KR102121126B1 - A solid catalyst for propylene polymerization and a method for preparation of polypropylene - Google Patents

A solid catalyst for propylene polymerization and a method for preparation of polypropylene Download PDF

Info

Publication number
KR102121126B1
KR102121126B1 KR1020180158412A KR20180158412A KR102121126B1 KR 102121126 B1 KR102121126 B1 KR 102121126B1 KR 1020180158412 A KR1020180158412 A KR 1020180158412A KR 20180158412 A KR20180158412 A KR 20180158412A KR 102121126 B1 KR102121126 B1 KR 102121126B1
Authority
KR
South Korea
Prior art keywords
dicarboxylate
solid catalyst
electron donor
trans
cis
Prior art date
Application number
KR1020180158412A
Other languages
Korean (ko)
Inventor
이영주
김은일
고수민
Original Assignee
한화토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화토탈 주식회사 filed Critical 한화토탈 주식회사
Priority to KR1020180158412A priority Critical patent/KR102121126B1/en
Application granted granted Critical
Publication of KR102121126B1 publication Critical patent/KR102121126B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • C08F4/6421Titanium tetrahalides with organo-aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • C08F4/6423Component of C08F4/64 containing at least two different metals
    • C08F4/6425Component of C08F4/64 containing at least two different metals containing magnesium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/646Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64
    • C08F4/6465Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64 containing silicium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6494Catalysts containing a specific non-metal or metal-free compound organic containing oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Emergency Medicine (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

The present invention relates to a solid catalyst for propylene polymerization and a method for preparing polypropylene by using the same. The present invention provides a solid catalyst including a carrier produced by reacting dialkoxy magnesium with a metal halide, a titanium halide, an organic electron donor, etc., and a method for preparing polypropylene by using the same. Particularly, among the two organic electron donors used in the present invention, an internal electron donor containing cyclic diester can be used, and thus the solid catalyst presented in the present invention can be applied to various types of propylene polymerization process such as slurry polymerization, bulk polymerization, gas phase polymerization or the like, thereby preparing a propylene resin with high melt-flowability while having excellent high activity and stereoregularity.

Description

고입체규칙성 폴리프로필렌 제조용 고체촉매 및 이를 이용한 폴리프로필렌 제조방법{A SOLID CATALYST FOR PROPYLENE POLYMERIZATION AND A METHOD FOR PREPARATION OF POLYPROPYLENE}Solid catalyst for producing high-regular regular polypropylene and polypropylene manufacturing method using the same{A SOLID CATALYST FOR PROPYLENE POLYMERIZATION AND A METHOD FOR PREPARATION OF POLYPROPYLENE}

본 발명은, 고입체규칙성 폴리프로필렌 제조용 촉매 및 이를 이용한 폴리프로필렌 제조방법에 관한 것으로, 보다 구체적으로는 디알콕시마그네슘을 금속할라이드와의 반응을 통해서 생성된 담체와 티타늄할라이드, 유기전자공여체 등으로 이루어진 고체촉매 및 이를 이용한 폴리프로필렌 제조방법으로써, 이러한 고체 촉매계로 이루어진 지글러-나타 촉매를 사용하여 프로필렌 중합체를 제조할 경우, 높은 입체규칙성을 갖는 폴리프로필렌 수지를 높은 수율로 제조할 수 있는 폴리프로필렌 제조용 촉매 및 이를 이용한 폴리프로필렌 제조방법에 관한 것이다.The present invention relates to a catalyst for producing a high solid regular polypropylene and a method for producing polypropylene using the same, more specifically, as a carrier, titanium halide, organic electron donor, etc., produced through the reaction of dialkoxy magnesium with a metal halide. When a propylene polymer is produced using a Ziegler-Natta catalyst composed of such a solid catalyst system, a polypropylene capable of producing a polypropylene resin having high stereoregularity with high yield It relates to a production catalyst and a method for producing polypropylene using the same.

폴리프로필렌은 실생활에서나 상업적으로 매우 유용하게 소재물질로써 특히 식품용기등의 생활용품에서부터 자동차 및 전자제품 등에 널리 사용되고 있다. 이러한 폴리프로필렌의 다양한 제품성능을 위해서는 높은 결정화도를 통한 강성을 개선하는 것이 중요하며, 이를 위해서는 중합촉매의 역할이 무엇보다도 절실히 요구된다. 즉 생성되는 고분자의 입체규칙성을 향상시키도록 촉매시스템의 디자인이 수반되어야 한다. 이와 아울러 고분자 제조에 있어서의 경제성을 위해서는 촉매의 중합활성 높을수록 더욱 유리하다.Polypropylene is a material that is very useful in real life and commercially, and is widely used in household goods such as food containers, automobiles, and electronic products. It is important to improve the rigidity through high crystallinity for various product performances of the polypropylene, and for this, the role of the polymerization catalyst is urgently required above all. That is, the design of the catalyst system must be accompanied to improve the stereoregularity of the resulting polymer. In addition, the higher the polymerization activity of the catalyst, the more advantageous for economical efficiency in polymer production.

한편 프로필렌의 기상중합, 슬러리 중합 및 벌크 중합에 사용되는 촉매계는 지글러-나타계 촉매 성분, 알킬알루미늄 및 외부전자공여체로 구성되어 있는 것이 일반적이다. 특히 이러한 촉매성분은 마그네슘, 티타늄, 및 내부전자공여체 및 할로겐을 필수성분으로서 함유하는 고체촉매로 알려져 있으며, 특히 내부 전자공여체는 분자구조에 따라 촉매의 활성 및 입체규칙성 등에 상당한 영향을 미치는 것으로 알려져 있다. 촉매 활성 증가를 통해 원가를 낮추고, 입체규칙성 등의 촉매 성능을 향상시켜 중합체의 물성을 개선시키기 위하여, 내부전자공여체로서 방향족 디카르복실산의 디에스테르를 사용하는 것은 보편적으로 널리 알려진 방법이며, 이에 관한 특허들이 출원되었다. 미국 특허 제4,562,173호, 미국 특허 제4,981,930호, 한국 특허 제0072844호 등은 그 예라고 할 수 있으며, 상기 특허들은 방향족 디알킬디에스테르 또는 방향족 모노알킬모노에스테르를 사용하여 고활성, 고입체규칙성을 발현하는 촉매 제조 방법을 소개하고 있다.Meanwhile, the catalyst system used for gas phase polymerization of propylene, slurry polymerization, and bulk polymerization is generally composed of a Ziegler-Natta catalyst component, an alkyl aluminum, and an external electron donor. In particular, these catalyst components are known as solid catalysts containing magnesium, titanium, and an internal electron donor and halogen as essential components. In particular, the internal electron donor is known to have a significant effect on catalyst activity and stereoregularity depending on the molecular structure. have. In order to improve the physical properties of the polymer by lowering the cost through increasing catalytic activity and improving catalyst performance such as stereoregularity, the use of a diester of aromatic dicarboxylic acid as an internal electron donor is a widely known method, Patents on this have been filed. Examples of the U.S. Patent No. 4,562,173, U.S. Patent No. 4,981,930, and the Korean Patent No. 782844 are examples.The above patents use aromatic dialkyl diesters or aromatic monoalkyl monoesters to achieve high activity and high solidity regularity. It introduces a method for producing a catalyst that expresses.

상기 특허들의 방법은 고입체규칙성 중합체를 높은 수율로 얻기에는 충분히 만족스러운 것이 아니며 개선이 요구된다. The methods of these patents are not satisfactory enough to obtain a high-stereoregular polymer with high yields and improvements are needed.

한국 특허 제0491387호에는 비방향족인 디에테르 물질을, 한국 특허 제0572616호에는 비방향족이면서 케톤과 에테르 작용기를 동시에 가지는 물질을 내부전자공여체로 사용한 촉매 제조 방법이 되어 있다. 그러나, 이 두 방법 모두 활성과 입체규칙성 측면 모두에서 크게 개선되어야할 여지가 있다. In Korean Patent No. 0491387, a non-aromatic diether material is used, and in Korean Patent No. 0572616, there is a method for producing a catalyst using a non-aromatic and simultaneously having a ketone and ether functional group as an internal electron donor. However, there is room for improvement in both of these methods in terms of both activity and stereoregularity.

또한 미국 특허 제2011/0040051호에는 디에틸 2,3-디이소프로필-2-시아노숙시네이트와 9,9-비스메톡시플로렌의 혼합물을 내부전자공여체로 사용하여 촉매를 제조하는 방법을 제안하고 있으나, 활성과 입체규칙성 측면 모두에서 매우 열세하여 개선이 요구되고 있다.In addition, US Patent 2011/0040051 discloses a method of preparing a catalyst using a mixture of diethyl 2,3-diisopropyl-2-cyanosuccinate and 9,9-bismethoxyflorene as an internal electron donor. Although proposed, it is very inferior in terms of both activity and stereoregularity, and improvement is required.

본 발명의 목적은 상기와 같은 종래기술들의 문제점을 해결하고자 하는 것으로써, 높은 입체규칙성을 갖고 활성이 우수하면서도 높은 용융흐름성을 갖는 폴리프로필렌을 제조할 수 있는 고체촉매 및 이를 이용한 폴리프로필렌 제조방법을 제공하는 것이다.The object of the present invention is to solve the problems of the prior art as described above, and has a high stereoregularity and excellent activity, and a solid catalyst capable of producing polypropylene having high melt flow properties and polypropylene production using the same Is to provide a way.

본 발명의 폴리프로필렌 중합용 고체촉매의 제조방법은, 다음의 단계를 포함하여 이루어지는 것을 특징으로 한다.The method for producing a solid catalyst for polypropylene polymerization of the present invention is characterized by comprising the following steps.

(1) 디에톡시마그네슘을 유기용매 존재하에서 금속할라이드 화합물과 비교적 낮은 온도에서 반응시키는 단계; (1) reacting diethoxy magnesium with a metal halide compound at a relatively low temperature in the presence of an organic solvent;

(2) 디에톡시마그네슘 반응 후 온도를 승온하면서 2종이상의 내부전자공여체를 반응시키는 단계;(2) reacting two or more internal electron donors while raising the temperature after the diethoxy magnesium reaction;

(3) 높은온도에서 일정시간동안 반응시키는 단계;(3) reacting for a period of time at a high temperature;

(4) 금속 할라이드 화합물과 높은 온도에서 2차로 반응시키고 이를 세척하는 단계.(4) Secondary reaction with a metal halide compound at a high temperature and washing it.

상기에 명시된 고체촉매의 제조공정에 있어서, (1)단계에서 사용된 디에톡시마그네슘은 금속마그네슘을 염화마그네슘의 존재하에서 무수알콜과 반응시켜 얻어지는 평균입경이 10~200㎛ 이고,In the production process of the solid catalyst specified above, the diethoxy magnesium used in step (1) has an average particle diameter of 10 to 200 μm obtained by reacting metal magnesium with anhydrous alcohol in the presence of magnesium chloride,

표면이 매끄러운 구형입자로서, 상기 구형입자의 형상은 프로필렌의 중합시에도 그대로 유지되는 것이 바람직한데, 상기 평균입경이 10㎛ 미만이면 제조된 촉매의 미세입자가 증가하여 바람직하지 않고, 200㎛를 초과하면 겉보기 밀도가 작아지고 촉매제조시 균일한 입자형상을 갖기 어려워 바람직하지 않다. As the spherical particles having a smooth surface, the shape of the spherical particles is preferably maintained even during polymerization of propylene. If the average particle diameter is less than 10 μm, the fine particles of the prepared catalyst increase, which is undesirable, and exceeds 200 μm. It is not preferable if the surface density becomes small and it is difficult to have a uniform particle shape during catalyst production.

상기 (1)단계에서 사용되는 유기용매로서는, 그 종류에 특별한 제한이 없으며, 탄소수 6~12개의 지방족 탄화수소 및 방향족 탄화수소, 할로겐화 탄화수소 등이 사용될 수 있으며, 보다 바람직하게는 탄소수 7~10개의 포화 지방족 탄화수소 또는 방향족 탄화수소, 할로겐화 탄화수소가 사용될 수 있으며, 그 구체적인 예로는 헵탄, 옥탄, 노난, 데칸, 톨루엔, 자일렌, 클로로헥산, 클로로헵탄 등으로부터 선택되는 1종 이상을 혼합하여 사용할 수 있다.As the organic solvent used in the step (1), there is no particular limitation on the type, and aliphatic hydrocarbons having 6 to 12 carbon atoms, aromatic hydrocarbons, halogenated hydrocarbons, etc. can be used, and more preferably saturated aliphatic having 7 to 10 carbon atoms. Hydrocarbons or aromatic hydrocarbons, halogenated hydrocarbons may be used, and specific examples thereof may be used by mixing one or more selected from heptane, octane, nonane, decane, toluene, xylene, chlorohexane, and chloroheptane.

또한 상기 디에톡시마그네슘에 대한 상기 유기용매의 사용비는 디에톡시마그네슘 중량: 유기용매 부피로 1:5~1:50인 것이 바람직하며, 1:7 ~ 1:20 인 것이 보다 바람직한데, 상기 사용비가 1:5 미만이면 슬러리의 점도가 급격히 증가하여 균일한 교반이 어렵고, 1:50을 초과하면 생성되는 담체의 겉보기 밀도가 급격히 감소하거나 입자표면이 거칠어지는 문제가 발생하여 바람직하지 않다.In addition, the ratio of the use of the organic solvent to the diethoxymagnesium is preferably 1:5 to 1:50 in terms of diethoxymagnesium weight: organic solvent volume, and more preferably 1:7 to 1:20. If the ratio is less than 1:5, the viscosity of the slurry increases rapidly, and uniform stirring is difficult, and when it exceeds 1:50, the apparent density of the resulting carrier decreases rapidly or the particle surface becomes rough, which is not preferable.

상기 고체촉매의 제조과정에서 사용되는 상기 금속 할라이드는 하기의 일반식 (i)로 표시할 수 있다:The metal halide used in the preparation of the solid catalyst can be represented by the following general formula (i):

Ti(OR)nX(4-n) …………(i)Ti(OR) n X (4-n) … … … … (i)

여기에서 R은 탄소원자 1~10개의 알킬기이고, X는 할로겐 원소를 나타내며, n 은 일반식의 원자가를 맞추기 위한 것으로 0~3 의 정수이다. 상기 일반식 (i)의 구체적인 예로는 TiCl4, Ti(OCH3)Cl3, Ti(OC2H5)Cl3, Ti(OC3H7)Cl3, Ti(O(n-C4H9))Cl3, Ti(OCH3)2Cl2, Ti(OC2H5)2Cl2, Ti(OC3H7)2Cl2, Ti(O(n-C4H9))2Cl2, Ti(OCH3)3Cl, Ti(OC2H5)3Cl, Ti(OC3H7)3Cl, Ti(O(n-C4H9))3Cl 등이며, 이들 중 TiCl4가 바람직하게 사용된다. 또한 이들 4가 티타늄할라이드 화합물은 1종 단독 또는 2종 이상 조합하여 사용할 수도 있다. 상기 (1)단계의 반응 온도는 -10 ~ 60℃이다.Here, R is an alkyl group having 1 to 10 carbon atoms, X represents a halogen element, and n is an integer of 0 to 3 for adjusting the valence of the general formula. Specific examples of the general formula (i) include TiCl 4 , Ti(OCH 3 )Cl 3 , Ti(OC 2 H 5 )Cl 3 , Ti(OC 3 H 7 )Cl 3 , Ti(O(nC 4 H 9 ) )Cl 3 , Ti(OCH 3 ) 2 Cl 2 , Ti(OC 2 H 5 ) 2 Cl 2 , Ti(OC 3 H 7 ) 2 Cl 2 , Ti(O(nC 4 H 9 )) 2 Cl 2 , Ti (OCH 3 ) 3 Cl, Ti(OC 2 H 5 ) 3 Cl, Ti(OC 3 H 7 ) 3 Cl, Ti(O(nC 4 H 9 )) 3 Cl, etc., of which TiCl 4 is preferably used do. In addition, these tetravalent titanium halide compounds may be used alone or in combination of two or more. The reaction temperature in the step (1) is -10 ~ 60 ℃.

본 발명에 사용하는 2종의 유기전자공여체 중 알릴기가 치환된 바이시클로알칸, 알켄디카르복실레이트계 또는 바이시클로 알칸이 포함된 내부전자공여체를 사용하는 것으로써 본 발명에서 제시하는 고체촉매는 슬러리 중합법, 벌크중합법 또는 기상중합법 등의 다양한 형태의 프로필렌 중합공정에 적용이 가능하며, 높은 활성과 입체규칙성이 우수하면서도 높은 용융흐름성을 갖는 프로필렌 수지를 제조할 수 있다.Of the two organic electron donors used in the present invention, the solid catalyst proposed in the present invention is a slurry by using an internal electron donor containing an allyl group substituted bicycloalkane, alkene dicarboxylate-based or bicyclo alkane. It can be applied to various types of propylene polymerization process such as polymerization method, bulk polymerization method or gas phase polymerization method, and can produce propylene resin having high activity and high stereoregularity and high melt flow.

하기 구조식 (I) 내지 (Ⅷ에서 R1 및 R2는 서로 동일하거나 상이하고, 탄소원자 1~20개의 선형, 가지형 또는 고리형 알킬기, 알케닐기, 아릴기, 아릴알킬기 또는 알킬아릴기; R3~R12는 서로 동일하거나 상이하고, 수소, 탄소원자 1~20개의 선형, 가지형 또는 고리형 알킬기, 알케닐기, 아릴기, 아릴알킬기 또는 알킬아릴기이다.R1 and R2 in the following structural formulas (I) to (i) are the same as or different from each other, and linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms, alkenyl groups, aryl groups, arylalkyl groups or alkylaryl groups; R3 to R12 Is the same or different from each other and is hydrogen, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, an alkenyl group, an aryl group, an arylalkyl group, or an alkylaryl group.

Figure 112018123635801-pat00001
…… (I)
Figure 112018123635801-pat00001
… … (I)

상기 구조식 (I) 화합물의 구체적인 예로는 디메틸 사이클로헥-1-센-1,2디카복시레이트(dimethyl cyclohex-1-ene-1,2-dicarboxylate), 디에틸 사이클로헥-1-센-1,2-디카복시레이트 (diethyl cyclohex-1-ene-1,2-dicarboxylate), 1-에틸2-메틸 사이클로헥-1-센-1,2디카복시레이트 (1-ethyl 2-methyl cyclohex-1-ene-1,2- dicarboxylate), 1-에틸2프로필 사이클로헥-1-센-1,2디카복시레이트 (1-ethyl 2- propyl cyclohex-1-ene-1,2-dicarboxylate), 디프로필 사이클로헥-1-센-1,2디카복시레이트 (dipropyl cyclohex-1-ene-1,2-dicarboxylate), 디아이소프로필 사이클로헥-1-센-1,2-디카복시레이트 (diisopropyl cyclohex-1-ene-1,2-dicarboxylate), 디에틸3메틸 사이클로헥-1-센-1,2디카복시레이트 (diethyl 3-methylcyclohex-1-ene- 1,2-dicarboxylate), 디에틸3,3디메틸사이클로헥-1-센-1,2-디카복시레이트(diethyl 3,3-dimethylcyclohex-1-ene-1,2- dicarboxylate), 디에틸3,3,4,4,-테트라메틸사이클로헥-1-센-1,2-디카복시레이트(diethyl3,3,4,4-tetramethylcyclohex-1-ene-1,2- dicarboxylate), 디에틸3,3,4,4,6-펜타메틸사이클로헥-1-센-1,2-디카복시레이트 (diethyl 3,3,4,4,6-pentamethylcyclohex-1-ene-1,2-dicarboxylate), 디부틸4,5-디메틸사이클로헥-1-센-1,2-디카복시레이트(dibutyl 4,5-dimethylcyclohex-1-ene- 1,2-dicarboxylate), 2-에틸1-프로필5-에틸-3,3,4-트라이메틸사이클로헥-1-센-1,2-디카복시레이트(2-ethyl1-propyl5-ethyl-3,3,4-trimethylcyclohex-1-ene-1,2-dicarboxylate)등이 있다.Specific examples of the structural formula (I) compound include dimethyl cyclohex-1-ene-1,2 dicarboxylate (dimethyl cyclohex-1-ene-1,2-dicarboxylate), diethyl cyclohex-1-ene-1, 2-dicarboxylate (diethyl cyclohex-1-ene-1,2-dicarboxylate), 1-ethyl2-methyl cyclohex-1-sen-1,2 dicarboxylate (1-ethyl 2-methyl cyclohex-1- ene-1,2-dicarboxylate), 1-ethyl2propyl cyclohex-1-sen-1,2dicarboxylate (1-ethyl 2-propyl cyclohex-1-ene-1,2-dicarboxylate), dipropyl cyclo Hex-1-cene-1,2 dicarboxylate (dipropyl cyclohex-1-ene-1,2-dicarboxylate), diisopropyl cyclohex-1-cene-1,2-dicarboxylate (diisopropyl cyclohex-1- ene-1,2-dicarboxylate), diethyl3methyl cyclohex-1-cene-1,2 dicarboxylate (diethyl 3-methylcyclohex-1-ene- 1,2-dicarboxylate), diethyl3,3dimethylcyclo Hex-1-sen-1,2-dicarboxylate (diethyl 3,3-dimethylcyclohex-1-ene-1,2-dicarboxylate), diethyl3,3,4,4,-tetramethylcyclohex-1- Sen-1,2-dicarboxylate (diethyl3,3,4,4-tetramethylcyclohex-1-ene-1,2-dicarboxylate), diethyl3,3,4,4,6-pentamethylcyclohex-1- Sen-1,2-dicarboxylate (diethyl 3,3,4,4,6-pentamethylcyclohex-1-ene-1,2-dicarboxylate), dibutyl4,5-dimethylcyclohex-1-sen-1, 2-dicarboxylate (dibutyl 4,5-dimethylcyclohex-1-ene- 1,2-dicarboxylate), 2-ethyl1-propyl5-ethyl-3,3,4-trimethylcyclohex-1-sen-1 ,2-dicarboxylate (2-ethyl1-pr opyl5-ethyl-3,3,4-trimethylcyclohex-1-ene-1,2-dicarboxylate).

Figure 112018123635801-pat00002
…… (Ⅱ)
Figure 112018123635801-pat00002
… … (Ⅱ)

상기 구조식 (Ⅱ) 화합물의 구체적인 예로는 디메틸사이클로헥사-1,4디엔-1,2-디카복시레이트 (dimethylcyclohexa-1,4-diene-1,2-dicarboxylate), 디에틸사이클로헥사-1,4디엔-1,2-디카복시레이트(diethylcyclohexa-1,4-diene-1,2- dicarboxylate), 디프로필사이클로헥사-1,4디엔-1,2-디카복시레이트 (dipropylcyclohexa-1,4-diene-1,2-dicarboxylate), 디아이소프로필사이클로헥사- 1,4디엔-1,2-디카복시레이트(diisopropylcyclohexa- 1,4-diene-1,2- dicarboxylate), 디에틸3-메틸사이클로헥사-1,4디엔-1,2-디카복시레이트 (diethyl3-methylcyclohexa-1,4-diene-1,2-dicarboxylate), 디에틸3,3-디메틸 사이클로헥사-1,4디엔-1,2-디카복시레이트(diethyl3,3-dimethylcyclohexa-1,4- diene-1,2-dicarboxylate), 디에틸3,3,6트리메틸사이클로헥사-1,4디엔-1,2-디카복시레이트(diethyl3,3,6-trimethylcyclohexa-1,4-diene-1,2-dicarboxylate), 디에틸3,3,6,6테트라메틸사이클로헥사-1,4디엔-1,2-디카복시레이트 (diethyl 3,3,6,6tetramethylcyclohexa-1,4-diene-1,2-dicarboxylate), 디에틸3,3,4,5,6,6-헥사메틸사이클로헥사-1,4디엔-1,2-디카복시레이트(diethyl 3,3,4,5,6,6, -hexamethylcyclohexa-1,4-diene-1,2-dicarboxylate), 1-에틸2-프로필4-에틸-3,5,6-트리메틸사이클로헥사-1,4디엔-1,2-디카복시레이트(1-ethyl 2-propyl 4-ethyl-3,5,6-trimethylcyclohexa-1,4-diene-1,2-dicarboxylate), 2-에틸1-프로필5-에틸-3,3,4,6-테트라메틸사이클로헥사-1,4-디엔-1,2-디카복시레이트 (2-ethyl1-propyl5-ethyl-3,3,4,6-tetramethylcyclohexa-1,4-diene-1,2-dicarboxylate) 등이 있다.Specific examples of the structural formula (II) compound include dimethylcyclohexa-1,4diene-1,2-dicarboxylate (dimethylcyclohexa-1,4-diene-1,2-dicarboxylate), diethylcyclohexa-1,4 Diethyl-1,2-dicarboxylate, dipropylcyclohexa-1,4diene-1,2-dicarboxylate (dipropylcyclohexa-1,4-diene -1,2-dicarboxylate), diisopropylcyclohexa- 1,4 diene-1,2-dicarboxylate (diisopropylcyclohexa- 1,4-diene-1,2-dicarboxylate), diethyl3-methylcyclohexa- 1,4diene-1,2-dicarboxylate (diethyl3-methylcyclohexa-1,4-diene-1,2-dicarboxylate), diethyl3,3-dimethyl cyclohexa-1,4diene-1,2-dica Dicarboxylate (diethyl3,3-dimethylcyclohexa-1,4-diene-1,2-dicarboxylate), diethyl3,3,6 trimethylcyclohexa-1,4diene-1,2-dicarboxylate (diethyl3,3, 6-trimethylcyclohexa-1,4-diene-1,2-dicarboxylate), diethyl3,3,6,6tetramethylcyclohexa-1,4diene-1,2-dicarboxylate (diethyl 3,3,6 ,6tetramethylcyclohexa-1,4-diene-1,2-dicarboxylate), diethyl3,3,4,5,6,6-hexamethylcyclohexa-1,4diene-1,2-dicarboxylate (diethyl 3 ,3,4,5,6,6, -hexamethylcyclohexa-1,4-diene-1,2-dicarboxylate), 1-ethyl2-propyl4-ethyl-3,5,6-trimethylcyclohexa-1,4 Diene-1,2-dicarboxylate (1-ethyl 2-propyl 4-ethyl-3,5,6-trimethylcyclohexa-1,4-diene-1,2-dicarboxylate), 2-ethyl1-propyl5-ethyl -3,3,4,6-te Tramethylcyclohexa-1,4-diene-1,2-dicarboxylate (2-ethyl1-propyl5-ethyl-3,3,4,6-tetramethylcyclohexa-1,4-diene-1,2-dicarboxylate), etc. There is this.

Figure 112018123635801-pat00003
……(Ⅲ)
Figure 112018123635801-pat00003
… … (Ⅲ)

상기 구조식 (Ⅲ) 화합물의 구체적인 예로는 트랜스-디메틸-사이클로헥산-1,2-디카복시레이트(trans-dimethyl-cyclohexane-1,2- dicarboxylate), 트랜스-1-에틸2-메틸-사이클로헥산-1,2-디카복시레이트(trans-1-ethyl2-methyl cyclohexane-1,2- dicarboxylate), 트랜스-디에틸사이클로헥산-1,2-디카복시레이트 (trans-diethylcyclohexane-1,2- dicarboxylate), 트랜스-1-에틸2-프로필-사이클로헥산- 1,2-디카복시레이트 (trans-1-ethyl2-propylcyclohexane-1,2-dicarboxylate), 트랜스-2-에틸3-프로필1-메틸사이클로헥산-1,2-디카복시레이트 (trans-2-ethyl3-propyl1- methylcyclohexane-1,2-dicarboxylate), 트랜스-1-에틸2-프로필1,2-디메틸사이클로헥산-1,2-디카복시레이트(trans-1-ethyl2-propyl1,2-dimethylcyclohexane-1,2- dicarboxylate), 트랜스-1-에틸2-프로필-1,2,4,4-테트라메틸사이클로헥산-1,2-디카복시레이트(trans-1-ethyl2-propyl-1,2,4,4-tetramethylcyclohexane-1,2-dicarboxylate), 트랜스-1-에틸2-프로필-1,2,4,4,5,5-헥사메틸사이클로헥산-1,2-디카복시레이트(trans-1-ethyl2-propyl-1,2,4,4,5,5-hexamethylcyclohexane-1,2-dicarboxylate), 트랜스-1-부틸2-에틸-1,4,5,5-테트라메틸사이클로헥산-1,2-디카복시레이트 (trans-1-butyl2-ethyl-1,4,5,5-tetramethylcyclohexane-1,2-dicarboxylate) 등이 있다.Specific examples of the structural formula (III) compound are trans-dimethyl-cyclohexane-1,2-dicarboxylate, trans-1-ethyl2-methyl-cyclohexane- 1,2-dicarboxylate (trans-1-ethyl2-methyl cyclohexane-1,2-dicarboxylate), trans-diethylcyclohexane-1,2-dicarboxylate (trans-diethylcyclohexane-1,2-dicarboxylate), Trans-1-ethyl2-propyl-cyclohexane- 1,2-dicarboxylate (trans-1-ethyl2-propylcyclohexane-1,2-dicarboxylate), trans-2-ethyl3-propyl1-methylcyclohexane-1 ,2-dicarboxylate (trans-2-ethyl3-propyl1-methylcyclohexane-1,2-dicarboxylate), trans-1-ethyl2-propyl1,2-dimethylcyclohexane-1,2-dicarboxylate (trans- 1-ethyl2-propyl1,2-dimethylcyclohexane-1,2-dicarboxylate), trans-1-ethyl2-propyl-1,2,4,4-tetramethylcyclohexane-1,2-dicarboxylate (trans-1 -ethyl2-propyl-1,2,4,4-tetramethylcyclohexane-1,2-dicarboxylate), trans-1-ethyl2-propyl-1,2,4,4,5,5-hexamethylcyclohexane-1, 2-dicarboxylate (trans-1-ethyl2-propyl-1,2,4,4,5,5-hexamethylcyclohexane-1,2-dicarboxylate), trans-1-butyl2-ethyl-1,4,5, And 5-tetramethylcyclohexane-1,2-dicarboxylate (trans-1-butyl2-ethyl-1,4,5,5-tetramethylcyclohexane-1,2-dicarboxylate).

Figure 112018123635801-pat00004
…… (Ⅳ)
Figure 112018123635801-pat00004
… … (IV)

상기 구조식 (Ⅳ)화합물의 구체적인 예로는 시스-디메틸-사이클로헥산-1,2-디카복시레이트(cis-dimethyl-cyclohexane-1,2-dicarboxylate), 시스 -1-에틸2-메틸-사이클로헥산-1,2-디카복시레이트(cis-1-ethyl2-methylcyclohexane-1,2- dicarboxylate), 시스-디에틸-사이클로헥산-1,2-디카복시레이트(cis- diethylcyclohexane-1,2-dicarboxylate), 시스-1-에틸2-프로필-사이클로헥산-1,2-디카복시레이트 (cis-1-ethyl2-propylcyclohexane-1,2-dicarboxylate), 시스 -2-에틸3-프로필1-메틸사이클로헥산-1,2-디카복시레이트 (cis-2-ethyl3-propyl1- methylcyclohexane-1,2-dicarboxylate), 시스-1-에틸2-프로필1,2-디메틸사이클로헥산-1,2-디카복시레이트(cis-1-ethyl2-propyl1,2-dimethylcyclohexane-1,2- dicarboxylate), 시스-1-에틸2-프로필-1,2,4,4-테트라메틸사이클로헥산-1,2-디카복시레이트(cis-1-ethyl2-propyl-1,2,4,4-tetramethylcyclohexane-1,2-dicarboxylate), 시스-1-에틸2-프로필-1,2,4,4,5,5-헥사메틸사이클로헥산-1,2-디카복시레이트 (cis-1-ethyl2-propyl-1,2,4,4,5,5-hexamethylcyclohexane-1,2-dicarboxylate), 시스-1-부틸2-에틸-1,4,5,5-테트라메틸사이클로헥산-1,2-디카복시레이트(cis-1- butyl2-ethyl-1,4,5,5-tetramethylcyclohexane-1,2dicarboxylate) 등이 있다.Specific examples of the structural formula (IV) compound cis-dimethyl-cyclohexane-1,2-dicarboxylate (cis-dimethyl-cyclohexane-1,2-dicarboxylate), cis-1-ethyl2-methyl-cyclohexane- 1,2-dicarboxylate (cis-1-ethyl2-methylcyclohexane-1,2-dicarboxylate), cis-diethyl-cyclohexane-1,2-dicarboxylate (cis-diethylcyclohexane-1,2-dicarboxylate), Cis-1-ethyl2-propyl-cyclohexane-1,2-dicarboxylate (cis-1-ethyl2-propylcyclohexane-1,2-dicarboxylate), cis-2-ethyl3-propyl1-methylcyclohexane-1 ,2-dicarboxylate (cis-2-ethyl3-propyl1-methylcyclohexane-1,2-dicarboxylate), cis-1-ethyl2-propyl1,2-dimethylcyclohexane-1,2-dicarboxylate (cis- 1-ethyl2-propyl1,2-dimethylcyclohexane-1,2-dicarboxylate), cis-1-ethyl2-propyl-1,2,4,4-tetramethylcyclohexane-1,2-dicarboxylate (cis-1 -ethyl2-propyl-1,2,4,4-tetramethylcyclohexane-1,2-dicarboxylate), cis-1-ethyl2-propyl-1,2,4,4,5,5-hexamethylcyclohexane-1, 2-dicarboxylate (cis-1-ethyl2-propyl-1,2,4,4,5,5-hexamethylcyclohexane-1,2-dicarboxylate), cis-1-butyl2-ethyl-1,4,5, And 5-tetramethylcyclohexane-1,2-dicarboxylate (cis-1-butyl2-ethyl-1,4,5,5-tetramethylcyclohexane-1,2dicarboxylate).

Figure 112018123635801-pat00005
…… (V)
Figure 112018123635801-pat00005
… … (V)

상기 구조식 (V) 화합물의 구체적인 예로는 트랜스-디메틸사이클로헥-4-센-1,2디카복시레이트(trans-dimethyl cyclohex-4-ene-1,2dicarboxylate), 트랜스-디에틸사이클로헥-4-센-1,2디카복시레이트(trans-diethylcyclohex-4-ene-1,2 dicarboxylate), 트랜스-디프로필사이클로헥-4-센-1,2디카복시레이트(trans- dipropylcyclohex-4-ene-1,2dicarboxylate), 트랜스-디아이소프로필사이클로헥-4-센-1,2디카복시레이트(trans-diisopropylcyclohex-4-ene-1,2dicarboxylate), 트랜스-디부틸사이클로헥-4-센-1,2디카복시레이트(trans-dibutylcyclohex-4-ene-1,2 dicarboxylate), 트랜스-1-에틸-2-메틸사이클로헥-4-센-1,2디카복시레이트(trans- 1-ethyl-2-methylcyclohex-4-ene-1,2-dicarboxylate), 트랜스-1-에틸-2-프로필사이클로헥-4-센-1,2디카복시레이트(trans-1-ethyl-2-propylcyclohex-4-ene-1,2- dicarboxylate), 트랜스-1-에틸-2-프로필3-메틸사이클로헥-4-센-1,2디카복시레이트 (trans-1-ethyl-2-propyl3-methylcyclohex-4-ene-1,2-dicarboxylate), 트랜스-1-에틸-2-프로필3,6-디메틸사이클로헥-4-센-1,2디카복시레이트 (trans-1-ethyl-2- propyl3,6-dimethylcyclohex-4-ene-1,2-dicarboxylate), 트랜스-2-에틸-1-프로필3,4,6-트리메틸사이클로헥-4-센-1,2디카복시레이트(trans-2-ethyl-1-propyl 3,4,6-trimethylcyclohex-4ene-1,2-dicarboxylate), 트랜스-2-에틸-1-프로필4-에틸3,6-디메틸사이클로헥-4-센-1,2디카복시레이트(trans-2-ethyl-1-propyl 4-ethyl 3,6-dimethylcyclohex-4ene-1,2-dicarboxylate) 등이 있다.Specific examples of the structural formula (V) compound include trans-dimethylcyclohex-4-ene-1,2dicarboxylate, trans-diethylcyclohex-4- Trans-diethylcyclohex-4-ene-1,2 dicarboxylate, trans-dipropylcyclohex-4-cene-1,2 dicarboxylate (trans-dipropylcyclohex-4-ene-1) ,2dicarboxylate), trans-diisopropylcyclohex-4-ene-1,2dicarboxylate, trans-dibutylcyclohex-4-ene-1,2 Di-carboxylate (trans-dibutylcyclohex-4-ene-1,2 dicarboxylate), trans-1-ethyl-2-methylcyclohex-4-cene-1,2 dicarboxylate (trans- 1-ethyl-2-methylcyclohex) -4-ene-1,2-dicarboxylate), trans-1-ethyl-2-propylcyclohex-4-cene-1,2dicarboxylate (trans-1-ethyl-2-propylcyclohex-4-ene-1 ,2-dicarboxylate), trans-1-ethyl-2-propyl3-methylcyclohex-4-cene-1,2dicarboxylate (trans-1-ethyl-2-propyl3-methylcyclohex-4-ene-1, 2-dicarboxylate), trans-1-ethyl-2-propyl3,6-dimethylcyclohex-4-sen-1,2dicarboxylate (trans-1-ethyl-2-propyl3,6-dimethylcyclohex-4-ene -1,2-dicarboxylate), trans-2-ethyl-1-propyl3,4,6-trimethylcyclohex-4-cene-1,2dicarboxylate (trans-2-ethyl-1-propyl 3,4 ,6-trimethylcyclohex-4ene-1,2-dicarboxylate), trans-2-ethyl-1-propyl4-ethyl3,6-dimethylcyclohex-4-cene-1,2dicarboxylate (trans-2-ethyl -1-pro pyl 4-ethyl 3,6-dimethylcyclohex-4ene-1,2-dicarboxylate).

Figure 112018123635801-pat00006
…… (Ⅵ)
Figure 112018123635801-pat00006
… … (VI)

상기 구조식 (Ⅵ) 화합물의 구체적인 예로는 시스-디메틸사이클로헥-4-센-1,2디카복시레이트(cis-dimethyl cyclohex-4-ene-1,2dicarboxylate), 시스-디에틸사이클로헥-4-센-1,2디카복시레이트(cis-diethylcyclohex-4-ene-1,2 dicarboxylate), 시스-디프로필사이클로헥-4-센-1,2디카복시레이트(cis- dipropylcyclohex-4-ene-1,2dicarboxylate), 시스-디아이소프로필사이클로헥-4-센-1,2디카복시레이트(cis-diisopropylcyclohex-4-ene-1,2dicarboxylate), 시스-디부틸사이클로헥-4-센-1,2디카복시레이트(cis-dibutylcyclohex-4-ene-1,2 dicarboxylate), 시스-1-에틸-2-메틸사이클로헥-4-센-1,2디카복시레이트(cis-1- ethyl-2-methylcyclohex-4-ene-1,2-dicarboxylate), 시스-1-에틸-2-프로필사이클로헥-4-센-1,2디카복시레이트(cis-1-ethyl-2-propylcyclohex-4-ene-1,2- dicarboxylate), 시스-1-에틸-2-프로필3-메틸사이클로헥-4-센-1,2디카복시레이트 (cis-1-ethyl-2-propyl3-methylcyclohex-4-ene-1,2-dicarboxylate), 시스-1-에틸-2-프로필3,6-디메틸사이클로헥-4-센-1,2디카복시레이트 (cis-1-ethyl-2- propyl3,6-dimethylcyclohex-4-ene-1,2-dicarboxylate), 시스-2-에틸-1-프로필3,4,6-트리메틸사이클로헥-4-센-1,2디카복시레이트(cis-2-ethyl-1-propyl 3,4,6-trimethylcyclohex-4ene-1,2-dicarboxylate), 시스-2-에틸-1-프로필4-에틸3,6-디메틸사이클로헥-4-센-1,2디카복시레이트(cis-2-ethyl-1-propyl4-ethyl 3,6-dimethylcyclohex-4ene-1,2-dicarboxylate) 등이 있다.Specific examples of the structural formula (VI) compound are cis-dimethyl cyclohex-4-cene-1,2 dicarboxylate (cis-dimethyl cyclohex-4-ene-1,2dicarboxylate), cis-diethylcyclohex-4- Sen-1,2 dicarboxylate (cis-diethylcyclohex-4-ene-1,2 dicarboxylate), cis-dipropylcyclohex-4-cene-1,2 dicarboxylate (cis-dipropylcyclohex-4-ene-1 ,2dicarboxylate), cis-diisopropylcyclohex-4-cene-1,2dicarboxylate, cis-dibutylcyclohex-4-ene-1,2 Dicarboxylate (cis-dibutylcyclohex-4-ene-1,2 dicarboxylate), cis-1-ethyl-2-methylcyclohex-4-cene-1,2 dicarboxylate (cis-1-ethyl-2-methylcyclohex) -4-ene-1,2-dicarboxylate), cis-1-ethyl-2-propylcyclohex-4-cene-1,2dicarboxylate (cis-1-ethyl-2-propylcyclohex-4-ene-1 ,2- dicarboxylate), cis-1-ethyl-2-propyl3-methylcyclohex-4-cene-1,2 dicarboxylate (cis-1-ethyl-2-propyl3-methylcyclohex-4-ene-1, 2-dicarboxylate), cis-1-ethyl-2-propyl3,6-dimethylcyclohex-4-sen-1,2dicarboxylate (cis-1-ethyl-2-propyl3,6-dimethylcyclohex-4-ene -1,2-dicarboxylate), cis-2-ethyl-1-propyl3,4,6-trimethylcyclohex-4-cene-1,2 dicarboxylate (cis-2-ethyl-1-propyl 3,4 ,6-trimethylcyclohex-4ene-1,2-dicarboxylate), cis-2-ethyl-1-propyl4-ethyl3,6-dimethylcyclohex-4-cene-1,2dicarboxylate (cis-2-ethyl -1-propyl4-ethyl 3,6-dimethylcyclohex- 4ene-1,2-dicarboxylate).

Figure 112018123635801-pat00007
……(Ⅶ)
Figure 112018123635801-pat00007
… … (Ⅶ)

상기 구조식 (Ⅶ) 화합물의 구체적인 예로는 트랜스-디메틸사이클로헥사- 3,5-디엔-1,2-디카복시레이트(trans-dimethylcyclohexa-3,5-diene-1,2- dicarboxylate), 트랜스-디에틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (trans-diethylcyclohexa-3,5-diene-1,2-dicarboxylate), 트랜스-디프로필사이클로헥사-3,5-디엔-1,2-디카복시레이트 (trans-dipropyl cyclohexa-3,5-diene-1,2- dicarboxylate), 트랜스-디부틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (trans-dibutylcyclohexa-3,5-diene-1,2-dicarboxylate), 트랜스-디메틸1-메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (trans-dimethyl1-methylcyclohexa-3,5- diene-1,2-dicarboxylate), 트랜스-디메틸1,2-디메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (trans-dimethyl1,2-dimethylcyclohexa-3,5-diene-1,2- dicarboxylate), 트랜스-1-에틸2-프로필1,2-디메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (trans-1-ethyl2-propyl1,2-dimethylcyclohexa-3,5-diene-1,2- dicarboxylate), 트랜스-디에틸4-메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (trans-diethyl4-methylcyclohexa-3,5-diene-1,2-dicarboxylate), 트랜스-디에틸4,5-디메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (trans-diethyl 4,5-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate), 트랜스-디에틸4-에틸-3,5,6-트리메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트(trans-diethyl 4-ethyl-3,5,6-trimethylcyclohexa-3,5-diene-1,2-dicarboxylate) 등이 있다.Specific examples of the structural formula (i) compound include trans-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate, trans-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate, and trans-di Ethyl-cyclohexa-3,5-diene-1,2-dicarboxylate (trans-diethylcyclohexa-3,5-diene-1,2-dicarboxylate), trans-dipropylcyclohexa-3,5-diene-1, 2-dicarboxylate (trans-dipropyl cyclohexa-3,5-diene-1,2-dicarboxylate), trans-dibutylcyclohexa-3,5-diene-1,2-dicarboxylate (trans-dibutylcyclohexa-3 ,5-diene-1,2-dicarboxylate), trans-dimethyl1-methylcyclohexa-3,5-diene-1,2-dicarboxylate (trans-dimethyl1-methylcyclohexa-3,5-diene-1,2 -dicarboxylate), trans-dimethyl1,2-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate (trans-dimethyl1,2-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate), Trans-1-ethyl2-propyl1,2-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate (trans-1-ethyl2-propyl1,2-dimethylcyclohexa-3,5-diene-1, 2- dicarboxylate), trans-diethyl4-methylcyclohexa-3,5-diene-1,2-dicarboxylate (trans-diethyl4-methylcyclohexa-3,5-diene-1,2-dicarboxylate), trans- Diethyl4,5-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate (trans-diethyl 4,5-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate), trans-diethyl 4-ethyl-3,5,6-trimethylcyclohexa-3,5-diene-1,2-dicarboxylate (trans-diethyl 4-ethyl-3,5,6-trimethyl cyclohexa-3,5-diene-1,2-dicarboxylate).

Figure 112018123635801-pat00008
…… (Ⅷ)
Figure 112018123635801-pat00008
… … (Ⅷ)

상기 구조식 (Ⅷ) 화합물의 구체적인 예로는 시스-디메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트(cis-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate), 시스-디에틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (cis-diethylcyclohexa- 3,5-diene-1,2-dicarboxylate), 시스-디프로필사이클로헥사-3,5-디엔-1,2-디카복시레이트(cis-dipropylcyclohexa-3,5-diene-1,2-dicarboxylate), 시스-디부틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (cis-dibutylcyclohexa-3,5-diene-1,2- dicarboxylate), 시스-디메틸1-메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (cis-dimethyl1-methylcyclohexa-3,5-diene-1,2-dicarboxylate), 시스-디메틸1,2-디메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (cis-dimethyl1,2- dimethylcyclohexa-3,5-diene-1,2-dicarboxylate), 시스-1-에틸2-프로필1,2-디메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (cis-1-ethyl2-propyl1,2- dimethylcyclohexa-3,5-diene-1,2-dicarboxylate), 시스-디에틸4-메틸사이클로헥사 -3,5-디엔-1,2-디카복시레이트(cis-diethyl4-methyl cyclohexa-3,5-diene-1,2- dicarboxylate), 시스-디에틸4,5-디메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (cis-diethyl4,5-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate), 시스-디에틸4-에틸-3,5,6-트리메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트(cis-diethyl4- ethyl-3,5,6-trimethylcyclohexa-3,5-diene-1,2-dicarboxylate) 등이 있다.Specific examples of the structural formula (iv) compound cis-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate (cis-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate), cis-di Ethylcyclohexa-3,5-diene-1,2-dicarboxylate (cis-diethylcyclohexa-3,5-diene-1,2-dicarboxylate), cis-dipropylcyclohexa-3,5-diene-1, 2-dicarboxylate (cis-dipropylcyclohexa-3,5-diene-1,2-dicarboxylate), cis-dibutylcyclohexa-3,5-diene-1,2-dicarboxylate (cis-dibutylcyclohexa-3, 5-diene-1,2-dicarboxylate), cis-dimethyl1-methylcyclohexa-3,5-diene-1,2-dicarboxylate (cis-dimethyl1-methylcyclohexa-3,5-diene-1,2- dicarboxylate), cis-dimethyl1,2-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate (cis-dimethyl1,2-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate), cis -1-ethyl2-propyl1,2-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate (cis-1-ethyl2-propyl1,2-dimethylcyclohexa-3,5-diene-1,2 -dicarboxylate), cis-diethyl4-methylcyclohexa -3,5-diene-1,2-dicarboxylate (cis-diethyl4-methyl cyclohexa-3,5-diene-1,2-dicarboxylate), cis- Diethyl4,5-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate (cis-diethyl4,5-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate), cis-diethyl4 -Ethyl-3,5,6-trimethylcyclohexa-3,5-diene-1,2-dicarboxylate (cis-diethyl4-ethyl-3,5,6-trimethylcyclohexa-3,5-diene-1,2 -dicarboxy late).

한편 제2내부전자공여체는 특별한 제한은 없으며, 따라서 알코올류, 에테르류, 케톤류, 카르복실산류 등과 같이 올레핀 중합용 지글러계 촉매의 제조에 내부전자공여체로서 사용가능한 화합물이라면 제한없이 사용가능하지만, 그 중에서도 카르복실산 화합물을 사용하는 것이 바람직하고, 벤젠-1,2-디카르복실산에스테르 화합물로부터 선택된 하나 또는 그 이상을 혼합하여 제2내부전자공여체로서 사용하는 것이 더욱 바람직하다. 상기 벤젠-1,2-디카르복실산에스테르 화합물의 구체적인 예로는, 디메틸프탈레이트, 디에틸프탈레이트, 디노말프로필프탈레이트, 디이소프로필프탈레이트, 디노말부틸프탈레이트, 디이소부틸프탈레이트 디노말펜틸프탈레이트, 디(2-메틸부틸)프탈레이트, 디(3-메틸부틸)프탈레이트, 디(3-메틸펜틸)프탈레이트, 디이소헥실프탈레이트, 디네오헥실프탈레이트, 디(2,3-디메틸부틸)프탈레이트, 디이소헥실프탈레이트, 디네오헥실프탈레이트, 디(2,3-디메틸부틸)프탈레이트, 디노말헵틸프탈레이트, 디(2-메틸헥실)프탈레이트, 디(2-에틸펜틸)프탈레이트, 디이소헵틸프탈레이트, 디네오헵틸프탈레이트, 디노말옥틸프탈레이트, 디(2-메틸헵틸)프탈레이트, 디이소옥틸프탈레이트, 디(3-에틸헥실)프탈레이트, 디네오옥틸프탈레이트, 디노말노닐프탈레이트, 디이소노닐프탈레이트, 디노말데실프탈레이트, 디이소데실프탈레이트 등을 들 수 있다.On the other hand, the second internal electron donor is not particularly limited. Therefore, any compound that can be used as an internal electron donor in the production of a Ziegler-based catalyst for olefin polymerization, such as alcohols, ethers, ketones, and carboxylic acids, can be used without limitation. Among them, it is preferable to use a carboxylic acid compound, and it is more preferable to use one or more selected from benzene-1,2-dicarboxylic acid ester compounds as a second internal electron donor. Specific examples of the benzene-1,2-dicarboxylic acid ester compound include dimethylphthalate, diethylphthalate, dinormalpropylphthalate, diisopropylphthalate, dinormalbutylphthalate, diisobutylphthalate dinormalpentylphthalate, di (2-methylbutyl)phthalate, di(3-methylbutyl)phthalate, di(3-methylpentyl)phthalate, diisohexylphthalate, dieohexylphthalate, di(2,3-dimethylbutyl)phthalate, diisohexyl Phthalate, dienehexylphthalate, di(2,3-dimethylbutyl)phthalate, dinormalheptylphthalate, di(2-methylhexyl)phthalate, di(2-ethylpentyl)phthalate, diisoheptylphthalate, dineoheptylphthalate , Dinormal octyl phthalate, di(2-methylheptyl) phthalate, diisooctyl phthalate, di(3-ethylhexyl) phthalate, dineoctyl phthalate, dinormal nonyl phthalate, diisononyl phthalate, dinormal decyl phthalate, di And isodecyl phthalate.

상기 제2 내부전자공여체로는 프탈산 에스테르 또는 1,3-디에테르계의 사용도 바람직하며, 다음의 일반식 (ii)와 같은 구조로 표현되는 화합물이 매우 바람직하다. As the second internal electron donor, the use of a phthalic acid ester or 1,3-diether system is also preferable, and a compound represented by the following general formula (ii) is very preferable.

R13R14C(CH2OR15)(CH2OR16) ……(ii)R 13 R 14 C(CH 2 OR 15 )(CH 2 OR 16 )… … (ii)

상기 일반식 (ii)에서, R13 및 R14는 동일하거나 상이하고, C1-C18 알킬, C3-C18 시클로알킬 또는 C7-C18 아릴 라디칼이고 R15 및 R16 는 동일하거나 상이하고, C1-C4 알킬 라디칼이거나; 위치 2의 탄소 원자가, 2 또는 3 개의 불포화를 함유하고 탄소수 5, 6 또는 7 로 이루어진 시클릭 또는 폴리시클릭에 속하는 1,3-디에테르류이다.In the above formula (ii), R 13 and R 14 are the same or different, C1-C18 alkyl, C3-C18 cycloalkyl or C7-C18 aryl radical and R 15 and R 16 are the same or different, C1-C4 Is an alkyl radical; Carbon atoms at position 2 are 1,3-diethers containing 2 or 3 unsaturations and belonging to cyclic or polycyclic carbon atoms of 5, 6 or 7.

상기 제2내부전자공여체인 1,3-디에테르계 화합물의 구체적인 예로는, 2-(2-에틸헥실)-1,3-디메톡시프로판, 2-이소프로필-1,3-디메톡시프로판, 2-부틸-1,3-디메톡시프로판, 2-sec-부틸-1,3-디메톡시프로판, 2-시클로헥실-1,3-디메톡시프로판, 2-페닐-1,3-디메톡시프로판, 2-t-부틸-1,3-디메톡시프로판, 2-쿠밀-1,3-디메톡시프로판, 2-(2-페닐에틸)-1,3-디메톡시프로판, 2-(2-시클로헥실에틸)-1,3-디메톡시프로판, 2-(p-클로로페닐)-1,3-디메톡시프로판, 2-(디페닐메틸)-1,3-디메톡시프로판, 2(1-나프틸)-1,3-디메톡시프로판, 2(p-플루오로페닐)-1,3-디메톡시프로판, 2(1-데카히드로나프틸)-1,3-디메톡시프로판, 2(pt-부틸페닐(1,3-디메톡시프로판, 2,2-디시클로헥실-1,3-디메톡시프로판, 2,2-디에틸-1,3-디메톡시프로판, 2,2-디프로필-1,3-디메톡시프로판, 2,2-디부틸-1,3-디메톡시프로판, 2,2-디에틸-1,3-디에톡시프로판, 2,2-디시클로펜틸-1,3-디메톡시프로판, 2,2-디프로필-1,3-디에톡시프로판, 2,2-디부틸-1,3-디에톡시프로판, 2-메틸-2-에틸-1,3-디메톡시프로판, 2-메틸-2-프로필-1,3-디메톡시프로판, 2-메틸-2-벤질-1,3-디메톡시프로판, 2-메틸-2-페닐-1,3-디메톡시프로판, 2-메틸-2-시클로헥실-1,3-디메톡시프로판, 2-메틸-2-메틸시클로헥실-1,3-디메톡시프로판,2,2-비스(p-클로로페닐)-1,3-디메톡시프로판, 2,2-비스(2-페닐에틸)-1,3-디메톡시프로판, 2,2-비스(2-시클로헥실에틸)-1,3-디메톡시프로판, 2-메틸-2-이소부틸-1,3-디메톡시프로판, 2-메틸-2-(2-에틸헥실)-1,3-디메톡시프로판, 2,2-비스(2-에틸헥실)-1,3-디메톡시프로판, 2,2-비스(p-메틸페닐)-1,3-디메톡시프로판, 2-메틸-2-이소프로필-1,3-디메톡시프로판, 2,2-디이소부틸-1,3-디메톡시프로판, 2,2-디페닐-1,3-디메톡시프로판, 2,2-디벤질-1,3-디메톡시프로판, 2-이소프로필-2-시클로펜틸-1,3-디메톡시프로판, 2,2-비스(시클로헥실메틸)-1,3-디메톡시프로필, 2,2-디이소부틸-1,3-디에톡시프로판, 2,2-디이소부틸-1,3-디부톡시프로판, 2-이소부틸-2-이소프로필-1,3-디메톡시프로판, 2,2-디-sec-부틸-1,3-디메톡시프로판, 2,2-디-t-부틸-1,3-디메톡시프로판, 2,2-디네오펜틸-1,3-디메톡시프로판, 2-이소프로필-2-이소펜틸-1,3-디메톡시프로판, 2-페닐-2-벤질-1,3-디메톡시프로판, 2-시클로헥실-2-시클로헥실메틸-1,3-디메톡시프로판, 9,9-비스(메톡시메틸)플루오렌, 9,9-비스(메톡시메틸)-2,3,6,7-테트라메틸플루오렌, 9,9-비스(메톡시메틸)-2,3,4,5,6,7-헥사플루오로플루오렌, 9,9-비스(메톡시메틸)-2,3-벤조플루오렌, 9,9-비스(메톡시메틸)-2,3,6,7-디벤조플루오렌, 9,9-비스(메톡시메틸)-2,7-디이소프로필플루오렌, 9,9-비스(메톡시메틸)-1,8-디클로로플루오렌, 9,9-비스(메톡시메틸)-2,7-디시클로펜틸플루오렌, 9,9-비스(메톡시메틸)-1,8-디플루오로플루오렌, 9,9-비스(메톡시메틸)-1,2,3,4-테트라히드로플루오렌, 9,9-비스(메톡시메틸)-1,2,3,4,5,6,7,8-옥타히드로플루오렌, 9,9-비스(메톡시메틸)-4-t-부틸플루오렌 등이 있다.Specific examples of the second internal electron donor 1,3-diether-based compound, 2-(2-ethylhexyl)-1,3-dimethoxypropane, 2-isopropyl-1,3-dimethoxypropane, 2-butyl-1,3-dimethoxypropane, 2-sec-butyl-1,3-dimethoxypropane, 2-cyclohexyl-1,3-dimethoxypropane, 2-phenyl-1,3-dimethoxypropane , 2-t-butyl-1,3-dimethoxypropane, 2-cumyl-1,3-dimethoxypropane, 2-(2-phenylethyl)-1,3-dimethoxypropane, 2-(2-cyclo Hexylethyl)-1,3-dimethoxypropane, 2-(p-chlorophenyl)-1,3-dimethoxypropane, 2-(diphenylmethyl)-1,3-dimethoxypropane, 2(1-naph Tyl)-1,3-dimethoxypropane, 2(p-fluorophenyl)-1,3-dimethoxypropane, 2(1-decahydronaphthyl)-1,3-dimethoxypropane, 2(pt- Butylphenyl (1,3-dimethoxypropane, 2,2-dicyclohexyl-1,3-dimethoxypropane, 2,2-diethyl-1,3-dimethoxypropane, 2,2-dipropyl-1 ,3-dimethoxypropane, 2,2-dibutyl-1,3-dimethoxypropane, 2,2-diethyl-1,3-diethoxypropane, 2,2-dicyclopentyl-1,3-dimethoxy Methoxypropane, 2,2-dipropyl-1,3-diethoxypropane, 2,2-dibutyl-1,3-diethoxypropane, 2-methyl-2-ethyl-1,3-dimethoxypropane, 2 -Methyl-2-propyl-1,3-dimethoxypropane, 2-methyl-2-benzyl-1,3-dimethoxypropane, 2-methyl-2-phenyl-1,3-dimethoxypropane, 2-methyl -2-cyclohexyl-1,3-dimethoxypropane, 2-methyl-2-methylcyclohexyl-1,3-dimethoxypropane,2,2-bis(p-chlorophenyl)-1,3-dimethoxy Propane, 2,2-bis(2-phenylethyl)-1,3-dimethoxypropane, 2,2-bis(2-cyclohexylethyl)-1,3-dimethoxypropane, 2-methyl-2-iso Butyl-1,3-dimethoxypropane, 2-methyl-2-(2-ethylhexyl)-1,3-dimethoxypropane, 2,2-bis(2-ethylhexyl)-1,3-dimethoxypropane , 2,2-bis(p-methylphenyl)-1,3-dimethoxypropane, 2-methyl-2-isopropyl-1,3-dimethoxypropane, 2,2-diisobutyl-1,3-dimethoxy Methoxypropane, 2,2-diphenyl-1,3-dimethoxypropane, 2,2-dibenzyl-1,3-di Methoxypropane, 2-isopropyl-2-cyclopentyl-1,3-dimethoxypropane, 2,2-bis(cyclohexylmethyl)-1,3-dimethoxypropyl, 2,2-diisobutyl-1 ,3-diethoxypropane, 2,2-diisobutyl-1,3-dibutoxypropane, 2-isobutyl-2-isopropyl-1,3-dimethoxypropane, 2,2-di-sec-butyl -1,3-dimethoxypropane, 2,2-di-t-butyl-1,3-dimethoxypropane, 2,2-dineopentyl-1,3-dimethoxypropane, 2-isopropyl-2- Isopentyl-1,3-dimethoxypropane, 2-phenyl-2-benzyl-1,3-dimethoxypropane, 2-cyclohexyl-2-cyclohexylmethyl-1,3-dimethoxypropane, 9,9- Bis(methoxymethyl)fluorene, 9,9-bis(methoxymethyl)-2,3,6,7-tetramethylfluorene, 9,9-bis(methoxymethyl)-2,3,4, 5,6,7-hexafluorofluorene, 9,9-bis(methoxymethyl)-2,3-benzofluorene, 9,9-bis(methoxymethyl)-2,3,6,7- Dibenzofluorene, 9,9-bis(methoxymethyl)-2,7-diisopropylfluorene, 9,9-bis(methoxymethyl)-1,8-dichlorofluorene, 9,9-bis (Methoxymethyl)-2,7-dicyclopentylfluorene, 9,9-bis(methoxymethyl)-1,8-difluorofluorene, 9,9-bis(methoxymethyl)-1, 2,3,4-tetrahydrofluorene, 9,9-bis(methoxymethyl)-1,2,3,4,5,6,7,8-octahydrofluorene, 9,9-bis(meth Methoxymethyl)-4-t-butylfluorene.

상기 (2)단계는 상기 상기 (1)단계의 결과물의 온도를 60~150℃, 바람직하게는 80~130℃까지 서서히 승온시키면서, 승온 과정 중에 제1, 2 내부전자공여체를 투입하여 1~3시간 동안 반응시킴으로써 수행되는 것이 바람직한데, 상기 온도가 60℃미만이거나 반응시간이 1시간 미만이면 반응이 완결되기 어렵고, 상기 온도가 150℃를 초과하거나 반응시간이 3시간을 초과하면 부반응에 의해 결과물인 촉매의 중합활성 또는 중합체의 입체규칙성이 낮아질 수 있다.In the step (2), while gradually raising the temperature of the resultant of the step (1) to 60 to 150°C, preferably 80 to 130°C, during the heating process, the first and second internal electron donors are introduced to 1 to 3 It is preferred to be carried out by reacting for a period of time. If the temperature is less than 60°C or the reaction time is less than 1 hour, the reaction is difficult to complete, and if the temperature exceeds 150°C or the reaction time exceeds 3 hours, the result is a side reaction. The polymerization activity of the phosphorus catalyst or the stereoregularity of the polymer may be lowered.

상기 제1, 2 내부전자공여체는, 상기 승온과정 중에 투입되는 한, 그 투입 온도 및 투입 횟수는 크게 제한되지 않으며, 두 내부전자공여체를 동시에 혹은 다른 온도에서 주입하여도 무관하다. 상기 두 내부전자공여체의 전체 사용량에선 제한이 없으나 사용하는 두 내부전자공여체 전체의 몰수는 사용된 디알콕시마그네슘 1몰에 대하여 제 1내부전자공여체는 0.001~2.0몰을 제 2내부전자공여체는 0.001~2.0몰을 사용하는 것이 바람직한데, 상기 범위를 벗어나면, 결과물인 촉매의 중합활성 또는 중합체의 입체규칙성이 낮아질 수 있어 바람직하지 않다.The first and second internal electron donors, as long as they are input during the temperature increase process, the input temperature and the number of inputs are not greatly limited, and it is irrelevant to inject the two internal electron donors simultaneously or at different temperatures. The total amount of the two internal electron donors is not limited, but the total number of moles of the two internal electron donors is 0.001 to 2.0 moles for the first internal electron donor and 0.001 to 2.0 moles for the second internal electron donor relative to 1 mole of dialkoxy magnesium used. It is preferable to use 2.0 mol, but if it is outside the above range, the polymerization activity of the resulting catalyst or the stereoregularity of the polymer may be lowered, which is not preferable.

상기 (3)단계는, 60~150℃바람직하게는 80~130℃의 온도에서 상기 (2)단계의 결과물과 티타늄할라이드를 2회 이상 반응시키는 공정이다. 이때 사용되는 티타늄할라이드의 예로는 상기의 일반식 (i)의 티타늄할라이드를 들 수 있다.The step (3) is a step of reacting the product of step (2) with titanium halide two or more times at a temperature of 60 to 150°C, preferably 80 to 130°C. An example of the titanium halide used at this time is the titanium halide of the general formula (i).

고체촉매의 제조공정에 있어서, 각 단계에서의 반응은, 질소 기체 분위기에서, 수분 등을 충분히 제거시킨 교반기가 장착된 반응기 중에서 실시하는 것이 바람직하다.In the production process of the solid catalyst, the reaction in each step is preferably carried out in a reactor equipped with a stirrer with sufficient removal of moisture and the like in a nitrogen gas atmosphere.

상기와 같은 방법으로 제조되는 본 발명의 고체촉매는, 마그네슘, 티타늄, 할로겐, 실란계 화합물 및 2종 이상의 내부전자공여체를 포함하여 이루어지며, 촉매 활성의 측면을 고려해 볼 때, 마그네슘 5~40중량%, 티타늄 0.5~10중량%, 할로겐 50~85중량%, 및 총내부전자공여체 2.5~30중량%이며, 이때 상기 총내부전자공여체는 제1 내부전자공여체 0.1~20중량%, 제2 내부전자공여체 0.1 ~20중량%를 포함하여 이루어지는 것이 바람직하다.The solid catalyst of the present invention prepared by the above method is made of magnesium, titanium, halogen, silane-based compound and two or more internal electron donors, and considering the aspect of catalytic activity, magnesium is 5 to 40 weight %, titanium 0.5 to 10% by weight, halogen 50 to 85% by weight, and total internal electron donor 2.5 to 30% by weight, wherein the total internal electron donor is the first internal electron donor 0.1 to 20% by weight, the second internal electron donor It is preferable to include 0.1 to 20% by weight of the donor.

상기 2종 이상의 내부전자공여체는 시클릭디에스테르를 포함하는 제1내부전자공여체와 프탈산 에스테르 또는 1,3-디에테르계를 포함하는 제2내부전자공여체를 포함한다. The two or more internal electron donors include a first internal electron donor comprising a cyclic diester and a second internal electron donor comprising a phthalic ester or 1,3-diether system.

본 발명의 촉매 제조방법에 의하여 제조되는 고체촉매는 프로필렌 중합 또는 공중합 방법에 적합하게 사용될 수 있으며, 본 발명에 의해 제조되는 고체촉매를 이용한 프로필렌 중합 또는 공중합 방법은 상기 고체촉매와 조촉매 및 외부전자공여체의 존재하에 프로필렌을 중합 또는 프로필렌과 다른 알파올레핀을 공중합시키는 것을 포함한다.The solid catalyst prepared by the catalyst preparation method of the present invention can be suitably used in the propylene polymerization or copolymerization method, and the propylene polymerization or copolymerization method using the solid catalyst prepared by the present invention includes the solid catalyst, the co-catalyst and the external electrons. Polymerization of propylene in the presence of a donor or copolymerization of propylene with other alphaolefins.

상기 고체촉매는 중합 반응의 성분으로서 사용되기 전에 에틸렌 또는 알파올레핀으로 전중합하여 사용할 수 있다.The solid catalyst may be prepolymerized with ethylene or alpha olefin before being used as a component of the polymerization reaction.

전중합 반응은 탄화수소 용매(예를 들어, 헥산), 상기 촉매 성분 및 유기알루미늄 화합물(예를 들어, 트리에틸알루미늄)의 존재 하에서, 충분히 낮은 온도와 에틸렌 또는 알파올레핀 압력 조건에서 수행될 수 있다. 전중합은 촉매 입자를 중합체로 둘러싸서 촉매 형상을 유지시켜 중합 후에 중합체의 형상을 좋게 하는데 도움을 준다. 전중합 후의 중합체/촉매의 중량비는 약 0.1:1~20:1인 것이 바람직하다.The pre-polymerization reaction can be carried out in the presence of a hydrocarbon solvent (eg hexane), the catalyst component and an organoaluminum compound (eg triethylaluminum) at sufficiently low temperature and ethylene or alphaolefin pressure conditions. Prepolymerization helps to improve the shape of the polymer after polymerization by surrounding the catalyst particles with a polymer to maintain the catalyst shape. It is preferable that the weight ratio of the polymer/catalyst after pre-polymerization is about 0.1:1 to 20:1.

상기 프로필렌 중합 또는 공중합 방법에서 조촉매 성분으로는 주기율표 제II족 또는 제III족의 유기금속 화합물이 사용될 수 있으며, 그 예로서, 바람직하게는 알킬알루미늄 화합물이 사용된다. 상기 알킬알루미늄 화합물은 일반식 (iii)로 표시된다:In the propylene polymerization or copolymerization method, an organometallic compound of Group II or III of the periodic table may be used as a cocatalyst component, and as an example, an alkyl aluminum compound is preferably used. The alkylaluminum compound is represented by general formula (iii):

AlR3 ‥‥‥(iii)AlR 3 ‥‥‥(iii)

여기에서, R은 탄소수 1~6개의 알킬기이다. Here, R is a C1-C6 alkyl group.

상기 알킬알루미늄 화합물의 구체예로는, 트리메틸알루미늄, 트리에틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 트리이소부틸알루미늄 및 트리옥틸알루미늄 등을 들 수 있다.Specific examples of the alkyl aluminum compound include trimethyl aluminum, triethyl aluminum, tripropyl aluminum, tributyl aluminum, triisobutyl aluminum and trioctyl aluminum.

상기 고체촉매 성분에 대한 상기 조촉매 성분의 비율은, 중합 방법에 따라서 다소 차이는 있으나, 고체 촉매 성분 중의 티타늄 원자에 대한 조촉매 성분 중의 금속 원자의 몰비가 1~1000의 범위인 것이 바람직하며, 보다 바람직하게는 10~300의 범위인 것이 좋다. 만약, 고체촉매 성분 중의 티타늄 원자에 대한 조촉매 성분 중의 금속 원자, 예를 들어 알루미늄 원자의 몰비가 상기 1~1000의 범위를 벗어나게 되면, 중합 활성이 크게 저하되는 문제가 있다. The ratio of the co-catalyst component to the solid catalyst component is somewhat different depending on the polymerization method, but the molar ratio of the metal atom in the co-catalyst component to the titanium atom in the solid catalyst component is preferably in the range of 1 to 1000, More preferably, it is good that it is in the range of 10 to 300. If the molar ratio of the metal atom in the cocatalyst component to the titanium atom in the solid catalyst component, for example, the aluminum atom, falls outside the range of 1 to 1000, there is a problem that the polymerization activity is greatly reduced.

상기 프로필렌 중합 또는 공중합 방법에서, 상기 외부전자공여체로는 다음의 일반식 (iv)로 표시되는 알콕시실란 화합물 중 1종 이상을 사용할 수 있다: In the propylene polymerization or copolymerization method, one or more of the alkoxysilane compounds represented by the following general formula (iv) may be used as the external electron donor:

R1 mR2 nSi(OR3)(4-m-n) ‥‥‥(iv) R 1 m R 2 n Si(OR 3 ) (4-mn) ‥‥‥(iv)

여기에서, R1, R2은 동일하거나 다를 수 있으며, 탄소수 1~12개의 선형 또는 분지형 또는 시클릭 알킬기, 또는 아릴기이고, R3는 탄소수 1~6개의 선형 또는 분지형 알킬기이고, m, n은 각각 0 또는 1이고, m+n은 1 또는 2이다. Here, R 1 , R 2 may be the same or different, a linear or branched or cyclic alkyl group having 1 to 12 carbon atoms, or an aryl group, and R 3 is a linear or branched alkyl group having 1 to 6 carbon atoms, m , n is 0 or 1, respectively, m+n is 1 or 2.

상기 외부전자공여체의 구체예로는, 노르말프로필트리메톡시실란, 디노르말프로필디메톡시실란, 이소프로필트리메톡시실란, 디이소프로필디메톡시실란, 노르말부틸트리메톡시실란, 디노르말부틸디메톡시실란, 이소부틸트리메톡시실란, 디이소부틸디메톡시실란, 터셔리부틸트리메톡시실란, 디터셔리부틸디메톡시실란, 노르말펜틸트리메톡시실란, 디노르말펜틸디메톡시실란, 시클로펜틸트리메톡시실란, 디시클로펜틸디메톡시실란, 시클로펜틸메틸디메톡시실란, 시클로펜틸에틸디메톡시실란, 시클로펜틸프로필디메톡시실란, 시클로헥실트리메톡시실란, 디시클로헥실디메톡시실란, 시클로헥실메틸디메톡시실란, 시클로헥실에틸디메톡시실란, 시클로헥실프로필디메톡시실란, 시클로헵틸트리메톡시실란, 디시클로헵틸디메톡시실란, 시클로헵틸메틸디메톡시실란, 시클로헵틸에틸디메톡시실란, 시클로헵틸프로필디메톡시실란, 페닐트리메톡시실란, 디페닐디메톡시실란, 페닐메틸디메톡시실란, 페닐에틸디메톡시실란, 페닐프로필디메톡시실란, 노르말프로필트리에톡시실란, 디노르말프로필디에톡시실란, 이소프로필트리에톡시실란, 디이소프로필디에톡시실란, 노르말부틸트리에톡시실란, 디노르말부틸디에톡시실란, 이소부틸트리에톡시실란, 디이소부틸디에톡시실란, 터셔리부틸트리에톡시실란, 디터셔리부틸디에톡시실란, 노르말펜틸트리에톡시실란, 디노르말펜틸디에톡시실란, 시클로펜틸트리에톡시실란, 디시클로펜틸디에톡시실란, 시클로펜틸메틸디에톡시실란, 시클로펜틸에틸디에톡시실란, 시클로펜틸프로필디에톡시실란, 시클로헥실트리에톡시실란, 디시클로헥실디에톡시실란, 시클로헥실메틸디에톡시실란, 시클로헥실에틸디에톡시실란, 시클로헥실프로필디에톡시실란, 시클로헵틸트리에톡시실란, 디시클로헵틸디에톡시실란, 시클로헵틸메틸디에톡시실란, 시클로헵틸에틸디에톡시실란, 시클로헵틸프로필디에톡시실란, 페닐트리에톡시실란, 디페닐디에톡시실란, 페닐메틸디에톡시실란, 페닐에틸디에톡시실란 및 페닐프로필디에톡시실란 등이며, 이 중에서 1종 이상을 단독 또는 혼합하여 사용할 수 있다.As specific examples of the external electron donor, normal propyl trimethoxysilane, dinormal propyl dimethoxysilane, isopropyl trimethoxysilane, diisopropyl dimethoxysilane, normal butyl trimethoxysilane, dinormal butyl dimethoxy Silane, isobutyltrimethoxysilane, diisobutyldimethoxysilane, tertiarybutyltrimethoxysilane, dibutylbutyldimethoxysilane, normalpentyltrimethoxysilane, dinormalpentyldimethoxysilane, cyclopentyltrimethoxy Silane, dicyclopentyldimethoxysilane, cyclopentylmethyldimethoxysilane, cyclopentylethyldimethoxysilane, cyclopentylpropyldimethoxysilane, cyclohexyltrimethoxysilane, dicyclohexyldimethoxysilane, cyclohexylmethyldimethoxysilane , Cyclohexylethyldimethoxysilane, cyclohexylpropyldimethoxysilane, cycloheptyltrimethoxysilane, dicycloheptyldimethoxysilane, cycloheptylmethyldimethoxysilane, cycloheptylethyldimethoxysilane, cycloheptylpropyldimethoxysilane, Phenyltrimethoxysilane, diphenyldimethoxysilane, phenylmethyldimethoxysilane, phenylethyldimethoxysilane, phenylpropyldimethoxysilane, normalpropyltriethoxysilane, dinormalpropyldiethoxysilane, isopropyltriethoxysilane , Diisopropyl diethoxysilane, normal butyl triethoxysilane, dinormal butyl diethoxysilane, isobutyl triethoxysilane, diisobutyl diethoxysilane, tertiary butyl triethoxysilane, dietary butyl diethoxysilane, Normal pentyl triethoxysilane, dinormal pentyl diethoxysilane, cyclopentyl triethoxysilane, dicyclopentyl diethoxysilane, cyclopentyl methyl diethoxysilane, cyclopentyl ethyl diethoxysilane, cyclopentylpropyl diethoxysilane, cyclo Hexyltriethoxysilane, dicyclohexyldiethoxysilane, cyclohexylmethyldiethoxysilane, cyclohexylethyldiethoxysilane, cyclohexylpropyldiethoxysilane, cycloheptyltriethoxysilane, dicycloheptyldiethoxysilane, cycloheptyl Methyldiethoxysilane, cycloheptylethyldiethoxysilane, cycloheptylpropyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, phenylmethyldiethoxysilane, phenylethyldiethoxysilane, and phenylpropyldiethoxysilane. , Among these, one or more may be used alone or in combination.

상기 고체촉매에 대한 상기 외부전자공여체의 사용량은 중합 방법에 따라서 다소 차이는 있으나, 촉매 성분 중의 티타늄 원자에 대한 외부전자공여체 중의 실리콘 원자의 몰비가 0.1~500의 범위인 것이 바람직하며, 1~100의 범위인 것이 보다 바람직하다. 만일, 상기 고체촉매 성분 중의 티타늄 원자에 대한 외부전자공여체 중의 실리콘 원자의 몰비가 0.1 미만이면 생성되는 프로필렌 중합체의 입체규칙성이 현저히 낮아져 바람직하지 않고, 500을 초과하면 촉매의 중합 활성이 현저히 떨어지는 문제점이 있다. The amount of the external electron donor to the solid catalyst is somewhat different depending on the polymerization method, but the molar ratio of the silicon atom in the external electron donor to the titanium atom in the catalyst component is preferably in the range of 0.1 to 500, 1 to 100 It is more preferable to be in the range of. If the molar ratio of the silicon atom in the external electron donor to the titanium atom in the solid catalyst component is less than 0.1, the stereoregularity of the resulting propylene polymer is significantly lowered, which is undesirable, and if it exceeds 500, the polymerization activity of the catalyst is significantly reduced. There is this.

상기 프로필렌 중합 또는 공중합 방법에 있어서, 중합 반응의 온도는 20~120℃인 것이 바람직한데, 중합 반응의 온도가 20℃미만이면 반응이 충분하게 진행되지 못하여 바람직하지 않고, 120℃를 초과하면 활성의 저하가 심하고, 중합체 물성에도 좋지 않은 영향을 주므로 바람직하지 않다.In the propylene polymerization or copolymerization method, the temperature of the polymerization reaction is preferably 20 to 120°C. If the temperature of the polymerization reaction is less than 20°C, the reaction cannot proceed sufficiently and is not preferable. It is not preferable because the degradation is severe and adversely affects the polymer properties.

본 발명은 폴리프로필렌 제조용 고체촉매의 제조방법에 대한 것으로써 디알콕시마그네슘을 금속할라이드와의 반응을 통해서 생성된 담체와 티타늄할라이드, 유기전자공여체 등으로 이루어진 고체촉매 제조방법 및 이를 이용한 폴리프로필렌 제조방법을 제공하는 것으로써, 특히 본 발명에 사용하는 2종의 유기전자공여체 중 시클릭디에스테르가 포함된 내부전자공여체를 사용하는 것으로써 슬러리 중합법, 벌크중합법 또는 기상중합법 등의 다양한 형태의 프로필렌 중합공정에 적용이 가능하며, 높은 활성과 입체규칙성이 우수한 프로필렌 수지를 제조할 수 있다.The present invention relates to a method for producing a solid catalyst for producing polypropylene, a method for preparing a solid catalyst comprising a carrier produced through reaction of dialkoxy magnesium with a metal halide, a titanium halide, an organic electron donor, and a method for producing polypropylene using the same By providing, in particular, by using an internal electron donor containing a cyclic diester among the two organic electron donors used in the present invention, various forms of a slurry polymerization method, a bulk polymerization method or a gas phase polymerization method It can be applied to the propylene polymerization process, and a propylene resin having high activity and excellent stereoregularity can be produced.

이하 실시예 및 비교예에 의해 본 발명을 상세히 설명하나, 이에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by Examples and Comparative Examples, but the present invention is not limited thereto.

실시예 1 Example 1

1. 고체촉매의 제조 1. Preparation of solid catalyst

질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 112ml와 디에톡시마그네슘(평균입경 20㎛인 구형이고, 입도분포지수가 0.86이고, 겉보기밀도가 0.35g/cc인 것) 15g을 투입하고 10℃로 유지하면서, 사염화티타늄 20ml를 톨루엔 30ml에 희석하여 1시간에 걸쳐 투입한 후, 반응기의 온도를 100℃까지 올려 주면서 디이소부틸프탈레이트 3.8g, 1,2-트랜스-디부틸시클로헥산디카르복실레이트, 2.5g의 혼합물을 주입하였다. 100℃에서 2시간 동안 유지한 다음, 90℃로 온도를 내려 교반을 멈추고 상등액을 제거하고, 추가로 톨루엔 200ml를 사용하여 1회 세척하였다. 여기에 톨루엔 120ml와 사염화티타늄 20ml를 투입하여 온도를 100℃까지 올려 2시간 동안 유지하였으며, 이 과정을 1회 반복 수행하였다. 숙성과정이 끝난 상기의 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고, 40℃에서 노말헥산으로 매회당 200ml씩 5회 세척하여 연노랑색의 고체촉매성분을 얻었다. 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매성분 중의 티타늄 함량은 1.9중량%였다. Into a glass reactor equipped with a 1-liter stirrer sufficiently substituted with nitrogen, 112 g of toluene and diethoxy magnesium (average particle size of 20 µm, spherical particle size distribution index of 0.86, apparent density of 0.35 g/cc) are added to 15 g. After diluting 20 ml of titanium tetrachloride in 30 ml of toluene  over 1 hour while maintaining at 10° C., the reactor temperature was raised to 100° C. and 3.8 g of diisobutyl phthalate, 1,2-trans-dibutylcyclohexane A mixture of dicarboxylate, 2.5 g was injected. After maintaining at 100° C. for 2 hours, the temperature was lowered to 90° C. to stop stirring and the supernatant was removed, and further washed once with 200 ml of toluene. To this, 120 ml of toluene and 20 ml of titanium tetrachloride were added to raise the temperature to 100°C and maintain it for 2 hours, and this process was repeated once. After the aging process, the slurry mixture was washed twice with 200 ml of toluene per time, and washed with 200 ml of each time with normal hexane at 40°C five times to obtain a light yellow solid catalyst component. The titanium content in the solid catalyst component obtained by drying under flowing nitrogen for 18 hours was 1.9% by weight.

2. 폴리프로필렌 중합2. Polypropylene polymerization

4리터 크기의 고압용 스테인레스제 반응기내에 상기의 고체촉매 10mg과 트리에틸알루미늄 10mmol, 디시클로펜틸메틸디메톡시실란 1mmol을 투입하였다. 이어서 수소 7000ml와 액체상태의 프로필렌 2.4L를 차례로 투입한 후, 온도를 70℃까지 올려서 중합을 실시하였다. 중합 개시 후 2시간이 경과하면 반응기의 온도를 상온까지 떨어뜨리면서 밸브를 열어 반응기 내부의 프로필렌을 완전히 탈기시켰다.The above-mentioned solid catalyst 10 mg, triethyl aluminum 10 mmol, and dicyclopentyl methyl dimethoxysilane 1 mmol were added into a 4-liter high pressure stainless steel reactor. Subsequently, 7000 ml of hydrogen and 2.4 L of propylene in a liquid state were sequentially added, and the polymerization was carried out by raising the temperature to 70°C. 2 hours after the start of polymerization, the temperature of the reactor was lowered to room temperature and the valve was opened to completely degas the propylene inside the reactor.

그 결과 얻어진 중합체를 분석하여, 표 1에 나타내었다.The resulting polymer was analyzed and shown in Table 1.

여기서, 촉매활성, 입체규칙성은 다음과 같은 방법으로 결정하였다.Here, catalytic activity and stereoregularity were determined by the following method.

① 촉매활성(g-PP/g-cat) = 중합체의 생성량(g)÷촉매의 양(g)① Catalytic activity (g-PP/g-cat) = amount of polymer produced (g) ÷ amount of catalyst (g)

② 입체규칙성(X.I.): 혼합크실렌 중에서 결정화되어 석출된 불용성분의 중량%② Stereoregularity (X.I.): Weight% of insoluble components precipitated by crystallization in mixed xylene

③ 용융흐름성(g/10 min): ASTM1238에 의해, 230℃2.16kg 하중에서 측정한 값③ Melt flow property (g/10 min): Value measured at 230°C 2.16kg load by ASTM1238

④ 분자량분포(P.I.): 200℃의 온도에서 파라렐 플레이트 레오미터를 이용하여 얻어진 모듈러스 세퍼레이션 값으로부터 다음의 계산식을 이용하여 산출한 값④ Molecular weight distribution (P.I.): A value calculated by using the following calculation formula from the modulus separation value obtained using a pararel plate rheometer at a temperature of 200°C.

P.I. = 54.6*(모듈러스 세퍼레이션)-1.76 PI = 54.6* (modulus separation) -1.76

실시예 2Example 2

실시예 1의 1. 고체촉매의 제조에 있어서, 디이소부틸프탈레이트와 1,2-트랜스-디부틸시클로헥산디카르복실레이트 혼합물 대신에 디에틸프탈레이트 2.2g을 주입후 승온하면서 40~60℃에서, 1,2-시스-디이소부틸시클로헥산디카르복실레이트, 2.5g, 2-이소프로필-2-(3-메틸부틸)-1,3-디메톡시프로판 0.5g 혼합물을 주입하여 촉매를 제조하였다. 고체촉매성분 중의 티타늄 함량은 1.9중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었다.Example 1 1. In the preparation of a solid catalyst, diethyl phthalate 2.2 g was injected instead of a mixture of diisobutyl phthalate and 1,2-trans-dibutylcyclohexane dicarboxylate at 40-60° C. while heating. , 1,2-cis-diisobutylcyclohexanedicarboxylate, 2.5g, 2-isopropyl-2-(3-methylbutyl)-1,3-dimethoxypropane 0.5g mixture is injected to prepare a catalyst Did. The titanium content in the solid catalyst component was 1.9% by weight. Next, polypropylene polymerization was performed in the same manner as in Example 1, and the results are shown in Table 1.

실시예 3Example 3

실시예 1의 1. 고체촉매의 제조에 있어서, 디이소부틸프탈레이트와 1,2-트랜스-디부틸시클로헥산디카르복실레이트의 혼합물 대신에 디이소부틸프탈레이트 4.0g, 1,2-디부틸시클로헥산디카르복실레이트 시스트랜스혼합물 2.8g의 혼합물을 사용하여 촉매를 제조하였다. 고체촉매성분 중의 티타늄 함량은 1.8중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었다.Example 1 1. In the preparation of a solid catalyst, diisobutyl phthalate 4.0g, 1,2-dibutylcyclo instead of a mixture of diisobutylphthalate and 1,2-trans-dibutylcyclohexanedicarboxylate The catalyst was prepared using a mixture of 2.8 g of hexanedicarboxylate cistrans mixture. The titanium content in the solid catalyst component was 1.8% by weight. Next, polypropylene polymerization was performed in the same manner as in Example 1, and the results are shown in Table 1.

실시예 4Example 4

실시예 2의 고체촉매의 제조에 있어서, 디이소부틸프탈레이트와 1,2-트랜스-디부틸시클로헥산디카르복실레이트 대신에 디이소부틸프탈레이트 3.8g, 1,2-디이소부틸시클로헥산디카르복실레이트 시스트랜스 혼합물 2.1g를 각각 주입하여 촉매를 제조하였다. 고체촉매성분 중의 티타늄 함량은 2.0중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었다.In the preparation of the solid catalyst of Example 2, instead of diisobutyl phthalate and 1,2-trans-dibutylcyclohexanedicarboxylate, 3.8g of diisobutylphthalate, 1,2-diisobutylcyclohexanedicar Catalysts were prepared by injecting 2.1 g of the carboxylate mixture. The titanium content in the solid catalyst component was 2.0% by weight. Next, polypropylene polymerization was performed in the same manner as in Example 1, and the results are shown in Table 1.

삭제delete

비교예 1Comparative Example 1

실시예 1의 1. 고체촉매의 제조에 있어서, 디이소부틸프탈레이트 및 1,2-트랜스-디부틸시클로헥산디카르복실레이트의 혼합물 대신에 디이소부틸프탈레이트 4.7g을 사용하여 촉매를 제조하였다. 고체촉매성분 중의 티타늄 함량은 2.6중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었다.Example 1 1. In the preparation of the solid catalyst, a catalyst was prepared using 4.7 g of diisobutylphthalate instead of a mixture of diisobutylphthalate and 1,2-trans-dibutylcyclohexanedicarboxylate. The titanium content in the solid catalyst component was 2.6% by weight. Next, polypropylene polymerization was performed in the same manner as in Example 1, and the results are shown in Table 1.

비교예 2Comparative Example 2

1. 고체촉매의 제조1. Preparation of solid catalyst

질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 150ml, 테트라하이드로퓨란 12ml, 부탄올 20ml, 마그네슘클로라이드 21g을 투입하고 110℃로 승온 후, 1시간을 유지시켜 균일 용액을 얻었다. 용액의 온도를 15℃로 냉각하고, 사염화티타늄 25ml를 투입한 후 반응기의 온도를 60℃에서 1시간에 걸쳐 승온하고, 10분 동안 숙성 후 15분간 정치시켜 담체를 가라앉히고, 상부의 용액을 제거하였다. 반응기 내에 남은 슬러리는 200ml의 톨루엔을 투입하고, 교반, 정치, 상등액 제거 과정을 2회 반복하여 세척하였다. To a glass reactor equipped with a liter sized stirrer sufficiently substituted with nitrogen, 150 ml of toluene, 12 ml of tetrahydrofuran, 20 ml of butanol, and 21 g of magnesium chloride were added and heated to 110° C., and maintained for 1 hour to obtain a uniform solution. The temperature of the solution was cooled to 15°C, and after adding 25 ml of titanium tetrachloride, the temperature of the reactor was raised at 60°C over 1 hour, aged for 10 minutes, allowed to stand for 15 minutes to settle the carrier, and remove the upper solution. Did. The slurry remaining in the reactor was added with 200 ml of toluene, and the process of stirring, standing, and removing the supernatant was repeated twice.

이렇게 얻어진 슬러리에 톨루엔 150ml를 주입한 후 15℃에서 사염화티타늄 25ml를 톨루엔 50ml에 희석하여 1시간에 걸쳐 투입한 후, 반응기의 온도를 30℃까지 분당 0.5℃의 속도로 올려 주었다. 반응 혼합물을 30℃에서 1시간 동안 유지한 다음, 디이소부틸프탈레이트 7.5ml를 주입하고, 다시 분당 0.5℃의 속도로 110℃까지 승온시켰다. After injecting 150 ml of toluene into the slurry thus obtained, 25 ml of titanium tetrachloride was diluted in 50 ml of toluene at 15° C. and added over 1 hour, and then the temperature of the reactor was raised to 30° C. at a rate of 0.5° C. per minute. The reaction mixture was maintained at 30° C. for 1 hour, and then 7.5 ml of diisobutylphthalate was injected, and the temperature was further raised to  110° C. at a rate of 0.5° C. per minute.

110℃에서 1시간 동안 유지한 다음, 90℃로 온도를 내려 교반을 멈추고 상등액을 제거하고, 추가로 톨루엔 200ml를 사용하여 동일한 방법으로 1회 세척하였다. 여기에 톨루엔 150ml와 사염화티타늄 50ml를 투입하여 온도를 110℃까지 올려 1시간 동안 유지하였다. 숙성과정이 끝난 상기의 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고, 40℃에서 헥산으로 매회당 200ml씩 5회 세척하여 연노랑색의 고체촉매성분을 얻었다. 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매성분 중의 티타늄 함량은 3.3중량%였다.After maintaining at 110° C. for 1 hour, the temperature was lowered to 90° C. to stop stirring, the supernatant was removed, and additionally, 200 ml of toluene was used to wash once. 150 ml of toluene and 50 ml of titanium tetrachloride were added thereto, and the temperature was raised to 110°C and maintained for 1 hour. After the aging process, the slurry mixture was washed twice with 200 ml of toluene  per each time, and washed with 200 ml of each time with hexane at 40°C five times to obtain a pale yellow solid catalyst component. The titanium content in the solid catalyst component obtained by drying under flowing nitrogen for 18 hours was 3.3% by weight.

활성
(g-PP/g cat)
activation
(g-PP/g cat)
X.I
(wt%)
XI
(wt%)
MI
(g/10min)
MI
(g/10min)
PIPI
실시예1Example 1 87,00087,000 99.499.4 5959 4.44.4 실시예2Example 2 80,00080,000 99.599.5 6868 4.24.2 실시예3Example 3 81,00081,000 99.499.4 5858 4.44.4 실시예4Example 4 78,00078,000 99.599.5 5959 4.34.3 비교예1Comparative Example 1 71,00071,000 98.598.5 2727 4.14.1 비교예2Comparative Example 2 65,00065,000 97.897.8 3131 4.24.2

Claims (4)

티타늄, 마그네슘, 할로겐 및 하기의 구조식 (I) 내지 (Ⅷ)로 표시되는 시클릭디에스테르 구조의 제1내부전자공여체와 프탈산 에스테르를 포함하는 제2내부전자공여체의 조합으로 이루어지는 총내부전자공여체를 포함하는 것을 특징으로 하는 프로필렌 중합용 고체촉매:
Figure 112020012473250-pat00009
…… (I)
Figure 112020012473250-pat00010
…… (Ⅱ)
Figure 112020012473250-pat00011
…… (Ⅲ)
Figure 112020012473250-pat00012
…… (Ⅳ)
Figure 112020012473250-pat00013
…… (V)
Figure 112020012473250-pat00014
…… (Ⅵ)
Figure 112020012473250-pat00015
…… (Ⅶ)
Figure 112020012473250-pat00016
…… (Ⅷ)
여기에서, R1 및 R2는 서로 동일하거나 상이하고, 탄소원자 1~20개의 선형, 가지형 또는 고리형 알킬기, 알케닐기, 아릴기, 아릴알킬기 또는 알킬아릴기이고; R3 내지 R12는 서로 동일하거나 상이하고, 수소, 탄소원자 1~20개의 선형, 가지형 또는 고리형 알킬기, 알케닐기, 아릴기, 아릴알킬기 또는 알킬아릴기이다.
A total internal electron donor composed of a combination of a first internal electron donor of titanium, magnesium, halogen and a cyclic diester structure represented by the following structural formulas (I) to (iii) and a second internal electron donor comprising a phthalic acid ester. Solid catalyst for propylene polymerization, comprising:
Figure 112020012473250-pat00009
… … (I)
Figure 112020012473250-pat00010
… … (Ⅱ)
Figure 112020012473250-pat00011
… … (Ⅲ)
Figure 112020012473250-pat00012
… … (IV)
Figure 112020012473250-pat00013
… … (V)
Figure 112020012473250-pat00014
… … (VI)
Figure 112020012473250-pat00015
… … (Ⅶ)
Figure 112020012473250-pat00016
… … (Ⅷ)
Here, R1 and R2 are the same as or different from each other, and are linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms, alkenyl groups, aryl groups, arylalkyl groups or alkylaryl groups; R3 to R12 are the same or different from each other, and are hydrogen, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, an alkenyl group, an aryl group, an arylalkyl group, or an alkylaryl group.
제 1항에 있어서, 상기 고체촉매는 마그네슘 5~40중량%, 티타늄 0.5~10중량%, 할로겐 50~85중량% 및 총내부전자공여체 2.5~30중량%를 포함하는 것을 특징으로 하는 프로필렌 중합용 고체촉매.The solid catalyst is for propylene polymerization, characterized in that it comprises 5 to 40% by weight of magnesium, 0.5 to 10% by weight of titanium, 50 to 85% by weight of halogen, and 2.5 to 30% by weight of total internal electron donor. Solid catalyst. 제 1항에 있어서, 상기 고체촉매는 시클릭디에스테르를 포함하는 제1내부전자공여체 0.1~20중량%를 포함하는 것을 특징으로 하는 프로필렌 중합용 고체촉매.The solid catalyst for propylene polymerization according to claim 1, wherein the solid catalyst comprises 0.1 to 20% by weight of a first inner electron donor containing a cyclic diester. 제 1항 내지 제 3항 중 어느 한 항에 따른 고체촉매와, 조촉매로서 AlR3(여기에서, R은 탄소수 1~6개의 알킬기이다) 및 외부전자공여체로서 R1 mR2 nSi(OR3)(4-m-n)(여기에서, R1과 R2는 동일하거나 다를 수 있으며, 탄소수 1~12개의 선형 또는 분지형 또는 시클릭 알킬기, 또는 아릴기이고, R3는 탄소수 1~6개의 선형 또는 분지형 알킬기이고, m, n은 각각 0 또는 1이고, m+n은 1 또는 2이다)의 존재하에 프로필렌을 중합, 또는 프로필렌과 다른 알파올레핀을 공중합시키는 것을 포함하는 폴리프로필렌 제조방법.

Any one of claims 1 to 3, as a solid catalyst and a cocatalyst according to any one of items AlR 3 (here, R is a group having a carbon number of 1 to a 6 alkyl group), and as an external electron donor R 1 m R 2 n Si (OR 3 ) (4-mn) (where R 1 and R 2 may be the same or different, and are linear or branched or cyclic alkyl groups having 1 to 12 carbon atoms, or aryl groups, and R 3 is 1 to 6 carbon atoms. A method of producing polypropylene comprising polymerizing propylene in the presence of a linear or branched alkyl group, m, n being 0 or 1, and m+n being 1 or 2), or copolymerizing propylene with other alpha olefins.

KR1020180158412A 2018-12-10 2018-12-10 A solid catalyst for propylene polymerization and a method for preparation of polypropylene KR102121126B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180158412A KR102121126B1 (en) 2018-12-10 2018-12-10 A solid catalyst for propylene polymerization and a method for preparation of polypropylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180158412A KR102121126B1 (en) 2018-12-10 2018-12-10 A solid catalyst for propylene polymerization and a method for preparation of polypropylene

Publications (1)

Publication Number Publication Date
KR102121126B1 true KR102121126B1 (en) 2020-06-09

Family

ID=71082850

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180158412A KR102121126B1 (en) 2018-12-10 2018-12-10 A solid catalyst for propylene polymerization and a method for preparation of polypropylene

Country Status (1)

Country Link
KR (1) KR102121126B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248469A (en) * 2009-03-24 2010-11-04 Mitsui Chemicals Inc Solid titanium catalyst component, olefin polymerization catalyst, and olefin polymerization method
JP2012158639A (en) * 2011-01-31 2012-08-23 Sumitomo Chemical Co Ltd Method for producing solid catalytic component for olefin polymerization
KR20120098957A (en) * 2007-11-01 2012-09-05 미쓰이 가가쿠 가부시키가이샤 Solid titanium catalyst component, olefin polymerization catalyst, and olefin polymerization method
JP2013249445A (en) * 2012-06-04 2013-12-12 Mitsui Chemicals Inc Solid titanium catalyst component, olefin polymerization catalyst and method for producing olefin polymer
JP2015140417A (en) * 2014-01-30 2015-08-03 三井化学株式会社 Method for producing olefin polymer and catalyst for polymerizing olefin
KR20170109576A (en) * 2015-01-30 2017-09-29 도호 티타늄 가부시키가이샤 Process for preparing olefin polymerization catalyst and process for producing olefin polymer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120098957A (en) * 2007-11-01 2012-09-05 미쓰이 가가쿠 가부시키가이샤 Solid titanium catalyst component, olefin polymerization catalyst, and olefin polymerization method
JP2010248469A (en) * 2009-03-24 2010-11-04 Mitsui Chemicals Inc Solid titanium catalyst component, olefin polymerization catalyst, and olefin polymerization method
JP2012158639A (en) * 2011-01-31 2012-08-23 Sumitomo Chemical Co Ltd Method for producing solid catalytic component for olefin polymerization
JP2013249445A (en) * 2012-06-04 2013-12-12 Mitsui Chemicals Inc Solid titanium catalyst component, olefin polymerization catalyst and method for producing olefin polymer
JP2015140417A (en) * 2014-01-30 2015-08-03 三井化学株式会社 Method for producing olefin polymer and catalyst for polymerizing olefin
KR20170109576A (en) * 2015-01-30 2017-09-29 도호 티타늄 가부시키가이샤 Process for preparing olefin polymerization catalyst and process for producing olefin polymer

Similar Documents

Publication Publication Date Title
KR101114073B1 (en) A method for preparation of a solid catalyst for polymerization of propylene
KR101235445B1 (en) A method for the preparation of a solid catalyst for olefin polymerization
EP3397658B1 (en) Non-phthalate catalyst system and its use in the polymerization of olefins
KR101930165B1 (en) A solid catalyst for producing polypropylene and a method for preparation of block copolymer
KR20110080616A (en) A method for the preparation of a solid catalyst for olefin polymerization
KR20200077232A (en) A solid catalyst for producing polypropylene and a method for preparation of block copolymer
RU2342998C2 (en) Magnesium dichloride-containing adducts and catalytic components obtained with them
KR102122133B1 (en) A solid catalyst for Polypropylene polymerization and a method for low Volatile organic compound
CN108517022B (en) Solid catalyst component for olefin polymerization, catalyst and application thereof
KR101795317B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
KR101836008B1 (en) Process of manufacture of catalyst and propylene polymer that use this or copolymer for propylene polymerization
KR20070011378A (en) Magnesium chloride-based adducts and catalyst components obtained therefrom
KR101338783B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene using the same
JP2014009359A (en) Solid catalyst for propylene polymerization, and method for preparation of polypropylene using the same
KR102121126B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
KR101965982B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
KR101908866B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
CN108570120B (en) Solid catalyst component containing o-phenylenediamine compounds, catalyst and application thereof
CN107417819B (en) Solid catalyst component for olefin polymerization, catalyst and application thereof
EP4375303A1 (en) Method for producing propylene copolymer using catalyst system having improved copolymerization activity
KR102259307B1 (en) A solid catalyst for Polypropylene polymerization and a method for low Volatile organic compound
EP4361186A1 (en) Solid catalyst for producing polypropylene and method for preparation of propylene-derived polymer
KR20240076546A (en) A method for preparation of propylene copolymer improved in coplymerization
KR102453530B1 (en) A solid catalyst for propylene-based block copolymerization and a method for preparation of block copolymer
KR101207672B1 (en) A method for preparing a solid catalyst for propylene polymerization

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant