KR101525000B1 - Method for preparing nickel-manganese complex hydroxides for cathode materials in lithium batteries, nickel-manganese complex hydroxides prepared by the method and cathode materials in lithium batteries comprising the same - Google Patents

Method for preparing nickel-manganese complex hydroxides for cathode materials in lithium batteries, nickel-manganese complex hydroxides prepared by the method and cathode materials in lithium batteries comprising the same Download PDF

Info

Publication number
KR101525000B1
KR101525000B1 KR1020120106061A KR20120106061A KR101525000B1 KR 101525000 B1 KR101525000 B1 KR 101525000B1 KR 1020120106061 A KR1020120106061 A KR 1020120106061A KR 20120106061 A KR20120106061 A KR 20120106061A KR 101525000 B1 KR101525000 B1 KR 101525000B1
Authority
KR
South Korea
Prior art keywords
nickel
active material
manganese
secondary battery
solution
Prior art date
Application number
KR1020120106061A
Other languages
Korean (ko)
Other versions
KR20140039651A (en
Inventor
윤성훈
이철위
고승현
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020120106061A priority Critical patent/KR101525000B1/en
Publication of KR20140039651A publication Critical patent/KR20140039651A/en
Application granted granted Critical
Publication of KR101525000B1 publication Critical patent/KR101525000B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 기존의 공침법보다 양극 활물질의 제조를 위한 전구체 입자의 성장을 촉진시키고, 입자의 평균 입경의 조절을 용이하게 하는 리튬이차전지용 니켈-망간 복합 수산화물의 제조방법 및 이에 따라 수득된 니켈-망간 복합 수산화물을 이용하여 전구체 입자의 미분량을 감소시키고 제품의 생산수율을 증가, 용량의 증대 및 탭밀도를 증대시킬 수 있도록 제조된 리튬이차전지용 양극 활물질에 관한 것이다.The present invention relates to a method for producing a nickel-manganese complex hydroxide for lithium secondary battery, which facilitates the growth of precursor particles for the production of a cathode active material and facilitates control of the average particle size of the particles, Manganese complex hydroxide to reduce the amount of precursor particles and increase the production yield of the product, increase the capacity and increase the tap density of the cathode active material for lithium secondary batteries.

Description

리튬이차전지의 양극 활물질용 니켈-망간 복합 수산화물의 제조방법, 이에 따라 제조된 니켈-망간 복합 수산화물 및 이를 포함하는 리튬이차전지용 양극 활물질 {METHOD FOR PREPARING NICKEL-MANGANESE COMPLEX HYDROXIDES FOR CATHODE MATERIALS IN LITHIUM BATTERIES, NICKEL-MANGANESE COMPLEX HYDROXIDES PREPARED BY THE METHOD AND CATHODE MATERIALS IN LITHIUM BATTERIES COMPRISING THE SAME} BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-manganese complex hydroxide for a positive electrode active material of a lithium secondary battery, a nickel-manganese complex hydroxide prepared thereby, and a cathode active material for a lithium secondary battery comprising the nickel- NICKEL-MANGANESE COMPLEX HYDROXIDES PREPARED BY THE METHOD AND CATHODE MATERIALS IN LITHIUM BATTERIES COMPRISING THE SAME}

본 발명은 리튬이차전지의 양극 활물질용 니켈-망간 복합 수산화물의 제조방법, 이에 따라 제조된 니켈-망간 복합 수산화물 및 이를 포함하는 리튬이차전지용 양극 활물질에 관한 것으로, 보다 상세하게는 기존의 공침법보다 양극 활물질의 제조를 위한 전구체 입자의 성장을 촉진시키고, 입자의 평균 입경의 조절을 용이하게 하는 리튬이차전지용 니켈-망간 복합 수산화물의 제조방법 및 이에 따라 수득된 니켈-망간 복합 수산화물을 이용하여 전구체 입자의 미분량을 감소시키고 제품의 생산수율을 증가, 용량의 증대 및 탭밀도를 증대시킬 수 있도록 제조된 리튬이차전지용 양극 활물질에 관한 것이다.
The present invention relates to a process for producing a nickel-manganese complex hydroxide for a cathode active material of a lithium secondary battery, a nickel-manganese complex hydroxide prepared thereby and a cathode active material for a lithium secondary battery comprising the same, more particularly, A method for producing a nickel-manganese composite hydroxide for a lithium secondary battery, which promotes the growth of precursor particles for production of a cathode active material and facilitates control of the average particle diameter of the particles, and a method for producing precursor particles To increase the production yield of the product, to increase the capacity and to increase the tap density, and to a cathode active material for a lithium secondary battery.

리튬이차전지의 경우 에너지 밀도가 높아 동일 체적으로 비교하면 Ni/Cd 전지 보다 1.5~2배의 높은 에너지 밀도를 가지게 되어, 휴대 전화, 노트북 등의 전원장치로 보급되고 있다. The lithium secondary battery has a high energy density and 1.5 to 2 times higher energy density than a Ni / Cd battery in terms of the same volume, and is now being used as a power source for mobile phones and notebook computers.

특히, 이들 제품의 휴대성에 대한 성능은 핵심부품인 이차전지에 의해 좌우되므로 고성능 전지에 대한 요구는 대단히 크다. 전지에 요구되는 특성에는 충방전 특성, 수명, 고율 특성과 고온에서의 안정성 등 여러 가지 측면이 있다. Particularly, the performance of these products depends on the performance of the secondary battery, which is a core component, and thus the demand for a high performance battery is very large. Characteristics required for the battery include various aspects such as charge / discharge characteristics, lifetime, high rate characteristics, and stability at high temperatures.

리튬이차전지의 양극 활물질 중 5V급 스피넬 양극 활물질은 고전압화에 따른 높은 에너지 밀도를 가지고 있어 가장 주목 받고 있는 양극 활물질이다.Among the cathode active materials of lithium secondary batteries, the 5V-class spinel cathode active material is a cathode active material having a high energy density due to high voltage.

현재 시판되는 리튬이차전지는 양극에 LiCoO2를, 음극에는 탄소를 사용한다.Currently available lithium secondary batteries use LiCoO 2 as the anode and carbon as the cathode.

이와 같이 대표적인 리튬이차전지용 양극 활물질인 코발트계 양극 활물질 LiCoO2는 우수한 수명특성 및 전도도를 가지고 있지만 용량이 작고 원료가 고가인 단점이 있다.As described above, a typical positive electrode active material for a lithium secondary battery is a cobalt-based positive electrode active material LiCoO 2, which has excellent life characteristics and conductivity, but has a disadvantage in that the capacity is small and the raw material is expensive.

한국공개특허 제2006-0041241호에서는 조성이 LixNiyMnzO2(x가 1+1/9±(1+1/9)/10, y가 4/9±(4/9)/10, z가 4/9±(4/9)/10를 나타냄)로 표시되고, 또한 결정구조가 단사정계에 속하며, 공간군이 C12/m1(No. 12)인 리튬-니켈-망간 복합 산화물 및 이의 제조방법을 제공한다.In Korean Patent Publication No. 2006-0041241, the composition is LixNiyMnzO 2 (x is 1 + 1/9 ± (1 + 1/9) / 10, y is 4/9 ± (4/9) 9? (4/9) / 10), and the crystal structure is monoclinic and the space group is C12 / m1 (No. 12), and a method for producing the lithium-nickel- do.

이와 같이 상술한 리튬이차전지용 코발트계 양극 활물질의 문제점을 해결하기 위해 LiNiO2의 일부를 망간으로 치환시킨 LiNiMnO2 양극 활물질에 대한 연구가 활발히 진행되어 왔으나 아직까지 만족할만한 고효율 충방전 특성 및 고온특성을 얻지 못해 아직까지 전지 안전성을 확립하지 못하고 있는 실정이다.In order to solve the problems of the above-described cobalt-based cathode active material for lithium secondary batteries, studies have been actively conducted on LiNiMnO 2 cathode active material in which a part of LiNiO 2 is replaced with manganese. However, satisfactory high efficiency charging / discharging characteristics and high- And thus the safety of the battery has not yet been established.

양극 활물질의 가장 일반적인 제조방법은 고상반응법인데, 이 방법은 각 구성원소의 탄산염 혹은 수산화물을 원료로 하여 이들의 분말을 혼합 및 소성하는 과정을 수차례 반복하여 제조한다. 이 방법의 단점은 혼합시 볼-밀로부터 불순물 유입이 많으며 불균일 반응이 일어나기 쉬워 균일한 상을 얻기 어렵고, 분말입자의 크기를 일정하게 제어하기 곤란하여 소결성이 떨어지며, 제조시 공정온도가 높고 제조시간이 길다는 것이다. 또한 충방전 사이클이 반복됨에 따라, 활물질의 결정구조가 붕괴되고 전지의 수명특성 또한 저하된다.The most common method of producing a cathode active material is a solid phase reaction, which is a process of mixing and firing powders of carbonates or hydroxides of each constituent element as raw materials several times. The disadvantage of this method is that there is a large amount of impurities from the ball mill during mixing and a heterogeneous reaction is apt to occur, so that it is difficult to obtain a uniform phase, and it is difficult to control the size of the powder particles to be constant and sintering is inferior. This is long. Also, as the charge and discharge cycles are repeated, the crystal structure of the active material collapses and the lifetime characteristics of the battery also deteriorate.

이를 해결하기 위하여 킬레이트를 이용한 공침법이 개시되어 있으나, 이러한 방법은 소성시 NOx나 COx 등의 배기가스가 배출되는 문제가 있다.To cope with this problem, a coprecipitation method using a chelate has been disclosed, but this method has a problem in that exhaust gas such as NO x or CO x is emitted during firing.

아울러, 금속 복합 물질들 간의 침전 영역이 각각 상이하고 특히 Ni 및 Mn을 주성분으로 하는 층상구조의 양극 활물질의 경우 Co 미함유로 인해 Mn이 과도하게 함유된 경우에는 입자의 성장이 느려지고 이로 인해 원하는 크기의 입자를 형성시키지 못하거나, 반응기 내의 용액 체류 시간을 증가시켜야 하므로 제조 수율이 감소하게 되는 문제가 있다. 또한 제조된 양극 활물질의 경우 용량, 속도 특성 등이 떨어지는 단점을 지닌다.
In addition, in the case of a layered cathode active material mainly composed of Ni and Mn as a main component, the precipitation areas between the metal composite materials are different from each other. In the case where Mn is excessively contained due to the absence of Co, the particle growth is slowed, The particles can not be formed or the solution retention time in the reactor must be increased, resulting in a problem that the production yield is reduced. In addition, the produced cathode active material has disadvantages in that capacity and speed characteristics are deteriorated.

본 발명자들은 상술한 리튬이차전지용 양극 활물질의 문제점을 해결하고자 연구를 거듭하였고, 그 결과 공침법을 이용하여 Ni, Mn을 주성분으로 하는 다성분 금속산화물계 리튬이차전지용 양극 활물질에 포함되는 니켈-망간 복합 수산화물의 제조 공정에서 금속 성분비, 수소이온농도 (pH)를 최적화함으로써, 니켈의 함량비에 따른 최적의 합성 pH와의 상관관계를 규명하고 이를 통해, 기존의 공침법보다 양극 활물질 제조를 위한 니켈-망간 복합 수산화물 전구체 입자의 성장을 촉진시키고, 입자의 평균 입경을 조절을 용이하게 하는 리튬이차전지용 니켈-망간 복합 수산화물의 제조방법, 이에 따라 제조된 니켈-망간 복합 수산화물 및 이를 포함하는 양극 활물질을 개발하여 본 발명을 완성하기에 이르렀다.The present inventors have repeatedly studied to solve the problems of the above-described cathode active material for a lithium secondary battery. As a result, the present inventors have found that nickel-manganese contained in a cathode active material for a multi-component metal oxide- In this study, we have investigated the effect of nickel content on the synthesis pH and the optimum pH of the composite hydroxide by optimizing the metal component ratio and pH (pH) Manganese complex hydroxide for lithium secondary battery which promotes the growth of manganese complex hydroxide precursor particles and facilitates control of the average particle size of the particles, a nickel-manganese complex hydroxide prepared thereby and a cathode active material containing the same And thus completed the present invention.

따라서, 본 발명의 목적은 기존의 공침법보다 양극 활물질의 제조를 위한 전구체 입자의 성장을 촉진시키고, 입자의 평균 입경의 조절을 용이하게 하는 리튬이차전지용 니켈-망간 복합 수산화물의 제조방법을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a method for preparing a nickel-manganese complex hydroxide for lithium secondary battery, which facilitates the growth of precursor particles for the production of a cathode active material and facilitates control of the average particle size of the particles, will be.

본 발명의 다른 목적은 상기 니켈-망간 복합 수산화물을 이용하여 전구체 입자의 미분량을 감소시키고 제품의 생산수율을 증가, 용량의 증대 및 탭밀도를 증대시킬 수 있도록 제조된 리튬이차전지용 양극 활물질을 제공하는 것이다.
Another object of the present invention is to provide a positive electrode active material for a lithium secondary battery, which is prepared by using the nickel-manganese complex hydroxide to reduce the amount of precursor particles and increase product yield, increase capacity and increase tap density .

상기한 목적을 달성하기 위해, 본 발명은 니켈(Ni) 및 망간(Mn)을 금속염으로 포함하는 금속염 용액에 수산화나트륨(NaOH) 용액 및 암모니아 수용액을 동시에 첨가하면서, 생성되는 반응 혼합물의 pH를 조절하여 하기 화학식 1로 표시되는 니켈-망간 복합 수산화물 전구체 입자를 침전시키는 것을 포함하는 리튬이차전지의 양극 활물질용 니켈-망간 복합 수산화물의 제조방법을 제공한다.In order to accomplish the above object, the present invention provides a method for preparing a metal salt solution containing nickel (Ni) and manganese (Mn) as a metal salt while simultaneously adding a sodium hydroxide (NaOH) solution and an aqueous ammonia solution Manganese complex hydroxide precursor particles represented by the following general formula (1), followed by precipitation of nickel-manganese complex hydroxide precursor particles represented by the following general formula (1).

[화학식 1] [Chemical Formula 1]

NixMn1-x(OH)2 Ni x Mn 1-x (OH) 2

(식 중, x는 0.2 ≤ x ≤ 0.4 를 만족시키는 값임).(Wherein x is a value satisfying 0.2? X? 0.4).

본 발명에서 니켈(Ni) 및 망간(Mn)을 금속염으로 포함하는 금속염 용액에 수산화나트륨(NaOH) 용액 및 암모니아 수용액을 첨가하여 생성되는 반응 혼합물의 pH는 11~12이며, 이는 하기 수학식 1에 따라 결정된다.In the present invention, the pH of a reaction mixture produced by adding a sodium hydroxide (NaOH) solution and an aqueous ammonia solution to a metal salt solution containing nickel (Ni) and manganese (Mn) as a metal salt is 11 to 12, .

[수학식 1][Equation 1]

y = 10.67 (±0.03) + 1.1 (±0.06) xy = 10.67 (+/- 0.03) + 1.1 (+/- 0.06) x

(식 중, x 는 Ni 함량비이고, y 는 pH 임).(Where x is the Ni content ratio and y is the pH).

또한, 본 발명은 상기 니켈-망간 복합 수산화물의 제조방법에 따라 제조된 니켈-망간 복합 수산화물, 이로부터 수득되는 리튬이차전지용 양극 활물질 및 이를 사용하여 제조된 리튬이차전지를 제공한다.
The present invention also provides nickel-manganese complex hydroxides prepared according to the process for preparing the nickel-manganese composite hydroxide, a cathode active material for the lithium secondary battery obtained therefrom, and a lithium secondary battery produced using the same.

본 발명의 리튬이차전지의 양극 활물질용 니켈-망간 복합 수산화물의 제조방법은 Mn 함유량이 20 몰% 이상에서 침전이 어려운 특성을 제어하기 위해 Ni 함량비 조절, 용액 내 pH 최적화 및 암모니아 함량의 최적화, 반응온도/교반속도의 최적화를 통해 Co가 없는 환경에서도 전체 입자 성장 속도를 증가시키고, 결과적으로 전체 리튬이차전지의 양극 활물질의 입자 성장 속도를 증가시키는 효과를 나타낸다.
The method for preparing a nickel-manganese complex hydroxide for a cathode active material of a lithium secondary battery according to the present invention is characterized in that, in order to control the characteristics difficult to precipitate at a Mn content of 20 mol% or more, adjustment of the Ni content, optimization of pH in the solution, The optimization of the reaction temperature / stirring speed increases the total grain growth rate even in an environment free of Co, and consequently increases the particle growth rate of the cathode active material of the entire lithium secondary battery.

도 1 내지 도 3은 각각 실시예 1 내지 실시예 3에 의해 얻어진 니켈-망간 복합 수산화물의 SEM 사진이다.
도 4 및 도 5는 각각 본 발명에 따른 비교예 1 내지 비교예 2에 의해 얻어진 니켈-망간 복합 수산화물의 SEM 사진이다.
도 6 및 도 7는 각각 본 발명에 따른 비교예 3 내지 비교예 4에 의해 얻어진 니켈-망간 복합 수산화물의 SEM 사진이다.
도 8은 본 발명에 따른 실시예 3을 통하여 얻어진 니켈-망간 복합 수산화물과 리튬염과 반응시킨 후 고온에서 소성하여 얻어진 양극 활물질의 SEM 사진이다.
도 9은 본 발명의 시험예 2에 따라 제조된 양극 활물질을 사용하여 제조된 코인셀의 충방전 곡선을 나타낸 그래프이다.
1 to 3 are SEM photographs of nickel-manganese composite hydroxides obtained by Examples 1 to 3, respectively.
4 and 5 are SEM photographs of the nickel-manganese composite hydroxide obtained by Comparative Examples 1 to 3 according to the present invention, respectively.
6 and 7 are SEM photographs of the nickel-manganese composite hydroxide obtained by Comparative Examples 3 to 4 according to the present invention, respectively.
FIG. 8 is a SEM photograph of a cathode active material obtained by reacting nickel-manganese complex hydroxide obtained through Example 3 according to the present invention with a lithium salt and calcining at a high temperature.
9 is a graph showing charge / discharge curves of a coin cell manufactured using the cathode active material prepared in Test Example 2 of the present invention.

이하 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 니켈(Ni) 및 망간(Mn)을 금속염으로 포함하는 금속염 용액을 수산화나트륨(NaOH) 용액 및 암모니아 수용액과 함께 동시에 첨가하면서, 생성되는 반응 혼합물의 pH를 조절하여 하기 화학식 1로 표시되는 니켈-망간 복합 수산화물 전구체 입자를 침전시키는 것을 포함하는 리튬이차전지의 양극 활물질용 니켈-망간 복합 수산화물의 제조방법을 제공한다.The present invention relates to a method for preparing a metal salt solution, which comprises simultaneously adding a metal salt solution containing nickel (Ni) and manganese (Mn) as a metal salt together with a sodium hydroxide (NaOH) solution and an aqueous ammonia solution, Manganese complex hydroxide for a positive electrode active material of a lithium secondary battery comprising precipitating nickel-manganese complex hydroxide precursor particles.

[화학식 1] [Chemical Formula 1]

NixMn1-x(OH)2 Ni x Mn 1-x (OH) 2

(식 중, x는 0.2 ≤ x ≤ 0.4 를 만족시키는 값임).(Wherein x is a value satisfying 0.2? X? 0.4).

본 발명에 따르면 공침법(co-precipitation)을 이용하여 리튬이차전지용(Li-ion battery) 양극 활물질을 제조하는데 사용되는 니켈-망간 복합 수산화물을 제조할 수 있다. 이때, 본 발명에서 니켈-망간 금속염 용액으로부터 공침을 통하여 리튬이차전지용 양극 활물질의 전구체를 제조하는 방법은 종래에 코발트를 함유시켜 침전특성 및 양극 성능을 개선하는 방법과는 차이점이 있다.According to the present invention, a nickel-manganese complex hydroxide used for preparing a cathode active material for a lithium secondary battery (Li-ion battery) can be produced by co-precipitation. At this time, in the present invention, a method of producing a precursor of a cathode active material for a lithium secondary battery through coprecipitation from a solution of nickel-manganese metal salt is different from a method of containing cobalt to improve precipitation characteristics and anode performance.

이하에서는 리튬이차전지의 양극 활물질용 니켈-망간 복합 수산화물의 제조방법을 설명한다.Hereinafter, a method for producing a nickel-manganese complex hydroxide for a positive electrode active material of a lithium secondary battery will be described.

우선, 니켈(Ni) 및 망간(Mn)을 금속염으로 포함하는 금속염 용액을 증류수가 담긴 반응기 내에 주입하고, 상기 금속염 용액의 주입과 동시에 수산화나트륨(NaOH) 용액 및 암모니아 수용액을 상기 반응기 내에 첨가하면서 생성되는 반응 혼합물의 pH를 조절하여 상기 화학식 1로 표시되는 니켈-망간 복합 수산화물 전구체 입자를 침전시킨다.First, a metal salt solution containing nickel (Ni) and manganese (Mn) as a metal salt is injected into a reactor containing distilled water, and a sodium hydroxide (NaOH) solution and an aqueous ammonia solution are simultaneously added The nickel-manganese composite hydroxide precursor particles represented by Formula 1 are precipitated by controlling the pH of the reaction mixture.

본 발명에서는 니켈과 망간 두 성분을 함유하는 금속염 용액을 사용하고 이를 직접 투여함으로서 침전특성이 기존의 Co 함유 양극재보다 가격 및 안전성을 증대시키는 효과가 있다. In the present invention, a metal salt solution containing nickel and manganese is used, and the sedimentation property of the metal salt solution is more effective than the conventional Co-containing cathode material.

이를 위하여, 금속염 용액에는 망간 함량이 20 몰% 이상인 니켈(Ni) 및 망간(Mn) 금속염을 포함시키고, Ni과 Mn 간의 조성비 최적화, 반응 pH, 온도 및 교반속도를 최적화 하여 Co가 없는 환경에서도 전구체 입자의 성장을 촉진시키고 평균 입경의 증대, 탭 밀도의 증가, 최종 양극 활물질의 용량을 증대하는 효과를 가져오게 한다. 이러한 효과를 통해 전구체 입자의 미분량을 감소시키고 제품의 생산수율을 증가시키게 된다.For this purpose, the metal salt solution contains nickel (Ni) and manganese (Mn) metal salts having a manganese content of 20 mol% or more, and optimizes the composition ratio between Ni and Mn, and optimizes the reaction pH, temperature and stirring speed, Thereby promoting the growth of the particles, increasing the average particle size, increasing the tap density, and increasing the capacity of the final cathode active material. These effects reduce the amount of precursor particles and increase product yield.

본 발명의 일 실시형태에 있어서, 본 발명에 사용되는 금속염 용액은 니켈, 망간 등을 주된 금속염으로 포함하는 것을 사용하고, 망간의 함유량은 20 ~ 50 몰%이고, 니켈의 함유량은 50 ~ 80 몰%이고, 더욱 바람직하게는 60 ~ 75 몰%이다. 증류수가 담긴 반응기 안에 금속염의 농도가 1.5 ~ 3.0M인 금속염 용액을 입자 체류시간이 5 ~ 50 시간이 되도록 일정속도로 주입한다.In one embodiment of the present invention, the metal salt solution used in the present invention contains nickel, manganese, or the like as a main metal salt, the content of manganese is 20 to 50 mol%, the content of nickel is 50 to 80 mol %, More preferably 60 to 75 mol%. In the reactor containing distilled water, a metal salt solution having a metal salt concentration of 1.5 to 3.0 M is injected at a constant rate so that the particle retention time is 5 to 50 hours.

이때, 금속염 용액에서 니켈의 함량이 80 몰% 초과하면 침전특성이 상이하게 변하며 양극제 제조시 반응성이 나빠지게 되며, 니켈의 함량이 50 몰% 미만이면 용량이 감소하고 Mn의 증가에 따른 속도 및 용량 특성의 저하가 발생할 수 있다. 또한 금속염의 농도가 1.5M 미만으로 낮은 경우 니켈-망간 복합 수산화물의 전체 수율이 낮아지는 단점이 있으며 3.0M을 초과하는 경우 점도가 높고 반응성이 떨어지는 단점이 나타난다. At this time, when the content of nickel exceeds 80 mol%, the precipitation characteristics change and the reactivity becomes poor in the preparation of the positive electrode material. When the content of nickel is less than 50 mol%, the capacity decreases and the rate of increase The capacity characteristics may be deteriorated. In addition, when the concentration of the metal salt is lower than 1.5M, the overall yield of the nickel-manganese composite hydroxide is lowered. When the concentration exceeds 3.0M, the viscosity is high and the reactivity is lowered.

본 발명에서는 니켈(Ni) 및 망간(Mn)을 금속염으로 포함하는 금속염 용액에 수산화나트륨(NaOH) 용액 및 암모니아 수용액을 동시에 첨가하면서, 생성되는 반응 혼합물의 pH는 11~12 이고, 이는 하기 수학식 1에 따라 결정된다.In the present invention, the pH of the resulting reaction mixture is 11 to 12 while simultaneously adding a sodium hydroxide (NaOH) solution and an aqueous ammonia solution to a metal salt solution containing nickel (Ni) and manganese (Mn) 1 < / RTI >

[수학식 1][Equation 1]

y = 10.67 (±0.03) + 1.1 (±0.06) xy = 10.67 (+/- 0.03) + 1.1 (+/- 0.06) x

(식 중, x 는 Ni 함량비이고, y 는 pH 임).(Where x is the Ni content ratio and y is the pH).

본 발명에서는 니켈(Ni) 및 망간(Mn)을 금속염으로 포함하는 금속염 용액을 수산화나트륨(NaOH) 용액 및 암모니아 수용액과 함께 동시에 첨가하여 생성된 반응 혼합물의 pH가 11 미만의 경우는 입자의 크기는 증가하나 니켈의 침전이 원활하지 못하므로 용액 내로 녹아나오는 현상이 발생하며, 생성된 반응 혼합물의 pH 가 12 초과인 경우는 니켈의 용해는 없어지나 입자 크기가 현저히 감소하는 문제점을 가지게 된다. In the present invention, when the pH of a reaction mixture produced by adding a metal salt solution containing nickel (Ni) and manganese (Mn) together with sodium hydroxide (NaOH) solution and aqueous ammonia solution is less than 11, However, when the pH of the resulting reaction mixture is more than 12, the dissolution of nickel disappears, but the particle size is significantly reduced.

아울러, 금속염 용액을 입자 체류시간이 5시간 미만이 되도록 주입하는 경우 전체 생산성이 떨어지게 될 수 있고, 금속염 용액을 입자 체류시간이 50시간이 초과하여 너무 길어지게 되도록 주입하는 경우 입자의 형성이 어려워지는 단점이 발생할 수 있으므로, 본 발명에서 제시하는 상기 농도 및 시간 조건을 준수하는 것이 바람직하다.In addition, when the metal salt solution is injected so that the particle retention time is less than 5 hours, the total productivity may be deteriorated. When the metal salt solution is injected such that the particle retention time is excessively longer than 50 hours, It is preferable to comply with the concentration and time conditions set forth in the present invention.

또한 반응기 내부 교반 속도는 입자의 성장 및 입자간 충돌에 의한 2차 입자 형성에 매우 중요한 역할을 하므로 이의 최적화가 필요한데 반응기 부피 (L) 당 400 내지 1500 분당 회전 속도 (rpm/L) 가 적합하며 더욱 바람직하게는 500 내지 1200 rpm/L 가 적합하다. 반응기 내부 교반 속도가 1500 rpm/L 이상인 경우에는 교반속도가 너무 빨라 2차입자 성장의 어려움 및 연속반응기 기기 설비의 문제점이 있으며, 연속반응기 내부 교반 속도가 400 rpm/L 이하인 경우에는 2차입자의 성장이 이루어지기 어려운 문제점이 존재한다.In addition, since the stirring speed in the reactor plays an important role in the formation of secondary particles due to particle growth and collision between particles, it is necessary to optimize the rotation speed (rpm / L) per 400 to 1500 minutes per reactor volume (L) And preferably 500 to 1200 rpm / L. When the internal stirring speed of the reactor is 1500 rpm / L or more, the stirring speed is too fast, so that there is a problem of difficulty in growing the secondary particles and the equipment of the continuous reactor apparatus. When the internal stirring speed of the continuous reactor is 400 rpm / L or less, There is a problem that is difficult to achieve.

이와, 더불어 암모니아 수용액을 암모니아 대 전체 금속염의 몰비가 1:1~1:4가 되도록 일정속도로 주입해야하며 더욱 바람직하게는 1:1~1:1.5로 주입하여야 한다. 또한 수산화나트륨 용액을 주입하여 반응기 내부의 반응온도를 30~80℃로 조절하고, 금속염 용액의 수소이온농도(pH)를 11~12로 조절하여 상기 화학식 1로 표시되는 니켈-망간 복합 수산화물을 제조한다.In addition, the aqueous ammonia solution should be injected at a constant rate such that the molar ratio of ammonia to the whole metal salt is 1: 1 to 1: 4, and more preferably 1: 1 to 1: 1.5. In addition, a sodium hydroxide solution is injected to adjust the reaction temperature in the reactor to 30 to 80 ° C and the hydrogen ion concentration (pH) of the metal salt solution to 11 to 12 to prepare the nickel-manganese complex hydroxide represented by Formula 1 do.

또한 본 발명은 상술한 바와 같이 제조된 니켈-망간 복합 수산화물을 리튬화합물과 리튬대비 금속의 비율이 1~1.2 몰비로 혼합하여 750~1000℃에서 대기 분위기 혹은 산소분위기 하에서 열처리하여 제조된 양극 활물질을 제공한다.The present invention also relates to a method for producing a lithium-nickel composite oxide, which comprises mixing a nickel-manganese composite hydroxide prepared as described above at a molar ratio of lithium compound to lithium to metal of 1 to 1.2 molar ratio and heat- to provide.

본 발명에 따라 제조된 양극 활물질은 입자 크기가 1~30㎛, 더 바람직하게는 평균입경이 5 ~ 20㎛이며, 표면적이 0.1 ~ 2 m2/g 를 갖도록 제조된다.The cathode active material prepared according to the present invention has a particle size of 1 to 30 탆, more preferably an average particle diameter of 5 to 20 탆, and a surface area of 0.1 to 2 m 2 / g.

본 발명에 따라 제조된 양극 활물질의 평균입경이 5 ㎛ 미만으로 작아지게 되면 입자의 표면적이 증가하여 표면에 불순물 형성이 증가하는 단점이 나타나고, 본 발명에 따라 제조된 양극 활물질의 평균입경이 20 ㎛ 초과하게 되면 입자의 크기가 너무 커져서 리튬이온이 입자 내부로 확산되는 거리가 증가하게 되어 속도 특성이 떨어지는 단점이 나타나게 된다.When the average particle size of the cathode active material prepared according to the present invention is decreased to less than 5 탆, the surface area of particles increases and the formation of impurities on the surface increases. The average particle size of the cathode active material prepared according to the present invention is 20 탆 There is a disadvantage in that the particle size becomes too large and the distance at which lithium ions diffuse into the particles is increased, thereby deteriorating the speed characteristics.

또한, 본 발명은 상술한 양극 활물질을 사용하여 제조된 리튬이차전지를 제공한다.
The present invention also provides a lithium secondary battery produced using the above-mentioned cathode active material.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the present invention. Such variations and modifications are intended to be within the scope of the appended claims.

실시예Example 1 One

Ni/Mn 몰비가 0.5/0.5가 되도록 NiSO4, MnSO4 금속염을 이용하여 금속염 용액을 제조하였다. 제조된 금속염 용액을 수산화나트륨(NaOH) 용액 및 진한 암모니아 수용액과 동시에 CSTR 연속 반응기에 투여하였다. 이러한 반응에서 반응기 내의 금속염 용액의 수소이온농도(pH)가 11.20 정도가 되도록 수산화나트륨(NaOH) 용액의 투여량을 조절하였다. 용액 교반속도는 800 rpm으로 조절하고, 그리고 전체 용액의 체류시간을 7 시간 정도가 되도록 투여량을 조절하였다. 다음으로, CSTR 연속 반응기에서 1L 가 넘으면 넘치는 오버플로우(overflow) 용액을 받아 이를 걸러준 후 증류수로 충분히 씻어주고 이를 120℃ 오븐에서 건조하여 니켈-망간 수산화물 전구체 입자를 제조하였다.
The metal salt solution was prepared using NiSO 4 and MnSO 4 metal salts so that the molar ratio of Ni / Mn was 0.5 / 0.5. The prepared metal salt solution was administered to a CSTR continuous reactor simultaneously with a sodium hydroxide (NaOH) solution and a concentrated aqueous ammonia solution. In this reaction, the dosage of sodium hydroxide (NaOH) solution was adjusted so that the hydrogen ion concentration (pH) of the metal salt solution in the reactor was about 11.20. The solution stirring speed was adjusted to 800 rpm, and the dose was adjusted so that the residence time of the whole solution was about 7 hours. Next, in the CSTR continuous reactor, if over 1 L was taken, the overflow solution was filtered and sufficiently washed with distilled water, and dried in an oven at 120 ° C. to prepare nickel-manganese hydroxide precursor particles.

실시예Example 2 2

Ni/Mn 몰비가 0.6/0.4가 되도록 NiSO4, MnSO4 금속염을 이용하여 금속염 용액을 제조하였다. 제조된 금속염 용액을 20중량% 수산화나트륨(NaOH) 용액 및 진한 암모니아 수용액과 함께 CSTR 연속 반응기에 투여하였다. 이러한 반응에서 반응기 내의 금속염 용액의 수소이온농도(pH) 가 11.32 정도가 되도록 수산화나트륨(NaOH) 용액의 투여량을 조절하였다. 용액 교반속도는 800 rpm으로 조절하고 전체 용액의 체류시간을 7 시간 정도가 되도록 투여량을 조절하였다. 다음으로, CSTR 연속 반응기에서 1L 가 넘으면 넘치는 오버플로우(overflow) 용액을 받아 이를 걸러준 후 증류수로 충분히 씻어주고 이를 120℃ 오븐에서 건조하여 니켈-망간 수산화물 전구체 입자를 제조하였다.
A metal salt solution was prepared using NiSO 4 and MnSO 4 metal salts such that the molar ratio of Ni / Mn was 0.6 / 0.4. The prepared metal salt solution was administered to a CSTR continuous reactor together with a 20 wt% sodium hydroxide (NaOH) solution and a concentrated aqueous ammonia solution. In this reaction, the dosage of sodium hydroxide (NaOH) solution was adjusted so that the hydrogen ion concentration (pH) of the metal salt solution in the reactor was about 11.32. The solution stirring speed was adjusted to 800 rpm and the dose was adjusted so that the residence time of the whole solution was about 7 hours. Next, in the CSTR continuous reactor, if over 1 L was taken, the overflow solution was filtered and sufficiently washed with distilled water, and dried in an oven at 120 ° C. to prepare nickel-manganese hydroxide precursor particles.

실시예Example 3 3

Ni/Mn 몰비가 0.7/0.3이 되도록 NiSO4, MnSO4 금속염을 이용하여 금속염 용액을 제조하였다. 제조된 금속염 용액을 20중량% 수산화나트륨(NaOH) 용액 및 진한 암모니아 수용액과 동시에 CSTR 연속 반응기에 투여하였다. 이러한 반응에서 반응기 내의 금속염 용액의 수소이온농도(pH) 가 11.42 정도가 되도록 수산화나트륨(NaOH) 용액의 투여량을 조절하였다. 용액 교반속도는 800 rpm으로 유지하고 전체 용액의 체류시간을 7 시간 정도가 되도록 투여량을 조절하였다. 다음으로, CSTR 연속 반응기에서 1L 가 넘으면 넘치는 오버플로우(overflow) 용액을 받아 이를 걸러준 후 증류수로 충분히 씻어주고 이를 120℃ 오븐에서 건조하여 니켈-망간 수산화물 전구체 입자를 제조하였다.
A metal salt solution was prepared using NiSO 4 and MnSO 4 metal salts such that the molar ratio of Ni / Mn was 0.7 / 0.3. The prepared metal salt solution was administered to a CSTR continuous reactor simultaneously with a 20 wt% sodium hydroxide (NaOH) solution and a concentrated aqueous ammonia solution. In this reaction, the dosage of sodium hydroxide (NaOH) solution was adjusted so that the pH of the metal salt solution in the reactor was about 11.42. The solution stirring speed was maintained at 800 rpm and the dose was adjusted so that the residence time of the whole solution was about 7 hours. Next, in the CSTR continuous reactor, if over 1 L was taken, the overflow solution was filtered and sufficiently washed with distilled water, and dried in an oven at 120 ° C. to prepare nickel-manganese hydroxide precursor particles.

실시예Example 4 4

상기 실시예 3을 통하여 얻어진 니켈 망간 수산화물 전구체 입자를 Li과 금속 전구체와의 몰비가 1.05/1이 되도록 Li2CO3와 섞어주고 이를 대기 분위기 하에서 950℃에서, 10 시간 반응시켜 양극 활물질을 제조하였다.
The nickel manganese hydroxide precursor particles obtained through Example 3 were mixed with Li 2 CO 3 so that the molar ratio of Li to the metal precursor was 1.05 / 1 and reacted at 950 ° C for 10 hours in the air atmosphere to prepare a cathode active material .

비교예Comparative Example 1 One

Ni/Mn 몰비가 0.6/0.4가 되도록 NiSO4, MnSO4 금속염을 이용하여 금속염 용액을 제조하였다. 제조된 금속염 용액을 수산화나트륨(NaOH) 용액 및 진한 암모니아 수용액과 동시에 CSTR 연속 반응기에 투여하였다. 이러한 반응에서 반응기 내의 금속염 용액의 수소이온농도(pH) 가 11.32 정도가 되도록 수산화나트륨(NaOH) 용액의 투여량을 조절하였다. 용액 교반속도는 600 rpm으로 조절하고 전체 용액의 체류시간을 7 시간 정도가 되도록 투여량을 조절하였다. 다음으로, CSTR 연속 반응기에서 1L 가 넘으면 넘치는 오버플로우(overflow) 용액을 받아 이를 걸러준 후 증류수로 충분히 씻어주고 이를 120℃ 오븐에서 건조하여 니켈-망간 수산화물 전구체 입자를 제조하였다.
A metal salt solution was prepared using NiSO 4 and MnSO 4 metal salts such that the molar ratio of Ni / Mn was 0.6 / 0.4. The prepared metal salt solution was administered to a CSTR continuous reactor simultaneously with a sodium hydroxide (NaOH) solution and a concentrated aqueous ammonia solution. In this reaction, the dosage of sodium hydroxide (NaOH) solution was adjusted so that the hydrogen ion concentration (pH) of the metal salt solution in the reactor was about 11.32. The solution stirring speed was adjusted to 600 rpm and the dose was adjusted so that the residence time of the whole solution was about 7 hours. Next, in the CSTR continuous reactor, if over 1 L was taken, the overflow solution was filtered and sufficiently washed with distilled water, and dried in an oven at 120 ° C. to prepare nickel-manganese hydroxide precursor particles.

비교예Comparative Example 2 2

Ni/Mn 몰비가 0.6/0.4가 되도록 NiSO4, MnSO4 금속염을 이용하여 금속염 용액을 제조하였다. 제조된 금속염 용액을 20중량% 수산화나트륨(NaOH) 용액 및 진한 암모니아 수용액과 동시에 CSTR 연속 반응기에 투여하였다. 이러한 반응에서 반응기 내의 금속염 용액의 수소이온농도(pH) 가 11.32 정도가 되도록 수산화나트륨(NaOH) 용액의 투여량을 조절하였다. 용액 교반속도는 1000 rpm으로 조절하고 전체 용액의 체류시간을 7 시간 정도가 되도록 투여량을 조절하였다. 다음으로, CSTR 연속 반응기에서 1L 가 넘으면 넘치는 오버플로우(overflow) 용액을 받아 이를 걸러준 후 증류수로 충분히 씻어주고 이를 120℃ 오븐에서 건조하여 니켈-망간 수산화물 전구체 입자를 제조하였다.
A metal salt solution was prepared using NiSO 4 and MnSO 4 metal salts such that the molar ratio of Ni / Mn was 0.6 / 0.4. The prepared metal salt solution was administered to a CSTR continuous reactor simultaneously with a 20 wt% sodium hydroxide (NaOH) solution and a concentrated aqueous ammonia solution. In this reaction, the dosage of sodium hydroxide (NaOH) solution was adjusted so that the hydrogen ion concentration (pH) of the metal salt solution in the reactor was about 11.32. The solution stirring speed was adjusted to 1000 rpm and the dose was adjusted so that the residence time of the whole solution was about 7 hours. Next, in the CSTR continuous reactor, if over 1 L was taken, the overflow solution was filtered and sufficiently washed with distilled water, and dried in an oven at 120 ° C. to prepare nickel-manganese hydroxide precursor particles.

비교예Comparative Example 3 3

Ni/Mn 몰비가 0.5/0.5가 되도록 NiSO4, MnSO4 금속염을 이용하여 금속염 용액을 제조하였다. 제조된 금속염 용액을 20중량% 수산화나트륨(NaOH) 용액 및 진한 암모니아 수용액과 동시에 CSTR 연속 반응기에 투여하였다. 이러한 반응에서 반응기 내의 금속염 용액의 수소이온농도(pH) 가 12.08 정도가 되도록 수산화나트륨(NaOH) 용액의 투여량을 조절하였다. 용액 교반속도는 1000 rpm으로 조절하고 전체 용액의 체류시간을 7 시간 정도가 되도록 투여량을 조절하였다. 다음으로, CSTR 연속 반응기에서 1L 가 넘으면 넘치는 오버플로우(overflow) 용액을 받아 이를 걸러준 후 증류수로 충분히 씻어주고 이를 120℃ 오븐에서 건조하여 니켈-망간 수산화물 전구체 입자를 제조하였다.
The metal salt solution was prepared using NiSO 4 and MnSO 4 metal salts so that the molar ratio of Ni / Mn was 0.5 / 0.5. The prepared metal salt solution was administered to a CSTR continuous reactor simultaneously with a 20 wt% sodium hydroxide (NaOH) solution and a concentrated aqueous ammonia solution. In this reaction, the dosage of sodium hydroxide (NaOH) solution was adjusted so that the pH of the metal salt solution in the reactor was about 12.08. The solution stirring speed was adjusted to 1000 rpm and the dose was adjusted so that the residence time of the whole solution was about 7 hours. Next, in the CSTR continuous reactor, if over 1 L was taken, the overflow solution was filtered and sufficiently washed with distilled water, and dried in an oven at 120 ° C. to prepare nickel-manganese hydroxide precursor particles.

비교예Comparative Example 4 4

Ni/Mn 몰비가 0.5/0.5가 되도록 NiSO4, MnSO4 금속염을 이용하여 금속염 용액을 제조하였다. 제조된 금속염 용액을 20중량% 수산화나트륨(NaOH) 용액 및 진한 암모니아 수용액과 동시에 CSTR 연속 반응기에 투여하였다. 이러한 반응에서 반응기 내의 금속염 용액의 수소이온농도(pH) 가 12.03 정도가 되도록 수산화나트륨(NaOH) 용액의 투여량을 조절하였다. 용액 교반속도는 1000 rpm으로 조절하고 전체 용액의 체류시간을 7 시간 정도가 되도록 투여량을 조절하였다. 다음으로, CSTR 연속 반응기에서 1L 가 넘으면 넘치는 오버플로우(overflow) 용액을 받아 이를 걸러준 후 증류수로 충분히 씻어주고 이를 120℃ 오븐에서 건조하여 니켈-망간 수산화물 전구체 입자를 제조하였다.
The metal salt solution was prepared using NiSO 4 and MnSO 4 metal salts so that the molar ratio of Ni / Mn was 0.5 / 0.5. The prepared metal salt solution was administered to a CSTR continuous reactor simultaneously with a 20 wt% sodium hydroxide (NaOH) solution and a concentrated aqueous ammonia solution. In this reaction, the dosage of sodium hydroxide (NaOH) solution was adjusted so that the pH of the metal salt solution in the reactor was about 12.03. The solution stirring speed was adjusted to 1000 rpm and the dose was adjusted so that the residence time of the whole solution was about 7 hours. Next, in the CSTR continuous reactor, if over 1 L was taken, the overflow solution was filtered and sufficiently washed with distilled water, and dried in an oven at 120 ° C. to prepare nickel-manganese hydroxide precursor particles.

시험예Test Example 1: 주사전자현미경을 사용한 입자의 크기 및 분포 조사 1: Investigation of particle size and distribution using scanning electron microscope

상기 실시예 1 내지 실시예 3에 의해 얻어진 니켈-망간 수산화물 전구체 입자를 주사전자현미경을 사용하여 입자의 크기 및 분포 등을 조사하였고, 이를 각각 도 1 내지 도 3에 나타내었다. 도 4 및 도 5는 본 발명에 따른 비교예 1 내지 비교예 2를 통하여 얻어진 니켈-망간 수산화물 전구체 입자의 주사전자현미경 사진이다.The size and distribution of the nickel-manganese hydroxide precursor particles obtained by the above Examples 1 to 3 were examined using a scanning electron microscope, and they were shown in FIGS. 1 to 3, respectively. 4 and 5 are scanning electron micrographs of the nickel-manganese hydroxide precursor particles obtained through Comparative Examples 1 to 2 according to the present invention.

도 2와 도 4 및 도 5의 경우를 비교하면, 용액 교반속도를 변화시키면 제조되는 니켈-망간 수산화물 전구체 입자의 크기가 달라지는 것을 알 수 있다. 특히 600 rpm에서 800 rpm으로 증가시키면 입자의 크기가 커지나, 1000 rpm으로 올리면 오히려 크기가 감소하는 것을 알 수 있다.Comparing FIGS. 2 and 4 and FIG. 5, it can be seen that the size of the nickel-manganese hydroxide precursor particles produced varies by varying the solution agitation speed. Particularly, when the particle size is increased from 600 rpm to 800 rpm, the particle size increases, but when the particle size increases to 1000 rpm, the particle size decreases.

도 4는 본 발명에 따른 실시예 3을 통하여 얻어진 전구체를 리튬염과 반응시킨 후 고온에서 소성하여 얻어진 양극 활물질의 주사전자현미경 사진이다.4 is a scanning electron microscope (SEM) image of a cathode active material obtained by reacting a precursor obtained through Example 3 according to the present invention with a lithium salt and calcining at a high temperature.

도 4에서 나타나는 양극 활물질은 평균 입경이 10 ㎛ 이상으로 크며, 표면적이 0.3 m2/g 정도로 작아지게 되어 표면 불순물의 양이 감소하고 미분량이 감소하는 장점이 나타남을 알 수 있다.The positive electrode active material shown in FIG. 4 has an average particle size of 10 μm or more and a surface area of 0.3 m 2 / g, which is an advantage that the amount of surface impurities decreases and the amount of surface impurities decreases.

도 6 내지 도 7에서 나타나는 전구체는 pH 값이 12 이상으로 높아지는 경우 입자간의 공극이 매우 크거나 입자 크기가 작아 밀도가 낮은 단점이 나타나므로 상기 수학식 1로 표현되는 최적의 pH 조건하에서 제조된 니켈-망간 수산화물 전구체 입자 형상이 우수하다는 것을 알 수 있다.
6 to 7, when the pH value is increased to 12 or more, there is a disadvantage in that the voids between the particles are very large or the particle size is small and the density is low. Therefore, the precursor of the precursor represented by the formula - manganese hydroxide precursor particle shape is excellent.

시험예Test Example 2:  2: 리튬이온전지의Lithium-ion battery 제조 Produce

상기 실시예 3의 제조된 물질과 바인더인 PVDF(Polyvinylidene Fluoride), 도전제인 카본블랙(상업명 : super p)을 92:4:4의 비율로 혼합하여 이를 알루미늄 집전체 코팅한 후, 이를 건조시키고 롤프레스(roll press)하여 제조된 전극을 사용하여 코인셀을 제작하였다. 여기서 사용된 전해질은 1M LiPF6 EC/DMC를 이용하였다.PVDF (polyvinylidene fluoride) as a binder and carbon black (trade name: super p) as a binder were mixed at a ratio of 92: 4: 4, coated with aluminum collector, dried A coin cell was fabricated using an electrode manufactured by roll pressing. The electrolyte used here was 1M LiPF 6 EC / DMC.

충전 시에는 4.3 V 정전류/정전압 방식으로 1/5 내지 1/2 C의 조건 하에 제조된 코인셀의 충방전 용량을 측정하여 표 1 및 도 7에 나타내었다.The charging / discharging capacity of the coin cell manufactured under the condition of 1/5 to 1/2 C in the 4.3 V constant current / constant voltage method at the time of charging was measured and shown in Table 1 and FIG.

실시예3의 양극 활물질The cathode active material of Example 3 방전 용량(mAh/g)Discharge capacity (mAh / g) 0.1C0.1 C 152.5152.5 0.2C0.2C 139.4139.4 0.5C0.5 C 125.1125.1 1.0C1.0 C 111.4111.4

위와 같이 본 발명에 따라 최적화된 제조 조건하에서 제조된 니켈-망간 층상구조 양극 활물질은 용량이 152.5 mAh/g 으로 기존의 양극 활물질에 비해 높은 용량 및 1 C에서 111 mAh/g 으로 우수한 출력을 발현하는 것을 알 수 있다. As described above, the nickel-manganese layered structure cathode active material prepared under optimized manufacturing conditions according to the present invention has a capacity of 152.5 mAh / g and exhibits a high capacity and a good output at 1 C to 111 mAh / g as compared with the conventional cathode active material .

Claims (13)

니켈(Ni) 및 망간(Mn)을 금속염으로 포함하는 금속염 용액을 수산화나트륨(NaOH) 용액 및 암모니아 수용액과 함께 동시에 물에 연속적으로 첨가하면서 생성되는 반응 혼합물의 pH를 조절하여 하기 화학식 1로 표시되는 니켈-망간 복합 수산화물 전구체 입자를 침전시키는 것을 포함하는 리튬이차전지의 양극 활물질용 니켈-망간 복합 수산화물의 연속적 제조방법으로서,
전술한 암모니아 수용액을 암모니아 대 전체 금속염의 몰비가 1:1~1:4가 유지되도록 첨가하고, 전술한 반응 혼합물의 pH는 11~12로 조절되도록 수산화나트륨 용액을 첨가하고, 전술한 반응 혼합물을 500~1200 rpm/L의 교반 속도로 교반하는 것을 특징으로 하는, 리튬이차전지의 양극 활물질용 니켈-망간 복합 수산화물의 연속적 제조방법:
[화학식 1]
NixMn1-x(OH)2
(식 중, x는 0.2 x 0.4 를 만족시키는 값임).
A metal salt solution containing nickel (Ni) and manganese (Mn) as a metal salt is continuously added to water simultaneously with a sodium hydroxide (NaOH) solution and an aqueous ammonia solution to adjust the pH of the resulting reaction mixture, A method of continuously producing a nickel-manganese composite hydroxide for a positive electrode active material of a lithium secondary battery comprising precipitating nickel-manganese complex hydroxide precursor particles,
The above-mentioned aqueous ammonia solution was added so that the molar ratio of ammonia to the whole metal salt was maintained at 1: 1 to 1: 4, the sodium hydroxide solution was added so that the pH of the reaction mixture was adjusted to 11 to 12, Manganese complex hydroxide for a positive electrode active material of a lithium secondary battery, characterized in that the mixture is stirred at a stirring speed of 500 to 1200 rpm / L.
[Chemical Formula 1]
Ni x Mn 1-x (OH) 2
(Wherein x is a value satisfying 0.2 x 0.4).
삭제delete 제 1 항에 있어서, 전술한 반응pH는 하기 수학식 1에 따라 결정된 값인 것을 특징으로 하는 리튬이차전지의 양극 활물질용 니켈-망간 복합 수산화물의 제조방법:
[수학식 1]
y = 10.67 (±0.03) + 1.1 (±0.06) x
(식 중, x 는 Ni 함량비이고, y 는 pH 임).
The method of claim 1, wherein the reaction pH is a value determined according to the following formula (1): < EMI ID =
[Equation 1]
y = 10.67 (+/- 0.03) + 1.1 (+/- 0.06) x
(Where x is the Ni content ratio and y is the pH).
제 1 항에 있어서, 상기 금속염 용액은 니켈 50~80 몰% 및 망간 20~50 몰%를 포함하는 것을 특징으로 하는 리튬이차전지의 니켈-망간 복합 수산화물의 제조방법.
The method of claim 1, wherein the metal salt solution comprises 50 to 80 mol% of nickel and 20 to 50 mol% of manganese.
삭제delete 제 1 항에 있어서, 상기 니켈(Ni) 및 망간(Mn)을 금속염으로 포함하는 금속염 용액을 수산화나트륨(NaOH) 용액 및 암모니아 수용액과 함께 동시에 첨가하는 과정에서 수산화나트륨 용액 첨가에 의한 반응온도가 30~80℃가 되도록 조절하는 것을 특징으로 하는 리튬이차전지의 양극 활물질용 니켈-망간 복합 수산화물의 제조방법.
The method according to claim 1, wherein the metal salt solution containing nickel (Ni) and manganese (Mn) as a metal salt is simultaneously added together with a sodium hydroxide (NaOH) solution and an aqueous ammonia solution, To 80 < 0 > C. The method for producing a nickel-manganese complex hydroxide for a cathode active material of a lithium secondary battery,
삭제delete 제 1 항에 있어서, 상기 니켈-망간 복합 수산화물 전구체 입자의 크기는 1~500 ㎛로 조절되는 것을 특징으로 하는 리튬이차전지의 양극 활물질용 니켈-망간 복합 수산화물의 제조방법.
The method of claim 1, wherein the nickel-manganese composite hydroxide precursor particles are adjusted to a size of 1 to 500 탆.
제 1, 3, 4, 6 및 8 항 중 어느 한 항에 따라 제조된 니켈-망간 복합 수산화물.
A nickel-manganese composite hydroxide prepared according to any one of claims 1, 3, 4, 6 and 8.
제 9 항에 따른 니켈-망간 복합 수산화물로부터 수득되는 리튬이차전지용 양극 활물질.
A positive electrode active material for a lithium secondary battery obtained from the nickel-manganese composite hydroxide according to claim 9.
제 10 항에 있어서, 상기 리튬이차전지의 양극 활물질의 크기는 1~30 ㎛이고, 표면적 0.1~2 m2/g 인 것을 특징으로 하는 리튬이차전지용 양극 활물질.
The positive electrode active material for a lithium secondary battery according to claim 10, wherein the positive electrode active material of the lithium secondary battery has a size of 1 to 30 탆 and a surface area of 0.1 to 2 m 2 / g.
제 10 항에 있어서, 전술한 니켈-망간 복합 수산화물을 리튬화합물과 리튬 대비 금속의 비율이 1~1.2 몰비로 혼합하여 750~1000℃에서 대기 분위기 혹은 산소분위기 하에서 열처리하여 제조되는 것을 특징으로 하는 리튬이차전지용 양극 활물질.
The lithium secondary battery according to claim 10, wherein the nickel-manganese composite hydroxide is prepared by mixing the lithium compound and the metal to lithium in a ratio of 1 to 1.2 mol and heat-treating the mixture at 750 to 1000 ° C in an air atmosphere or an oxygen atmosphere. Cathode active material for secondary battery.
제 10 항에 따른 리튬이차전지용 양극 활물질을 사용하여 제조된 리튬이차전지.A lithium secondary battery produced by using the cathode active material for a lithium secondary battery according to claim 10.
KR1020120106061A 2012-09-24 2012-09-24 Method for preparing nickel-manganese complex hydroxides for cathode materials in lithium batteries, nickel-manganese complex hydroxides prepared by the method and cathode materials in lithium batteries comprising the same KR101525000B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120106061A KR101525000B1 (en) 2012-09-24 2012-09-24 Method for preparing nickel-manganese complex hydroxides for cathode materials in lithium batteries, nickel-manganese complex hydroxides prepared by the method and cathode materials in lithium batteries comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120106061A KR101525000B1 (en) 2012-09-24 2012-09-24 Method for preparing nickel-manganese complex hydroxides for cathode materials in lithium batteries, nickel-manganese complex hydroxides prepared by the method and cathode materials in lithium batteries comprising the same

Publications (2)

Publication Number Publication Date
KR20140039651A KR20140039651A (en) 2014-04-02
KR101525000B1 true KR101525000B1 (en) 2015-06-03

Family

ID=50650217

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120106061A KR101525000B1 (en) 2012-09-24 2012-09-24 Method for preparing nickel-manganese complex hydroxides for cathode materials in lithium batteries, nickel-manganese complex hydroxides prepared by the method and cathode materials in lithium batteries comprising the same

Country Status (1)

Country Link
KR (1) KR101525000B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108155357B (en) * 2016-12-02 2022-03-08 三星Sdi株式会社 Nickel-based active material for lithium secondary battery, method for preparing same, and lithium secondary battery including positive electrode including same
KR102199714B1 (en) * 2016-12-02 2021-01-07 삼성에스디아이 주식회사 Nickel-based active material for lithium secondary battery, preparing method thereof, and lithium secondary battery including the same
CN108878856A (en) * 2018-07-31 2018-11-23 澳洋集团有限公司 A kind of preparation method of graphene-lithium manganate cell positive electrode material
KR102313962B1 (en) * 2018-12-03 2021-10-18 동우 화인켐 주식회사 Manufacturing method of precursor for cathode active material from waste lithium secondary battery
CN112537807B (en) * 2020-12-30 2022-05-10 浙江帕瓦新能源股份有限公司 High-performance nano rod-shaped nickel-manganese binary precursor and preparation method thereof
CN114195202A (en) * 2021-12-28 2022-03-18 中伟新材料股份有限公司 Binary precursor and preparation method thereof, lithium ion battery anode material, lithium ion battery and power utilization equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081521A (en) * 1996-09-02 1998-03-31 Nippon Chem Ind Co Ltd Nickel-manganese-based double hydroxide, its production and raw material for anode active material for lithium secondary cell
EP1296391A1 (en) * 2001-03-22 2003-03-26 Matsushita Electric Industrial Co., Ltd. Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
JP2004210560A (en) * 2002-12-27 2004-07-29 Tanaka Chemical Corp Manganese-nickel mixed hydroxide particle
JP4915488B1 (en) * 2011-03-28 2012-04-11 住友金属鉱山株式会社 Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081521A (en) * 1996-09-02 1998-03-31 Nippon Chem Ind Co Ltd Nickel-manganese-based double hydroxide, its production and raw material for anode active material for lithium secondary cell
EP1296391A1 (en) * 2001-03-22 2003-03-26 Matsushita Electric Industrial Co., Ltd. Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
JP2004210560A (en) * 2002-12-27 2004-07-29 Tanaka Chemical Corp Manganese-nickel mixed hydroxide particle
JP4915488B1 (en) * 2011-03-28 2012-04-11 住友金属鉱山株式会社 Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
KR20140039651A (en) 2014-04-02

Similar Documents

Publication Publication Date Title
KR102307908B1 (en) Nickel-based active material for lithium secondary battery, preparing method thereof, and lithium secondary battery comprising positive electrode including nickel-based active material
JP7094248B2 (en) A lithium secondary battery containing a nickel-based active material precursor for a lithium secondary battery, a manufacturing method thereof, a nickel-based active material for a lithium secondary battery formed from the precursor, and a positive electrode containing the same.
KR101746187B1 (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
KR101215829B1 (en) Manufacturing method of positive active material for lithium secondary battery, positive active material manufactured by the same and lithium secondary battery using positive active material
KR101051066B1 (en) Method for manufacturing a metal composite oxide for a lithium secondary battery and a cathode active material comprising the same
KR100974352B1 (en) Composite cathode active material for lithium secondary battery, methode of preparing thereof, and lithium secondary battery comprising the same
EP3723172A2 (en) Cathode active material for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising cathode comprising same
KR101313575B1 (en) Manufacturing method of positive active material precursor and lithium metal composite oxides for lithium secondary battery
KR20180063849A (en) Nickel-based active material for lithium secondary battery, preparing method thereof, and lithium secondary battery including the same
KR20070097923A (en) Cathode active materials for lithium batteries, method of preparing thereof and lithium secondary batteries comprising same
KR20120017004A (en) Positive electrode materials combining high safety and high power in a li rechargeable battery
KR101525000B1 (en) Method for preparing nickel-manganese complex hydroxides for cathode materials in lithium batteries, nickel-manganese complex hydroxides prepared by the method and cathode materials in lithium batteries comprising the same
JP6871320B2 (en) A lithium secondary battery containing a nickel-based active material precursor for a lithium secondary battery, a method for producing the precursor thereof, a nickel-based active material for a lithium secondary battery formed from the precursor, and a positive electrode containing the precursor.
US11522189B2 (en) Positive electrode for rechargeable lithium battery, preparing method thereof, and rechargeable lithium battery comprising positive electrode
KR20160083638A (en) Cathode active material for lithium secondary and lithium secondary batteries comprising the same
KR20130059029A (en) Process for producing composite metal oxide
KR101375704B1 (en) Precursor of cathode active material for lithium secondary battery and preparation method thereof
KR20240019205A (en) Composite Transition Metal Precursor for Cathode Active Material and Cathode Active Material for Secondary Battery Prepared from the Same
KR20150080219A (en) Cathode active material and lithium secondary batteries comprising the same
EP3878814A1 (en) Lithium compound, nickel-based cathode active material, method for preparing lithium oxide, method for preparing nickel-based cathode active material, and secondary battery using same
KR102339985B1 (en) Lithium complex oxide
KR100668051B1 (en) Manganese Oxides by co-precipitation method, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
KR20040095837A (en) Cathode active material for lithium secondary btteries prepared by coprecipitation method, method for preparing the same, and lithium secondary batteries using the same
KR102006244B1 (en) Precursor for lithium secondary battery positive active material, positive active material using the same, and lithium secondary battery comprising the same
KR101632887B1 (en) Cathode active material precursor for lithium rechargeable battery and preparation method thereof, cathode active material for lithium rechargeable battery and lithium rechargeable battery comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190520

Year of fee payment: 5