KR101178768B1 - Method of recovery of lithium from cathodic active material of lithium battery - Google Patents

Method of recovery of lithium from cathodic active material of lithium battery Download PDF

Info

Publication number
KR101178768B1
KR101178768B1 KR20100093451A KR20100093451A KR101178768B1 KR 101178768 B1 KR101178768 B1 KR 101178768B1 KR 20100093451 A KR20100093451 A KR 20100093451A KR 20100093451 A KR20100093451 A KR 20100093451A KR 101178768 B1 KR101178768 B1 KR 101178768B1
Authority
KR
South Korea
Prior art keywords
lithium
active material
solution
lithium battery
cathode active
Prior art date
Application number
KR20100093451A
Other languages
Korean (ko)
Other versions
KR20120031831A (en
Inventor
이화영
조병원
고동균
고현백
Original Assignee
주식회사 세화엔스텍
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 세화엔스텍, 한국과학기술연구원 filed Critical 주식회사 세화엔스텍
Priority to KR20100093451A priority Critical patent/KR101178768B1/en
Publication of KR20120031831A publication Critical patent/KR20120031831A/en
Application granted granted Critical
Publication of KR101178768B1 publication Critical patent/KR101178768B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

본 발명은 리튬전지 양극활물질로부터 리튬을 회수하는 방법에 관한 것으로서, 본 발명의 리튬전지 양극활물질로부터의 리튬 회수 방법은 (a) 리튬전지 양극활물질을 옥살산 수용액에 용해시켜 리튬이 용해된 용액을 얻는 단계, (b) 상기 리튬이 용해된 용액에 소다회를 첨가하여 불순물을 침전 분리하는 단계 및 (c) 단계 (b)를 거친 리튬이 용해된 용액과 에탄올을 혼합하여 리튬을 탄산리튬으로 침전 분리하는 단계를 포함하여 이루어진다. 또한 단계 (c) 이후에, (d) 상기 침전 분리된 탄산리튬을 에탄올로 세척하여 불순물을 제거하고 탄산리튬을 얻는 단계를 더 포함할 수 있다.The present invention relates to a method for recovering lithium from a lithium battery positive electrode active material, the lithium recovery method from a lithium battery positive electrode active material of the present invention (a) to obtain a solution in which lithium is dissolved by dissolving the lithium battery positive electrode active material in an oxalic acid aqueous solution (B) precipitating and separating impurities by adding soda ash to the lithium-dissolved solution; and (c) precipitating and separating lithium with lithium carbonate by mixing the lithium-dissolved solution and ethanol through step (b). A step is made. In addition, after step (c), (d) may further comprise the step of removing the impurities by washing the precipitated lithium carbonate with ethanol to obtain lithium carbonate.

Description

리튬전지 양극활물질로부터의 리튬 회수 방법 {METHOD OF RECOVERY OF LITHIUM FROM CATHODIC ACTIVE MATERIAL OF LITHIUM BATTERY} Recovery method of lithium from lithium battery cathode active material {METHOD OF RECOVERY OF LITHIUM FROM CATHODIC ACTIVE MATERIAL OF LITHIUM BATTERY}

본 발명은 리튬전지 양극활물질로부터 리튬을 회수하는 방법에 관한 것이다.The present invention relates to a method for recovering lithium from a lithium battery cathode active material.

리튬전지는 충방전 성능이 우수하고 에너지 밀도가 높기 때문에 이차전지로 널리 사용되고 있으며, 특히 휴대폰 및 노트북 등의 소형 전자제품에 광범위하게 활용되고 있다. 최근 전기자동차 등의 보급이 가시화되면서 대용량 리튬전지의 개발이 활발하게 진행되고 있다.Lithium batteries are widely used as secondary batteries because of their excellent charge and discharge performance and high energy density, and are widely used in small electronic products such as mobile phones and laptops. Recently, with the spread of electric vehicles, the development of large-capacity lithium batteries is actively progressing.

전기자동차용 대용량 리튬전지의 양극활물질로서 종래의 LiCoO2 및 3성분계 활물질 (LiCo1 /3Ni1 /3Mn1 /3O2 등) 대신에 스피넬 (spinel)계 산화물인 LiMn2O4, LiTi2O4 및 LiV2O4 등의 응용이 집중적으로 검토되고 있다. 이들 가운데 대표적인 스피넬계 산화물인 LiMn2O4를 양극활물질로 사용한 대용량 리튬전지의 상용화가 조만간 가시화될 것으로 예상되고 있다.Conventional LiCoO 2 and a three-component active material as a positive electrode active material for high-capacity lithium battery for an electric vehicle (LiCo 1/3 Ni 1/ 3 Mn 1/3 O 2 , etc.) instead of a spinel (spinel) based oxide is LiMn 2 O 4, LiTi this 2 O 4 and LiV 2 O 4, including applications has been intensively reviewed. Among them, commercialization of large-capacity lithium batteries using LiMn 2 O 4 , a typical spinel oxide, as a cathode active material is expected to be visible soon.

리튬전지 양극활물질에 함유되어 있는 리튬 (Li)은 매우 고가의 금속으로서, 국내에서 생산되지 않아, 전량 해외에서 수입하여 사용하고 있다. 따라서, 우리나라와 같이 부존자원이 없는 국가의 특성과 중금속에 의한 환경 오염 방지의 측면에서 리튬전지 제조공정에서 발생하는 양극활물질 폐스크랩 혹은 사용 후에 폐기되는 리튬전지 양극활물질로부터 리튬을 회수하여 재사용하는 것이 필요하다.Lithium (Li) contained in the lithium battery positive electrode active material is a very expensive metal and is not produced in Korea, so all of it is imported and used overseas. Therefore, in terms of the characteristics of countries that do not have abundant resources like in Korea and the prevention of environmental pollution by heavy metals, it is necessary to recover and reuse lithium from the cathode scraps generated in the lithium battery manufacturing process or from the lithium battery cathode active materials discarded after use. need.

리튬전지 양극활물질로부터 리튬 등의 각종 금속을 추출하거나 회수하는 종래의 방법으로는 폐리튬전지로부터 떼어낸 양극활물질을 염산 (HCl)으로 추출한 다음 알칼리로 중화시켜 코발트, 니켈 등을 수산화물 (hydroxide)로 침전시켜 회수하는 공정과, 과산화수소 (H2O2) 존재 하에서 황산 (H2SO4) 또는 질산 (HNO3)으로 양극활물질을 용해시킨 다음 중화 침전법으로 금속을 분리 회수하는 공정이 일반적으로 사용되어 왔다. 최근에는 용매추출법으로 양극활물질 용해액으로부터 금속을 분리하기도 한다.Conventional methods for extracting or recovering various metals, such as lithium, from a lithium battery positive electrode active material include extracting the positive electrode active material removed from a spent lithium battery with hydrochloric acid (HCl) and neutralizing it with alkali to convert cobalt and nickel to hydroxide. The process of precipitation and recovery and the process of dissolving the positive electrode active material with sulfuric acid (H 2 SO 4 ) or nitric acid (HNO 3 ) in the presence of hydrogen peroxide (H 2 O 2 ) and then separating and recovering the metal by neutral precipitation method are generally used. Has been. Recently, metals have been separated from the positive electrode active material solution by solvent extraction.

종래의 양극활물질 처리 방법은 주로 코발트 및 니켈의 회수가 목적이며, 리튬은 가격면에서 코발트 및 니켈보다 저렴하기 때문에 그다지 큰 관심의 대상이 아니었다. 그러나, 리튬 자원이 매우 한정되어 있고, 향후 리튬 수요가 급증할 것으로 예상되고, 전기자동차용 대용량 리튬전지는 코발트 혹은 니켈이 함유되지 않은 LiMn2O4를 양극활물질로 사용할 가능성이 높기 때문에 앞으로는 리튬 회수에 보다 큰 관심이 집중될 것으로 보인다.Conventional cathode active material treatment method is mainly for the recovery of cobalt and nickel, lithium was not of much interest because it is cheaper than cobalt and nickel in terms of price. However, lithium resources are very limited, and the demand for lithium is expected to skyrocket in the future. Lithium recovery in the future is likely because lithium-ion batteries for electric vehicles are likely to use LiMn 2 O 4 containing no cobalt or nickel as a cathode active material. More attention will be focused on.

양극활물질을 용해시키는 공지의 방법 중에서 무기산인 염산, 질산 및 황산을 사용하는 방법은 추출 공정 시에 강산을 사용하여야 하기 때문에 대기 중으로의 증발에 의한 심각한 환경오염과, 특히 산에 의한 설비 부식 등의 문제가 매우 심각하다. 한편, 양극활물질 용해액으로부터 리튬을 회수하는 공지의 방법은 상기한 중화침전법 혹은 용매추출법을 사용하여 리튬 이외의 금속성분을 미리 제거한 용해액에 과량의 소다회 (sodium carbonate, Na2CO3)를 투여하고 90℃ 이상으로 가열하여 Li2CO3를 침전시키는 방법을 사용하게 되나, 이 경우 포화농도에 가깝게 소다회를 투여하여야 하기 때문에 추가되는 약품비용이 과다하게 소요됨은 물론 용해액을 가열하여야 하는 공정상의 곤란이 있다. 또한 이러한 방법에 의한 리튬 회수율은 80% 정도에 그치는 문제점이 있다. Among the known methods for dissolving the positive electrode active material, hydrochloric acid, nitric acid, and sulfuric acid, which are inorganic acids, have to use strong acid during the extraction process. Therefore, serious environmental pollution by evaporation into the atmosphere, especially acid corrosion, etc. The problem is very serious. On the other hand, a known method for recovering lithium from the positive electrode active material dissolving solution is to remove excess soda ash (sodium carbonate, Na 2 CO 3 ) in the dissolution solution in which metal components other than lithium are removed in advance using the neutralization precipitation method or the solvent extraction method described above. It is used to precipitate Li 2 CO 3 by heating to more than 90 ℃, in this case, because the soda ash should be administered close to the saturation concentration, the additional drug cost is excessive, as well as the process of heating the solution There is a difficulty in the jacket. In addition, the lithium recovery by this method has a problem of only about 80%.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 종래의 리튬전지 양극활물질 용해법에 비해 환경오염을 최소화하고, 단순한 공정과 저렴한 비용으로 리튬전지 양극활물질로부터 고가의 금속원소인 리튬을 회수하는 방법을 제공하는 것이다.The present invention has been made to solve the above problems, the object of the present invention is to minimize environmental pollution compared to the conventional lithium battery cathode active material dissolving method, expensive metal elements from the lithium battery cathode active material in a simple process and low cost It is to provide a method for recovering lithium phosphorus.

본 발명의 리튬전지 양극활물질로부터의 리튬 회수 방법은 (a) 리튬전지 양극활물질을 옥살산 수용액에 용해시켜 리튬이 용해된 용액을 얻는 단계, (b) 상기 리튬이 용해된 용액에 소다회를 첨가하여 불순물을 침전 분리하는 단계 및 (c) 단계 (b)를 거친 리튬이 용해된 용액과 에탄올을 혼합하여 리튬을 탄산리튬으로 침전 분리하는 단계를 포함하여 이루어진다. 또한 단계 (c) 이후에, (d) 상기 침전 분리된 탄산리튬을 에탄올로 세척하여 불순물을 제거하고 탄산리튬을 얻는 단계를 더 포함할 수 있다.Lithium recovery method from the lithium battery positive electrode active material of the present invention comprises the steps of (a) dissolving the lithium battery positive electrode active material in an aqueous solution of oxalic acid to obtain a solution in which lithium is dissolved, (b) adding soda ash to the solution in which the lithium is dissolved impurities Precipitating and separating the precipitate and (c) mixing the solution and the ethanol in which the lithium was dissolved in step (b) to precipitate and separate the lithium into lithium carbonate. In addition, after step (c), (d) may further comprise the step of removing the impurities by washing the precipitated lithium carbonate with ethanol to obtain lithium carbonate.

본 발명의 방법에 따라 리튬전지 양극활물질로부터 리튬을 회수하는 경우, 염산 또는 황산 등의 무기산을 사용하는 종래의 방법에 비하여 환경오염을 최소화할 수 있고, 공정이 단순하고 저렴한 비용으로 리튬을 회수할 수 있는 장점이 있다. In the case of recovering lithium from the lithium battery cathode active material according to the method of the present invention, environmental pollution can be minimized as compared with the conventional method using inorganic acids such as hydrochloric acid or sulfuric acid, and the process is simple and can be recovered at low cost. There are advantages to it.

또한, 종래의 방법과 같이 염산 및 황산을 사용하는 경우 최종 리튬제품에 혼입되는 염소이온 및 황산이온에 의한 순도저하를 방지할 수 있기 때문에, 고순도의 리튬제품을 제조할 수 있고, 종래의 방법을 이용하는 경우 양극활물질 용해액중의 리튬 회수율이 80% 정도임에 비하여 본 발명의 방법으로 리튬을 회수하는 경우 95% 이상의 리튬 회수율을 달성할 수 있다.In addition, when hydrochloric acid and sulfuric acid are used as in the conventional method, it is possible to prevent a decrease in purity due to chlorine ions and sulfuric acid ions incorporated into the final lithium product, thereby producing a high purity lithium product. When using the lithium recovery in the positive electrode active material solution is about 80%, when recovering lithium by the method of the present invention can achieve a lithium recovery of 95% or more.

본 발명의 리튬전지 양극활물질로부터의 리튬 회수 방법은 (a) 리튬전지 양극활물질을 옥살산 수용액에 용해시켜 리튬이 용해된 용액을 얻는 단계, (b) 상기 리튬이 용해된 용액에 소다회를 첨가하여 불순물을 침전 분리하는 단계 및 (c) 단계 (b)를 거친 리튬이 용해된 용액과 에탄올을 혼합하여 리튬을 탄산리튬으로 침전 분리하는 단계를 포함하여 이루어진다. Lithium recovery method from the lithium battery positive electrode active material of the present invention comprises the steps of (a) dissolving the lithium battery positive electrode active material in an oxalic acid aqueous solution to obtain a solution in which lithium is dissolved, (b) adding soda ash to the solution in which the lithium is dissolved impurities Precipitating and separating the precipitate and (c) mixing the solution and the ethanol in which the lithium was dissolved in step (b) to precipitate and separate the lithium into lithium carbonate.

단계 (a)에서, 리튬전지 양극활물질을 옥살산 (oxalic acid) 수용액에 넣고 교반하면서 용해시킨다. 옥살산에 의해 용해된 양극활물질 금속성분 가운데 리튬을 제외한 망간, 코발트, 니켈 등의 금속들이 옥살산 이온과 불용성 옥살레이트 (oxalate) 화합물을 형성하기 때문에, 용해와 동시에 침전물로 떨어진다. 따라서, 양극활물질 용해액 중의 상기 금속성분을 분리 및 제거하기 위한 후속공정이 매우 손쉽게 이루어지는 장점이 있다.In step (a), the lithium battery positive electrode active material is dissolved in an oxalic acid aqueous solution and stirred. Among the cathode active material metal components dissolved by oxalic acid, metals such as manganese, cobalt, and nickel, except lithium, form insoluble oxalate compounds with oxalate ions, and thus, fall into a precipitate at the same time as they are dissolved. Therefore, there is an advantage that a subsequent process for separating and removing the metal component in the positive electrode active material solution is very easy.

단계 (a)에서, 리튬전지 양극활물질은 스피넬계 산화물 LiMn2O4 또는 3성분계 활물질 LiCo1 /3Ni1 /3Mn1 /3O2을 포함하는 것일 수 있다. 다만 본 발명이 이에 한정되는 것은 아니고, 다양한 종류의 리튬전지 양극활물질을 포함한다.In step (a), a lithium battery positive electrode active material may be one containing a spinel type oxide LiMn 2 O 4 or a three-component active material LiCo 1/3 Ni 1/3 Mn 1/3 O 2. However, the present invention is not limited thereto, and includes various types of lithium battery cathode active materials.

단계 (a)의 옥살산 수용액은 농도 0.1 내지 1.0 mol/L일 수 있고, 리튬전지 양극활물질은 농도가 10 내지 50 g/L이 되도록 하는 것일 수 있다. 수용액의 옥살산 농도가 상기 범위보다 낮으면 양극활물질 용해율이 떨어지기 때문에 리튬의 회수율이 감소하게 되고, 상기 범위보다 높으면 약품비가 과다하게 소요되는 문제점이 있다. 또한, 양극활물질 고체 농도가 상기 범위보다 낮으면 처리량이 줄어들기 때문에 결과적으로 생산비가 늘어나고, 상기 범위보다 높으면 양극활물질의 용해율이 떨어지게 된다. The aqueous oxalic acid solution of step (a) may have a concentration of 0.1 to 1.0 mol / L, and the lithium battery cathode active material may have a concentration of 10 to 50 g / L. If the oxalic acid concentration of the aqueous solution is lower than the above range, since the dissolution rate of the positive electrode active material is lowered, the recovery rate of lithium is reduced, and if it is higher than the above range, the chemical cost is excessively required. In addition, if the cathode active material solid concentration is lower than the above range, the throughput decreases, and as a result, the production cost increases. If the cathode active material solid concentration is higher than the above range, the dissolution rate of the cathode active material is lowered.

단계 (a)는 상온에서 1 시간 이내로 실시할 수 있다.Step (a) can be carried out within 1 hour at room temperature.

상기 단계 (a)의 양극활물질 용해공정이 끝나면, 침전물로 떨어진 고형성분을 여과하고 용해액을 얻는다. 단게 (a)의 고형 침전 성분은 코발트, 니켈 또는 망간 침전물이며, 이를 처리하여 각 금속을 회수할 수 있으나, 본 발명은 리튬 이외의 금속의 회수는 포함하지 않는다. After dissolving the positive electrode active material in step (a), the solid component dropped into the precipitate is filtered to obtain a solution. The solid precipitation component of step (a) is cobalt, nickel or manganese precipitate, and each metal can be recovered by treating it, but the present invention does not include recovery of metals other than lithium.

단계 (b)는 pH 9 내지 10에서 수행할 수 있고, 단계 (b)는 용해액 중 잔류하는 망간, 코발트 혹은 니켈 등의 금속 성분을 완전히 침전시켜 제거하고자 하는 것으로서, 이때 리튬을 제외한 이들 금속들은 수산화물 (hydroxide) 혹은 탄산화물 (carbonate) 형태로 침전된다. 단계 (b)에서, 용해액 pH가 상기 범위보다 낮으면 완전한 침전이 이루어지지 않아 용해액 중에 금속성분이 잔류하게 되는 문제가 있고, 상기 범위보다 높으면 불필요하게 약품비용이 들어가는 문제가 있다. Step (b) may be performed at pH 9 to 10, and step (b) is to completely remove the remaining metal components such as manganese, cobalt or nickel in the solution, wherein these metals except lithium are Precipitates in the form of hydroxide or carbonate. In step (b), when the pH of the solution is lower than the above range, complete precipitation does not occur and there is a problem that a metal component remains in the solution, and when it is higher than the above range, there is a problem of unnecessary chemical cost.

단계 (c)에서 단계 (b)의 침전물을 여과하고 얻은 여액에 에탄올을 혼합하여 리튬을 탄산리튬 (lithium carbonate, Li2CO3)의 형태로 침전시켜 회수한다. 단계 (c)에서 에탄올을 혼합하는 이유는 탄산리튬이 알코올에 녹지 않는 성질을 이용하여 용해액 중의 리튬을 탄산리튬 결정으로 회수하기 위함이다. In step (c), the precipitate of step (b) is filtered and ethanol is mixed with the filtrate obtained, and lithium is precipitated and recovered in the form of lithium carbonate (Li 2 CO 3 ). The reason for mixing the ethanol in step (c) is to recover the lithium in the solution as lithium carbonate crystal by using the property that lithium carbonate is insoluble in alcohol.

단계 (c)에서 에탄올 비율이 높을수록 유리하나 리튬이 용해된 용액과 에탄올은 부피비로 1 : 1 내지 1 : 4로 혼합할 수 있다. 상기 범위보다 상기 리튬이 용해된 용액의 비율이 낮게 되면 에탄올이 과다하게 소요되어 경제성이 떨어지고, 상기 범위보다 상기 용액의 비율이 높게 되면 탄산리튬 결정이 제대로 형성되지 않는 문제점이 발생한다. In step (c), the higher the ethanol ratio is, the better, but the lithium-dissolved solution and ethanol can be mixed in a volume ratio of 1: 1 to 1: 4. When the ratio of the solution in which the lithium is dissolved is lower than the above range, ethanol is excessively consumed and the economical efficiency is lowered. When the ratio of the solution is higher than the above range, lithium carbonate crystals are not properly formed.

단계 (c)의 공정은 상온에서 실시할 수 있으며, 상기 리튬이 용핸된 용액과 에탄올을 혼합하면 혼합과 동시에 곧바로 탄산리튬 침전이 생성되기 때문에 단계 (c)의 반응시간은 30분이면 충분하다.The process of step (c) can be carried out at room temperature, and the reaction time of step (c) is sufficient if the reaction time of step (c) is sufficient because the lithium carbonate precipitate is produced immediately upon mixing the ethanol solution with lithium.

한편, 단계 (c) 이후에, (d) 상기 침전 분리된 탄산리튬을 에탄올로 세척하여 불순물을 제거하고 탄산리튬을 얻는 단계를 더 포함할 수 있다. On the other hand, after step (c), (d) may further comprise the step of removing the impurities by washing the precipitated lithium carbonate with ethanol to obtain lithium carbonate.

단게 (d)의 에탄올 세척은 탄산리튬 결정에 부착되어 있는 불순물을 세척하여 제거하기 위함이다.
The ethanol wash in step (d) is for washing off and removing impurities attached to the lithium carbonate crystals.

실시예Example

이하 몇 가지 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 다만 이는 본 발명을 명확히 설명하기 위한 것일 뿐 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to several examples. However, this is only to clearly describe the present invention, the present invention is not limited thereto.

실시예 1Example 1

리튬 함량 3.83 중량%의 스피넬계 산화물인 LiMn2O4 양극활물질 분말 10 g을 0.1 mol/L 옥살산 수용액 1000 ㎖와 함께 반응기에 넣고 1시간 동안 상온에서 교반하여 용해시켰다. 10 g of a LiMn 2 O 4 positive electrode active material powder, which is a spinel oxide having a lithium content of 3.83 wt%, was added to a reactor with 1000 ml of an aqueous 0.1 mol / L oxalic acid solution and stirred for 1 hour at room temperature to dissolve.

용해반응이 끝나면 용해된 망간이 옥살산 이온과 반응하여 생성된 고형 침전물을 여과하여 분리하고, 여과액에 소다회를 첨가하여 pH를 9로 조절하였다. 이때 용해액에 일부 남아있던 망간 성분은 모두 수산화물 혹은 탄산화물로 침전되었고, 용해액에는 리튬 성분만 남게 되었다. 여과 과정으로 침전물을 분리하고, 용해액과 에탄올을 부피비로 1 : 1로 혼합하였다. 용해액과 에탄올의 혼합액을 상온에서 30분간 느리게 교반하였다. 탄산리튬 침전물이 생성되었으며, 이를 여과 과정으로 분리하였다. 이를 에탄올로 세척한 다음 건조함으로써 최종 제품인 탄산리튬을 제조하였다.After the dissolution reaction, the dissolved manganese reacted with the oxalate ions to separate the solid precipitate produced by filtration, and soda ash was added to the filtrate to adjust the pH to 9. At this time, all of the manganese components remaining in the solution were precipitated with hydroxides or carbonates, and only lithium components remained in the solution. The precipitate was separated by filtration, and the solution and ethanol were mixed at a volume ratio of 1: 1. The mixed solution of the solution and ethanol was stirred slowly at room temperature for 30 minutes. A lithium carbonate precipitate was produced, which was separated by filtration. This was washed with ethanol and dried to prepare a final product lithium carbonate.

이렇게 얻은 탄산리튬 중의 리튬은 용해액에 존재하는 리튬의 양을 기준으로 할 때 회수율 95.8%에 달하였다.
The lithium in the thus obtained lithium carbonate reached a recovery rate of 95.8% based on the amount of lithium present in the solution.

실시예 2Example 2

실시예 1에서 사용한 것과 동일한 LiMn2O4 양극활물질 분말 50 g을 1.0 mol/L 옥살산 수용액 1000 ㎖와 함께 반응기에 넣고 1시간 동안 상온에서 교반하여 용해시켰다. 50 g of the same LiMn 2 O 4 cathode active material powder as used in Example 1 was added to a reactor with 1000 ml of 1.0 mol / L aqueous solution of oxalic acid, and dissolved by stirring at room temperature for 1 hour.

용해반응이 끝나면 실시예 1과 동일한 방법으로 고형 침전물을 여과 분리하고, 여과액에 소다회를 첨가하여 pH를 10으로 조절하였다. 이때 용해액에 일부 남아있던 망간 성분은 모두 수산화물 혹은 탄산화물로 침전되었고, 용해액에는 리튬 성분만 남게 되었다. 여과 과정으로 침전물을 분리하고, 용해액과 에탄올을 부피비로 1 : 4로 혼합하였다. 용해액과 에탄올의 혼합액을 상온에서 30분간 느리게 교반하였다. 탄산리튬 침전물이 생성되었으며, 이를 여과 과정으로 분리하였다. 역시 실시예 1과 동일하게 이를 에탄올로 세척한 다음 건조함으로써 최종 제품인 탄산리튬을 제조하였다. After the dissolution reaction, the solid precipitate was separated by filtration in the same manner as in Example 1, and soda ash was added to the filtrate to adjust the pH to 10. At this time, all of the manganese components remaining in the solution were precipitated with hydroxides or carbonates, and only lithium components remained in the solution. The precipitate was separated by filtration, and the solution and ethanol were mixed at a volume ratio of 1: 4. The mixed solution of the solution and ethanol was stirred slowly at room temperature for 30 minutes. A lithium carbonate precipitate was produced, which was separated by filtration. Also in the same manner as in Example 1 it was washed with ethanol and dried to prepare a final product lithium carbonate.

이렇게 얻은 탄산리튬 중의 리튬은 용해액에 존재하는 리튬의 양을 기준으로 할 때 회수율 97.3%에 달하였다.
The lithium in the thus obtained lithium carbonate reached a recovery rate of 97.3% based on the amount of lithium present in the solution.

실시예 3Example 3

리튬 함량 7.19 중량%의 3성분계 양극활물질인 LiCo1/3Ni1/3Mn1/3O2 분말 10 g을 1.0 mol/L 옥살산 수용액 1000 ㎖와 함께 반응기에 넣고 1시간 동안 상온에서 교반하여 용해시켰다. 10 g of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 powder, a three-component cathode active material containing 7.19% by weight of lithium, was added to a reactor with 1000 ml of 1.0 mol / L aqueous solution of oxalic acid and stirred at room temperature for 1 hour to dissolve. I was.

용해반응이 끝나면 용해된 금속성분 가운데 리튬을 제외한 코발트, 니켈 및 망간이 옥살산 이온과 반응하여 생성된 고형 침전물을 여과하여 분리하고, 여과액에 소다회를 첨가하여 pH를 10으로 조절하였다. 이때 용해액에 일부 남아있던 코발트 등의 금속성분은 모두 수산화물 혹은 탄산화물로 침전되었고, 용해액에는 리튬 성분만 남게 되었다. 여과과정으로 침전물을 분리하고, 용해액과 에탄올을 부피비 1 : 4로 혼합하였다. 용해액과 에탄올의 혼합액을 실시예 1과 동일한 방법으로 상온에서 30분간 느리게 교반하였다. 생성된 탄산리튬 침전물을 여과 분리하고, 이를 에탄올로 세척한 다음 건조함으로써 최종 제품인 탄산리튬을 제조하였다.After the dissolution reaction, cobalt, nickel and manganese except lithium reacted with the oxalic acid ions, and the solid precipitate was separated by filtration, and soda ash was added to the filtrate to adjust the pH to 10. At this time, all of the metal components such as cobalt remaining in the solution were precipitated with hydroxides or carbonates, and only lithium components remained in the solution. The precipitate was separated by filtration, and the solution and ethanol were mixed in a volume ratio of 1: 4. The mixed solution of the solution and ethanol was stirred slowly at room temperature for 30 minutes in the same manner as in Example 1. The resulting lithium carbonate precipitate was separated by filtration, washed with ethanol and dried to prepare a final product, lithium carbonate.

이렇게 얻는 탄산리튬 중의 리튬은 용해액에 존재하는 리튬의 양을 기준으로 회수율 96.6%에 달하였다.The lithium in the lithium carbonate thus obtained reached a recovery rate of 96.6% based on the amount of lithium present in the solution.

Claims (7)

(a) 리튬전지 양극활물질을 옥살산 수용액에 용해시켜 리튬이 용해된 용액을 얻는 단계;
(b) 상기 리튬이 용해된 용액에 소다회를 첨가하여 불순물을 침전 분리하는 단계; 및
(c) 단계 (b)를 거친 리튬이 용해된 용액과 에탄올을 혼합하여 리튬을 탄산리튬으로 침전 분리하는 단계;
를 포함하는 리튬전지 양극활물질로부터의 리튬 회수 방법.
(a) dissolving a lithium battery cathode active material in an oxalic acid aqueous solution to obtain a solution in which lithium is dissolved;
(b) precipitating and separating impurities by adding soda ash to the lithium-dissolved solution; And
(c) precipitating and separating lithium into lithium carbonate by mixing ethanol and a solution in which lithium is dissolved in step (b);
Lithium recovery method from a lithium battery cathode active material comprising a.
제1항에 있어서, 단계 (c) 이후에,
(d) 상기 침전 분리된 탄산리튬을 에탄올로 세척하여 불순물을 제거하고 탄산리튬을 얻는 단계;
를 더 포함하는 리튬전지 양극활물질로부터의 리튬 회수 방법.
The method of claim 1, wherein after step (c),
(d) washing the precipitated lithium carbonate with ethanol to remove impurities and to obtain lithium carbonate;
Lithium recovery method from a lithium battery cathode active material further comprising.
제1항에 있어서, 단계 (a)의 옥살산 수용액은 농도 0.1 내지 1.0 mol/L인 것인 리튬전지 양극활물질로부터의 리튬 회수 방법.The method for recovering lithium from a lithium battery cathode active material according to claim 1, wherein the aqueous oxalic acid solution of step (a) has a concentration of 0.1 to 1.0 mol / L. 제1항에 있어서, 단계 (a)의 리튬전지 양극활물질은 농도가 10 내지 50 g/L이 되도록 하는 것인 리튬전지 양극활물질로부터의 리튬 회수 방법.The method of claim 1, wherein the lithium battery cathode active material of step (a) is to have a concentration of 10 to 50 g / L lithium recovery method from the lithium battery cathode active material. 제1항에 있어서, 상기 리튬전지 양극활물질은 스피넬계 산화물 LiMn2O4 또는 3성분계 활물질 LiCo1/3Ni1/3Mn1/3O2을 포함하는 것인 리튬전지 양극활물질로부터의 리튬 회수 방법.The method of claim 1, wherein the lithium battery positive electrode active material is a spinel-based oxide LiMn 2 O 4 or three-component active material LiCo 1/3 Ni 1/3 Mn 1/3 O 2 to recover the lithium from the lithium battery positive electrode active material Way. 제1항에 있어서, 단계 (b)는 pH 9 내지 10에서 수행하는 것인 리튬전지 양극활물질로부터의 리튬 회수 방법.The method for recovering lithium from a lithium battery cathode active material according to claim 1, wherein step (b) is performed at pH 9 to 10. 제1항에 있어서, 단계 (c)의 리튬이 용해된 용액과 에탄올은 부피비로 1 : 1 내지 1 : 4로 혼합하는 것인 리튬전지 양극활물질로부터의 리튬 회수 방법.The method for recovering lithium from a lithium battery cathode active material according to claim 1, wherein the solution in which lithium is dissolved in step (c) and ethanol are mixed in a volume ratio of 1: 1 to 1: 4.
KR20100093451A 2010-09-27 2010-09-27 Method of recovery of lithium from cathodic active material of lithium battery KR101178768B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20100093451A KR101178768B1 (en) 2010-09-27 2010-09-27 Method of recovery of lithium from cathodic active material of lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20100093451A KR101178768B1 (en) 2010-09-27 2010-09-27 Method of recovery of lithium from cathodic active material of lithium battery

Publications (2)

Publication Number Publication Date
KR20120031831A KR20120031831A (en) 2012-04-04
KR101178768B1 true KR101178768B1 (en) 2012-09-10

Family

ID=46135185

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20100093451A KR101178768B1 (en) 2010-09-27 2010-09-27 Method of recovery of lithium from cathodic active material of lithium battery

Country Status (1)

Country Link
KR (1) KR101178768B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102188889B1 (en) 2019-07-25 2020-12-10 주식회사 대일이앤씨 Method For Recovering Valuable Materials From Waste Lithium Secondary Batteries

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101438272B1 (en) * 2012-08-14 2014-09-15 주식회사 포스코 Method for recovering metal from electrode material
US10711326B2 (en) 2012-10-10 2020-07-14 Albemarle Germany Gmbh Method for the hydrometallurgical recovery of lithium from the lithium manganese oxide-containing fraction of used galvanic cells
KR101708149B1 (en) * 2016-05-20 2017-02-20 (주)이엠티 A Method For Recovering Lithium Compound From An Anode Material In Spent Lithium Batteries By Wet-Milling
CN113353909B (en) * 2021-05-31 2024-03-26 蜂巢能源科技有限公司 Method for preparing lithium iron phosphate positive electrode material by utilizing recovered lithium
KR102446860B1 (en) * 2022-01-19 2022-09-23 (주)에코프로머티리얼즈 Method for selective leaching of lithium and aluminum in MCP
CN114464911B (en) * 2022-02-28 2024-02-20 武汉大学 Method for recycling metal elements in waste lithium battery anode material by utilizing alcohol-water vapor
KR102637251B1 (en) * 2022-03-20 2024-02-15 전성호 Method of extracting lithium hydroxide from mixtures containing lithium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072443A (en) 1998-08-26 2000-03-07 Ube Ind Ltd Production of lithium manganese multiple oxide and its use
JP2007323868A (en) 2006-05-31 2007-12-13 Toyota Motor Corp Method of recovering electrode-constituting metal from lithium battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072443A (en) 1998-08-26 2000-03-07 Ube Ind Ltd Production of lithium manganese multiple oxide and its use
JP2007323868A (en) 2006-05-31 2007-12-13 Toyota Motor Corp Method of recovering electrode-constituting metal from lithium battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102188889B1 (en) 2019-07-25 2020-12-10 주식회사 대일이앤씨 Method For Recovering Valuable Materials From Waste Lithium Secondary Batteries

Also Published As

Publication number Publication date
KR20120031831A (en) 2012-04-04

Similar Documents

Publication Publication Date Title
KR101178768B1 (en) Method of recovery of lithium from cathodic active material of lithium battery
KR102189661B1 (en) Lithium ion battery scrap treatment method
KR101178769B1 (en) Method of recovery of lithium from cathodic active material of phosphorus oxide lithium battery
KR101621312B1 (en) Method Of Recycling Resource for lithium ion secondary battery
CN104105803B (en) The recovery method of lithium
KR101201947B1 (en) Method for recovering valuable metals from lithium secondary battery wastes
JP5112526B2 (en) Reprocessing and synthesis method of metal oxide positive electrode active material for lithium secondary battery
EP3956487B1 (en) Process for the recovery of cathode materials in the recycling of batteries
KR102313447B1 (en) Method for recovering metal from secondary battery
CN101831548A (en) Method for recovering valuable metals from waste lithium manganese oxide battery
JP2013095951A (en) Method for recovering lithium
JP2012064557A5 (en)
CN109097581A (en) The recovery method of valuable metal in waste and old nickel cobalt manganese lithium ion battery
CN102088124A (en) High-purity polymetallic-element solid mixed salt and preparation method and application thereof
JPH116020A (en) Method for recovering high-purity cobalt compound from scrap lithium ion battery
US20220411896A1 (en) Method for recycling li-ion batteries
KR101997983B1 (en) A Preparing Method Of Nickel-Cobalt-Manganese Complex Sulphate Solution Having Low Concentration Of Calcium Ion By Recycling A Wasted Lithium Secondary Battery Cathode Material
CN109004307A (en) The recyclable device of valuable metal in waste and old nickel cobalt manganese lithium ion battery
KR101589738B1 (en) Method of preparing positive active material precursor
CN111041218A (en) Comprehensive extraction method for metals in waste lithium ion batteries
KR101372622B1 (en) Method for preparing nmc(ni-co-mn) hydroxide from ni ore
JP2023516663A (en) Disposal method of lithium iron phosphate battery
KR20230044147A (en) Lithium recovery method
KR102313962B1 (en) Manufacturing method of precursor for cathode active material from waste lithium secondary battery
KR101568216B1 (en) Method of manufacturing electrode active material and cathod active material manufactured by the method

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160225

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160829

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee