KR102287178B1 - Flow-through aquaculture for flounder. - Google Patents

Flow-through aquaculture for flounder. Download PDF

Info

Publication number
KR102287178B1
KR102287178B1 KR1020210062227A KR20210062227A KR102287178B1 KR 102287178 B1 KR102287178 B1 KR 102287178B1 KR 1020210062227 A KR1020210062227 A KR 1020210062227A KR 20210062227 A KR20210062227 A KR 20210062227A KR 102287178 B1 KR102287178 B1 KR 102287178B1
Authority
KR
South Korea
Prior art keywords
weight
feed
insect
halibut
fish
Prior art date
Application number
KR1020210062227A
Other languages
Korean (ko)
Inventor
김강웅
이봉주
허상우
이승형
김나영
장미순
김동균
Original Assignee
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 filed Critical 대한민국
Priority to KR1020210062227A priority Critical patent/KR102287178B1/en
Application granted granted Critical
Publication of KR102287178B1 publication Critical patent/KR102287178B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/10Culture of aquatic animals of fish
    • A01K61/13Prevention or treatment of fish diseases
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/20Animal feeding-stuffs from material of animal origin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/20Animal feeding-stuffs from material of animal origin
    • A23K10/22Animal feeding-stuffs from material of animal origin from fish
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/142Amino acids; Derivatives thereof
    • A23K20/147Polymeric derivatives, e.g. peptides or proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/158Fatty acids; Fats; Products containing oils or fats
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/163Sugars; Polysaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/174Vitamins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/20Inorganic substances, e.g. oligoelements
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/80Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • Y02A40/818Alternative feeds for fish, e.g. in aquacultures

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Physiology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Environmental Sciences (AREA)
  • Birds (AREA)
  • Botany (AREA)
  • Insects & Arthropods (AREA)
  • Mycology (AREA)
  • Inorganic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Fodder In General (AREA)
  • Feed For Specific Animals (AREA)

Abstract

The present invention relates to a halibut running water type aquaculture method wherein in a running water type aquaculture, the present invention comprises an insect part consisting of a petecticus tenebrifer substituting for a fish meal for a used halibut feed or comprises an insect oil obtained from the petecticus tenebrifer instead of a part of a fish oil, thereby increasing a growth and intestinal digestive activity of the aquaculture halibut in the running water type aquaculture system. The present halibut running water type aquaculture method enables the feed manufacture with low cost raw material and stable yield.

Description

동애등에 공급을 통한 넙치 양식방법 및 사료조성물{Flow-through aquaculture for flounder.}Flounder farming method and feed composition through supply to Dongae, etc. {Flow-through aquaculture for flounder.}

본 발명은 넙치 양식방법에 관한 것으로, 유수식 양식에서 사용되는 넙치 사료의 어분을 대신하여 동애등에로 이루어진 곤충분이 포함하거나, 어유의 일부를 대신하여 동애등에로 이루어진 곤충유를 포함하여 공급함으로서 유수식 양식 시스템에서 양식 넙치의 성장 및 장내 소화 활성을 증가시킬수 있도록한 넙치 양식방법에 관한 것이다.The present invention relates to a method for cultivating halibut, by supplying insect meal composed of Dongae, etc. instead of fish meal of flounder feed used in flow-through culture, or by supplying insect oil composed of Dongae, etc. instead of a part of fish oil. It relates to a halibut culture method capable of increasing the growth and intestinal digestive activity of aquaculture halibut in the system.

어류의 양식방법은 강 또는 바다에 일정 크기의 그물망을 설치하여 양식하는 가두리식, 연못 또는 구거지를 막아 양식하는 지수식, 담수 또는 해수를 육상 수조로 펌핑(Pumping)하여 1일 수십회 새물로 교환해주면서 양식하는 육상 수조식, 1일 새물 교환율을 10% 정도로 아주 적게 하면서 수조 내의 양식수를 드럼필터(Drum Filter)와 바이오필터(Biofilter)을 통과시켜 정화한 다음 다시 수조에 공급하는 순환여과식(RAS), 잔존 사료 및 양식어류가 분비하는 대사산물에 자가 영양세균과 타가영양세균을 동시에 증식시키면서 분해하여 이용하는 바이오 플락식(Biofloc) 등이 있다.Fish farming methods include a cage type in which a net of a certain size is installed in a river or sea, a static method in which a pond or pit is blocked, and a freshwater or seawater pumping to an onshore tank with fresh water dozens of times a day. A land tank type in which aquaculture is performed while exchanging, a circulation filtration type that purifies the aquaculture water in the tank by passing it through a drum filter and a biofilter and then supplies it back to the tank while reducing the daily fresh water exchange rate by about 10% (RAS), and biofloc, which is used by simultaneously multiplying and decomposing autotrophic bacteria and heterotrophic bacteria in the remaining feed and metabolites secreted by farmed fish.

한편, 바다는 육지에서 흘러나오는 각종 오염물질 때문에 부영양화가 급속도로 진행되어 왔고 이로 인하여 각종 바이러스, 병원성 세균 및 기생충 등이 번식하여 근해 양식 환경은 악화되고 있다. 이와 같이, 양식 환경의 악화로 어류 양식에 필요한 사육수를 지속적으로 공급하는 유수식 양식방법의 활성화되지 못하고 있는 실정이며, 양식 폐사율을 낮추기 위해 공급하는 양식사료를 어종에 따른 기능성 사료를 개발하여 공급하고있다.On the other hand, eutrophication is rapidly progressing in the sea due to various pollutants flowing from the land, and due to this, various viruses, pathogenic bacteria, and parasites are propagated, thereby deteriorating the offshore aquaculture environment. As such, due to the deterioration of the aquaculture environment, the flow-through aquaculture method that continuously supplies the breeding water required for fish farming is not activated. there is.

또한, 세계 및 국내의 어류양식업이 급속한 속도로 증가하는 가운데 (CAGR 17.1%), 양식어류 질병 발생 및 폐사량 증가가 문제되고 있으며 최근 넙치류 질병 발생 폐사량이 급증함에 따라 면역결핍 및 항생제 남용에 따른 내성 및 잔류 문제를 해결하기 위한 사료 개발이 필요하다. 또한, 양식용 어류사료 개발 시 사료의 완전한 소화용이성, 최대성장 유도, 환경오염 방지 등이 고려되지만, 대부분의 어류사료 생산은 팰렛형태로 가공된다.In addition, while the global and domestic fish aquaculture industry is rapidly increasing (CAGR of 17.1%), the occurrence and mortality of aquaculture fish is becoming a problem. Feed development is needed to address tolerance and residue issues. In addition, when developing fish feed for aquaculture, complete digestibility of feed, induction of maximum growth, and prevention of environmental pollution are considered, but most fish feed production is processed in the form of pellets.

양어용 배합사료의 원료로서 어분은 높은 소화율 및 아미노산균형이 우수하며, 해산어류의 필수지방산을 포함하고 있다. 어분 원료의 높은 가격과 불안정한 생산량은 국제적인 배합사료 생산에 가장 큰 문제로서 대두되고 있다. As a raw material for compound feed for aquaculture, fish meal has excellent digestibility and amino acid balance, and contains essential fatty acids of seafood. The high price and unstable production of raw materials for fishmeal is emerging as the biggest problem in international formula feed production.

어분 가격 상승에 따라 상대적으로 낮은 가격의 대두박 및 콘글루텐 등과 같은 식물성 단백질원이 어분 대체 원료로서 연구되었다, 식물성 단백질은 지속가능한 양식용 배합사료의 원료로서 기대되어 왔으나, 식물성 단백질원이 가지는 불균형한 아미노산 조성과 필수지방산 및 타우린의 결핍 및 항영양인자와 낮은 소화율이 이용성에 문제점을 안고 있다. As fishmeal prices rise, plant protein sources such as soybean meal and corn gluten at relatively low prices have been studied as substitute raw materials for fishmeal. Amino acid composition, lack of essential fatty acids and taurine, anti-nutritional factors and low digestibility have problems in availability.

어분을 대체할 새로운 단백질 공급원으로서의 곤충류는 건조무게의 약 50%가 단백질로 구성되어 있기 때문에 어류의 단백질 공급원으로 활용가치가 높으며, 항균이나 항산화 기능성이 높다. 또한 곤충은 어획에 의존하여 생산하는 어분과 달리 사육이 가능하며, 본 발명에 이용된 동애등에는 타 곤충류와 비교하여 단기간(7~10일)에 유충으로 성장하여 대량 생산이 용이하고, 먹이로서 가장 저렴하게 공급될 수 있는 남은 음식물 사료를 활용한다. 곤충에 존재하는 어류의 필수 아미노산인 라이신, 메티오닌, 루이신 등의 비율이 양어용 배합사료로서 적합한 것으로 나타나고 있다.As a new protein source to replace fishmeal, insects have high utility value as a protein source for fish because about 50% of their dry weight consists of protein, and have high antibacterial and antioxidant functions. In addition, insects can be reared unlike fish meal that is produced depending on fishing, and Dongae used in the present invention grows into larvae in a short period of time (7 to 10 days) compared to other insects, making mass production easy, and as food. Use leftover food feed that can be supplied at the lowest cost. It has been shown that the ratio of lysine, methionine, and leucine, which are essential amino acids of fish present in insects, is suitable as a compound feed for aquaculture.

본 발명은 어분대체에 따른 양식어류 생산비 절감 및 기능성물질 증진을 기대하며, 특히 어분사료의 한계점(저가 어류 어획량 감소 -> 어분가격 상승 -> 사료가격 상승)을 극복하기 위한 대체물질로 동애등에가 될 수 있음을 확인함으로서 수산 양식환경의 변화에 따라 종래 넙치 유수식 양식방법에서 발생하는 폐사율 및 낮은 소화율로 인한 유수식 양식에서 사육수의 오염문제 등을 개선하고 기존 유수식 양식에서 공급되는 양어용 사료에 포함된 어분 대체하는 넙치 양식방법 및 사료조성물을 제공하고자 한다. The present invention is expected to reduce production cost of aquaculture fish and increase functional substances according to fishmeal substitution. In particular, Dongae et al. In accordance with changes in the aquaculture environment, it is possible to improve the contamination of the breeding water in flow-through aquaculture due to the low digestibility and mortality rate that occurs in the conventional flow-through method of halibut, and include it in the feed for fish supplied from the existing flow-through aquaculture. It is intended to provide a method of flounder farming and a feed composition that replaces the old fish meal.

대한민국 등록특허공보 제 10-1498990호 (2015.02.27.)는 유수식 어류 양식방법 및 이를 이용한 어류의 멸균 양식시스템에 관한 것으로서 더욱 상세하게는 담수 또는 해수를 이용하여 어류를 양식함에 있어서 담수 또는 해수를 오존 또는 전기분해 처리하여 옥시던트(Oxidant)를 생성시키고 병원성 바이러스, 세균 및 기생충을 사멸한 다음, 중화처리에 의해 어류에 해로운 잔류 옥시던트(Residual Oxidant)를 0.01ppm 이하까지 제거한 후, 어류의 양식수로 사용함으로써 항생제 및 백신을 사용하지 않고도 각종 병원성 미생물에 의한 어류의 폐사율을 극소화할 수 있는 유수식 어류 양식방법과 어류의 멸균 양식시스템에 관해 개시하고 있다.Republic of Korea Patent Publication No. 10-1498990 (2015.02.27.) relates to a flow-through fish farming method and a fish sterilization system using the same, and more specifically, freshwater or seawater in culturing fish using freshwater or seawater. Ozone or electrolysis treatment to generate oxidants and kill pathogenic viruses, bacteria and parasites, and then neutralization treatment to remove residual oxidants harmful to fish to 0.01ppm or less, and then to fish aquaculture water Disclosed is a flow-through fish culture method and a sterile fish farming system that can minimize the mortality rate of fish caused by various pathogenic microorganisms without using antibiotics and vaccines. 대한민국 등록특허공보 제10-0875803호 (2008.12.17.)는 순환 유수식 양어장에 관한 것으로, 유입구 및 배출구가 구비되는 유수 발생 수조와, 상기 유수 발생 수조에 담긴 물 속에 수평하게 설치되고 양단에 각각 상기 유수 발생 수조의 유입구 쪽을 향하여 위치하는 입구와 상기 유수 발생 수조의 배출구 쪽을 양하여 위치하는 출구를 가지는 유수 발생관과, 상기 유수 발생관의 내부에 설치되고 구동수단에 의하여 회전되는 회전축에 결합되어 회전됨으로써 상기 유수 발생관의 입구로부터 출구 방향으로의 물의 흐름을 일으키는 유수 발생 수단 으로 이루어진 구성을 개시하고 있다.Republic of Korea Patent Publication No. 10-0875803 (2008.12.17.) relates to a circulating flow-through fish farm, and is installed horizontally in the water contained in the running-water generating tank provided with an inlet and outlet, and the running-water generating tank, and said at both ends, respectively. A running water generating pipe having an inlet positioned toward the inlet side of the running water generating tank and an outlet positioned at both the outlet side of the running water generating tank, and the running water generating pipe installed inside the running water generating pipe and coupled to a rotating shaft rotated by a driving means Disclosed is a configuration comprising a running water generating means that causes a flow of water from the inlet to the outlet of the runoff generating pipe by being rotated. 대한민국 등록특허공보 제10-1454968호는 (2014.10.20.) 넙치의 번식생리특성을 이용하는 것을 특징으로 하는 성성숙 억제를 위한 양식 방법에 관한 것으로, 광주기 조절 방법을 이용한 넙치의 성성숙 억제를 위해 양식장의 광주기를 모든 사육기간 동안 12시간 이상이 되도록 조절하여 인공적인 호르몬 제재를 사용하지 않고 넙치의 성성숙을 효과적으로 억제할 수 있어 양식 넙치의 체성장을 촉진시켜 상품가치가 높은 넙치를 생산할 수 있는 양식 방법을 개시하고 있다.Republic of Korea Patent Publication No. 10-1454968 (2014.10.20.) relates to a culture method for inhibiting sexual maturation characterized by using the reproductive physiology of flounder, and for inhibiting sexual maturation of flounder using a photoperiod control method. By controlling the photoperiod of flounder to be more than 12 hours during all breeding periods, it is possible to effectively suppress the sexual maturation of flounder without using artificial hormonal agents. is starting 대한민국 등록특허공보 제10-1135443호 (2012.04.04.)는 넙치의 육종 방법에 관한 것으로, 유전학적 다양성을 가진 어미 집단을 구성하고, 이로부터 유전능력 평가에 의한 어미 선발과 유전적 유연관계를 바탕으로 인위적인 교배지침에 의한 인공수정을 통하여 넙치를 육종하는 방법을 개시한다.Republic of Korea Patent Publication No. 10-1135443 (April 2012.04.) relates to a breeding method of halibut, by constructing a brood group with genetic diversity, and examining dam selection and genetic kinship by genetic ability evaluation from this. Based on this, a method of breeding halibut through artificial insemination according to artificial breeding guidelines is disclosed.

본 발명은 수산 양식 환경의 변화에 따라 종래 넙치 유수식 양식방법에서 발생하는 폐사율 및 낮은 소화율로 인한 유수식 양식에서 사육수의 오염문제 등을 개선하고 기존 유수식 양식에서 공급되는 양어용 사료에 포함된 어분 대체하는 넙치 양식방법을 제공하고자한다.The present invention improves the problem of contamination of breeding water in flow-through aquaculture due to the low digestibility and mortality rate occurring in the conventional flow-through aquaculture method according to changes in the aquaculture environment, and replaces the fish meal contained in the fish feed supplied from the existing flow-through aquaculture We would like to provide a method of flounder farming.

본 발명은 어류 양식에 필요한 사육수를 지속적으로 공급하는 유수식 양식방법에 있어서 넙치 양식용 사료에 포함된 성분중 동물성 단백질의 일부를 곤충으로 대체하여 넙치에게 급이하여 양식하는 넙치 유수식 양식방법을 제공한다. The present invention provides a flow-through method for flounder culture in which a part of animal protein among ingredients contained in feed for flounder farming is replaced with insects in a flowing-through culture method for continuously supplying breeding water required for fish farming by feeding flounder to the flounder do.

바람직하게는 넙치 양식용 사료에 포함된 성분중 동물성 단백질의 일부를 곤충으로 대체하여 넙치에게 급이하며 상기 곤충은 동애등에로 이루어진 곤충분 또는 동애등에로부터 얻어진 곤충유를 넙치에게 급이하여 양식하는 넙치 양식방법을 제공한다. Preferably, a part of the animal protein among the ingredients contained in the feed for halibut culture is replaced with an insect and fed to the halibut, and the insect is fed to the halibut with insect meal consisting of the flounder or insect oil obtained from the flounder. It provides a method of flounder farming.

상기 곤충분 또는 곤충유는 어분 총량의 0~30중량%를 대신하여 동애등에로 이루어진 곤충분이 포함되며, 어유 총량의 0~1.5중량%를 대신하여 동애등에로 이루어진 곤충유가 포함될 수 있다. The insect meal or insect oil includes insect meal consisting of dongae, etc. in place of 0 to 30% by weight of the total amount of fishmeal, and insect oil consisting of dongae, etc. may be included in place of 0 to 1.5% by weight of the total amount of fish oil.

상기 넙치 양식용 사료는 탈피대두박 2중량%, 밀가루 10중량%, 비타민C 와 E 각각 0.5중량%, 비타민프리믹스와 미네랄프리믹스 각각 1중량%, 인산칼슘, 염화콜린 및 타우린이 각각 0.5중량%, 어유 3중량%로 고정되며, 동물성 단백질원인 어분이 63 내지 56중량%로 포함될 때, 동애등에로 이루어진 곤충분말은 7 내지 14중량%의 범위값으로 포함하고, 소맥글루텐 6.2~8.1중량%, 전분 4.17~2.02중량% 및 셀룰로오스 0.13~0.38중량%의 범위값으로 포함되도록 구성되는 것일 수있다. The halibut aquaculture feed is 2% by weight of dehulled soybean meal, 10% by weight of wheat flour, 0.5% by weight of vitamins C and E, respectively, 1% by weight of vitamin premix and mineral premix, respectively, 0.5% by weight of calcium phosphate, choline chloride and taurine, respectively, fish oil It is fixed at 3% by weight, and when fish meal, which is an animal protein source, is included in 63 to 56% by weight, insect powder consisting of Dongae, etc. is included in a value in the range of 7 to 14% by weight, wheat gluten 6.2 to 8.1% by weight, starch 4.17 It may be configured to be included in the range of ~2.02% by weight and 0.13 to 0.38% by weight of cellulose.

또한 배합사료의 체내 이용성을 높이기 위하여 압축펠렛제조기의 압축성형 가공조건을 적용하였으며, 구체적으로 사료원료를 100um 수준에서 저입자화하고, 압축성형 가공공정상 저압력 조건에서 사료를 제조한 것일수있다.In addition, in order to increase the usability of the compounded feed in the body, the compression molding processing conditions of the compression pellet maker were applied. Specifically, the feed raw materials were reduced to particles at 100um level, and the feed was manufactured under low pressure conditions in the compression molding processing process. .

본 발명에 의한 넙치 양식용 사료를 구성하는 동물성 단백질원인 어분의 일부를 동애등에로 이루어진 곤충분으로 대체하여, 낮은 원료 가격과 안정된 생산량으로 사료를 제조할 수 있는 효과를 얻을 수 있고 어분 및 곤충분에 의한 동물성 단백질 공급이 가능하여, 넙치의 성장, 비만도 저하, 생존율 및 항병력이 증가될 수 있는 효과를 얻을 수 있다. 또한 저압력 압출성형 가공방법 적용으로 사료의 어체 장내에서 소화활성을 높여 사료 이용성을 높일 수 있다.By substituting a part of fish meal, which is an animal protein source constituting the feed for halibut farming according to the present invention, with insect meal consisting of Dongae, etc., it is possible to obtain the effect of producing feed with low raw material price and stable production, and fish meal and insect meal Animal protein can be supplied by In addition, by applying the low-pressure extrusion processing method, it is possible to increase the feed availability by increasing the digestive activity in the fish body of the feed.

도 1은 본 발명에서 사용된 사료 원료를 저입자화하기 위하여 분체후 입도 분석한 결과를 나타내는 그래프이다.
도 2은 본 발명의 넙치 양식용 사료로 사육된 넙치 치어의 혈액 내 IGF-I(좌) 및 IGFBP-3(우) 활성인자 활성을 나타내는 그래프이다.
도 3는 본 발명의 넙치 양식용 사료로 사육된 넙치의 에드와드균 인위감염 후 누적폐사율을 나타내는 그래프이다.
도4a는 본 발명에 의한 넙치 양식용 사료 급이 후 양식된 넙치의 장내 미생물 균총 규명 및 변화 비교 분석표이다.
도4b는 본 발명에 의한 넙치 양식용 사료 급이 후 양식된 넙치의 장내 미생물 다양성 및 곤충사료 급이에 따른 균총변화 그래프이다.
도4c는 본 발명에 의한 넙치 양식용 사료 급이 후 양식된 넙치의 장내 미생물 변화 및 개선효과 그래프이다.
도5a는 본 발명에 의한 넙치 양식용 사료 급이 후 양식된 넙치의 위 조직관찰 결과 및 소화활성 개선 그래프이다.
도5b는 본 발명에 의한 넙치 양식용 사료 급이 후 양식된 넙치의 장 조직관찰 결과 및 소화활성 개선 그래프이다.
도5c는 본 발명에 의한 넙치 양식용 사료 급이 후 양식된 넙치의 간 조직관찰 결과 및 소화활성 개선 그래프이다.
1 is a graph showing the results of particle size analysis after powder to reduce the particle size of the feed material used in the present invention.
2 is a graph showing the activity of IGF-I (left) and IGFBP-3 (right) activators in the blood of flounder fry raised with the flounder aquaculture feed of the present invention.
3 is a graph showing the cumulative mortality rate after artificial infection with Edvard bacteria of halibut raised with the feed for halibut culture of the present invention.
Figure 4a is a table of comparison and analysis of changes in the intestinal microbial flora of the cultured halibut after feeding the halibut cultured feed according to the present invention.
Figure 4b is a graph showing the intestinal microbial diversity of the cultured halibut after feeding the halibut cultured feed according to the present invention and the change of the flora according to the insect feed feeding.
Figure 4c is a graph showing changes in the intestinal microflora and improvement effect of the cultured halibut after feeding the halibut cultured feed according to the present invention.
Figure 5a is a graph showing the results of observation of the stomach tissue and digestion activity improvement of the cultured halibut after feeding the halibut aquaculture feed according to the present invention.
Figure 5b is a graph showing the results of observation of the intestinal tissue and digestion activity improvement of the cultured halibut after feeding the halibut cultured feed according to the present invention.
Figure 5c is a graph showing the liver tissue observation result and digestion activity improvement of the cultured halibut after feeding the halibut cultured feed according to the present invention.

본 발명은 어류 양식에 필요한 사육수를 지속적으로 공급하는 유수식 양식방법에 있어서 넙치 양식용 사료에 포함된 성분중 동물성 단백질의 일부를 곤충으로 대체하여 넙치에게 급이하여 양식하는 넙치 양식방법에 관한 것이다. The present invention relates to a flounder farming method in which a part of animal protein among ingredients contained in a feed for flounder farming is replaced with insects in a flow-through culture method for continuously supplying breeding water required for fish farming and feeding flounder to the flounder. .

바람직하게는 넙치 양식용 사료에 포함된 성분중 동물성 단백질의 일부를 곤충으로 대체하여 넙치에게 급이하며 상기 곤충은 동애등에로 이루어진 곤충분 또는 동애등에로부터 얻어진 곤충유를 넙치에게 급이하여 양식하는 넙치 양식방법을 제공한다. 이하, 본 발명 및 실시예 결과를 바탕으로 보다 구체적으로 설명하면 다음과 같다.Preferably, a part of the animal protein among the ingredients contained in the feed for halibut culture is replaced with an insect and fed to the halibut, and the insect is fed to the halibut with insect meal consisting of the flounder or insect oil obtained from the flounder. It provides a method of flounder farming. Hereinafter, it will be described in more detail based on the results of the present invention and Examples.

I. 넙치의 양식방법 및 곤충사료 제조I. Halibut culture method and insect feed production

1. 넙치 양식방법1. Halibut farming method

본 실험에 사용된 넙치 치어는 제주 원양수산에서 구입하였으며, 활어운반 차량으로 국립수산과학원 사료연구센터로 이송하였다. 본 센터의 8톤 FRP 원형수조에서 4주간 순치 및 예비사육을 실시하였으며, 평균무게 52.4 g 의 넙치 치어를 2톤 FRP 원형수조에 각각 100미 씩 반복구 없이 임의로 분산 수용하였다. 평균 사육수온은 24.6 ± 2.44℃ 이였으며, 사료공급은 손으로 만복 시까지 1일 2회 공급하였다. 각 실험수조는 유수식으로 사육수의 주수량은 분당 20.8L가 되도록 조절하였고 각각의 수조마다 충분한 산소공급을 실시하였으며, 총 실험기간은 8주간 실시하였다.The flounder fry used in this experiment were purchased from Jeju Deep Sea Fisheries and transferred to the Feed Research Center of the National Institute of Fisheries Science by a live fish transport vehicle. In the center's 8-ton FRP round tank, acclimatization and preliminary breeding were carried out for 4 weeks, and flounder fry with an average weight of 52.4 g were randomly distributed and housed in a 2-ton FRP round tank with 100 fish each without repetition. The average breeding water temperature was 24.6 ± 2.44℃, and feed was supplied twice a day until fullness by hand. Each experimental water tank was flow-through, and the water supply of breeding water was adjusted to 20.8L per minute, and sufficient oxygen was supplied to each tank, and the total experiment period was 8 weeks.

2. 치어기 넙치용 곤충분 실험사료 배합비 2. Mixture ratio of insect meal experimental feed for flounder

본 발명에서 사용되는 동애등에는 항생제 잔류 및 농약 잔류 검사의 6항목(테트라계, 설파계, 베타라탐계, 유기인계, 유기염소계, 카바마이트계)에서 불검출 되었으며, 살모넬라 항목에서도 불검출로 사료첨가 원료로서 적합한 것으로 판단된다. 지방산 분석 자료에서도 높은 불포화지방산을 함유하며 특히 해산어의 필수지방산인 EPA 및 DHA를 포함한 오메가3 지방산은 16% 이상 함유하고 있어 해산어류용 지질원으로서 이용 가치가 높을 것으로 판단된다.Dongae used in the present invention was not detected in 6 items (tetra, sulfa, betalatam, organophosphorus, organochlorine, carbamite) of antibiotic residue and pesticide residue test, and was not detected in Salmonella. considered to be suitable as The fatty acid analysis data also contains high unsaturated fatty acids. In particular, it contains more than 16% of omega-3 fatty acids, including EPA and DHA, which are essential fatty acids of sea fish, so it is judged to have high use value as a lipid source for sea fish.

치어기 넙치 곤충분(동애등에 유충분) 실험사료 조성 및 일반성분 분석은 표 1(치어 넙치의 대조구 및 실험사료 조성)에 나타내었다. 실험사료의 단백질 조성은 모든 실험구에 동물성 단백질 원으로 칠레어분을 첨가하였고, 식물성 단백질 원료로 탈피대두박 및 소맥글루텐을 첨가하였다. Table 1 (control group and experimental feed composition of flounder flatfish) shows the composition and general component analysis of the test feed (sufficient for larvae, etc.). For the protein composition of the experimental feed, Chile fish meal was added as an animal protein source in all experimental groups, and dehulled soybean meal and wheat gluten were added as a vegetable protein source.

또한 실험에 사용된 곤충분은 대조구(곤충분 0%), 곤충분 10%(대조구에 포함된 칠레어분 중량의 10중량%를 곤충분으로 대체함.), 곤충분 20%(대조구에 포함된 칠레어분 중량의 20중량%를 곤충분으로 대체함.), 곤충분 30%(대조구에 포함된 칠레어분 중량의 30중량%를 곤충분으로 대체함.), 곤충분 10% + 곤충유 1% 및 곤충유 1% 실험구에 각각 0%, 10%, 20%, 30%, 10% 및 0% 씩 첨가하여 칠레어분을 대체하였고, 소맥글루텐을 이용하여 단백질 함량을 조절하였다.Insect meal used in the experiment was a control (0% insect meal), 10% insect meal (10% by weight of the Chilean fish meal included in the control was replaced with insect meal), and 20% insect meal (contained in the control group) 20% by weight of the Chilean fish meal was replaced with insect meal), 30% of insect meal (30% by weight of the Chilean fish meal included in the control was replaced with insect meal), 10% of insect meal + 1% of insect oil And 0%, 10%, 20%, 30%, 10% and 0% were added to the 1% insect oil experimental group, respectively, to replace Chilean fish meal, and the protein content was adjusted using wheat gluten.

Figure 112021055639566-pat00001
Figure 112021055639566-pat00001

상기 Vitamin C, Vitamin E, Vitamin premix, Mineral premix, 인산칼슘, 염화콜린, 타우린은 첨가물에 해당함.The above Vitamin C, Vitamin E, Vitamin premix, Mineral premix, calcium phosphate, choline chloride, and taurine correspond to additives.

아울러 지질원으로는 어유와 곤충유가 이용되었으며, 대조구, 곤충분 10%, 곤충분 20%, 곤충분 30% 실험구에는 어유를 사용하였고, 곤충분 10% + 곤충유 1% 및 곤충유 1% 실험구에는 곤충유를 어유대비 1%씩 첨가하여 어유를 대체하였다. In addition, fish oil and insect oil were used as lipid sources, and fish oil was used in the control group, 10% insect meal, 20% insect meal, 30% insect meal, and 10% insect meal + 1% insect oil and 1% insect oil. In the experimental group, insect oil was added by 1% compared to fish oil to replace fish oil.

더불어 탄수화물원으로 전분, 밀가루 및 셀룰로오스를 사용하였으며, 전분과 셀룰로오스를 이용하여 각 실험구별 에너지가를 조절하였다. 각각의 원료들은 실험에 사용된 모든 실험사료들은 상온 보관하면서 사용하였다. In addition, starch, wheat flour and cellulose were used as carbohydrate sources, and the energy value of each experimental group was adjusted using starch and cellulose. Each raw material was used while all the experimental feeds used in the experiment were stored at room temperature.

이와 같이 설계된 원료들은 잘 혼합하여 혼합물을 만든 후, 상기 혼합물 100중량부에 대하여 물 30~40중량부를 더 첨가하여 펠렛 제조기로 사료를 성형한 후, 성형된 펠렛을 건조기에서 60~70℃, 1~3시간 건조하여 사료를 제조였다. 제조된 사료는 -20℃냉동고에 보관하면서 실험사료로 사용하였다.The raw materials designed in this way are well mixed to make a mixture, and then 30-40 parts by weight of water is further added to 100 parts by weight of the mixture to form a feed in a pellet maker, and then the molded pellets are dried at 60-70° C. The feed was prepared by drying for ~3 hours. The prepared feed was used as experimental feed while stored in a -20 ℃ freezer.

3. 압출펠렛(Extruded pellet; EP) 제조기의 공정 조건3. Process conditions of extruded pellet (EP) making machine

배합사료의 품질개선을 위하여 익스트루전 물성[익스트루더(extruder) 압출압력, 사료원료 입자도 크기]을 조절하였다. 압축펠렛 제조기의 압력조절 조건은 표 2와 같다. 실험사료 원료는 분체기의 분쇄속도를 조절하여 소립자(100um)로 분체하였고, 압출압력을 조절하기 위해 익스트루더의 스크류 속도를 저압력(885 rpm/min)으로 조절하여 제조하였다.Extrusion properties (extruder extrusion pressure, feed material particle size) were adjusted to improve the quality of the formulated feed. The pressure control conditions of the compressed pellet maker are shown in Table 2. Experimental feed raw materials were powdered into small particles (100um) by controlling the grinding speed of the powder machine, and the screw speed of the extruder was adjusted to a low pressure (885 rpm/min) to control the extrusion pressure.

압축성형 제조기 공정 조건Compression molding machine process conditions 입자크기(um)Particle size (um) 100 이하100 or less 스크류 속도(rpm/min)Screw speed (rpm/min) 885885 컨디셔너 유량(cc/min)Conditioner flow rate (cc/min) 17.517.5 컨디셔너 온도(℃)Conditioner temperature (℃) 67.667.6 스팀량(kg/h)Steam volume (kg/h) 21.221.2 배럴1 온도(℃)Barrel 1 temperature (℃) 86.686.6 배럴2 온도(℃)Barrel 2 temperature (℃) 83.083.0 배럴3 온도(℃)Barrel 3 temperature (℃) 87.687.6 원료공급 인버터 속도(%)Raw material supply inverter speed (%) 2525 메인모터 인버터 속도(%)Main motor inverter speed (%) 6060 커터 속도(%)Cutter speed (%) 2727 전류(A)Current (A) 25.525.5

4. 어체측정 및 성분분석 4. Body measurement and component analysis

가) 어체측정 : 어체 측정은 실험종료 후, 성장률을 측정하기 위하여 24시간 절식시키고 전체무게를 측정하였다. 실험종료 후, 증체율(Weight gain, WG), 일간성장률(Specific growth rate, SGR), 사료전환효율(Feed conversion rate, FCR), 단백질전환효율(Protein efficiency ratio, PER), 비만도(Condition factor, CF), 생존율(Survival)을 각각 측정하였다.A) Fish body measurement: After the end of the experiment, the fish body was fasted for 24 hours to measure the growth rate and the total weight was measured. After completion of the experiment, weight gain (WG), daily growth rate (SGR), feed conversion rate (FCR), protein efficiency ratio (PER), obesity (Condition factor, CF) ) and survival rates were measured, respectively.

나)영양성분 분석 : 일반성분분석은 사료원료, 실험사료 및 실험어를 분 등근육을 각 수조별로 실험어 5마리씩 무작위로 샘플하여 등근육 및 간을 분석하였으며, AOAC (Association of Official Analytical Chemists, 2000) 방법에 따라 수분은 상압가열건조법(135℃, 2시간), 조단백질은 kjeldahl 질소정량법(N×6.25), 조회분은 직접회화법으로 분석하였다. 조지질은 조지질추출기(Velp SER148, Italy)를 사용하여 ether로 추출한 후, 측정하였다.B) Nutritional component analysis: For general component analysis, the back muscles and liver were analyzed by randomly sampling 5 experimental fish in each tank from feed raw materials, experimental feed and experimental fish, and AOAC (Association of Official Analytical Chemists, AOAC, 2000), moisture was analyzed by atmospheric heating and drying (135℃, 2 hours), crude protein by kjeldahl nitrogen determination (N×6.25), and crude protein by direct painting. Crude lipids were measured after extraction with ether using a lipid extractor (Velp SER148, Italy).

다) 혈중 IGF-I 및 IGFBP-3 활성 분석 : 혈중 IGF-I 및 IGFBP-3 활성은 FIsh IGF-I ELISA Kit (CSB-E12122Fh, CUSABIO, Belgium)와 Fish IGFBP-3 ELISA Kit (MBS017580, MyBioSource)를 사용하여 측정하였다. IGF-I pre-coated 96-well plate에 standard와 혈장을 50 μL 첨가 후, HRP-conjugate와 antibody를 각각 50 μL 첨가하여, 37℃에서 명반응 조건 하에 1시간 반응시켰다. 반응이 완료되면 wash buffer(1X)로 세척한 후에 Substrate A와 Substrate B를 50 μL 씩 첨가 후, 37℃에서 암반응 조건 하에 15분 반응 후, Stop solution을 첨가하여 450 nm에서 흡광도를 측정하여 대조구를 백분율로 환산 하였다C) Blood IGF-I and IGFBP-3 activity analysis: Blood IGF-I and IGFBP-3 activity was measured using the Fish IGF-I ELISA Kit (CSB-E12122Fh, CUSABIO, Belgium) and the Fish IGFBP-3 ELISA Kit (MBS017580, MyBioSource). was used. After 50 μL of standard and plasma were added to the IGF-I pre-coated 96-well plate, 50 μL of each of HRP-conjugate and antibody were added, and reacted at 37° C. under light reaction conditions for 1 hour. When the reaction is complete, after washing with wash buffer (1X), add 50 μL of Substrate A and Substrate B, react for 15 minutes under dark reaction conditions at 37°C, add Stop solution, and measure absorbance at 450 nm to obtain a control. converted to percentage

라) 항병력 조사 : 실험구 6종에 대한 수산생물병원체 E. tarda의 항병력을 조사하기 위하여 실험 4주차 및 8주차에 각 실험구당 20미씩 E. tarda (0.25 × 105/fish, 0.1ml/fish)에 인위감염을 행하였고, 16일간 누적폐사율을 기록하여 상대생존율을 비교하였다. D) Anti-morbidity investigation: In order to investigate the anti-morbidity of E. tarda , an aquatic organism pathogen for 6 experimental groups, 20 E. tarda (0.25 × 105/fish, 0.1ml/fish) in each experimental group at the 4th and 8th weeks of the experiment. artificial infection was performed, and the cumulative mortality rate was recorded for 16 days to compare the relative survival rate.

마) 장내 미생물 균총 분석 : 실험구 6종의 장내 미생물 균총 규명과 급이에 따른 균총 변화를 분석하기 위하여 실험 4주차 및 8주차에 각 실험구당 5미씩 장 조직을 분리하였고, 조직에서 total DNA를 분리한 뒤 미생물의 16S rDNA 중 V3와 V4 부분을 증폭시켜 미생물 균총을 규명하고 어분사료 급이에 따른 미생물 균총 변화를 평가하였다. E) Intestinal microbial flora analysis: In order to identify the intestinal microbial flora of the six experimental groups and to analyze the changes in the flora according to feeding, 5 mice were isolated from each experimental group at the 4th and 8th weeks of the experiment, and total DNA was collected from the tissues. After separation, the microbial flora was identified by amplifying the V3 and V4 parts of the 16S rDNA of the microorganism, and the change in the microbial flora according to the fish meal feed was evaluated.

바) 실험구별 실험어의 소화생리 특성을 분석하기 위하여, 실험 4주차 및 8주차에 3미씩 샘플링하였고, 소화기관을 적출 후 조직화학적 분석을 실시하였다. 적출된 소화관은 위, 전장, 유문수, 중장으로 나누어 조직학적 특성을 관찰하였고, 소화관에 분포하는 배상세포의 활성도 측정 및 간의 지방 축적도를 분석하였다.F) In order to analyze the digestive physiological characteristics of experimental fish in each experimental group, 3 mice were sampled at the 4th and 8th weeks of the experiment, and histochemical analysis was performed after the digestive organs were removed. The excised digestive tract was divided into stomach, full length, pylorus, and mid intestine to observe histological characteristics, and the activity of goblet cells distributed in the digestive tract and fat accumulation in the liver were analyzed.

II. 동애등에 공급을 통한 넙치 유수식 양식 결과II. Result of flounder flow-through culture through supply to Dongae, etc.

1. 배합사료의 입도 분석결과1. Result of particle size analysis of compounded feed

사료원료의 입도크기 분석 결과를 표 3 및 도 1에 나타내었다. 사료원료의 평균 표면적은 333.9 m2/kg이며, 직경 9.18 um 크기가 전체 사료의 하위 10%로 나타났고, 상위 90%에서는 입도 크기가 181 um로 분체 되었으며, 분체의 50%가 72.4 um로 나타나 전반적으로 100 um 이하의 입도크기를 갖는 것으로 나타났다.The results of particle size analysis of feed materials are shown in Table 3 and FIG. 1 . The average surface area of feed raw materials was 333.9 m 2 /kg, and the diameter of 9.18 um was found in the bottom 10% of the total feed, and in the top 90%, the particle size was 181 um, and 50% of the powder was 72.4 um. Overall, it was found to have a particle size of 100 μm or less.

입도분석 결과Particle size analysis result UniformityUniformity 0.7750.775 Specific surface area (m2/kg)Specific surface area (m 2 /kg) 333.9333.9 Dv (10%)Dv (10%) 9.18 um9.18 um Dv (50%)Dv (50%) 72.4 um72.4 um Dv (90%)Dv (90%) 181 um181 um

2. 치어기 넙치 성장도 결과2. Flounder growth results

8주간의 치어기 넙치 곤충분 실험에 따른 넙치 치어의 성장결과를 표 4(치어기 넙치 사육시험 후 성장도 결과(8주))에 나타내었다. The growth results of flounder fry according to the 8-week larval flounder insect meal test are shown in Table 4 (the result of growth rate after larval flounder breeding test (8 weeks)).

즉, 증체율 및 일간성장율에서 곤충분 및 곤충유를 첨가한 실험구들에서 대조구에 비해 증가하는 경향을 보여 성장에 효과가 있는 것으로 판단된다. 어분을 곤충분으로 대체 할 때, 특히 곤충분 10%에서 가장 높게 나타나는 결과를 확인할 수 있었다. 사료전환효율에서 대조구에 비해 곤충분 및 곤충유를 첨가한 실험구들에서 감소하는 경향을 보여 사료섭취 촉진효과가 있는 것으로 판단된다. That is, it is judged that the growth rate and the daily growth rate are effective for growth, as the experimental groups added with insect meal and insect oil showed a tendency to increase compared to the control group. When fish meal was replaced with insect meal, it was confirmed that the highest result was obtained, especially in 10% of insect meal. The feed conversion efficiency showed a tendency to decrease in the experimental groups to which insect meal and insect oil were added compared to the control group, so it is judged that there is an effect of promoting feed intake.

아울러 생존율에서는 대조구에 비해 곤충분 및 곤충유를 첨가한 실험구에서 높은 생존율을 보여 사료내 곤충소재 물질을 첨가하였을 때 치어기 넙치 생존에 효과가 있다고 판단된다. In addition, in the survival rate, the experimental group added with insect meal and insect oil showed a higher survival rate than the control group, so it is judged that the addition of insect material in the feed is effective in survival of flounder.

더불어 비만도에서는 대조구가 곤충분 30% 실험구와 동일한 비만도를 보였고, 나머지 곤충분 및 곤충유를 첨가한 실험구들에 비해 낮은 비만도를 보여 곤충분을 20% 까지 첨가한 실험구와 곤충유를 첨가하였을 때 비만도 증가에 효과가 있다고 판단된다. In addition, in the degree of obesity, the control group showed the same degree of obesity as the 30% insect meal test group, and showed a lower degree of obesity compared to the experimental groups added with insect meal and insect oil. It is considered to have an effect on the increase.

본 실험 결과 넙치 치어에 곤충분 및 곤충유을 첨가하였을 때 대조구를 제외한 모든 실험구에서 성장, 사료효율, 비만도 및 생존율에 효과가 있는 것으로 나타났다. 따라서 치어기 넙치 사료에 곤충분 및 곤충유의 첨가가 어분대체 및 어유대체에 이용성이 뛰어난 것으로 판단되며, 곤충분 10% 첨가 시 가장 효과가 높으나 어분대체로서 30%까지 대체가 가능하다 판단된다.As a result of this experiment, it was found that when insect meal and insect oil were added to flounder fry, there were effects on growth, feed efficiency, obesity and survival rate in all experimental groups except the control group. Therefore, it is judged that the addition of insect meal and insect oil to fish meal and fish oil replacement is excellent for fish meal replacement and fish oil replacement.

Figure 112021055639566-pat00002
Figure 112021055639566-pat00002

또한 근육내 일반성분에서는 사료내 곤충분의 첨가량 증가와 함께 조단백질 함량이 증가하였으며 곤충분 30%, 20%, 10% 및 대조구(곤충분0%) 순으로 높은 경향이 보였다 (표 5, 넙치의 근육내 일반성분 분석 결과). 따라서 본 연구에서 얻어진 결과로서 곤충분은 어체내 단백질 함량의 증가와 동시에 어분대체의 이용성이 최대 30%까지 가능하다고 판단된다.In addition, in the general component within the muscle, the crude protein content increased with the increase in the amount of insect meal added in the feed, and showed a high trend in the order of 30%, 20%, and 10% of insect meal, and the control (0% of insect meal) (Table 5, Results of analysis of general components in muscle). Therefore, from the results obtained in this study, it is judged that insect meal can increase the protein content in fish body and at the same time the availability of fish meal substitute is possible up to 30%.

Figure 112021055639566-pat00003
Figure 112021055639566-pat00003

Insulin-like growth factor type-I (IGF-I)은 증식 및 세포분화 촉진 등 다양한 역할에 직접적으로 관여하여 성장촉진과 관련된 생화학적인 지표로서 어류에서도 중요한 성장인자 요소이다. 본 발명에 의하여 양식된 배합사료를 공급한 넙치 치어의 혈액 내 IGF-I 활성 변화를 비교한 결과, 곤충분 10%를 첨가한 실험구를 제외하고 20%, 30% 첨가한 실험구에서 대조구에 비해 활성이 증가한 것으로 나타나(도 2) 성장 촉진에 관여한 것으로 판단된다. Insulin-like growth factor type-I (IGF-I) is an important growth factor factor in fish as a biochemical indicator related to growth promotion by directly participating in various roles such as promotion of proliferation and cell differentiation. As a result of comparing the changes in IGF-I activity in the blood of flounder fry supplied with the compound feed cultured according to the present invention, it was found in the control group in the control group in which 20% and 30% were added, except for the experimental group in which 10% of insect meal was added. Compared to the increased activity (FIG. 2), it is judged to be involved in growth promotion.

곤충유의 첨가효과는 1%에서 대조구와 비교하여 활성이 높았으나, 곤충분 10%과 곤충유 1%의 병행효과는 나타나지 않았다. 따라서, 곤충분 10%의 단독첨가와 곤충유와의 병행첨가의 기대효과는 낮은 것으로 사료되지만, 곤충분 20%, 30% 첨가에서 활성도가 높아지는 것으로 보아 최대 30%까지 이용 가능할 것이라 판단된다.The effect of the addition of insect oil was higher than that of the control at 1%, but the parallel effect of 10% of insect meal and 1% of insect oil did not appear. Therefore, it is considered that the expected effect of the single addition of 10% of insect meal and the parallel addition of insect oil is low.

또한 IGFs는 혈액내의 IGFBPs와 결합단백질 형태로 존재하고 있으며 IGFs를 표적세포까지 운반하는 역할을 담당하기 때문에 IGF-I과 높은 친화력을 가지는 IGFBP-3가 필요하다. IGFBP-3의 활성은 IGF-I과 유사한 경향을 나타냈으며, 곤충분 30% 첨가 및 곤충유 1% 단독첨가 실험구에서 가장 높은 활성도를 나타냈다.In addition, IGFs exist in the form of binding proteins with IGFBPs in the blood, and since they are responsible for transporting IGFs to target cells, IGF-I and IGFBP-3 with high affinity are required. The activity of IGFBP-3 showed a similar tendency to that of IGF-I, and the highest activity was shown in the experimental group in which 30% of insect meal was added and 1% of insect oil was added alone.

아울러 동애등에 곤충소재 사료를 공급한 넙치의 에드와드균(E. tarda) 인위감염에 따른 상대생존율은 12~41%로 나타났으며(4주차, 표6 및 도면 3), 곤충분 20%구에서 상대생존율이 41%로 가장 높게 나타났다. 동애등에는 세균, 곰팡이 및 바이러스 등이 다량 포함된 음식물쓰레기 등에 생존하면서 이를 신속히 분해하여 생체방어를 위한 강력한 항균물질을 발현하는 기작을 보유하고 있기 때문에 천연항생제로서 이용가능성이 매우 높다고 판단된다. 본 연구에서 대조구와 비교하여 곤충분을 첨가한 실험구의 높은 상대생존율은 동애등에 유래의 항균활성에 의한 것이라 시사된다.In addition , the relative survival rate of halibut caused by artificial infection with E. tarda was found to be 12 to 41% (week 4, Table 6 and Figure 3), and 20% insect meal. The relative survival rate was the highest at 41%. It is judged that Dongae, etc. has a very high potential for use as a natural antibiotic because it has a mechanism of rapidly decomposing food waste that contains a large amount of bacteria, fungi and viruses and expressing strong antibacterial substances for body defense. In this study, it is suggested that the high relative survival rate of the experimental group containing insect meal compared to the control group is due to the antibacterial activity derived from Dongae et al.

Figure 112021055639566-pat00004
Figure 112021055639566-pat00004

아울러 도4a는 동애등에 곤충사료 급이 후 넙치 장내 미생물 균총 규명 및 비교분석에 관한 그래프를, 도4b는 동애등에 곤충사료 급이 후 장내 미생물 다양성과 균총변화 그래프를, 마지막으로 도4c는 동애등에 곤충사료 급이 후 장내 주요 미생물 변화 및 균총 개선효과를 나타내는 그래프이다. In addition, Figure 4a is a graph on the identification and comparative analysis of the intestinal microbial flora of flounder after feeding insect feed to Dongae, etc., Figure 4b is a graph of intestinal microbial diversity and flora change after feeding insect feed to Dongae, etc. It is a graph showing the change of major microorganisms in the intestine and the effect of improving the flora after feeding the insect feed.

동애등에 곤충사료를 8주간 급이 후 넙치 장내 미생물 균총의 다양성은 감소하였으나, 곤충사료 급이전 보다 유산균과 같은 유익균은 증가하고, 일부 유해균은 감소하는 효과가 있으며, 특히 유익균총이 8주 급이 후 4주 급이군 보다 3.8%에서 5.7%증가하였고 유해균총은 8주 급이 후 4주 급이 보다 69%에서 62%로 감소하는 변화를 확인할 수 있었다.After 8 weeks of feeding insect feed to Dongae, the diversity of the intestinal microflora of halibut decreased, but beneficial bacteria such as lactic acid bacteria increased and some harmful bacteria were decreased compared to before feeding insect feed. After 4 weeks of feeding, it increased by 3.8% to 5.7%, and the harmful flora decreased from 69% to 62% after 8 weeks of feeding compared to 4 weeks after feeding.

또한 사료종류별 위, 장 및 간 조직을 관찰한 결과 위 조직에서는 사료종류에 따라 특이사항이 관찰되지 않았고, 장 조직에서는 사료종류에 따라 형태학적 변화가 관찰되었다. 간 조직에서는 곤충분 함량이 높아짐에 따라 지방축적이 높아지는 특징이 관찰되었으나 실험구별 병리소견은 나타나지 않았다. 사료 종류별 위조직의 특성을 관찰한 결과 실험구별 특이사항은 관찰되지 않음. 위산을 분비하는 위선과 위오목샘도 일반적인 넙치 위의 형태를 나타내고 있다(도 5a, 5b, 5c).Also, as a result of observing stomach, intestine, and liver tissues by feed type, no peculiarities were observed depending on the type of feed in the gastric tissue, and morphological changes were observed in the intestinal tissue according to the type of feed. In liver tissue, an increase in fat accumulation was observed as the insect meal content increased, but no pathologic findings were observed for each experimental group. As a result of observing the characteristics of gastric tissue for each type of feed, no peculiarities were observed for each experimental group. The gastric glands and gastric concave glands that secrete gastric acid also show the shape of a typical flatfish stomach ( FIGS. 5a , 5b and 5c ).

사료 종류별 장조직의 특성을 관찰한 결과 실험구간 형태학적 변화가 관찰되었다. 대조구에 비해 곤충분 10% 공급구에서 점막주름, 점막하층, 점막고유판이 잘 발달되었다(도 5b). 소화활성에 관여하는 배상세포도 모든 실험구에 비해 곤충분 10% 공급구에서 유의적으로 높은 분포도를 나타내었다. 곤충분 20% 공급구 및 곤충분 30% 공급구의 경우 장의 앞부분인 유문수와 전장부 점막주름이 일반적인 형태를 나타나고 있으나 장의 기저부로 갈수록 물리적인 손상에 의한 점막주름 붕괴 현상이 관찰되었다.(도 5b 별표). 사료 종류별 간 조직의 특성을 관찰한 결과 곤충분 함량이 높아질수록 간세포 주변 지방 축적이 높아지는 특징이 관찰되었으나 실험구별 병리소견은 나타나지 않았다(도 5c).As a result of observing the characteristics of the intestinal tissue for each type of feed, morphological changes were observed in the experimental section. Compared with the control group, mucosal folds, submucosal layer, and lamina propria were well developed in the 10% insect meal feeder (FIG. 5b). Goblet cells involved in digestive activity also showed a significantly higher distribution in the 10% insect meal supply group than in all experimental groups. In the case of the 20% insect meal supply port and the 30% insect meal supply port, the front part of the intestine, the pylorus and the mucosal folds of the anterior intestine, showed a general shape, but the collapse of the mucosal folds due to physical damage was observed toward the base of the intestine. ). As a result of observing the characteristics of the liver tissue for each type of feed, it was observed that the accumulation of fat around the liver cells increased as the insect meal content increased, but no pathological findings were observed for each experimental group (FIG. 5c).

이상으로부터, 넙치 유수식 양식에서 배합사료로 어분을 대체하기 위해 곤충분(동애등에 유충)를 급이하여 양식한 결과, 넙치의 성장 항목(어체중, 사료효율, 비만도)에서 어분대체의 곤충분 < 30% 유효성이 시사 되었다. 성장인자의 활성도에서도 대체함량에 따라 증가하는 경향이 보였으며, 어체 내 근육의 단백질 함량 개선에 유효하였다. 곤충분의 항병력 효과에 관해서는, 곤충분 20%와 곤충유 1%에서 높은 항병력을 나타냈으며, 곤충분 20% 사료 내 지질함량(1.6%)을 고려하여 곤충유1~1.6%에서 치어기 넙치 항병력에 유효하다고 판단된다. 또한 저압력 압출성형 가공방법에 의해 사료품질이 개선되어 넙치 장내 소화활성을 높일 수 있는 것으로 나타났다.From the above, as a result of feeding and culturing insect meal (larvae such as larvae) to replace fish meal with compound feed in the flow-through aquaculture of halibut, insect meal as a substitute for fish meal < 30% efficacy was suggested. The activity of growth factors also showed a tendency to increase according to the substitution content, and was effective in improving the protein content of the muscle in the fish body. Regarding the anti-military effect of insect meal, 20% of insect meal and 1% of insect oil showed high anti-morbidity. It is considered effective in anti-military power. In addition, it was found that the feed quality was improved by the low-pressure extrusion processing method, thereby enhancing the intestinal digestive activity of halibut.

넙치 유수식 양식에서 배합사료로 어분을 대체하기 위해 곤충분(동애등에 유충)를 급이하여 양식한 결과, 넙치의 어체중, 사료효율, 비만도 등의 성장 항목에서 어분대체의 유효성이 확인되어 수산 양식 환경의 변화에 따라 종래 넙치 유수식 양식방법에서 발생하는 폐사율 및 낮은 소화율로 인한 유수식 양식에서 사육수의 오염문제 등을 개선 가능한 산업적 이용가능성이 있다.As a result of feeding and culturing insect meal (larvae of larvae) to replace fish meal with compound feed in the flow-through aquaculture of halibut, the effectiveness of fish meal replacement was confirmed in growth items such as fish weight, feed efficiency, and obesity of halibut. According to changes in the environment, there is an industrial applicability that can improve the problem of contamination of breeding water in flow-through aquaculture due to the low digestibility and mortality rate occurring in the conventional flow-through method for halibut.

Claims (4)

넙치 양식방법에 있어서 넙치 양식용 사료에 포함된 성분중 동물성 단백질의 일부를 곤충으로 대체하여 급이하며,
상기 넙치 양식용 사료 조성물은 탈피대두박 2중량%, 밀가루 10중량%, 비타민C 와 E 각각 0.5중량%, 비타민프리믹스와 미네랄프리믹스 각각 1중량%, 인산칼슘, 염화콜린 및 타우린이 각각 0.5중량%, 어유 3중량%로 고정되며,
동물성 단백질원인 어분이 56 내지 63중량%로 포함될 때, 동애등에로 이루어진 곤충분말은 7 내지 14중량%의 범위값으로 포함하고, 소맥글루텐 6.2~8.1중량%, 전분 2.02~4.17중량% 및 셀룰로오스 0.13~0.38중량%의 범위 값으로 포함하여 이루어지며;
상기 사료조성물 100중량부에 대하여 물 30~40중량부를 더 첨가하여 펠렛 제조기로 사료를 성형하되 , 익스트루더의 스크류 속도를 885 rpm/min로 조절하여 사료 입도를 181um이하 크기로 제조한 사료를 급이하는 것을 특징으로 하는 넙치 양식방법
In the halibut farming method, some of the animal protein among the ingredients included in the halibut farming feed is replaced with insects and fed,
The feed composition for halibut culture contains 2% by weight of dehulled soybean meal, 10% by weight of wheat flour, 0.5% by weight of vitamins C and E, respectively, 1% by weight of vitamin premix and mineral premix, respectively 0.5% by weight of calcium phosphate, choline chloride and taurine, It is fixed at 3% by weight of fish oil,
When fish meal, which is an animal protein source, is included in 56 to 63% by weight, the insect powder composed of Dongae, etc. is included in a value in the range of 7 to 14% by weight, wheat gluten 6.2 to 8.1% by weight, starch 2.02 to 4.17% by weight and cellulose 0.13 inclusive of values in the range of ~0.38% by weight;
30-40 parts by weight of water is further added to 100 parts by weight of the feed composition to form a feed with a pellet maker, but the screw speed of the extruder is adjusted to 885 rpm/min so that the feed particle size is 181um or less. Halibut farming method characterized by feeding
탈피대두박 2중량%, 밀가루 10중량%, 비타민C 와 E 각각 0.5중량%, 비타민프리믹스와 미네랄프리믹스 각각 1중량%, 인산칼슘, 염화콜린 및 타우린이 각각 0.5중량%, 어유 3중량%로 고정되며,
동물성 단백질원인 어분이 56 내지 63중량%로 포함될 때, 동애등에로 이루어진 곤충분말은 7 내지 14중량%의 범위값으로 포함하고, 소맥글루텐 6.2~8.1중량%, 전분 2.02~4.17중량% 및 셀룰로오스 0.13~0.38중량%의 범위값으로 포함하여 이루어지는 것을 특징으로 하는 넙치 양식용 사료
2% by weight of dehulled soybean meal, 10% by weight of wheat flour, 0.5% by weight of vitamins C and E each, 1% by weight of vitamin premix and mineral premix each, 0.5% by weight of calcium phosphate, choline chloride and taurine, respectively, and 3% by weight of fish oil. ,
When fish meal, which is an animal protein source, is included in 56 to 63% by weight, the insect powder composed of Dongae, etc. is included in a value in the range of 7 to 14% by weight, wheat gluten 6.2 to 8.1% by weight, starch 2.02 to 4.17% by weight and cellulose 0.13 Feed for halibut farming, characterized in that it comprises a value in the range of ~0.38% by weight
삭제delete 삭제delete
KR1020210062227A 2021-05-13 2021-05-13 Flow-through aquaculture for flounder. KR102287178B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210062227A KR102287178B1 (en) 2021-05-13 2021-05-13 Flow-through aquaculture for flounder.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210062227A KR102287178B1 (en) 2021-05-13 2021-05-13 Flow-through aquaculture for flounder.

Publications (1)

Publication Number Publication Date
KR102287178B1 true KR102287178B1 (en) 2021-08-06

Family

ID=77315272

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210062227A KR102287178B1 (en) 2021-05-13 2021-05-13 Flow-through aquaculture for flounder.

Country Status (1)

Country Link
KR (1) KR102287178B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102373268B1 (en) * 2021-12-02 2022-03-14 대한민국 Method for culturing of Starryflounder
KR102558684B1 (en) * 2022-09-06 2023-07-25 대봉엘에프 영어조합법인 Extruded pellet feed composition for broodstock of flatfish and method of manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100875803B1 (en) 2007-06-01 2008-12-24 김병옥 Circulation flow fish farm
KR101135443B1 (en) 2009-12-29 2012-06-27 대한민국 Breeding method for genetically improved olive flounder which grows faster
KR101454968B1 (en) 2012-09-05 2014-10-28 주식회사 씨알 Method of culturing Paralichthys olivaceus for suppression of sexual maturation
KR101751180B1 (en) * 2016-03-28 2017-06-29 강흥구 Extruded pellet feed manufacturing method by coating panax ginseng extract for raising trout
KR20200014471A (en) * 2018-07-31 2020-02-11 농업회사법인 (주)한국유용곤충연구소 Artificial feed for abalone and manufacturing process of the same
KR20200111457A (en) * 2019-03-19 2020-09-29 이동민 Feed composition for flounder
KR20210042741A (en) * 2019-10-10 2021-04-20 동국대학교 경주캠퍼스 산학협력단 Composition for feeding of Ptecticus tenebrifer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100875803B1 (en) 2007-06-01 2008-12-24 김병옥 Circulation flow fish farm
KR101135443B1 (en) 2009-12-29 2012-06-27 대한민국 Breeding method for genetically improved olive flounder which grows faster
KR101454968B1 (en) 2012-09-05 2014-10-28 주식회사 씨알 Method of culturing Paralichthys olivaceus for suppression of sexual maturation
KR101751180B1 (en) * 2016-03-28 2017-06-29 강흥구 Extruded pellet feed manufacturing method by coating panax ginseng extract for raising trout
KR20200014471A (en) * 2018-07-31 2020-02-11 농업회사법인 (주)한국유용곤충연구소 Artificial feed for abalone and manufacturing process of the same
KR20200111457A (en) * 2019-03-19 2020-09-29 이동민 Feed composition for flounder
KR20210042741A (en) * 2019-10-10 2021-04-20 동국대학교 경주캠퍼스 산학협력단 Composition for feeding of Ptecticus tenebrifer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
대한민국 등록특허공보 제 10-1498990호 (2015.02.27.)는 유수식 어류 양식방법 및 이를 이용한 어류의 멸균 양식시스템에 관한 것으로서 더욱 상세하게는 담수 또는 해수를 이용하여 어류를 양식함에 있어서 담수 또는 해수를 오존 또는 전기분해 처리하여 옥시던트(Oxidant)를 생성시키고 병원성 바이러스, 세균 및 기생충을 사멸한 다음, 중화처리에 의해 어류에 해로운 잔류 옥시던트(Residual Oxidant)를 0.01ppm 이하까지 제거한 후, 어류의 양식수로 사용함으로써 항생제 및 백신을 사용하지 않고도 각종 병원성 미생물에 의한 어류의 폐사율을 극소화할 수 있는 유수식 어류 양식방법과 어류의 멸균 양식시스템에 관해 개시하고 있다.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102373268B1 (en) * 2021-12-02 2022-03-14 대한민국 Method for culturing of Starryflounder
KR102558684B1 (en) * 2022-09-06 2023-07-25 대봉엘에프 영어조합법인 Extruded pellet feed composition for broodstock of flatfish and method of manufacturing the same

Similar Documents

Publication Publication Date Title
Dallaire et al. Effect of algal incorporation on growth, survival and carcass composition of rainbow trout (Oncorhynchus mykiss) fry
Skrede et al. Evaluation of microalgae as sources of digestible nutrients for monogastric animals
Zulhisyam et al. Using of fermented soy pulp as an edible coating material on fish feed pellet in African catfish (Clarias gariepinus) production
US20160135483A1 (en) Aquaculture feed formed from fermented soybean meal and earthworm meal, including the fermentation preparation method for the mixture ingredient
KR102287178B1 (en) Flow-through aquaculture for flounder.
WO2016073981A1 (en) Antibacterial compositions and methods of use
KR102287183B1 (en) Feed compositions for rainbow trout and mothod producing the same
CN108603166A (en) Direct-Fed Microbials for prevention of shrimp disease
KR20230151060A (en) Feed supplement material for use in aquaculture feed
KR100887334B1 (en) Feed additive for fish or crustacean breeding containing arazyme as effective ingredient
JP2020532308A (en) Insect powder to prevent or reduce stress in captive fish
Bisht et al. Bacillus subtilis as a potent probiotic for enhancing growth in fingerlings of common carp (Cyprinus carpio L.)
RU2338389C1 (en) Mixed fodder for sturgeons
CN107348105B (en) Floating expanded compound feed for marbled fish
KR102393124B1 (en) Method for preparing fermented insect feed additive comprising Ptecticus tenebrifer and insect chitin, and fermented insect feed additive prepared by the same
EP4278901A1 (en) Composition for controlling intestinal bacterial flora
RU2717991C1 (en) Protein feed supplement for farm animals and fish
EP4166003A1 (en) Feed for aquatic animals
KR20210088817A (en) Fish feed using bass and bluegill and manufacturing method thereof
RU2805315C1 (en) Granular compound feed for sterlet
RU2786666C1 (en) Protein feed supplement for industrial aquaculture
RU2777768C1 (en) Trout feed
RU2802758C1 (en) Granular feed for trout fry with protein raw materials of microbial synthesis
RU2805314C1 (en) Granular compound feed for young nile tilapia
RU2811681C1 (en) Production feed for sturgeon fish

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant