KR102160358B1 - Electrochemical sensor detecting dopamine using nitrogen-doped carbon sphere having au-ag alloy nanodots and platinum and method of the same - Google Patents

Electrochemical sensor detecting dopamine using nitrogen-doped carbon sphere having au-ag alloy nanodots and platinum and method of the same Download PDF

Info

Publication number
KR102160358B1
KR102160358B1 KR1020190043936A KR20190043936A KR102160358B1 KR 102160358 B1 KR102160358 B1 KR 102160358B1 KR 1020190043936 A KR1020190043936 A KR 1020190043936A KR 20190043936 A KR20190043936 A KR 20190043936A KR 102160358 B1 KR102160358 B1 KR 102160358B1
Authority
KR
South Korea
Prior art keywords
nitrogen
doped carbon
dopamine
auag
gold
Prior art date
Application number
KR1020190043936A
Other languages
Korean (ko)
Inventor
김규원
정주원
샨무감 마니반난
Original Assignee
인천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인천대학교 산학협력단 filed Critical 인천대학교 산학협력단
Priority to KR1020190043936A priority Critical patent/KR102160358B1/en
Application granted granted Critical
Publication of KR102160358B1 publication Critical patent/KR102160358B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/94Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving narcotics or drugs or pharmaceuticals, neurotransmitters or associated receptors
    • G01N33/9406Neurotransmitters
    • G01N33/9413Dopamine

Abstract

The present invention relates to an electrochemical sensor for detecting dopamine, using a nitrogen-doped carbon sphere containing gold-silver alloy nanodots and platinum (Pt) nanoparticles; and a method of preparing the same. More specifically, the electrochemical sensor comprises an electrode and a nitrogen-doped carbon sphere on the electrode, wherein the nitrogen-doped carbon sphere comprises: an inner wall impregnated with gold-silver alloy nanodots; and an outer wall comprising Pt nanoparticles. The nitrogen-doped carbon sphere (AuAg/ND_C/Pt) of the present invention including the gold-silver alloy nanodots and the Pt nanoparticles, due to a small size of a pore structure and a large active surface area, exhibits a synergistic electrocatalytic action with respect to dopamine oxidation compared to SiO_2/AuAg/ND_C/Pt. An electrode catalyst modified with the nitrogen-doped carbon sphere of the present invention may be used to selectively determine dopamine regardless of 100x concentration of ascorbic acid and lauric acid.

Description

금-은 합금 나노닷 및 백금 나노입자가 포함된 질소-도핑 탄소 구체를 이용한 도파민 검출용 전기화학 센서 및 그 제조방법{ELECTROCHEMICAL SENSOR DETECTING DOPAMINE USING NITROGEN-DOPED CARBON SPHERE HAVING AU-AG ALLOY NANODOTS AND PLATINUM AND METHOD OF THE SAME}Electrochemical sensor for dopamine detection using nitrogen-doped carbon spheres containing gold-silver alloy nanodots and platinum nanoparticles, and its manufacturing method {ELECTROCHEMICAL SENSOR DETECTING DOPAMINE USING NITROGEN-DOPED CARBON SPHERE HAVING AU-AG ALLOY NANODOTS AND PLATINUM AND METHOD OF THE SAME}

본 발명은 금-은 합금 나노닷 및 백금 나노입자가 포함된 질소-도핑 탄소 구체를 이용한 도파민 검출용 전기화학 센서 및 그 제조방법에 관한 것으로, 더욱 상세하게는 전극;및 상기 전극 위에 질소-도핑 탄소 구체를 포함하고, 상기 질소-도핑 탄소 구체는 금-은 합금 나노닷이 함침된 내벽;및 백금(Pt) 나노입자를 포함하는 외벽을 포함하는 것을 특징으로 하는 전기화학 센서 및 그 제조방법에 관한 것이다.The present invention relates to an electrochemical sensor for detecting dopamine using nitrogen-doped carbon spheres containing gold-silver alloy nanodots and platinum nanoparticles, and a method for manufacturing the same, and more particularly, to an electrode; and nitrogen-doped on the electrode. Including carbon spheres, wherein the nitrogen-doped carbon spheres are an inner wall impregnated with gold-silver alloy nanodots; And an electrochemical sensor comprising an outer wall including platinum (Pt) nanoparticles and a method for manufacturing the same About.

도파민(dopamine, DA)은 중추신경계에서 중요한 신경전달물질로서, 아드레날린 및 노르아드레날린의 전구체이며, 호르몬 균형 유지를 도울 뿐 아니라, 감정 제어에 기여하는 것으로 알려져 있다. 뇌에서 낮은 수준의 도파민은 신경변성 및 도파민을 생성하는 중뇌 흑질 신경의 손상을 유발시켜 파킨슨병과 같은 심각한 질환을 초래하며, 휴식 중 진전, 초기 또는 완전한 운동부전, 근육 경직, 자세 불균형, 안면 표정 결핍 등의 문제를 야기할 수 있다. Dopamine (DA) is an important neurotransmitter in the central nervous system, is a precursor of adrenaline and noradrenaline, and is known to help maintain hormonal balance and contribute to emotional control. Low levels of dopamine in the brain cause neurodegeneration and damage to the midbrain black matter nerve that produces dopamine, resulting in serious diseases such as Parkinson's disease, tremors during rest, early or complete ataxia, muscle stiffness, postural imbalance, facial expression deficiency It can cause problems such as back.

따라서, 각종 병증의 조기 진단이나 치료의 목적으로 체내에서 매우 미량으로 존재하는 상기 물질들을 빠르고, 정확하게 검출할 수 있는 방법 또는 장치의 개발이 중요하다. 대상물질이 전기화학적 활성을 보이는 경우, 종래 의 검출방법들에 비해 전기화학적 검출방법은 이들 물질들에 대하여 빠르고, 직접적인 검출법을 제공하므로, 최근에는 이에 대한 연구가 활발히 진행되고 있다.Therefore, for the purpose of early diagnosis or treatment of various conditions, it is important to develop a method or apparatus capable of quickly and accurately detecting the substances present in a very small amount in the body. When a target substance exhibits electrochemical activity, compared to conventional detection methods, the electrochemical detection method provides a fast and direct detection method for these substances, and thus research on this has been actively conducted in recent years.

종종, 생체 내에서 목적하는 물질은 이들의 검출을 간섭하는 간섭화합물들과 함께 존재하는 경우가 많으며, 이 경우 목적하는 물질의 검출이 용이하지 않거나 검출효율이 떨어지게 된다. 도파민의 검출에 있어서, 일반적으로 알려진 간섭화합물들은 아스코르빅산 및 요산이다. 따라서, 도파민의 선택적 검출 또는 도파민과 아스코르빅산 및 요산의 동시 검출에 관한 연구가 요구되는데, 최근에는 고분자로 개질된 전극을 이용한 검출방법들이 보고되고 있다.Often, a target substance in a living body is often present with interfering compounds that interfere with their detection, and in this case, detection of the target substance is difficult or detection efficiency is degraded. In the detection of dopamine, commonly known interfering compounds are ascorbic acid and uric acid. Therefore, studies on selective detection of dopamine or simultaneous detection of dopamine, ascorbic acid, and uric acid are required. Recently, detection methods using electrodes modified with polymers have been reported.

대한민국 공개특허 제10-2018-0098088호Republic of Korea Patent Publication No. 10-2018-0098088

이에, 본 발명의 목적은 정확하고, 재현성 있고, 민감하며, 선택적이고, 보다 신속하게 도파민을 검출할 수 있는 도파민 검출센서 및 이를 이용한 도파민 검출방법을 제공하는데 있다.Accordingly, it is an object of the present invention to provide a dopamine detection sensor capable of accurately, reproducible, sensitive, selective, and faster detection of dopamine, and a dopamine detection method using the same.

따라서 본 발명의 목적은 전극;및 상기 전극 위에 질소-도핑 탄소 구체를 포함하고, 상기 질소-도핑 탄소 구체는 금-은 합금 나노닷이 함침된 내벽;및 백금(Pt) 나노입자를 포함하는 외벽을 포함하는 것을 특징으로 하는 전기화학 센서를 제공하는 것이다. Accordingly, an object of the present invention is an electrode; and a nitrogen-doped carbon sphere on the electrode, and the nitrogen-doped carbon sphere is an inner wall impregnated with gold-silver alloy nanodots; and an outer wall containing platinum (Pt) nanoparticles It is to provide an electrochemical sensor comprising a.

상기 전기화학 센서는 도파민을 산화시켜 선택적으로 도파민을 검출하는데 사용된다. The electrochemical sensor is used to selectively detect dopamine by oxidizing dopamine.

또한 본 발명은 상기 전기화학 센서를 이용하여 도파민을 검출하는 방법을 제공한다. In addition, the present invention provides a method of detecting dopamine using the electrochemical sensor.

본 발명의 또 다른 목적은 1) 티올기(thiol group)를 포함하는 실리카 나노구체(SiO2-SH nano sphere)를 제조하는 단계; 2) 상기 실리카 나노구체에 금-은 합금 나노닷을 침착(deposition)시켜 금-은 합금 나노닷이 침착된 실리카 나노구체(SiO2-SH/AuAg NSP)를 제조하는 단계; 3) 상기 금-은 합금 나노닷이 침착된 실리카 나노구체(SiO2-SH/AuAg NSP)를 폴리도파민으로 코팅하는 단계;및 4) 상기 폴리도파민으로 코팅된 실리카 나노구체(SiO2-SH/AuAg/PDA NSP)를 탄화시키는 단계를 포함하는 도파민 검출용 질소-도핑 탄소 구체 전기촉매(SiO2-SH/AuAg/N-doped C/Pt NSP) 제조방법을 제공하며, 상기 제조방법은 5) 상기 실리카 나노구체를 에칭하여 탄소 구조체(AuAg/N-doped C/Pt NSP)를 분리하는 단계를 더 포함할 수 있다. Another object of the present invention is the steps of 1) preparing a silica nanosphere (SiO 2 -SH nano sphere) containing a thiol group; 2) preparing a silica nanosphere (SiO 2 -SH/AuAg NSP) on which gold-silver alloy nanodots are deposited by depositing gold-silver alloy nanodots on the silica nanospheres; 3) coating the silica nanospheres (SiO 2 -SH/AuAg NSP) on which the gold-silver alloy nanodots are deposited with polydopamine; And 4) the silica nanospheres coated with the polydopamine (SiO 2 -SH/ A nitrogen-doped carbon spherical electrocatalyst (SiO 2 -SH/AuAg/N-doped C/Pt NSP) for dopamine detection comprising the step of carbonizing AuAg/PDA NSP) is provided, and the manufacturing method is 5) The step of separating the carbon structure (AuAg/N-doped C/Pt NSP) by etching the silica nanospheres may be further included.

상기 탄소 구조체(AuAg/N-doped C/Pt NSP)는 금-은 합금 나노닷이 함침된 내벽;및 백금(Pt) 나노입자를 포함하는 외벽을 포함하고, 상기 탄소 구조체(AuAg/N-doped C/Pt NSP)는 작은 크기와 높은 활성 표면적 때문에 상응하는 SiO2-SH/AuAg/N-doped C/Pt NSP보다 도파민 산화에 대하여 높은 촉매활성을 나타낸다. The carbon structure (AuAg/N-doped C/Pt NSP) includes an inner wall impregnated with gold-silver alloy nanodots; and an outer wall including platinum (Pt) nanoparticles, and the carbon structure (AuAg/N-doped C/Pt NSP) exhibits higher catalytic activity for dopamine oxidation than the corresponding SiO 2 -SH/AuAg/N-doped C/Pt NSP because of its small size and high active surface area.

상기 티올기(thiol group)를 포함하는 실리카 나노구체(SiO2-SH nano sphere)는 3-메르캅토프로필트리메톡시실란(3-mercaptopropyltrimethoxysilane) 및 테트라에틸오쏘실리케이트(tetraethylorthosilicate)를 혼합하여 제조되는 것을 특징으로 한다. The silica nanosphere (SiO 2 -SH nano sphere) containing the thiol group is prepared by mixing 3-mercaptopropyltrimethoxysilane and tetraethylorthosilicate. It is characterized.

상기 금-은 합금 나노닷은 아민으로 기능화된 실리케이트 졸-겔 매트릭스(TPDT sol-gel)를 제조한 후에 금 및 은 전구체를 첨가하여 제조되며, 상기 금전구체는 테트라클로로금(Ⅲ)산(HAuCl4)이고, 은전구체는 질산은(AgNO3)일 수 있으나, 이에 제한되지 않는다. The gold-silver alloy nanodots are prepared by adding gold and silver precursors after preparing a silicate sol-gel matrix (TPDT sol-gel) functionalized with an amine, and the gold precursor is tetrachlorogold(III) acid (HAuCl). 4 ), and the silver precursor may be silver nitrate (AgNO 3 ), but is not limited thereto.

상기 아민으로 기능화된 실리케이트 졸-겔 매트릭스(TPDT sol-gel)는 상기 실리케이트 졸-겔 매트릭스는 N-(3-트리메톡시실릴프로필)디에틸렌트리아민(TPDT)을 실란 모노머로 하여 제조할 수 있다. The amine-functionalized silicate sol-gel matrix (TPDT sol-gel) may be prepared by using N-(3-trimethoxysilylpropyl)diethylenetriamine (TPDT) as a silane monomer. have.

상기 탄화온도는 300 ~ 500℃인 것을 특징으로 하며, 바람직하게는 400℃이다. 상기 탄화온도가 300℃ 미만이면 충분한 탄화가 일어나지 않으며 500℃를 초과하는 경우에는 에너지 낭비 및 다른 물질들의 용융이 일어날 수 있다. The carbonization temperature is characterized in that 300 ~ 500 ℃, preferably 400 ℃. When the carbonization temperature is less than 300°C, sufficient carbonization does not occur, and when it exceeds 500°C, energy waste and melting of other materials may occur.

상기 에칭은 수산화나트륨(NaOH) 또는 수산화칼륨(KOH) 중 어느 하나를 사용할 수 있으나 이에 제한되지 않는다. The etching may be performed using either sodium hydroxide (NaOH) or potassium hydroxide (KOH), but is not limited thereto.

본 발명은 상기 방법에 의하여 제조된 도파민 검출용 전기촉매를 제공한다. The present invention provides an electrocatalyst for detecting dopamine prepared by the above method.

본 발명의 금-은 합금 나노닷 및 백금 나노입자가 포함된 질소-도핑 탄소 구체(AuAg/ND_C/Pt)는 중공 구조의 작은 크기와 높은 활성 표면적 때문에 SiO2/AuAg/ND_C/Pt보다 도파민 산화에 대한 시너지 전기 촉매 작용을 나타냈다. 본 발명의 질소-도핑 탄소 구체로 개질된 전극 촉매는 아스코르빈산과 우린산의 100배 농축 농도에 상관없이 선택적으로 도파민을 결정하는데 사용될 수 있다.Nitrogen-doped carbon spheres (AuAg/ND_C/Pt) containing gold-silver alloy nanodots and platinum nanoparticles of the present invention are dopamine oxidation more than SiO 2 /AuAg/ND_C/Pt because of the small size and high active surface area of the hollow structure. Showed synergistic electrocatalysis for The electrode catalyst modified with nitrogen-doped carbon spheres of the present invention can be used to selectively determine dopamine regardless of the 100-fold concentration of ascorbic acid and uric acid.

도 1은 본 발명의 중공 구조 AuAg/ND_C/Pt를 제조하는 방법의 개략적인 그림이다.
도 2는 AuAg/ND_C/Pt 개질된 전극에서 도파민의 전기 화학적 산화를 도식적으로 표현한 그림이다.
도 3은 (A, A1) SiO2 나노구체(NSPs), (B, B1) SiO2-SH NSPs, (C, C1) SiO2-SH/AuAg NSPs, (D, D1) SiO2-SH/AuAg/PDA NSPs, (E, E1) SiO2-SH/AuAg/PDA/Pt NSPs, (F, F1) SiO2-SH/AuAg/N-doped C/Pt NSPs, 및 (G, G1) AuAg/N-doped C/Pt NSPs의 SEM 이미지 사진이다.
도 4는 (A-A2) SiO2-SH NSPs, (B-B2) SiO2-SH/AuAg NSPs, (C-C2) SiO2-SH/AuAg/N-doped C NSPs 및 (D-D2) SiO2-SH/AuAg/N-doped C/Pt NSPs의 TEM 이미지 사진이다.
도 5는 SiO2-SH/AuAg/N-doped C/Pt NSPs의 (A, B) TEM 이미지, AuAg/N-doped C/Pt NSPs의 (C) SEM 이미지, (D) TEM 이미지, (E-E7)는 STEM-HAADF 이미지 및 STEM-EDX 원소 매핑 분석을 나타낸 사진이다.
도 6 은 SiO2-SH/AuAg/N-doped C/Pt NSPs의 XPS 결과이다;(A)조사 스펙트럼 및 (B) C1s, (C) Au4f, (D) Ag3d, (E) N1s 및 (F) Pt4f에 대한 확대 스펙트럼.
도 7은 (A) 0.1 M PBS(pH = 7.2) (B) 1 mM 아스코빅산(AA) 함께 처리, (C) 1 mM 요산(UA) 함께 처리한 GC/AuAg/ND_C/Pt에서 10 μM 도파민(DA)을 각각 첨가할 때마다 기록된 SWVs이며, (d) 이에 대응하는 검정도(calibration plot)를 나타낸 그래프이다.
1 is a schematic illustration of a method of manufacturing a hollow structure AuAg/ND_C/Pt of the present invention.
2 is a diagram schematically representing the electrochemical oxidation of dopamine in the AuAg/ND_C/Pt modified electrode.
Figure 3 shows (A, A1) SiO 2 nanospheres (NSPs), (B, B1) SiO 2 -SH NSPs, (C, C1) SiO 2 -SH/AuAg NSPs, (D, D1) SiO 2 -SH/ AuAg/PDA NSPs, (E, E1) SiO 2 -SH/AuAg/PDA/Pt NSPs, (F, F1) SiO 2 -SH/AuAg/N-doped C/Pt NSPs, and (G, G1) AuAg/ This is a SEM image of N-doped C/Pt NSPs.
Figure 4 shows (A-A2) SiO 2 -SH NSPs, (B-B2) SiO 2 -SH/AuAg NSPs, (C-C2) SiO 2 -SH/AuAg/N-doped C NSPs and (D-D2) This is a TEM image of SiO 2 -SH/AuAg/N-doped C/Pt NSPs.
5 is a (A, B) TEM image of SiO 2 -SH/AuAg/N-doped C/Pt NSPs, (C) SEM image of AuAg/N-doped C/Pt NSPs, (D) TEM image, (E -E7) is a photograph showing the STEM-HAADF image and STEM-EDX elemental mapping analysis.
6 is the XPS result of SiO 2 -SH/AuAg/N-doped C/Pt NSPs; (A) irradiation spectrum and (B) C1s, (C) Au4f, (D) Ag3d, (E) N1s and (F ) Broadened spectrum for Pt4f.
Figure 7 is (A) 0.1 M PBS (pH = 7.2) (B) treated with 1 mM ascorbic acid (AA), (C) 10 μM dopamine in GC/AuAg/ND_C/Pt treated with 1 mM uric acid (UA) (DA) is the SWVs recorded at each addition, and (d) is a graph showing the corresponding calibration plot.

이하, 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 그러나 이들 예는 본 발명의 이해를 돕기 위한 것일 뿐 어떠한 의미로든 본 발명의 범위가 이들 예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, these examples are only intended to aid understanding of the present invention, and the scope of the present invention is not limited to these examples in any sense.

실시예Example

본 발명 중공 구조의 AuAg/ND_C/Pt 제조방법은 도 1에 개략적으로 도시하였다. The method for manufacturing AuAg/ND_C/Pt of the present invention hollow structure is schematically illustrated in FIG. 1.

1. SiO1.SiO 22 -SH 나노 구체 제조-SH nano sphere manufacturing

800mL의 99.9% 에탄올, 60mL의 NH4OH, 36mL의 테트라에틸 오르소실리케이트(Tetraethyl orthosilicate, TEOS), 20mL의 증류수를 혼합한 뒤, 20시간 동안 교반한 후, 2mL의 3-메르캅토프로필트리메톡시실란(Mercaptopropyl trimethoxysilane; 3-MPTMS) 첨가한 후, 12시간 동안 교반하고, 증류수와 에탄올을 용매로 원심분리하여 SiO2-SH 나노 구체를 수득하였다. 800 mL of 99.9% ethanol, 60 mL of NH 4 OH, 36 mL of tetraethyl orthosilicate (TEOS), and 20 mL of distilled water were mixed, stirred for 20 hours, and then 2 mL of 3-mercaptopropyltrime After adding oxysilane (Mercaptopropyl trimethoxysilane; 3-MPTMS), the mixture was stirred for 12 hours, and then distilled water and ethanol were centrifuged with a solvent to obtain SiO 2 -SH nanospheres.

2. SiO2. SiO 22 -SH/AuAg 제조-SH/AuAg manufacturing

에탄올에 1M이 되도록 첨가한 N-(3-트리메톡시실릴프로필)디에틸렌트리아민(TPDT)을 2mM이 되도록 10mL의 증류수에 20㎕을 첨가하고 0.1M HCl 10㎕를 첨가한 뒤, 1시간 동안 교반하여 아민으로 기능화된 실리케이트 졸-겔 메트릭스(TPDT sol-gel)를 만든다. 위 졸-겔 메트릭스에 0.5mM이 되도록 금(Au) 전구체(Gold(Ⅲ)chloride trihydrate; HAuCl4·3H2O)를 첨가하고 잠시 혼합한 뒤 0.5mM이 되도록 은(Ag) 전구체(Silver nitrate; AgNO3)를 첨가한 후, 48 시간 동안 교반하여 1mM의 금-은 합금 나노닷(AuAg bi-metal NDs; nano dots) 을 제작하였다. 다음 AuAg 바이메탈 나노닷을 증류수를 용매로 원심분리 및 세척하여 AuAg 펠렛을 얻는다. SiO2-SH 100mg에 10mL의 증류수를 200 RPM으로 교반하며 200㎕의 AuAg 펠렛(1mM AuAg) 첨가한 뒤, 1 시간 동안 교반하였다. 교반 이 끝난 뒤, 증류수와 에탄올을 용매로 원심분리하고 세척 후 건조하여 SiO2-SH/AuAg를 수득하였다. Add 20 μl of N-(3-trimethoxysilylpropyl)diethylenetriamine (TPDT) added to ethanol to be 1 M in distilled water of 10 mL to make 2 mM, and 10 μl of 0.1 M HCl, followed by 1 hour. While stirring to make a functionalized silicate sol-gel matrix (TPDT sol-gel) with an amine. A gold (Au) precursor (Gold(III)chloride trihydrate; HAuCl 4 ·3H 2 O) was added to the sol-gel matrix to be 0.5mM, mixed for a while, and then the silver (Ag) precursor to be 0.5mM (Silver nitrate; AgNO 3 ) was added and then stirred for 48 hours to prepare 1 mM gold-silver alloy nanodots (AuAg bi-metal NDs; nano dots). Then, the AuAg bimetallic nanodots were centrifuged and washed with distilled water as a solvent to obtain AuAg pellets. SiO 2 -SH 100 mg, 10 mL of distilled water was stirred at 200 RPM, and 200 µl of AuAg pellet (1 mM AuAg) was added, followed by stirring for 1 hour. After the stirring was over, distilled water and ethanol were centrifuged with a solvent, washed and dried to obtain SiO 2 -SH/AuAg.

3. SiO3. SiO 22 -SH/AuAg/PDA 제조-SH/AuAg/PDA manufacturing

SiO2-SH/AuAg 100mg에 50mL의 증류수를 교반하며 “플루로닉 f 127” 25mg, 트리스(2-아미노-2-히드록시메틸 프로판-1,3-디올)(Tris(2-amino-2-hydroxymethyl propane-1,3-diol))을 15 mg을 첨가한 뒤, 잠시 혼합하고, 도파민 염산염(Dopamine hydrochloride) 0.2 g첨가한 뒤, 5 시간 교반하였다. 교반 후 증류수와 에탄올을 용매로 원심분리하고 세척 후 건조하여 SiO2-SH/AuAg/PDA를 수득하였다.SiO 2 -SH/AuAg 100mg and 50mL of distilled water are stirred, “Pluronic f 127” 25mg, Tris(2-amino-2-hydroxymethyl propane-1,3-diol)(Tris(2-amino-2 After 15 mg of -hydroxymethyl propane-1,3-diol)) was added, mixed for a while, 0.2 g of Dopamine hydrochloride was added, and then stirred for 5 hours. After stirring, distilled water and ethanol were centrifuged with a solvent, washed and dried to obtain SiO 2 -SH/AuAg/PDA.

4. SiO4. SiO 22 -SH/AuAg/PDA/Pt 제조-SH/AuAg/PDA/Pt manufacturing

SiO2-SH/AuAg/PDA 100mg에 10mL의 증류수를 교반하며 1mM이 되도록 Pt 전구체(chloroplatinic acid hexahydrate; H2PtCl6·6H2O)를 첨가하여 혼합하고, 소량의 NaBH4 첨가 후 다시 교반하였다. 교반이 끝난 뒤, 증류수와 에탄올을 용매로 원심분리하고 세척 후 건조하여 SiO2-SH/AuAg/PDA/Pt를 수득하였다.SiO 2 -SH/AuAg/PDA 100 mg, 10 mL of distilled water was stirred, and a Pt precursor (chloroplatinic acid hexahydrate; H 2 PtCl 6 ·6H 2 O) was added to make 1 mM, mixed, and a small amount of NaBH 4 was added, followed by stirring again. . After the stirring was over, distilled water and ethanol were centrifuged with a solvent, washed and dried to obtain SiO 2 -SH/AuAg/PDA/Pt.

5. 중공 구조의 AuAg/ND_C/Pt 제조5. Hollow structure AuAg/ND_C/Pt manufacturing

상기 SiO2-SH/AuAg/PDA/Pt를 400℃에서 3시간 동안 하소(calcination)시키고, 과량의 KOH 용액에서 약하게 교반한다. 이후, 1M KOH 용액과 증류수의 비율이 8:2인 용액을 용매로 원심분리하고 세척 후 건조하여 최종적으로 AuAg/ND_C/Pt를 수득하였다. The SiO 2 -SH/AuAg/PDA/Pt was calcined at 400° C. for 3 hours, and gently stirred in an excess KOH solution. Thereafter, a solution having a 1M KOH solution and distilled water in a ratio of 8:2 was centrifuged with a solvent, washed and dried to finally obtain AuAg/ND_C/Pt.

6. 전극 제조방법6. Electrode manufacturing method

AuAg/ND_C/Pt 0.5mg에 489㎕의 에탄올과 11㎕의 나피온 117(Nafion 117)을 첨가하여 혼합하고, 음파 처리(sonication)하여 분산(dispersion)시킨다. GC 전극은 알루미나(alumina)를 이용하여 표면을 연마하고 음파 분해하여 세척한 뒤, 위의 AuAg/ND_C/Pt 잉크 3㎕를 올려 30분동안 건조시켰다. 전극 보호를 위해 나피온 117 3㎕를 올려 동일하게 30분동안 건조시켜 전극을 제조하였다.To 0.5 mg of AuAg/ND_C/Pt, 489 μl of ethanol and 11 μl of Nafion 117 were added and mixed, followed by sonication to disperse. The GC electrode was polished using alumina and washed by sonication, and then, 3 µl of the above AuAg/ND_C/Pt ink was added and dried for 30 minutes. To protect the electrode, 3 µl of Nafion 117 was added and dried for 30 minutes in the same manner to prepare an electrode.

실험예Experimental example

1.TEM 및 STEM 이미지 분석 (도 3, 도 4, 도 5)1.TEM and STEM image analysis (Fig. 3, Fig. 4, Fig. 5)

도 3은 AuAg/N-doped C/Pt 나노입자(NSPs)를 제작하는데 있어서의 각 단계별 SEM 이미지 사진이다. 먼저 (A, A1)는 구체의 SiO2 나노입자 이며, (B, B1)는 SiO2 나노입자 위에 싸이올기(Thiol, R-SH)로 기능화된 SiO2-SH 나노입자이다. SEM 이미지를 확인할 때, 기존의 SiO2보다 좀 더 균일한 양상을 보임을 확인할 수 있다. (C, C1)의 경우 제작한 AuAg를 SiO2-SH위에 올린 SiO2-SH/AuAg으로 1-2nm크기의 AuAg에 의해 표면이 우둘투둘한 것을 볼 수 있다. (D, D1)는 SiO2-SH/AuAg/PDA에 해당하며, 도파민이 나노입자 표면을 균일하게 코팅하였음을 보인다. (E, E1)에서는 SiO2-SH/AuAg/PDA/Pt로 Pt를 도파민으로 코팅된 표면 위에 올렸으며 때문에 표면의 미세한 Pt 나노입자를 확인할 수 있다. (F, F1)의 경우 SiO2-SH/AuAg/N-doped C/Pt이고, (G, G1)는 AuAg/N-doped C/Pt로 SiO2를 제거하여 나노입자의 속이 비어있음을 SEM 이미지를 통해 확인할 수 있다.3 is a SEM image photograph of each step in producing AuAg/N-doped C/Pt nanoparticles (NSPs). First (A, A1) is a SiO 2 nanoparticles of spheres, (B, B1) is a SiO 2 -SH nanoparticles functionalized with thiol group (Thiol, R-SH) over SiO 2 nanoparticles. When checking the SEM image, it can be seen that it shows a more uniform pattern than the existing SiO 2 . May by (C, C1) SiO 2 -SH / AuAg the AuAg size of 1-2nm raise the produced AuAg over SiO 2 -SH For be seen that the surface is woodultudul. (D, D1) corresponds to SiO 2 -SH/AuAg/PDA, and shows that dopamine uniformly coats the surface of the nanoparticles. In (E, E1), Pt was put on the surface coated with dopamine with SiO 2 -SH/AuAg/PDA/Pt, so the fine Pt nanoparticles on the surface can be confirmed. (F, F1) is SiO 2 -SH/AuAg/N-doped C/Pt, and (G, G1) is AuAg/N-doped C/Pt to remove SiO 2 to show that the nanoparticles are hollow. You can check it through the image.

도 4는 (A-A2) SiO2-SH NSPs, (B-B2) SiO2-SH/AuAg NSPs, (C-C2) SiO2-SH/AuAg/N-doped C NSPs 및 (D-D2) SiO2-SH/AuAg/N-doped C/Pt NSPs의 TEM 이미지 사진이다. 도 3에서 SEM 이미지상 확인에 어려움이 있었던 (B-B2)의 금-은 합금 나노닷(AuAg bi-metal NDs; nanodots)과 (D-D2)의 백금 나노닷(Pt NDs; nanodots)을 확인할 수 있으며, (C-C2)에서 폴리도파민(poly-dopamine)으로 코팅(encapsulation)을 한 후에 (B-B2)에서 보이는 AuAg NDs가 TEM 이미지 상에서 나타나지 않음을 통하여 폴리도파민이 완벽히 균일하게 SiO2-SH/AuAg NSPs를 덮어 SiO2-SH/AuAg/N-doped C를 제조했음을 확인할 수 있다. 이는 AuAg NDs가 질소-도핑 탄소 구체의 안쪽면에 존재함을 나타낸다.Figure 4 shows (A-A2) SiO 2 -SH NSPs, (B-B2) SiO 2 -SH/AuAg NSPs, (C-C2) SiO 2 -SH/AuAg/N-doped C NSPs and (D-D2) This is a TEM image of SiO 2 -SH/AuAg/N-doped C/Pt NSPs. In Fig. 3, gold-silver alloy nanodots (AuAg bi-metal NDs; nanodots) of (B-B2) and platinum nanodots (Pt NDs; nanodots) of (D-D2), which were difficult to confirm on the SEM image, were confirmed. After encapsulation with poly-dopamine in (C-C2), AuAg NDs seen in (B-B2) do not appear on the TEM image, so that poly-dopamine is completely uniform SiO 2- It can be seen that SiO 2 -SH/AuAg/N-doped C was prepared by covering SH/AuAg NSPs. This indicates that AuAg NDs are present on the inner surface of nitrogen-doped carbon spheres.

도 5는 SiO2-SH/AuAg/N-doped C/Pt NSPs의 (A, B) TEM 이미지, AuAg/N-doped C/Pt NSPs의 (C) SEM 이미지, (D) TEM 이미지, (E-E7)는 STEM-HAADF 이미지 및 STEM-EDX 원소 매핑 분석을 나타낸 사진이다. (C, D)를 통해 성공적으로 중공 구조의 질소-도핑 탄소 구체를 제작하였음을 확인할 수 있으며, 안쪽과 바깥 쪽 벽면에 금-은 합금 나노닷(AuAg NDs), 백금 나노닷(Pt NDs)이 존재함을 각각 확인할 수 있다. (E1-E7)을 통해 각각의 원소들의 존재여부를 확인할 수 있다.5 is a (A, B) TEM image of SiO 2 -SH/AuAg/N-doped C/Pt NSPs, (C) SEM image of AuAg/N-doped C/Pt NSPs, (D) TEM image, (E -E7) is a photograph showing the STEM-HAADF image and STEM-EDX elemental mapping analysis. Through (C, D), it can be confirmed that the hollow structure of nitrogen-doped carbon spheres were successfully produced, and gold-silver alloy nanodots (AuAg NDs) and platinum nanodots (Pt NDs) were formed on the inner and outer walls. It can be confirmed that each exists. You can check the existence of each element through (E1-E7).

2. XPS 분석(도 6)2. XPS analysis (Fig. 6)

도 6 은 SiO2-SH/AuAg/N-doped C/Pt NSPs의 XPS 결과이다;(A)조사 스펙트럼 및 (B) C1s, (C) Au4f, (D) Ag3d, (E) N1s 및 (F) Pt4f에 대한 확대 스펙트럼이다. 이때, 금(Au)과 은(Ag)에 해당하는 (B)와 (C)를 볼 때, 매우 약한 시그널(signals)을 보이는데, 이는 금-은 합금 나노닷 (AuAg NDs)이 질소-도핑 탄소 구체의 안쪽 벽면에 존재하기 때문이며, (F)를 확인할 때, 바깥쪽 벽면에 존재하는 백금 나노닷 (Pt NDs)의 경우 백금의 고유 피크(peaks)를 나타냄을 확인할 수 있다.6 is the XPS result of SiO 2 -SH/AuAg/N-doped C/Pt NSPs; (A) irradiation spectrum and (B) C1s, (C) Au4f, (D) Ag3d, (E) N1s and (F ) It is an enlarged spectrum for Pt4f. At this time, when looking at (B) and (C) corresponding to gold (Au) and silver (Ag), very weak signals are shown, which means that gold-silver alloy nanodots (AuAg NDs) are nitrogen-doped carbon. This is because it exists on the inner wall of the sphere, and when checking (F), it can be seen that platinum nanodots (Pt NDs) existing on the outer wall show intrinsic peaks of platinum.

3. 도파민의 전기화학적 산화 (도 7)3. Electrochemical oxidation of dopamine (Fig. 7)

도 7은 (A) 0.1 M PBS(pH = 7.2) (B) 1 mM 아스코빅산(AA) 함께 처리, (C) 1 mM 요산(UA) 함께 처리한 GC/AuAg/ND_C/Pt에서 10 μM 도파민(DA)을 각각 첨가할 때마다 기록된 SWVs(Square Wave Voltammograms)이며, (d) 이에 대응하는 검정도(calibration plot)를 나타낸 그래프이다. (A)와 비교하여 (B), (C)의 그래프를 확인할 때, 아스코빅산과 요산의 피크(peak)가 도파민의 피크와 유사한 위치에서 반응함에도 불구하고 촉매를 사용하였을 때, 아스코빅산과 요산에 해당하는 피크보다 우세하여 도파민의 농도변화를 선택적으로 검출함을 나타낸다.Figure 7 shows (A) 0.1 M PBS (pH = 7.2) (B) treated with 1 mM ascorbic acid (AA), (C) 10 μM dopamine in GC/AuAg/ND_C/Pt treated with 1 mM uric acid (UA) (DA) is SWVs (Square Wave Voltammograms) recorded at each addition, and (d) is a graph showing a calibration plot corresponding thereto. When checking the graphs of (B) and (C) compared to (A), when the catalyst was used, ascorbic acid and uric acid reacted at a position similar to that of dopamine, although the peaks of ascorbic acid and uric acid reacted at a position similar to that of dopamine. It is superior to the peak corresponding to, indicating that the concentration change of dopamine is selectively detected.

Claims (12)

전극;및
상기 전극 위에 질소-도핑 탄소 구체를 포함하고,
상기 질소-도핑 탄소 구체는 금-은 합금 나노닷이 함침된 내벽;및
백금(Pt) 나노입자를 포함하는 외벽을 포함하는 것을 특징으로 하는 전기화학 센서.
Electrode; and
Comprising nitrogen-doped carbon spheres on the electrode,
The nitrogen-doped carbon sphere is an inner wall impregnated with gold-silver alloy nanodots; And
Electrochemical sensor comprising an outer wall comprising platinum (Pt) nanoparticles.
제1항에 있어서,
상기 전기화학 센서는 도파민을 산화시켜 도파민 검출에 사용되는 것을 특징으로 하는 전기화학 센서.
The method of claim 1,
The electrochemical sensor is an electrochemical sensor, characterized in that used for detecting dopamine by oxidizing dopamine.
제1항 또는 제2항의 전기화학 센서를 이용하여 도파민을 검출하는 방법.
A method of detecting dopamine using the electrochemical sensor of claim 1 or 2.
1) 티올기(thiol group)를 포함하는 실리카 나노구체를 제조하는 단계;
2) 상기 실리카 나노구체에 금-은 합금 나노닷을 침착(deposition)시키는 단계;
3) 상기 금-은 합금 나노닷이 침착된 실리카 나노구체를 폴리도파민으로 코팅하는 단계;및
4) 상기 폴리도파민으로 코팅된 실리카 나노구체를 탄화시키는 단계를 포함하는 도파민 검출용 질소-도핑 탄소 구체 전기촉매 제조방법.
1) preparing a silica nanosphere containing a thiol group;
2) depositing gold-silver alloy nanodots on the silica nanospheres;
3) coating the silica nanospheres on which the gold-silver alloy nanodots are deposited with polydopamine; And
4) A method for producing a nitrogen-doped carbon spherical electrocatalyst for detecting dopamine comprising the step of carbonizing the silica nanospheres coated with the polydopamine.
제4항에 있어서,
5) 상기 실리카 나노구체를 에칭하여 탄소 구조체를 분리하는 단계를 더 포함하는 도파민 검출용 질소-도핑 탄소 구체 전기촉매 제조방법.
The method of claim 4,
5) A nitrogen-doped carbon sphere electrocatalyst manufacturing method for detecting dopamine further comprising the step of separating the carbon structure by etching the silica nanospheres.
제4항에 있어서,
상기 질소-도핑 탄소 구체는 금-은 합금 나노닷이 함침된 내벽;및
백금(Pt) 나노입자를 포함하는 외벽을 포함하는 것을 특징으로 하는 도파민 검출용 질소-도핑 탄소 구체 전기촉매 제조방법.
The method of claim 4,
The nitrogen-doped carbon sphere is an inner wall impregnated with gold-silver alloy nanodots; And
A nitrogen-doped carbon spherical electrocatalyst manufacturing method for detecting dopamine, characterized in that it comprises an outer wall containing platinum (Pt) nanoparticles.
제4항에 있어서,
상기 티올기(thiol group)를 포함하는 실리카 나노구체는 3-메르캅토프로필트리메톡시실란(3-mercaptopropyltrimethoxysilane) 및 테트라에틸오쏘실리케이트(tetraethylorthosilicate)를 혼합하여 제조되는 것을 특징으로 하는 도파민 검출용 질소-도핑 탄소 구체 전기촉매 제조방법.
The method of claim 4,
The silica nanospheres containing a thiol group are nitrogen for dopamine detection, characterized in that prepared by mixing 3-mercaptopropyltrimethoxysilane and tetraethylorthosilicate. Method for producing a doped carbon spherical electrocatalyst.
제4항에 있어서,
금-은 합금 나노닷은 아민으로 기능화된 실리케이트 졸-겔 매트릭스(TPDT sol-gel)를 제조한 후에 금 및 은 전구체를 첨가하여 제조되는 것을 특징으로 하는 도파민 검출용 질소-도핑 탄소 구체 전기촉매 제조방법.
The method of claim 4,
Preparation of a nitrogen-doped carbon spherical electrocatalyst for dopamine detection, characterized in that it is prepared by adding gold and silver precursors after preparing a silicate sol-gel matrix functionalized with a silver amine. Way.
제8항에 있어서,
상기 금전구체는 테트라클로로금(Ⅲ)산(HAuCl4)이고, 은전구체는 질산은(AgNO3)인 것을 특징으로 하는 도파민 검출용 질소-도핑 탄소 구체 전기촉매 제조방법.
The method of claim 8,
The gold precursor is tetrachlorogold (III) acid (HAuCl 4 ), and the silver precursor is a nitrogen-doped carbon sphere electrocatalyst for detection of dopamine, characterized in that silver nitrate (AgNO 3 ).
제4항에 있어서,
상기 탄화온도는 300 ~ 500℃인 것을 특징으로 하는 도파민 검출용 질소-도핑 탄소 구체 전기촉매 제조방법.
The method of claim 4,
The carbonization temperature is a nitrogen-doped carbon spherical electrocatalyst manufacturing method for detecting dopamine, characterized in that 300 ~ 500 ℃.
제5항에 있어서,
상기 에칭은 수산화나트륨(NaOH) 또는 수산화칼륨(KOH) 중 어느 하나인 것을 특징으로 하는 도파민 검출용 질소-도핑 탄소 구체 전기촉매 제조방법.
The method of claim 5,
The etching is a nitrogen-doped carbon sphere electrocatalyst manufacturing method for detecting dopamine, characterized in that any one of sodium hydroxide (NaOH) or potassium hydroxide (KOH).
제4항 내지 제11항 중 어느 한 항에 따른 제조방법에 의하여 제조된 도파민 검출용 전기촉매.
An electrocatalyst for detecting dopamine prepared by the manufacturing method according to any one of claims 4 to 11.
KR1020190043936A 2019-04-15 2019-04-15 Electrochemical sensor detecting dopamine using nitrogen-doped carbon sphere having au-ag alloy nanodots and platinum and method of the same KR102160358B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190043936A KR102160358B1 (en) 2019-04-15 2019-04-15 Electrochemical sensor detecting dopamine using nitrogen-doped carbon sphere having au-ag alloy nanodots and platinum and method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190043936A KR102160358B1 (en) 2019-04-15 2019-04-15 Electrochemical sensor detecting dopamine using nitrogen-doped carbon sphere having au-ag alloy nanodots and platinum and method of the same

Publications (1)

Publication Number Publication Date
KR102160358B1 true KR102160358B1 (en) 2020-09-28

Family

ID=72800936

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190043936A KR102160358B1 (en) 2019-04-15 2019-04-15 Electrochemical sensor detecting dopamine using nitrogen-doped carbon sphere having au-ag alloy nanodots and platinum and method of the same

Country Status (1)

Country Link
KR (1) KR102160358B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112614702A (en) * 2020-12-07 2021-04-06 大连工业大学 Preparation method of nitrogen-doped hollow carbon nanosphere electrode material
CN112707382A (en) * 2020-12-30 2021-04-27 高立雅 Preparation method and application of nitrogen and sulfur doped porous hollow carbon spheres
CN114019003A (en) * 2021-10-15 2022-02-08 华东师范大学 Electrochemical sensor for UA detection through molecular line regulation and control nano interface and preparation and application thereof
CN114212860A (en) * 2021-12-14 2022-03-22 宁波职业技术学院 Method for treating wastewater by using nano-silver modified carbon paper anode to electrically activate persulfate
KR20220039356A (en) * 2020-09-22 2022-03-29 전남대학교산학협력단 Electrocatalyst for hydrogen generation reaction comprising nitrogen-doped carbonized polydopamine structure
CN114618551A (en) * 2022-03-01 2022-06-14 西北工业大学 Supported nano alloy catalyst and universal preparation method
KR20220105111A (en) 2021-01-19 2022-07-26 영남대학교 산학협력단 A sensor for simultaneous detection of phenolic compounds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170045085A (en) * 2015-10-16 2017-04-26 주식회사 엘지생활건강 Composition for improving skin and its use
KR20180098088A (en) 2017-02-24 2018-09-03 한양대학교 에리카산학협력단 Nanoprobe for detecting dopamine, sensor for detecting dopamine containing the same and sensing method for dopamine
KR20180135668A (en) * 2017-06-13 2018-12-21 중앙대학교 산학협력단 Sensor for detecting dopamine and method of manufacturing the sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170045085A (en) * 2015-10-16 2017-04-26 주식회사 엘지생활건강 Composition for improving skin and its use
KR20180098088A (en) 2017-02-24 2018-09-03 한양대학교 에리카산학협력단 Nanoprobe for detecting dopamine, sensor for detecting dopamine containing the same and sensing method for dopamine
KR20180135668A (en) * 2017-06-13 2018-12-21 중앙대학교 산학협력단 Sensor for detecting dopamine and method of manufacturing the sensor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Electroanalysis, (2017), 30, pp 57-66 *
대한화학회 제121회 학술대회 및 총회, (2018), 포스터 초록, ELEC.P-646 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220039356A (en) * 2020-09-22 2022-03-29 전남대학교산학협력단 Electrocatalyst for hydrogen generation reaction comprising nitrogen-doped carbonized polydopamine structure
KR102486537B1 (en) 2020-09-22 2023-01-10 전남대학교산학협력단 Electrocatalyst for hydrogen generation reaction comprising nitrogen-doped carbonized polydopamine structure
CN112614702A (en) * 2020-12-07 2021-04-06 大连工业大学 Preparation method of nitrogen-doped hollow carbon nanosphere electrode material
CN112707382A (en) * 2020-12-30 2021-04-27 高立雅 Preparation method and application of nitrogen and sulfur doped porous hollow carbon spheres
CN112707382B (en) * 2020-12-30 2022-11-18 东莞市小娃科技有限公司 Preparation method and application of nitrogen and sulfur doped porous hollow carbon spheres
KR20220105111A (en) 2021-01-19 2022-07-26 영남대학교 산학협력단 A sensor for simultaneous detection of phenolic compounds
CN114019003A (en) * 2021-10-15 2022-02-08 华东师范大学 Electrochemical sensor for UA detection through molecular line regulation and control nano interface and preparation and application thereof
CN114019003B (en) * 2021-10-15 2024-03-12 华东师范大学 Electrochemical sensor for UA detection through molecular wire regulation and control nano interface, and preparation and application thereof
CN114212860A (en) * 2021-12-14 2022-03-22 宁波职业技术学院 Method for treating wastewater by using nano-silver modified carbon paper anode to electrically activate persulfate
CN114618551A (en) * 2022-03-01 2022-06-14 西北工业大学 Supported nano alloy catalyst and universal preparation method

Similar Documents

Publication Publication Date Title
KR102160358B1 (en) Electrochemical sensor detecting dopamine using nitrogen-doped carbon sphere having au-ag alloy nanodots and platinum and method of the same
Khalaf et al. Chitosan polymer complex derived nanocomposite (AgNPs/NSC) for electrochemical non-enzymatic glucose sensor
Thanh et al. In situ synthesis of graphene-encapsulated gold nanoparticle hybrid electrodes for non-enzymatic glucose sensing
Saraf et al. Non-enzymatic amperometric sensing of glucose by employing sucrose templated microspheres of copper oxide (CuO)
Wang et al. Electrochemical oxidation and determination of glucose in alkaline media based on Au (111)-like nanoparticle array on indium tin oxide electrode
Jiang et al. Glucose electrooxidation in alkaline medium: Performance enhancement of PdAu/C synthesized by NH3 modified pulse microwave assisted polyol method
Zhang et al. Electrochemical in-vivo sensors using nanomaterials made from carbon species, noble metals, or semiconductors
Gupta et al. Palladium nanoparticles supported on mesoporous silica microspheres for enzyme-free amperometric detection of H2O2 released from living cells
Vinoth et al. Simultaneous electrochemical determination of dopamine and epinephrine using gold nanocrystals capped with graphene quantum dots in a silica network
Wang et al. Electrochemical detection of L-cysteine using a glassy carbon electrode modified with a two-dimensional composite prepared from platinum and Fe 3 O 4 nanoparticles on reduced graphene oxide
Ye et al. Heterostructured palladium-platinum core-shell nanocubes for use in a nonenzymatic amperometric glucose sensor
Hsieh et al. Non-enzymatic sensing of dopamine using a glassy carbon electrode modified with a nanocomposite consisting of palladium nanocubes supported on reduced graphene oxide in a nafion matrix
WO2012018777A1 (en) Non-enzymatic glucose sensors based on metal oxide nanomaterials
Sim et al. High-sensitivity non-enzymatic glucose biosensor based on Cu (OH) 2 nanoflower electrode covered with boron-doped nanocrystalline diamond layer
Ma et al. Fabrication and characterization of non-enzymatic glucose sensor based on bimetallic hollow Ag/Pt nanoparticles prepared by galvanic replacement reaction
Periasamy et al. Glucose oxidase and horseradish peroxidase like activities of cuprous oxide/polypyrrole composites
Gowthaman et al. Free-standing Au-Ag nanoparticles on carbon cloth: A non-enzymatic flexible electrochemical sensor for the biomarker of oxidative stress
Wang et al. Flowerlike CuO/Au nanoparticle heterostructures for nonenzymatic glucose detection
Kim et al. Hierarchically palladium nanoparticles embedded polyethyleneimine–reduced graphene oxide aerogel (RGA–PEI–Pd) porous electrodes for electrochemical detection of bisphenol a and H2O2
Ponnada et al. A facile, cost-effective, rapid, single-step synthesis of Ag–Cu decorated ZnO nanoflower-like composites (NFLCs) for electrochemical sensing of dopamine
Singh et al. Electrochemical sensing and photocatalytic degradation of 2, 4-dinitrophenol via bismuth (III) oxide nanowires
Maiyalagan et al. Tungsten carbide nanotubes supported platinum nanoparticles as a potential sensing platform for oxalic acid
Hernández-Ramírez et al. Trends on the development of non-enzymatic electrochemical sensors modified with metal-oxide nanostructures for the quantification of uric acid
Gupta et al. Methylene blue incorporated mesoporous silica microsphere based sensing scaffold for the selective voltammetric determination of riboflavin
DÖNMEZ Green synthesis of zinc oxide nanoparticles using Zingiber officinale root extract and their applications in glucose biosensor

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant