을 의미한다. 따라서, 예를 들어 「1 내지 2000Pa」이란 「1Pa 이상 2000Pa 이하」를 의미한다. 다른 수치 범위에 대해서도 마찬가지이다.
본 스텝에서의 처리 온도가 실온(25℃) 미만인 경우, 하지(200a)의 표면의 개질이 불충분해지는 경우가 있다. 처리 온도를 실온 이상의 온도로 함으로써, 하지(200a)의 표면의 개질을 충분히 행하는 것이 가능하게 된다. 처리 온도가 300℃를 초과하면 하지막(200a, 200b) 중 적어도 어느 것, 특히, 하지(200b)의 표면이 에칭되어, 에칭 대미지를 받는 경우가 있다. 처리 온도를 300℃ 이하의 온도로 함으로써, 하지막(200a, 200b) 중 적어도 어느 것, 특히, 하지(200b)의 표면의 에칭을 억제 할 수 있어, 하지(200b)의 표면에 대한 에칭 대미지를 억제하는 것이 가능하게 된다. 처리 온도를 200℃ 이하의 온도로 함으로써, 이 효과를 확실하게 얻는 것이 가능하게 된다.
상술한 조건 하에서 웨이퍼(200)에 대하여 ClF3 가스를 공급함으로써, ClF3 가스로부터 F 함유 라디칼을 발생시켜, 하지(200a)의 표면과 F 함유 라디칼을 반응시키는 것이 가능하게 된다. F 함유 라디칼로서는, F, ClF2, ClF 등을 들 수 있다. 본 스텝에서는, ClF3 가스로부터 발생시킨 F 함유 라디칼의 작용에 의해, 하지(200a)의 표면을, 에칭하지 않고 F 종단시키도록 개질시키는 것이 가능하게 된다. 개질 후의 하지(200a)는, F 종단된 표면을 갖게 된다. 구체적으로는, 하지(200a)의 표면에서의 OH기가, 도 7(a)에 예시한 바와 같이 F 등의 F 함유 물질에 의해 치환되어, 그 표면이 F 종단되게 된다. 하지(200a)의 표면이 F 종단됨으로써, 하지(200a)의 표면에서는, 후술하는 스텝 B에서 성막 반응이 진행되기 어려워진다. 정확하게는, 성막 반응이 발생할 때까지의 시간, 즉, 인큐베이션 타임을 장기화하는 것이 가능하게 된다. 또한, F 종단된 하지(200a)의 표면은, 유기 성분을 실질적으로 포함하지 않는 면이 된다.
도 5(b)에 도시하는 바와 같이, 본 스텝에서는, 하지(200b)의 표면의 개질을 억제하면서, 하지(200a)의 표면을 선택적(우선적)으로 개질시키는 것이 가능하게 된다. 이때, 하지(200b)의 표면의 일부가 개질되는 경우도 있지만, 그 개질량은, 하지(200a)의 표면의 개질량보다도 소량이 된다. 이러한 선택적(우선적)인 개질이 가능하게 되는 것은, 스텝 A를 개시하기 전의 하지(200b)의 표면의 많은 영역이 OH 종단되어 있지 않은 것에 반해, 하지(200a)의 표면의 전역이 OH 종단되어 있기 때문이다. 하지(200b)의 표면의 많은 영역에는 OH 종단이 형성되어 있지 않으므로, 그 많은 영역에는 F 종단이 형성되지 않는다. 단, 상술한 바와 같이, 하지(200b)의 표면의 일부 영역에 OH 종단이 형성되어 있는 경우도 있으며, 그 경우, 그 일부의 영역에, F 함유 라디칼의 작용에 의해, F 종단이 형성되는 경우도 있다. 이에 반해, 하지(200a)의 표면에서는, 그 표면의 전역에 OH 종단이 형성되어 있으므로, F 함유 라디칼의 작용에 의해, 표면의 전역에 매우 안정한 F 종단이 형성된다.
또한, 하지(200b)의 표면은, F 함유 라디칼에 의해, 그 일부가 에칭되는 경우도 있다. 단, 하지(200b)의 표면의 일부가 에칭되는 경우에도, 그 에칭양은 얼마 안되며, 처리 조건을 조정함으로써, 하지(200b)의 표면이 에칭 대미지를 거의 받지 않도록 하는 것도 가능하다. 하지(200b)의 표면의 일부가 개질되는 경우에도, 또한, 하지(200b)의 표면의 일부가 에칭되는 경우에도, 하지(200b)의 표면의 많은 영역에는, 흡착 사이트가 유지되게 된다.
하지(200a, 200b) 중 하지(200a)의 표면을 선택적으로 개질시킨 후, 밸브(243b)를 폐쇄하여, 처리실(201) 내의 ClF3 가스의 공급을 정지한다. 그리고, 스텝 A에서의 퍼지와 마찬가지의 처리 수순에 의해, 처리실(201) 내에 잔류하는 가스 등을 처리실(201) 내로부터 배제한다.
F 함유 가스로서는, ClF3 가스 외에, 불소(F2) 가스, 불화염소(ClF) 가스, F2+일산화질소(NO) 가스, ClF3+NO 가스, ClF+NO 가스, 3불화질소(NF3) 가스, 불화니트로실(FNO) 가스, 육불화텅스텐(WF6) 가스, 혹은 이들의 혼합 가스를 사용할 수 있다.
[스텝 B]
이 스텝에서는, 스텝 B1, B2를 순차 실행한다.
〔스텝 B1〕
이 스텝에서는, 처리실(201) 내의 웨이퍼(200), 즉, 하지(200a, 200b) 중 하지(200a)의 표면을 선택적으로 개질시킨 후의 웨이퍼(200)에 대하여 SiCl4 가스를 공급한다.
구체적으로는, 밸브(243a)를 개방하여, 가스 공급관(232a) 내에 SiCl4 가스를 흘린다. SiCl4 가스는, MFC(241a)에 의해 유량 조정되어, 노즐(249a)을 통해서 처리실(201) 내에 공급되고, 배기구(231a)로부터 배기된다. 이때, 웨이퍼(200)에 대하여 SiCl4 가스가 공급된다(SiCl4 가스 공급). 이때, 밸브(243e, 243f)를 개방하여, 노즐(249b, 249c) 각각을 통해서 처리실(201) 내에 N2 가스를 공급하도록 해도 된다.
본 스텝에서의 처리 조건으로서는,
SiCl4 가스 공급 유량: 1 내지 2000sccm, 바람직하게는 10 내지 1000sccm
SiCl4 가스 공급 시간: 1 내지 180초, 바람직하게는 1 내지 120초
처리 온도: 350 내지 600℃, 바람직하게는 400 내지 550℃
처리 압력: 1 내지 2000Pa, 바람직하게는 10 내지 1333Pa
이 예시된다. 다른 처리 조건은, 스텝 A에서의 처리 조건과 마찬가지로 한다.
상술한 조건 하에서 웨이퍼(200)에 대하여 SiCl4 가스를 공급함으로써, 하지(200a, 200b) 중 개질되어 있지 않은 영역을 포함하는 하지(200b)의 표면 상에, Cl을 포함하는 Si 함유층이 형성된다. 즉, 하지(200b) 중 개질되어 있지 않은 영역, 즉, 흡착 사이트가 유지된 영역을 기점으로 하여, Cl을 포함하는 Si 함유층이 형성된다. Cl을 포함하는 Si 함유층은, 하지(200b)의 표면에의, SiCl4의 화학 흡착이나 물리 흡착, SiCl4의 일부가 분해한 물질(SiClX)의 화학 흡착, SiCl4의 열분해에 의한 Si의 퇴적 등에 의해 형성된다. Cl을 포함하는 Si 함유층은, SiCl4나 SiClX의 흡착층(물리 흡착층이나 화학 흡착층)이어도 되고, Cl을 포함하는 Si의 퇴적층이어도 된다. 본 명세서에서는, Cl을 포함하는 Si 함유층을, 간단히 Si 함유층이라고도 칭한다.
본 스텝에서는, 하지(200a)의 표면 상에의 Si 함유층의 형성을 억제하면서, 하지(200b)의 표면 상에 Si 함유층을 선택적으로 형성하는 것이 가능하다. 또한, 어떠한 요인에 의해, 하지(200a)의 표면의 개질이 불충분해지는 경우 등에 있어서는, 하지(200a)의 표면 상에, 극히 약간 Si 함유층이 형성되는 경우도 있지만, 이 경우에도, 하지(200a)의 표면 상에 형성되는 Si 함유층의 두께는, 하지(200b)의 표면 상에 형성되는 Si 함유층의 두께에 비해서 훨씬 얇아진다. 이러한 Si 함유층의 선택적인 형성이 가능하게 되는 것은, 하지(200a)의 표면에 존재하는 F 종단이, 하지(200a)의 표면 상에의 Si 함유층의 형성(Si의 흡착)을 저해하는 요인, 즉, 인히비터(inhibitor)로서 작용하기 때문이다. 또한, 하지(200a)의 표면에 존재하는 F 종단은, 본 스텝을 실시할 때도, 소멸하지 않고 안정적으로 유지된다.
하지(200b)의 표면 상에 Si 함유층이 형성된 후, 밸브(243a)를 폐쇄하여, 처리실(201) 내의 SiCl4 가스의 공급을 정지한다. 그리고, 스텝 A에서의 퍼지와 마찬가지의 처리 수순에 의해, 처리실(201) 내에 잔류하는 가스 등을 처리실(201) 내로부터 배제한다(퍼지).
원료 가스(성막 가스)로서는, SiCl4 가스 외에, 모노클로로실란(SiH3Cl, 약칭: MCS) 가스, 디클로로실란(SiH2Cl2, 약칭: DCS) 가스, 트리클로로실란(SiHCl3, 약칭: TCS) 가스, 헥사클로로디실란(Si2Cl6, 약칭: HCDS) 가스, 옥타클로로트리실란(Si3Cl8, 약칭: OCTS) 가스 등의 클로로실란계 가스나, 테트라브로모실란(SiBr4) 가스 등의 브로모실란계 가스나, 테트라요오도실란(SiI4) 가스 등의 요오도실란계 가스를 사용할 수 있다.
〔스텝 B2〕
이 스텝에서는, 처리실(201) 내의 웨이퍼(200), 즉, 하지(200b) 상에 형성된 Si 함유층에 대하여 NH3 가스를 공급한다.
구체적으로는, 밸브(243c)를 개방하여, 가스 공급관(232c) 내에 NH3 가스를 흘린다. NH3 가스는, MFC(241c)에 의해 유량 조정되어, 노즐(249c)을 통해서 처리실(201) 내에 공급되고, 배기구(231a)로부터 배기된다. 이때, 웨이퍼(200)에 대하여 NH3 가스가 공급된다(NH3 가스 공급). 이때, 밸브(243d, 243e)를 개방하여, 노즐(249a, 249b) 각각을 통해서 처리실(201) 내에 N2 가스를 공급하도록 해도 된다.
본 스텝에서의 처리 조건으로서는,
NH3 가스 공급 유량: 10 내지 10000sccm
NH3 가스 공급 시간: 1 내지 60초, 바람직하게는 5 내지 50초
처리 압력: 1 내지 4000Pa, 바람직하게는 1 내지 1333Pa
이 예시된다. 다른 처리 조건은, 스텝 A에서의 처리 조건과 마찬가지로 한다.
상술한 조건 하에서 웨이퍼(200)에 대하여 NH3 가스를 공급함으로써, 하지(200b)의 표면 상에 형성된 Si 함유층의 적어도 일부가 질화(개질)된다. Si 함유층이 개질됨으로써, 하지(200b)의 표면 상에, Si 및 N을 포함하는 층, 즉, 실리콘 질화층(SiN층)이 형성된다. SiN층을 형성할 때, Si 함유층에 포함되어 있던 Cl 등의 불순물은, NH3 가스에 의한 Si 함유층의 개질 반응의 과정에서, 적어도 Cl을 포함하는 가스상 물질을 구성하고, 처리실(201) 내로부터 배출된다. 이에 의해, SiN층은, 스텝 B1에서 형성된 Si 함유층에 비해 Cl 등의 불순물이 적은 층으로 된다. 또한, 하지(200a)의 표면은, 본 스텝을 실시할 때도, 개질되지 않고 유지된다. 즉, 하지(200a)의 표면은, 개질(NH 종단)되지 않고, F 종단된 채 안정적으로 유지된다.
하지(200b)의 표면 상에 SiN층이 형성된 후, 밸브(243c)를 폐쇄하여, 처리실(201) 내에의 NH3 가스의 공급을 정지한다. 그리고, 스텝 A에서의 퍼지와 마찬가지의 처리 수순에 의해, 처리실(201) 내에 잔류하는 가스 등을 처리실(201) 내로부터 배제한다(퍼지).
반응 가스(성막 가스)로서는, NH3 가스 외에, 예를 들어 디아젠(N2H2) 가스, 히드라진(N2H4) 가스, N3H8 가스 등의 질화수소계 가스를 사용할 수 있다.
〔소정 횟수 실시〕
상술한 스텝 B1, B2를 비동시로, 즉, 동기시키지 않고 행하는 사이클을 소정 횟수(n회, n은 1 이상의 정수) 행함으로써, 도 5(c)에 도시하는 바와 같이, 웨이퍼(200)의 표면에 노출된 하지(200a, 200b) 중 하지(200b)의 표면 상에 SiN막을 선택적으로 형성할 수 있다. 상술한 사이클은, 복수회 반복하는 것이 바람직하다. 즉, 1사이클당 형성되는 SiN층의 두께를 원하는 막 두께보다도 얇게 하여, SiN층을 적층함으로써 형성되는 막의 막 두께가 원하는 막 두께로 될 때까지, 상술한 사이클을 복수회 반복하는 것이 바람직하다.
또한, 스텝 B1, B2를 실시할 때, 하지(200a)의 표면에 존재하는 F 종단은, 소멸하지 않고 유지되므로, 하지(200a)의 표면에는, SiN막은 형성되지 않는다. 단, 어떠한 요인에 의해, 하지(200a)의 표면의 개질이 불충분해지는 경우 등에 있어서는, 하지(200a)의 표면 상에, 극히 약간 SiN막이 형성되는 경우도 있지만, 이 경우에도, 하지(200a)의 표면 상에 형성되는 SiN막의 두께는, 하지(200b)의 표면 상에 형성되는 SiN막의 두께에 비해서 훨씬 얇아진다. 본 명세서에서, 하지(200a, 200b) 중 「하지(200b)의 표면 상에 선택적으로 SiN막을 형성하는」이란, 하지(200a)의 표면 상에 SiN막을 전혀 형성하지 않는 경우뿐만 아니라, 상술한 바와 같이, 하지(200a)의 표면 상에, 극히 얇은 SiN막을 형성하는 경우를 포함하는 것으로 한다.
(애프터 퍼지 및 대기압 복귀)
하지(200b) 상에의 SiN막의 선택적인 형성이 완료된 후, 노즐(249a 내지 249c) 각각으로부터 퍼지 가스로서의 N2 가스를 처리실(201) 내에 공급하고, 배기구(231a)로부터 배기한다. 이에 의해, 처리실(201) 내가 퍼지되어, 처리실(201) 내에 잔류하는 가스나 반응 부생성물 등이 처리실(201) 내로부터 제거된다(애프터 퍼지). 그 후, 처리실(201) 내의 분위기가 불활성 가스로 치환되고(불활성 가스 치환), 처리실(201) 내의 압력이 상압으로 복귀된다(대기압 복귀).
(보트 언로드 및 웨이퍼 디스차지)
보트 엘리베이터(115)에 의해 시일 캡(219)이 하강되어, 매니폴드(209)의 하단이 개구된다. 그리고, 처리가 끝난 웨이퍼(200)가, 보트(217)에 지지된 상태로 매니폴드(209)의 하단으로부터 반응관(203)의 외부로 반출(보트 언로드)된다. 보트 언로드 후에는 셔터(219s)가 이동되고, 매니폴드(209)의 하단 개구가 O링(220c)을 통해서 셔터(219s)에 의해 시일된다(셔터 클로즈). 처리가 끝난 웨이퍼(200)는, 반응관(203)의 외부로 반출된 후, 보트(217)로부터 취출된다(웨이퍼 디스차지).
또한, 도 5(d)에 도시하는 바와 같이, 하지(200a)의 표면에 존재하는 F 종단은, 처리 후의 웨이퍼(200)가 대기 폭로되었을 때, 소정의 반응물, 구체적으로는, 대기 중의 수분(H2O)과 반응함으로써 소멸한다. 즉, 처리 후의 웨이퍼(200)의 대기 폭로에 의해, 하지(200a)의 표면에 존재하는 F 종단을 제거할 수 있다. 하지(200a)의 표면으로부터 F 종단을 제거함으로써, 하지(200a)의 표면 상태가 리셋되고, 이후의 공정에서, 하지(200a)의 표면 상에의 성막 처리를 진행시키는 것이 가능하게 된다.
(3) 본 형태에 의한 효과
본 형태에 의하면, 이하에 나타내는 하나 또는 복수의 효과가 얻어진다.
(a) 스텝 A, B를 행함으로써, 웨이퍼(200)의 표면에 노출되어 있는 하지(200a, 200b) 중 하지(200b)의 표면 상에 SiN막을 선택적으로 형성하는 것이 가능하게 된다. 이에 의해, 예를 들어 반도체 장치를 제조할 때, 포토리소그래피를 포함하는 패터닝 처리를 생략하는 등, 그것들의 공정을 간소화시키는 것이 가능하게 된다. 결과적으로, 반도체 장치의 생산성을 향상시켜, 제조 비용을 저감시키는 것이 가능하게 된다.
(b) 스텝 B를 행한 후, 처리 후의 웨이퍼(200)를 대기 폭로함으로써, 하지(200a)의 표면에 존재하는 인히비터로서의 F 종단을 소멸시키는 것이 가능하게 된다. 이와 같이, F 종단을 간편하게 제거할 수 있으므로, 인히비터를 제거하는 공정을 별도로 마련할 필요가 없어, 반도체 장치의 제조 공정을 간소화시키고, 반도체 장치의 생산성을 향상시켜, 제조 비용을 저감시키는 것이 가능하게 된다.
(c) 스텝 A 및 스텝 B중 적어도 어느 것을, 바람직하게는 스텝 A 및 스텝 B 각각을, 논 플라스마의 분위기 하에서 행하므로, 웨이퍼(200)에 대한 플라스마 대미지를 회피할 수 있어, 본 방법의 플라스마 대미지를 염려하는 공정에의 적용도 가능하게 된다.
(d) 예를 들어, 웨이퍼(200)의 표면에 홈 등의 오목부가 형성되어 있고, 이 오목부의 저면에 성막 대상 막과 동일한 막이 형성되어 있고, 측면에 성막 대상 막과는 상이한 막이 형성되어 있는 경우에, 이 오목부 내를 매립하도록, CVD법이나 원료 교대 공급법 등에 의해 성막하면, 오목부의 형상에 따라서, 형성한 막 중에 보이드나 심이 발생하는 경우가 있다. 본 형태의 방법에 의하면, 오목부의 저면측으로부터 상방을 향해서 막을 성장시키는 보텀 업 성장이 가능하게 되어, 보이드 프리이면서 또한 심리스의 매립을 행하는 것이 가능하게 된다.
(e) 또한 예를 들어, SiN막을 마스크로서 사용하는 경우에, SiN막이 에칭되면, 그 마스크 형상이 변형되는 경우가 있다. 이 경우에, 본 형태의 방법을 사용함으로써, 마스크의 형상 보수를 행할 수 있어, 원하는 에칭 처리가 완료될 때까지, 의도한 형상으로의 에칭을 행하는 것이 가능하게 된다.
(f) 또한 예를 들어, SADP(Self-Aligned Double Patterning)를 행하는 경우에, 노광과 에칭을 반복해 나가면, 미세 정밀도가 악화하는 경우가 있다. 이 경우에, 최종적으로, 본 형태의 방법에 의한 선택 성장에 의해, 막 두께 조정함으로써, 패터닝 정밀도를 향상시키는 것이 가능하게 된다.
(g) 상술한 효과는, ClF3 가스 이외의 F 함유 가스를 사용하는 경우나, SiCl4 가스 이외의 원료 가스를 사용하는 경우나, NH3 가스 이외의 반응 가스를 사용하는 경우나, N2 가스 이외의 불활성 가스를 사용하는 경우에도, 마찬가지로 얻을 수 있다.
<본 개시의 다른 양태>
이상, 본 개시의 양태를 구체적으로 설명했다. 그러나, 본 개시는 상술한 양태에 한정되는 것은 아니며, 그 요지를 일탈하지 않는 범위에서 다양하게 변경 가능하다.
예를 들어, 스텝 A에서는, 의사 촉매가 존재하는 분위기 하에서 F 함유 가스를 공급함으로써, F 함유 라디칼의 발생을 촉진시키도록 해도 된다. 즉, 스텝 A에서는, 의사 촉매를 수용한 처리실(201) 내에 F 함유 가스를 공급함으로써, F 함유 라디칼의 발생을 촉진시키고, 이와 같이 하여 발생시킨 라디칼을 웨이퍼(200)의 표면에 대하여 공급함으로써, 하지(200a, 200b) 중 하지(200a)의 표면을 선택적(우선적)으로 개질시키도록 해도 된다. 여기서, 의사 촉매란, F 함유 가스의 분해를 촉진시켜, F 함유 가스로부터의 F 함유 라디칼의 발생을 재촉하는 물질이다. F 함유 가스를 의사 촉매에 접촉시킴으로써 발생하는 의사 촉매 작용에 의해, F 함유 가스로부터의 F 함유 라디칼의 발생을 촉진시켜, F 함유 라디칼을 효율적으로 발생시키는 것이 가능하게 된다.
의사 촉매로서는, 예를 들어 최표면이 자연 산화막(SiO막)으로 덮여 있지 않은 고체의 Si, 즉, 최표면에서 Si 소재가 노출되어 드러난 Si 부재를 사용할 수 있다. 이러한 부재로서는, 예를 들어 불화수소(HF) 수용액을 사용한 세정 등에 의해 최표면에 형성된 자연 산화막이 제거된 Si제의 웨이퍼, 예를 들어 베어 Si 웨이퍼(이하, 베어 웨이퍼)를 사용할 수 있다. 또한, 대기 중에서 보관되는 베어 웨이퍼의 최표면에는 자연 산화막이 형성되어 있고, 그 최표면에는, Si 소재가 노출되어 있지 않아, 그대로의 상태에서는, 베어 웨이퍼를 의사 촉매로서 사용할 수 없다. 베어 웨이퍼를 의사 촉매로서 작용시키기 위해서는, 베어 웨이퍼의 최표면에 형성된 자연 산화막을 제거하고, 그 최표면에 있어서, Si 소재가 노출된 상태를 만들어 낼 필요가 있다.
자연 산화막이 제거된 베어 웨이퍼를 의사 촉매로서 사용하는 경우, 자연 산화막이 제거된 베어 웨이퍼를, 처리 대상인 웨이퍼(200)와 함께, 보트(217)의 소정의 위치에 보유 지지하고, 그 상태에서 보트(217)를 처리실(201) 내에 반입함으로써, 의사 촉매인 베어 웨이퍼를 처리실(201) 내에 수용하는 것이 가능하게 된다. 또한, 이 경우, 보트(217)에, 의사 촉매인 베어 웨이퍼와, 처리 대상인 웨이퍼(200)를 1매 걸러 교대로 장전하여, 처리 대상인 웨이퍼(200)의 상면과, 의사 촉매인 베어 웨이퍼의 표면을 대면(대항)시켜서, 하지(200a)의 바로 위에 베어 웨이퍼를 배치하는 것이 바람직하다. 이 경우, 스텝 A에서, F 함유 가스를 의사 촉매인 베어 웨이퍼에 접촉시킴으로써, F 함유 라디칼을 효율적으로 발생시킬 수 있고, 이렇게 효율적으로 발생시킨 F 함유 라디칼을 하지(200a)에 대하여 효율적으로 공급하는 것이 가능하게 된다.
이때의 선택 성장에서의 처리 수순, 처리 조건은, 의사 촉매인 자연 산화막이 제거된 베어 웨이퍼를 보트(217)에 세트하는 것 이외는, 상술한 양태의 처리 수순, 처리 조건과 마찬가지로 할 수 있다. 이 경우에 있어서, 스텝 A에서, 의사 촉매로서의 베어 웨이퍼, 즉 Si가 존재하는 분위기 하에서, F 함유 가스로서 ClF3 가스를 공급함으로써, 웨이퍼(200)의 표면에서 진행되는 반응을 이하에 예시한다. 이하에 예시하는 다양한 반응식에 있어서, (s)는 그 물질이 고체(고상)인 것을, (g)는 그 물질이 기체(기상)인 것을 각각 나타내고 있다. Si가 존재하는 분위기 하에서, ClF3 가스로부터 발생하는 다양한 F 함유 물질 중, 예를 들어 F, ClF2, ClF, SiF2, SiF3 등이 F 함유 라디칼에 해당한다.
Si(s)+ClF3(g)→SiF(s)+ClF2(g)
SiF(s)+ClF2(g)→SiF2(s)+ClF(g)
SiF2(s)+ClF(g)→SiF3(s)+Cl(g)
ClF3(g)→ClF2(g)+F(g)
이 경우에도, 상술한 양태와 마찬가지의 효과가 얻어진다. 또한, 스텝 A에서, 의사 촉매가 존재하는 분위기 하에서 F 함유 가스를 공급함으로써, 의사 촉매가 존재하지 않는 분위기 하에서 F 함유 가스를 공급하는 경우보다도, 처리실(201) 내에서의 F 함유 라디칼의 발생을 촉진시켜, 발생시킬 F 함유 라디칼의 양을 증대시키는 것이 가능하게 된다. 결과적으로, 스텝 A에서, 하지(200a)의 표면의 개질을 재촉하여, 하지(200b)의 표면 상에의 SiN막의 선택적인 형성을 보다 확실하게 행할 수 있게 된다. 또한, 의사 촉매를 사용함으로써, 스텝 A에서의 처리 온도의 저온화가 가능하게 되어, 스텝 A에서의 하지(200b)의 표면의 에칭이나, 하지(200b)의 표면에 대한 에칭 대미지를 효과적으로 억제하는 것이 가능하게 된다.
또한, 의사 촉매로서는, 베어 웨이퍼 대신에 Si제의 플레이트(Si 플레이트), Si제의 칩(Si 칩), Si제의 피스(Si 피스), Si제의 블록(Si 블록) 등을 사용하도록 해도 된다. 이것들을 의사 촉매로서 사용하는 경우도, 베어 웨이퍼를 의사 촉매로서 사용하는 경우와 마찬가지로, 이들의 최표면에 형성된 자연 산화막을 제거하고, 그 최표면에 있어서, Si 소재가 노출된 상태를 만들어 낼 필요가 있다.
또한, 선택 성장을 행하기 전에, 처리실(201) 내의 부재의 표면(반응관(203)의 내벽이나 보트(217)의 표면 등)에 Si막을 미리 형성(프리코팅)하고, 이 Si막(프리코팅 막)을 의사 촉매로서 사용할 수도 있다. 프리코팅 막으로서의 Si막은, 예를 들어 모노실란(SiH4) 가스 등의 실란계 가스를 사용하여, CVD법에 의해 형성할 수 있다. Si막은 아몰퍼스(비정질) 상태의 Si막이어도 되고, 폴리(다결정) 상태의 Si막이어도 되고, 아몰퍼스와 폴리의 혼정 상태의 Si막이어도 된다.
Si막을 형성할 때의 처리 조건으로서는,
SiH4 가스 공급 유량: 10 내지 2000sccm
N2 가스 공급 유량(각 가스 공급관): 0 내지 10000sccm
가스 공급 시간: 10 내지 400분
처리 온도: 450 내지 550℃, 바람직하게는 450 내지 530℃
처리 압력: 1 내지 900Pa
이 예시된다.
이 경우, 스텝 A에서, F 함유 가스를 의사 촉매인 Si막(프리코팅 막)에 접촉시킴으로써, F 함유 라디칼을 효율적으로 발생시킬 수 있고, 이렇게 효율적으로 발생시킨 F 함유 라디칼을 하지(200a)에 대하여 효율적으로 공급하는 것이 가능하게 된다.
또한, 프리코팅 막으로서는, Si막 이외에, SiN막, 실리콘 탄화막(SiC막), 실리콘 탄질화막(SiCN막), 실리콘 리치 SiN막(SiRN막), 실리콘 리치 SiC막(SiRC막), 실리콘 리치 SiCN막(SiRCN막) 등을 사용하도록 해도 된다. 즉, 프리코팅 막으로서는, Si 이외에 C나 N을 포함하는 Si 함유막을 사용하도록 해도 된다. 프리코팅 막으로서의 SiN막, SiC막, SiCN막, SiRN막, SiRC막, SiRCN막은, 예를 들어 에틸메틸아미노실란(SiH3[N(CH3)(C2H5)]) 가스, 디메틸아미노실란(SiH3[N(CH3)2]) 가스, 디이소프로필아미노실란(SiH3[N(C3H7)2]) 가스, 디세컨더리부틸아미노실란(SiH3[H(C4H9)2]) 가스 등의 아미노실란계 가스를 사용하여, CVD법에 의해 형성할 수 있다. 이때의 처리 조건으로서는, 상술한 프리코팅 막으로서의 Si막을 형성할 때의 처리 조건과 마찬가지의 처리 조건으로 할 수 있다. 또한, 아미노실란계 가스는, Si와 아미노기를 포함하는 가스이며, 적어도 Si, N, C를 구성 원소로서 포함하는 가스라고도 할 수 있다.
이들 경우도, 스텝 A에서, F 함유 가스를 의사 촉매인 SiN막, SiC막, SiCN막, SiRN막, SiRC막, SiRCN막(프리코팅 막)에 접촉시킴으로써, F 함유 라디칼을 효율적으로 발생시킬 수 있고, 이렇게 효율적으로 발생시킨 F 함유 라디칼을 하지(200a)에 대하여 효율적으로 공급하는 것이 가능하게 된다.
이들 프리코팅 막을 의사 촉매로서 사용하는 경우의 선택 성장에서의 처리 수순, 처리 조건은, 처리실(201) 내의 부재의 표면에 이들 막을 프리코팅하는 것 이외는, 상술한 양태의 처리 수순, 처리 조건과 마찬가지로 할 수 있다. 이와 같이, 프리코팅 막을 의사 촉매로서 사용하는 경우에도, 베어 웨이퍼를 의사 촉매로서 사용하는 경우와 마찬가지의 효과가 얻어진다. 또한, 이 경우의 프리코팅 막을, 의사 촉매 막이나 의사 촉매 프리코팅 막이라고 칭할 수도 있다.
또한, 처리 대상인 웨이퍼(200)를 처리실(201) 내에 수용한 후, 선택 성장을 행하기 전에, 웨이퍼(200)의 표면 상, 즉, 하지(200a, 200b)의 표면 상에, Si막을 형성하고, 이 Si막을 의사 촉매, 즉, 의사 촉매 막으로서 사용할 수도 있다. 의사 촉매 막으로서는, Si막 이외에, SiN막, SiC막, SiCN막, SiRN막, SiRC막, SiRCN막 등을 사용하도록 해도 된다. 즉, 의사 촉매 막으로서는, Si 이외에 C나 N을 포함하는 Si 함유막을 사용하도록 해도 된다. 의사 촉매 막으로서의 Si막, SiN막, SiC막, SiCN막, SiRN막, SiRC막, SiRCN막을 형성할 때 사용하는 가스, 처리 조건은, 상술한 프리코팅 막을 형성할 때 사용하는 가스, 처리 조건과 각각 마찬가지로 할 수 있다.
이러한 경우, 스텝 A에서, F 함유 가스를 의사 촉매 막에 접촉시킴으로써, F 함유 라디칼을 효율적으로 발생시킬 수 있고, 이렇게 효율적으로 발생시킨 F 함유 라디칼을, 하지(200a)에 대하여 공급하는 것이 가능하게 된다. 즉, 하지(200a)의 표면을 F 종단시키도록 개질시키는 것이 가능하게 된다. 또한, 이때, 하지(200b)의 표면 상에 형성된 의사 촉매 막은 에칭되어, 하지(200b)의 표면 상에는 흡착 사이트가 노출되게 된다. 그 때, 하지(200b)의 표면도 약간 에칭되는 경우도 있지만, 그 경우에도 에칭양은 소량이며, 그 표면의 흡착 사이트는 유지된다. 또한, 하지(200a)는 SiO막에 의해 구성되어 있고, 견고한 Si-O 결합을 가지므로, 그 표면이 에칭되지 않고, 그 표면은 적정하게 F 종단되어, 적정한 개질이 이루어지게 된다.
이들 의사 촉매 막을 사용하는 경우의 선택 성장에서의 처리 수순, 처리 조건은, 웨이퍼(200)의 표면 상에 의사 촉매 막을 형성하는 것 이외는, 상술한 양태의 처리 수순, 처리 조건과 마찬가지로 할 수 있다. 이와 같이, Si막, SiN막, SiC막, SiCN막, SiRN막, SiRC막, SiRCN막 등을 의사 촉매로서 사용하는 경우에도, 베어 웨이퍼를 의사 촉매로서 사용하는 경우와 마찬가지의 효과가 얻어진다.
또한 예를 들어, 의사 촉매로서는, 베어 웨이퍼, Si 플레이트, Si 칩, Si 피스, Si 블록, Si 함유 프리코팅 막, Si 함유 의사 촉매 막 등의 고체상의 의사 촉매뿐만 아니라, 가스상의 의사 촉매를 사용할 수도 있다. 가스상의 의사 촉매, 즉, 의사 촉매 가스로서는, F 함유 가스와 접촉함으로써, F 함유 가스의 분해를 촉진시켜, F 함유 가스로부터 F 함유 라디칼을 발생시키는 가스를 사용할 수 있다. 의사 촉매 가스로서는, 구체적으로는, 예를 들어 산소(O2) 가스, 아산화질소(N2O) 가스, 이산화질소(NO2) 가스, NO 가스, HF 가스, NH3 가스 및 수소(H2) 가스 중 적어도 어느 하나의 가스를 사용할 수 있다. 이들 가스의 공급은, 예를 들어 노즐(249a, 249c) 등을 사용하여, 처리실(201) 내의 F 함유 가스의 공급과 동시에 행하는 것이 가능하다.
이 경우, 스텝 A에서, F 함유 가스와 의사 촉매 가스를 동시에 처리실(201) 내에 공급함으로써, 의사 촉매 가스가 존재하는 분위기 하에서 F 함유 가스가 공급되게 된다. 이때, F 함유 가스를 의사 촉매 가스에 접촉시킬 수 있고, 이에 의해, F 함유 라디칼을 효율적으로 발생시킬 수 있으며, 이렇게 효율적으로 발생시킨 F 함유 라디칼을 하지(200a)에 대하여 효율적으로 공급하는 것이 가능하게 된다. 또한, 처리실(201) 내에서 F 함유 가스와 의사 촉매 가스가 혼합되는 한에 있어서는, F 함유 가스와 의사 촉매 가스를, 교대로, 또는 간헐적으로 처리실(201) 내에 공급하도록 해도 된다.
이때의 선택 성장에서의 처리 수순, 처리 조건은, 처리실(201) 내에 F 함유 가스와 의사 촉매 가스를 공급하는 것 이외는, 상술한 양태의 처리 수순, 처리 조건과 마찬가지로 할 수 있다. 이와 같이, F 함유 가스와 의사 촉매 가스를 공급하는 경우에도, 베어 웨이퍼를 의사 촉매로서 사용하는 경우와 마찬가지의 효과가 얻어진다. 또한, 가스상의 의사 촉매를 사용하는 경우도, 고체상의 의사 촉매를 사용하는 경우와 마찬가지로, 스텝 A에서의 처리 온도의 저온화가 가능하게 되고, 스텝 A에서의 하지(200b)의 표면의 에칭이나, 하지(200b)의 표면에 대한 에칭 대미지를 효과적으로 억제하는 것이 가능하게 된다.
또한, 「촉매」란, 화학 반응의 전후에서 그 자신은 변화하지 않지만, 반응의 속도를 변화시키는 물질이다. 의사 촉매로서 예시한 상술한 물질은, 모두 F 함유 라디칼의 발생을 재촉한다는 촉매적인 작용을 갖지만, 이들 중에는, 그 자신이 화학 반응의 전후에서 변화하는 물질도 있다. 예를 들어, NO 가스는, 촉매적인 작용을 갖지만, F 함유 가스와 반응할 때 분자 구조의 일부가 분해하여, 그 자신이 화학 반응의 전후에서 변화하는 경우가 있다. 이와 같이, 그 자신이 화학 반응의 전후에서 변화하는 물질이어도, 반응의 속도를 변화시키는 물질을, 본 명세서에서는 「의사 촉매」라고 칭하고 있다.
또한 예를 들어, 스텝 A에서는, F 함유 가스의 플라스마, 가열, 광 조사 등에 의한 활성화(여기)에 의해, F 함유 가스로부터의 F 함유 라디칼의 발생을 촉진시키도록 해도 된다. 이들 경우에도, 상술한 양태와 마찬가지의 효과가 얻어진다. 또한, 스텝 A에서, F 함유 가스를 플라스마, 가열, 광 조사 등에 의해 활성화시킴으로써, F 함유 가스를 이들에 의해 활성화시키지 않는 경우보다도, 처리실(201) 내에서의 F 함유 라디칼의 발생을 촉진시켜, 발생시키는 F 함유 라디칼의 양을 증대시키는 것이 가능하게 된다. 결과적으로, 스텝 A에서, 하지(200a)의 표면의 개질을 재촉하여, 하지(200b)의 표면 상에의 SiN막의 선택적인 형성을 보다 확실하게 행할 수 있게 된다. 또한, 의사 촉매를 사용함으로써, 스텝 A에서의 처리 온도의 저온화도 가능하게 된다. 또한, 플라스마를 사용하는 경우에는, 웨이퍼(200)나 처리실(201) 내의 부재의 플라스마 대미지를 억제하기 위해서, 처리실(201)의 외부에 마련된 리모트 플라스마 유닛에 있어서 F 함유 가스를 플라스마로 활성화시킨 후, 처리실(201) 내에 공급하는 방식, 즉, 리모트 플라스마 방식을 채용하는 것이 바람직하다.
또한 예를 들어, 웨이퍼(200)의 표면에, SiO막을 포함하는 하지(200a) 및 SiN막을 포함하는 하지(200b) 외에도, 텅스텐막(W막), 텅스텐 질화막(WN막), 티타늄 질화막(TiN막) 등의 도전성의 금속계 박막을 포함하는 하지가 노출되어 있어도 된다. 또한, SiN막을 포함하는 하지(200b) 대신에, 상술한 금속계 박막을 포함하는 하지가 노출되어 있어도 된다. 이들 경우에도, 상술한 양태와 마찬가지의 효과가 얻어진다. 즉, SiO막 상에의 성막을 회피하면서, SiN막의 표면 상이나 상술한 금속계 박막의 표면 상에 선택적으로 막을 형성하는 것이 가능하게 된다.
또한 예를 들어, 스텝 B에서, 스텝 B1, B2를 비동시로 행하는 사이클을 개시하기 전에, 처리실(201) 내의 웨이퍼(200), 즉, 하지(200a, 200b) 중 하지(200a)의 표면을 선택적으로 개질시킨 후의 웨이퍼(200)에 대하여, NH3 가스를 소정 시간 공급하는 스텝(NH3 프리플로우)을 행하도록 해도 된다. 이 경우에도, 하지(200a)의 표면에 존재하는 F 종단은 소멸하지 않고 안정적으로 유지되기 때문에, 상술한 양태와 마찬가지의 효과가 얻어진다. 또한, 하지(200b)의 표면에서의 흡착 사이트를 적정화시킬 수 있어, 하지(200b) 상에 형성되는 SiN막의 품질을 향상시키는 것이 가능하게 된다.
또한 예를 들어, 스텝 B에서, 원료 가스로서, SiCl4 가스 외에, 상술한 클로로실란계 가스나, 티타늄테트라클로라이드(TiCl4) 가스 등의 할로겐화 금속 가스를 사용하도록 해도 된다. 또한 예를 들어, 반응 가스로서, NH3 가스 등의 N 함유 가스 외에, O2 가스 등의 O 함유 가스, 트리에틸아민((C2H5)3N, 약칭: TEA) 가스 등의 N 및 C 함유 가스, 프로필렌(C3H6) 가스 등의 C 함유 가스, 트리클로로보란(BCl3) 가스 등의 붕소(B) 함유 가스를 사용하도록 해도 된다. 그리고, 이하에 나타내는 가스 공급 시퀀스에 의해, 하지(200a, 200b) 중 개질되어 있지 않은 하지(200b)의 표면 상에, 실리콘 산질화막(SiON막), 실리콘 탄질화막(SiCN막), 실리콘 산탄질화막(SiOCN막), 실리콘 산탄화막(SiOC막), 실리콘 붕질화막(SiBN막), 실리콘 붕탄질화막(SiBCN막), 티타늄 질화막(TiN막), 티타늄산 질화막(TiON막) 등의 막을 형성하도록 해도 된다. 하지(200a)의 표면 상에 형성되는 F 종단은 매우 안정하므로, 이들의 경우, 즉, 성막 가스로서 수증기(H2O 가스)나 과산화수소 가스(H2O2 가스) 등의OH기를 포함하는 가스를 사용하지 않을 경우에는, 상술한 양태와 마찬가지의 효과가 얻어진다.
ClF3→(SiCl4→NH3→O2)×n ⇒ SiON
ClF3→(HCDS→C3H6→NH3)×n ⇒ SiCN
ClF3→(HCDS→C3H6→NH3→O2)×n ⇒ SiOCN
ClF3→(HCDS→TEA→O2)×n ⇒ SiOC(N)
ClF3→(DCS→BCl3→NH3)×n ⇒ SiBN
ClF3→(DCS→C3H6→BCl3→NH3)×n ⇒ SiBCN
ClF3→(TiCl4→NH3)×n ⇒ TiN
ClF3→(TiCl4→NH3→O2)×n ⇒ TiON
각 처리에 사용되는 레시피는, 처리 내용에 따라 개별로 준비하여, 전기 통신 회선이나 외부 기억 장치(123)를 통해서 기억 장치(121c) 내에 저장해 두는 것이 바람직하다. 그리고, 각 처리를 개시할 때, CPU(121a)가, 기억 장치(121c) 내에 저장된 복수의 레시피 중에서, 처리 내용에 따라 적정한 레시피를 적절히 선택하는 것이 바람직하다. 이에 의해, 1대의 기판 처리 장치로 다양한 막종, 조성비, 막질, 막 두께의 막을, 재현성 좋게 형성할 수 있게 된다. 또한, 오퍼레이터의 부담을 저감할 수 있어, 조작 미스를 회피하면서, 각 처리를 신속하게 개시할 수 있게 된다.
상술한 레시피는, 새롭게 작성하는 경우에 한하지 않고, 예를 들어 기판 처리 장치에 이미 인스톨되어 있던 기존의 레시피를 변경함으로써 준비해도 된다. 레시피를 변경하는 경우는, 변경 후의 레시피를, 전기 통신 회선이나 당해 레시피를 기록한 기록 매체를 통해서, 기판 처리 장치에 인스톨해도 된다. 또한, 기존의 기판 처리 장치가 구비하는 입출력 장치(122)를 조작하여, 기판 처리 장치에 이미 인스톨되어 있던 기존의 레시피를 직접 변경해도 된다.
상술한 양태에서는, 한번에 복수매의 기판을 처리하는 뱃치식 기판 처리 장치를 사용해서 막을 형성하는 예에 대해서 설명했다. 본 개시는 상술한 양태에 한정되지 않고, 예를 들어 한번에 1매 또는 수매의 기판을 처리하는 매엽식 기판 처리 장치를 사용해서 막을 형성하는 경우에도, 적합하게 적용할 수 있다. 또한, 상술한 양태에서는, 핫월형의 처리로를 갖는 기판 처리 장치를 사용해서 막을 형성하는 예에 대해서 설명했다. 본 개시는 상술한 양태에 한정되지 않고, 콜드월형의 처리로를 갖는 기판 처리 장치를 사용해서 막을 형성하는 경우에도, 적합하게 적용할 수 있다.
이러한 기판 처리 장치를 사용하는 경우에도, 상술한 양태와 마찬가지의 처리 수순, 처리 조건에서 각 처리를 행할 수 있고, 상술한 양태와 마찬가지의 효과가 얻어진다.
상술한 양태는, 적절히 조합해서 사용할 수 있다. 이때의 처리 수순, 처리 조건은, 예를 들어 상술한 양태의 처리 수순, 처리 조건과 마찬가지로 할 수 있다.
[실시예]
샘플 1 내지 6으로서, 도 1에 도시하는 기판 처리 장치를 사용하여, 상술한 양태에서의 스텝 B와 마찬가지의 처리 수순, 처리 조건에 의해, 웨이퍼의 하지의 표면 상에 SiN막을 형성했다. 샘플 1, 3, 5를 제작할 때는, SiN막에 의해 형성된 하지를 갖는 웨이퍼를, 샘플 2, 4, 6을 제작할 때는, SiO막에 의해 형성된 하지를 갖는 웨이퍼를 각각 사용했다.
샘플 1, 2를 제작할 때는, 스텝 B를 실시하기 전에, 스텝 A를 실시하지 않았다. 샘플 3, 4를 제작할 때는, 스텝 B를 실시하기 전에, 스텝 A를 실시했다. 샘플 5, 6을 제작할 때는, 스텝 B를 실시하기 전에, 처리실 내에 의사 촉매로서의 자연 산화막이 제거된 베어 웨이퍼를 수용한 상태에서 스텝 A를 실시했다. 또한, 샘플 1, 2는 동시에 동일 분위기 하(동일 처리실 내)에서 제작하고, 샘플 3, 4는 동시에 동일 분위기 하에서 제작하고, 샘플 5, 6은 동시에 동일 분위기 하에서 제작했다. 어느 샘플을 제작할 때에든, 스텝 A에서는 F 함유 가스로서 ClF3 가스를 사용했다. 다른 처리 조건은, 상술한 양태에 기재한 처리 조건 범위 내의 소정의 조건이며, 각 샘플에서 공통의 조건으로 했다.
샘플 1 내지 6을 제작한 후, 각각의 웨이퍼의 하지의 표면 상에 형성된 SiN막의 막 두께를 각각 측정했다. 그 결과를 도 8에 나타낸다. 도 8에 도시하는 바와 같이, 샘플 1, 2에서는, 웨이퍼의 하지의 표면 상에 형성된 SiN막의 두께가 순서대로 71.2Å, 65.0Å으로 되어 있어, 스텝 A를 실시하지 않음으로써 충분한 선택성이 얻어지지 않는 것을 확인할 수 있었다. 이에 반해, 샘플 3, 4에서는, 웨이퍼의 하지의 표면 상에 형성된 SiN막의 두께가 순서대로 56.6Å, 36.0Å으로 되어 있어, 스텝 A를 실시함으로써 높은 선택성이 얻어지는 것을 확인할 수 있었다. 또한, 샘플 5, 6에서는, 웨이퍼의 하지의 표면 상에 형성된 SiN막의 두께가 순서대로 42.4Å, 5.3Å으로 되어 있어, 스텝 A에서, 의사 촉매가 존재하는 분위기 하에서 F 함유 가스를 공급함으로써 매우 높은 선택성이 얻어지는 것을 확인할 수 있었다.

Claims (20)

  1. (a) (a1) 표면에 제1 하지와 제2 하지가 노출된 기판에 대하여, 실란계 가스를 공급하여, 상기 기판의 표면에 의사 촉매막을 형성하는 공정과, (a2) 표면에 상기 의사 촉매막이 형성된 상기 기판에 대하여, 불소 함유 가스를 공급하고, 상기 의사 촉매막에 상기 불소 함유 가스를 접촉시켜 불소 함유 라디칼을 발생시킴으로써, 상기 제1 하지 및 상기 제2 하지 중 한쪽의 하지의 표면을, F 종단시키도록 개질시키는 공정과,
    (b) 상기 한쪽의 하지의 표면을 개질시킨 후의 상기 기판에 대하여 성막 가스를 공급함으로써, 상기 제1 하지 및 상기 제2 하지 중 상기 한쪽의 하지와는 상이한 다른 쪽의 하지의 표면 상에 막을 형성하는 공정
    을 갖는 반도체 장치의 제조 방법.
  2. 제1항에 있어서,
    (a1)에서는, 상기 제1 하지 및 상기 제2 하지의 표면에, 상기 의사 촉매막을 형성하고,
    (a2)에서는, 상기 제1 하지 및 상기 제2 하지 중 상기 한쪽의 하지와는 상이한 다른 쪽의 하지의 표면에 형성된 상기 의사 촉매막을 에칭하는, 반도체 장치의 제조 방법.
  3. 제2항에 있어서,
    (a2)에서는, 상기 다른 쪽의 하지의 표면에 형성된 상기 의사 촉매막을 에칭하여, 상기 다른 쪽의 하지의 표면에 흡착 사이트를 노출시키는, 반도체 장치의 제조 방법.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, (a2)에서는, 상기 한쪽의 하지의 표면을, SiF 종단시키도록 개질시키는, 반도체 장치의 제조 방법.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서, (a2)에서는, 상기 한쪽의 하지의 표면을, 에칭시키지 않고 개질시키는, 반도체 장치의 제조 방법.
  6. 제1항 내지 제3항 중 어느 한 항에 있어서, (a2)에서는, 상기 다른 쪽의 하지의 표면의 개질을 억제하면서, 상기 한쪽의 하지의 표면을 개질시키는, 반도체 장치의 제조 방법.
  7. 제1항 내지 제3항 중 어느 한 항에 있어서, (b)에서는, 상기 한쪽의 하지의 표면 상에 상기 막을 형성하지 않고, 상기 다른 쪽의 하지의 표면 상에 상기 막을 형성하는, 반도체 장치의 제조 방법.
  8. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 제1 하지는 산소 함유막을 포함하고, 상기 제2 하지는 산소 비함유막을 포함하는, 반도체 장치의 제조 방법.
  9. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 제1 하지는 산화막을 포함하고, 상기 제2 하지는 질화막을 포함하는, 반도체 장치의 제조 방법.
  10. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 제1 하지는 실리콘 및 산소를 함유하는 막을 포함하고, 상기 제2 하지는 실리콘 및 질소를 함유하는 막을 포함하는, 반도체 장치의 제조 방법.
  11. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 한쪽의 하지는 상기 제1 하지이며, 상기 다른 쪽의 하지는 상기 제2 하지인, 반도체 장치의 제조 방법.
  12. 제1항 내지 제3항 중 어느 한 항에 있어서, (a) 및 (b)를 논 플라스마의 분위기 하에서 행하는, 반도체 장치 제조 방법.
  13. 제1항 내지 제3항 중 어느 한 항에 있어서, (c) 상기 다른 쪽의 하지의 표면 상에 막을 형성한 후의 상기 기판의 표면에, 불소와 반응하는 물질을 접촉시킴으로써, 상기 한쪽의 하지의 표면에 형성된 F 종단을 소멸시키는 공정을 더 갖는, 반도체 장치의 제조 방법.
  14. (a) (a1) 표면에 제1 하지와 제2 하지가 노출된 기판에 대하여, 실란계 가스를 공급하여, 상기 기판의 표면에 의사 촉매막을 형성하는 공정과, (a2) 표면에 상기 의사 촉매막이 형성된 상기 기판에 대하여, 불소 함유 가스를 공급하고, 상기 의사 촉매막에 상기 불소 함유 가스를 접촉시켜 불소 함유 라디칼을 발생시킴으로써, 상기 제1 하지 및 상기 제2 하지 중 한쪽의 하지의 표면을, F 종단시키도록 개질시키는 공정과,
    (b) 상기 한쪽의 하지의 표면을 개질시킨 후의 상기 기판에 대하여 성막 가스를 공급함으로써, 상기 제1 하지 및 상기 제2 하지 중 상기 한쪽의 하지와는 상이한 다른 쪽의 하지의 표면 상에 막을 형성하는 공정
    을 갖는 기판 처리 방법.
  15. 기판이 처리되는 처리실과,
    상기 처리실 내의 기판에 대하여 실란계 가스를 공급하는 실란계 가스 공급계와,
    상기 처리실 내의 기판에 대하여 불소 함유 가스를 공급하는 불소 함유 가스 공급계와,
    상기 처리실 내의 기판에 대하여 성막 가스를 공급하는 성막 가스 공급계와,
    상기 처리실 내의 기판을 가열하는 히터와,
    상기 처리실 내에서, (a) (a1) 표면에 제1 하지와 제2 하지가 노출된 기판에 대하여, 상기 실란계 가스를 공급하여, 상기 기판의 표면에 의사 촉매막을 형성하는 처리와, (a2) 표면에 상기 의사 촉매막이 형성된 상기 기판에 대하여, 상기 불소 함유 가스를 공급하고, 상기 의사 촉매막에 상기 불소 함유 가스를 접촉시켜 불소 함유 라디칼을 발생시킴으로써, 상기 제1 하지 및 상기 제2 하지 중 한쪽의 하지의 표면을, F 종단시키도록 개질시키는 처리와, (b) 상기 한쪽의 하지의 표면을 개질시킨 후의 상기 기판에 대하여 상기 성막 가스를 공급함으로써, 상기 제1 하지 및 상기 제2 하지 중 상기 한쪽의 하지와는 상이한 다른 쪽의 하지의 표면 상에 막을 형성하는 처리를 행하게 하도록, 상기 실란계 가스 공급계, 상기 불소 함유 가스 공급계, 상기 성막 가스 공급계 및 상기 히터를 제어하는 것이 가능하도록 구성되는 제어부
    를 갖는 기판 처리 장치.
  16. 기판 처리 장치의 처리실 내에서,
    (a) (a1) 표면에 제1 하지와 제2 하지가 노출된 기판에 대하여, 실란계 가스를 공급하여, 상기 기판의 표면에 의사 촉매막을 형성하는 수순과, (a2) 표면에 상기 의사 촉매막이 형성된 상기 기판에 대하여, 불소 함유 가스를 공급하고, 상기 의사 촉매막에 상기 불소 함유 가스를 접촉시켜 불소 함유 라디칼을 발생시킴으로써, 상기 제1 하지 및 상기 제2 하지 중 한쪽의 하지의 표면을, F 종단시키도록 개질시키는 수순과,
    (b) 상기 한쪽의 하지의 표면을 개질시킨 후의 상기 기판에 대하여 성막 가스를 공급함으로써, 상기 제1 하지 및 상기 제2 하지 중 상기 한쪽의 하지와는 상이한 다른 쪽의 하지의 표면 상에 막을 형성하는 수순
    을 컴퓨터에 의해 상기 기판 처리 장치에 실행시키는, 컴퓨터 판독 가능한 기록 매체에 기록된 프로그램.
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
KR1020200030173A 2019-03-20 2020-03-11 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치, 및 프로그램 KR102368311B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019053281A JP6960953B2 (ja) 2019-03-20 2019-03-20 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
JPJP-P-2019-053281 2019-03-20

Publications (2)

Publication Number Publication Date
KR20200112686A KR20200112686A (ko) 2020-10-05
KR102368311B1 true KR102368311B1 (ko) 2022-03-02

Family

ID=72515265

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200030173A KR102368311B1 (ko) 2019-03-20 2020-03-11 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치, 및 프로그램

Country Status (5)

Country Link
US (1) US11335554B2 (ko)
JP (1) JP6960953B2 (ko)
KR (1) KR102368311B1 (ko)
CN (1) CN111719133A (ko)
TW (1) TWI756612B (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7227122B2 (ja) * 2019-12-27 2023-02-21 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
JP7339975B2 (ja) 2021-03-18 2023-09-06 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、基板処理装置、及びプログラム
CN115565861A (zh) * 2021-07-02 2023-01-03 长鑫存储技术有限公司 一种薄膜沉积方法及半导体器件
JP7374961B2 (ja) 2021-07-27 2023-11-07 株式会社Kokusai Electric 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
WO2023047918A1 (ja) 2021-09-27 2023-03-30 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
JP7426978B2 (ja) 2021-12-08 2024-02-02 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
JP7315744B1 (ja) 2022-03-14 2023-07-26 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
JP2024042235A (ja) 2022-09-15 2024-03-28 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
JP2024047208A (ja) 2022-09-26 2024-04-05 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、基板処理システム、およびプログラム
JP2024047456A (ja) 2022-09-26 2024-04-05 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、基板処理システム、およびプログラム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160163725A1 (en) 2014-12-04 2016-06-09 SanDisk Technologies, Inc. Selective floating gate semiconductor material deposition in a three-dimensional memory structure

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3761918B2 (ja) 1994-09-13 2006-03-29 株式会社東芝 半導体装置の製造方法
US6391785B1 (en) * 1999-08-24 2002-05-21 Interuniversitair Microelektronica Centrum (Imec) Method for bottomless deposition of barrier layers in integrated circuit metallization schemes
JP4413556B2 (ja) * 2003-08-15 2010-02-10 東京エレクトロン株式会社 成膜方法、半導体装置の製造方法
JP2009088074A (ja) * 2007-09-28 2009-04-23 Mitsubishi Electric Corp 半導体装置の製造方法
US8293658B2 (en) * 2010-02-17 2012-10-23 Asm America, Inc. Reactive site deactivation against vapor deposition
JP2012009739A (ja) * 2010-06-28 2012-01-12 Ulvac Japan Ltd ドライエッチング方法およびドライエッチング装置
JP2013243193A (ja) 2012-05-18 2013-12-05 Hitachi Kokusai Electric Inc 半導体装置の製造方法
JP5886366B2 (ja) * 2014-06-04 2016-03-16 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、プログラムおよび記録媒体
JP6009513B2 (ja) * 2014-09-02 2016-10-19 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
CN108028172B (zh) * 2015-09-19 2022-07-29 应用材料公司 使用硅氢加成钝化的表面选择性原子层沉积
JP6560991B2 (ja) * 2016-01-29 2019-08-14 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
JP6576277B2 (ja) 2016-03-23 2019-09-18 東京エレクトロン株式会社 窒化膜の形成方法
KR20170135760A (ko) * 2016-05-31 2017-12-08 도쿄엘렉트론가부시키가이샤 표면 처리에 의한 선택적 퇴적
US9803277B1 (en) * 2016-06-08 2017-10-31 Asm Ip Holding B.V. Reaction chamber passivation and selective deposition of metallic films
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
JP6671262B2 (ja) * 2016-08-01 2020-03-25 東京エレクトロン株式会社 窒化膜の形成方法および形成装置
JP6767885B2 (ja) 2017-01-18 2020-10-14 東京エレクトロン株式会社 保護膜形成方法
US9911595B1 (en) * 2017-03-17 2018-03-06 Lam Research Corporation Selective growth of silicon nitride
JP6778144B2 (ja) * 2017-04-25 2020-10-28 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
US10355111B2 (en) * 2017-04-26 2019-07-16 Taiwan Semiconductor Manufacturing Company, Ltd. Deposition selectivity enhancement and manufacturing method thereof
WO2018220973A1 (ja) * 2017-05-30 2018-12-06 東京エレクトロン株式会社 エッチング方法
JP6778166B2 (ja) * 2017-09-08 2020-10-28 株式会社Kokusai Electric 半導体装置の製造方法
JP6663400B2 (ja) * 2017-09-11 2020-03-11 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
US10727046B2 (en) * 2018-07-06 2020-07-28 Lam Research Corporation Surface modified depth controlled deposition for plasma based deposition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160163725A1 (en) 2014-12-04 2016-06-09 SanDisk Technologies, Inc. Selective floating gate semiconductor material deposition in a three-dimensional memory structure

Also Published As

Publication number Publication date
TWI756612B (zh) 2022-03-01
US11335554B2 (en) 2022-05-17
JP2020155607A (ja) 2020-09-24
TW202101649A (zh) 2021-01-01
US20200303185A1 (en) 2020-09-24
CN111719133A (zh) 2020-09-29
JP6960953B2 (ja) 2021-11-05
KR20200112686A (ko) 2020-10-05

Similar Documents

Publication Publication Date Title
KR102368311B1 (ko) 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치, 및 프로그램
KR102430053B1 (ko) 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치, 및 프로그램
KR102345313B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
KR102559830B1 (ko) 기판 처리 방법, 반도체 장치의 제조 방법, 기판 처리 장치, 및 프로그램
KR20220009897A (ko) 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치, 및 프로그램
KR20220130002A (ko) 반도체 장치의 제조 방법, 기판 처리 방법, 기록 매체 및 기판 처리 장치
JP7135190B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
JP7305013B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
JP7186909B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
KR102458130B1 (ko) 기판 처리 방법, 반도체 장치의 제조 방법, 기판 처리 장치, 및 프로그램
WO2023127137A1 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
KR20210119301A (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant