KR101930165B1 - A solid catalyst for producing polypropylene and a method for preparation of block copolymer - Google Patents

A solid catalyst for producing polypropylene and a method for preparation of block copolymer Download PDF

Info

Publication number
KR101930165B1
KR101930165B1 KR1020170084374A KR20170084374A KR101930165B1 KR 101930165 B1 KR101930165 B1 KR 101930165B1 KR 1020170084374 A KR1020170084374 A KR 1020170084374A KR 20170084374 A KR20170084374 A KR 20170084374A KR 101930165 B1 KR101930165 B1 KR 101930165B1
Authority
KR
South Korea
Prior art keywords
carbon atoms
solid catalyst
propylene
group
polymerization
Prior art date
Application number
KR1020170084374A
Other languages
Korean (ko)
Inventor
이영주
박준려
김은일
고수민
Original Assignee
한화토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화토탈 주식회사 filed Critical 한화토탈 주식회사
Priority to KR1020170084374A priority Critical patent/KR101930165B1/en
Application granted granted Critical
Publication of KR101930165B1 publication Critical patent/KR101930165B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/643Component covered by group C08F4/64 with a metal or compound covered by group C08F4/44 other than an organo-aluminium compound
    • C08F4/6432Component of C08F4/64 containing at least two different metals
    • C08F4/6435Component of C08F4/64 containing at least two different metals containing magnesium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

The present invention relates to a manufacturing method of a solid catalyst for propylene polymerization, and a propylene polymer of copolymer using the same. Provided is a manufacturing method of a solid catalyst which is composed of a carrier which is created by reaction of dialkoxy magnesium with metal halide, titanium halide, an organic electron donor or the like, and a propylene polymer and copolymer through polymerization of propylene-alpha olefin using the same. In particular, an inner electron donor which includes a carbonyl group and alkoxy group among two or more kinds of organic electron donors which are used for the present invention is used. Excellent polypropylene which has high activation, excellent stereoregularity and hydrogen reactivity can be manufactured through polymerization by a manufacturing method of a solid catalyst, and a propylene polymer or copolymer using the same which are suggested by the present invention, and also a block copolymer which has a high rubber content can be manufactured through copolymerization with alpha olefin.

Description

프로필렌 중합용 고체 촉매 및 이를 이용한 프로필렌 중합체 또는 공중합체의 제조방법{A SOLID CATALYST FOR PRODUCING POLYPROPYLENE AND A METHOD FOR PREPARATION OF BLOCK COPOLYMER}Technical Field [0001] The present invention relates to a solid catalyst for polymerization of propylene and a process for producing the propylene polymer or copolymer using the solid catalyst,

본 발명은, 디알콕시마그네슘을 금속할라이드와의 반응을 통해서 생성된 담체와 티타늄할라이드, 유기전자공여체 등으로 이루어진 고체촉매 제조방법 및 이를 이용한 폴리프로필렌 제조방법으로써, 이러한 고체 촉매계로 이루어진 지글러-나타 촉매를 사용하여 프로필렌 중합체를 제조할 경우, 높은 활성과 입체규칙성이 우수하며 수소반응성이 우수한 폴리프로필렌을 제조할 수 있을 뿐만 아니라, 알파올레핀과의 공중합을 통하여 높은 고무함량의 블록공중합체를 제조할 수 있는 것이다.The present invention relates to a process for producing a solid catalyst comprising a carrier, a titanium halide, an organic electron donor and the like, which is produced by reacting dialkoxymagnesium with a metal halide, and a process for producing a polypropylene using the same, It is possible to prepare a polypropylene which is excellent in high activity and stereoregularity and excellent in hydrogen reactivity as well as a block copolymer of high rubber content by copolymerization with an alpha olefin You can.

폴리프로필렌은 실생활에서나 상업적으로 매우 유용하게 소재물질로써 특히 식품용기등의 생활용품에서부터 자동차 및 전자제품 등에 널리 사용되고 있다. 이러한 폴리프로필렌의 다양한 제품성능을 위해서는 높은 결정화도를 통한 강성을 개선하는 것이 중요하다. 한편 이와 아울러 자동차 내외장제 등에서 요구되는 충격강도 프로필렌계의 고무함량이 높은 블록 공중합체를 제조하므로서 충족시킬 수 있는데, 이를 위해서는 중합촉매의 역할이 무엇보다도 절실히 요구된다. 즉 생성되는 고분자의 입체규칙성을 향상과 알파올레핀과의 높은 공중합성을 충족시키도록 촉매시스템의 디자인이 수반되어야 한다. 이와 아울러 고분자 제조에 있어서의 경제성을 위해서는 촉매의 중합활성 높을수록 더욱 유리하다. BACKGROUND ART Polypropylene is widely used as a material material, particularly in daily life goods such as food containers, and in automobiles and electronic products, in real life and commercially. For various product properties of such polypropylene, it is important to improve rigidity through high crystallinity. On the other hand, the impact strength required in automobile interior and exterior materials, etc. can be satisfied by producing a block copolymer having a high content of propylene-based rubber. For this purpose, the role of a polymerization catalyst is desperately required. That is, the design of the catalyst system should be accompanied by an improvement in the stereoregularity of the resulting polymer and a high copolymerization with the alpha olefin. In addition, the higher the polymerization activity of the catalyst is, the more advantageous for economical efficiency in the production of the polymer.

한편 프로필렌의 기상중합, 슬러리 중합 및 벌크 중합에 사용되는 촉매계는 지글러-나타계 촉매 성분, 알킬알루미늄 및 외부전자공여체로 구성되어 있는 것이 일반적이다. 특히 이러한 촉매성분은 마그네슘, 티타늄, 및 내부전자공여체 및 할로겐을 필수성분으로서 함유하는 고체촉매로 알려져 있으며, 특히 내부 전자공여체는 분자구조에 따라 촉매의 활성 및 입체규칙성 등에 상당한 영향을 미치는 것으로 알려져 있다. 촉매 활성 증가를 통해 원가를 낮추고, 입체규칙성 등의 촉매 성능을 향상시켜 중합체의 물성을 개선시키기 위하여, 내부전자공여체로서 방향족 디카르복실산의 디에스테르를 사용하는 것은 보편적으로 널리 알려진 방법이며, 이에 관한 특허들이 출원되었다. 미국 특허 제4,562,173호, 미국 특허 제4,981,930호, 한국 특허 제0072844호 등은 그 예라고 할 수 있으며, 상기 특허들은 방향족 디알킬디에스테르 또는 방향족 모노알킬모노에스테르를 사용하여 고활성, 고입체규칙성을 발현하는 촉매 제조 방법을 소개하고 있다.On the other hand, the catalyst system used for gas phase polymerization, slurry polymerization and bulk polymerization of propylene is generally composed of a Ziegler-Natta catalyst component, alkyl aluminum and an external electron donor. Particularly, such a catalyst component is known as a solid catalyst containing magnesium, titanium, an internal electron donor and halogen as essential components, and it is known that the internal electron donor has a considerable influence on the activity and stereoregularity of the catalyst depending on the molecular structure have. It is a widely known method to use a diester of an aromatic dicarboxylic acid as an internal electron donor in order to lower the cost through the increase of the catalyst activity and to improve the property of the polymer by improving the catalytic performance such as stereoregularity, Patents related thereto were filed. U.S. Patent No. 4,562,173, U.S. Patent No. 4,981,930, and Korean Patent No. 0072844, for example, disclose the use of an aromatic dialkyl diester or an aromatic monoalkyl monoester to produce high activity, In the presence of a catalyst.

상기 특허들의 방법은 고입체규칙성 중합체를 높은 수율로 얻기에는 충분히 만족스러운 것이 아니며 개선이 요구된다. The methods of these patents are not sufficiently satisfactory to obtain a high stereoregular polymer in high yield and require improvement.

한국 특허 제0491387호에는 비방향족인 디에테르 물질을, 한국 특허 제0572616호에는 비방향족이면서 케톤과 에테르 작용기를 동시에 가지는 물질을 내부전자공여체로 사용한 촉매 제조 방법이 되어 있다. 그러나, 이 두 방법 모두 활성과 입체규칙성 측면 모두에서 크게 개선되어야할 여지가 있다. Korean Patent No. 0491387 discloses a non-aromatic diether material and Korean Patent No. 0572616 discloses a method of producing a catalyst using a nonaromatic but simultaneously having a ketone and an ether functional group as an internal electron donor. However, both of these methods need to be greatly improved in terms of both activity and stereoregularity.

또한 미국 특허 제2011/0040051호에는 디에틸 2,3-디이소프로필-2-시아노숙시네이트와 9,9-비스메톡시플로렌의 혼합물을 내부전자공여체로 사용하여 촉매를 제조하는 방법을 제안하고 있으나, 활성과 입체규칙성 측면 모두에서 매우 열세하여 개선이 요구되고 있다.U.S. Patent No. 2011/0040051 also discloses a method for preparing a catalyst by using a mixture of diethyl 2,3-diisopropyl-2-cyanosuccinate and 9,9-bismethoxyflorene as an internal electron donor However, it is very difficult to improve both in terms of activity and stereoregularity.

본 발명의 목적은 상기와 같은 종래기술들의 문제점을 해결하고자 하는 것으로써, 높은 입체규칙성을 갖고 활성이 우수한 폴리프로필렌을 제조할 수 있으며, 수소 반응성이 우수한 폴리프로필렌을 제조할 수 있을 뿐만 아니라, 알파올레핀과의 공중합을 통하여 높은 고무함량의 블록공중합체를 제조할 수 있는 고체촉매 및 이를 이용한 프로필렌 공중합체의 제조방법을 제공하는 것이다. It is an object of the present invention to solve the problems of the prior art as described above, and it is an object of the present invention to provide polypropylene having high stereoregularity and excellent activity, A1 A solid catalyst capable of producing a block copolymer having a high rubber content through copolymerization with an alpha olefin and a process for producing a propylene copolymer using the solid catalyst.

본 발명의 프로필렌 중합용 고체촉매의 제조방법은, 다음의 단계를 포함하여 이루어지는 것을 특징으로 한다.The method for producing a solid catalyst for propylene polymerization according to the present invention is characterized by comprising the following steps.

(1) 디에톡시마그네슘을 유기용매 존재하에서 금속할라이드 화합물과 비교적 낮은 온도에서 반응시키는 단계; (1) reacting diethoxy magnesium with a metal halide compound in the presence of an organic solvent at a relatively low temperature;

(2) 디에톡시마그네슘 반응 후 온도를 승온하면서 2종 이상의 내부전자공여체를 반응시키는 단계;(2) reacting two or more internal electron donors while raising the temperature after diethoxy magnesium reaction;

(3) 높은온도에서 일정시간동안 반응시키는 단계.
(3) reacting at a high temperature for a certain period of time.

상기에 명시된 고체촉매의 제조공정에 있어서, (1)단계에서 사용된 디에톡시마그네슘은 금속마그네슘을 염화마그네슘의 존재하에서 무수알콜과 반응시켜 얻어지는 평균입경이 10~200㎛ 이고, 표면이 매끄러운 구형입자로서, 상기 구형의 입자형상은 프로필렌의 중합시에도 그대로 유지되는 것이 바람직한데, 상기 평균입경이 10 ㎛미만이면 제조된 촉매의 미세입자가 증가하여 바람직하지 않고, 200㎛를 초과하면 곁보기 밀도가 작아지고 촉매제조시 균일한 입자형상을 갖기 어려워 바람직하지 않다. In the process for producing a solid catalyst as described above, diethoxy magnesium used in the step (1) is a product obtained by reacting metallic magnesium with anhydrous alcohol in the presence of magnesium chloride and having an average particle size of 10 to 200 탆, If the average particle size is less than 10 탆, the fine particles of the prepared catalyst are undesirably increased. When the average particle size is more than 200 탆, the side view density And it is difficult to have a uniform particle shape in the production of the catalyst, which is not preferable.

상기 (1)단계에서 사용되는 유기용매로서는, 그 종류에 특별한 제한이 없으며, 탄소수 6~12개의 지방족 탄화수소 및 방향족 탄화수소, 할로겐화 탄화수소 등이 사용될 수 있으며, 보다 바람직하게는 탄소수 7~10개의 포화 지방족 탄화수소 또는 방향족 탄화수소, 할로겐화 탄화수소가 사용될 수 있으며, 그 구체적인 예로는 헵탄, 옥탄, 노난, 데칸, 톨루엔, 자일렌, 클로로헥산, 클로로 헵탄 등으로부터 선택되는 1종이상을 혼합하여 사용할 수 있다.The organic solvent used in the step (1) is not particularly limited and may be an aliphatic hydrocarbon having 6 to 12 carbon atoms, an aromatic hydrocarbon, a halogenated hydrocarbon or the like, more preferably a saturated aliphatic hydrocarbon having 7 to 10 carbon atoms A hydrocarbon, an aromatic hydrocarbon or a halogenated hydrocarbon may be used. Specific examples thereof include a mixture of at least one selected from heptane, octane, nonane, decane, toluene, xylene, chlorohexane and chloroheptane.

또한 상기 디에톡시마그네슘에 대한 상기 유기용매의 사용비는 디에톡시마그네슘 중량: 유기용매 부피로 1:5~1:50인 것이 바람직하며, 1:7 ~ 1:20인 것이 보다 바람직한데, 상기 사용비가 1:5 미만이면 슬러리의 점도가 급격히 증가하여 균일한 교반이 어렵고, 1:50을 초과하면 생성되는 담체의 겉보기 밀도가 급격히 감소하거나 입자표면이 거칠어지는 문제가 발생하여 바람직하지 않다.Also, the use ratio of the organic solvent to the diethoxy magnesium is preferably 1: 5 to 1:50, more preferably 1: 7 to 1:20 by weight of diethoxy magnesium in terms of organic solvent volume, If the ratio is less than 1: 5, the viscosity of the slurry increases sharply and it is difficult to uniformly stir. When the ratio is more than 1:50, the bulk density of the carrier to be produced sharply decreases or the surface of the particles becomes rough.

상기 고체촉매의 제조과정에서 사용되는 티타늄 할라이드는 하기의 일반식 (I)로 표시할 수 있다:The titanium halide used in the preparation of the solid catalyst can be represented by the following general formula (I)

Ti(OR)nX(4-n) ………… (I)Ti (OR) n X (4-n) ... ... ... ... (I)

여기에서 R은 탄소원자 1~10개의 알킬기이고, X는 할로겐 원소를 나타내며, n 은 일반식의 원자가를 맞추기 위한 것으로 0~3의 정수이다. 구체적인 예로는TiCl4, Ti(OCH3)Cl3, Ti(OC2H5)Cl3, Ti(OC3H7)Cl3, Ti(O(n-C4H9))Cl3, Ti(OCH3)2Cl2,Ti(OC2H5)2Cl2, Ti(OC3H7)2Cl2, Ti(O(n-C4H9))2Cl2, Ti(OCH3)3Cl, Ti(OC2H5)3Cl, Ti(OC3H7)3Cl, Ti(O(n-C4H9))3Cl등이며, 이들 중 TiCl4가 바람직하게 사용된다. 또한 이들 4가 티타늄할라이드 화합물은 1종 단독 또는 2종 이상 조합하여 사용할 수도 있다. 상기 (1)단계의 반응 온도는 -10 ~ 60℃이다.Wherein R is an alkyl group having 1 to 10 carbon atoms, X is a halogen element, and n is an integer of 0 to 3 for matching the valency of the general formula. Ti (OCH3) 2Cl2, Ti (OC2H5) 2Cl2, Ti (OC3H7) Cl3, Ti (OCH3) TiCl 4, TiCl 4, TiCl 4, TiCl 4, TiCl 4, TiCl 4, TiCl 2, Is used. These tetravalent titanium halide compounds may be used singly or in combination of two or more. The reaction temperature in step (1) is -10 to 60 ° C.

상기의 (2)단계에서 나타내는 2종 이상의 내부전자공여체 중 제1 내부전자공여체는 다음과 같은 일반식(II) 로 표시되는 비방향족 알콕시 에스테르계 화합물이다. The first internal electron donor among the two or more internal electron donors represented by the above step (2) is a non-aromatic alkoxy ester compound represented by the following general formula (II).

Figure 112017063679351-pat00001

Figure 112017063679351-pat00001

즉, 일반식(II)의 B는 탄소수가 1~20개까지의 지방족 포화탄화수소 및 환형의 포화탄화수소로 구성된 모노 에스테르 구조를 갖는 화합물이거나, B가 아미노기, 또는 직쇄형 또는 환형아미노기로 이루어진 카바메이트 구조를 갖는 화합물을 나타낸다. R1, R2, R3, R4, R5는 각각 독립적으로 탄소수 1~12의 직쇄상 알킬기, 탄소수 3~12의 분기 알킬기, 비닐기, 탄소수3~12의 직쇄상 알케닐기 또는 분기 알케닐기, 탄소수 1~12의 직쇄상 할로겐 치환 알킬기, 탄소수 3~12의 분기 할로겐 치환 알킬기, 탄소수 3~12의 직쇄상 할로겐 치환 알케닐기 또는 분기 할로겐 치환 알케닐기, 탄소수3~12의 시클로알킬기, 탄소수 3~12의 시클로알케닐기, 탄소수 3~12의 할로겐 치환 시클로알킬기, 탄소수 3~12의 할로겐 치환 시클로알케닐기, 또는 탄소수 6~12의 방향족 탄화수소기이며, 더욱 바람직한 기는, 탄소수 1∼12의 직쇄상 알킬기, 탄소수 3~12의 분기 알킬기, 비닐기, 탄소수 3~12의 직쇄상 알케닐기 또는 분기 알케닐기, 탄소수 1~12의 직쇄상 할로겐 치환 알킬기, 탄소수 3~12의 분기 할로겐 치환 알킬기, 탄소수 3~12의 시클로알킬기, 탄소수 3~12의 시클로알케닐기, 또는 탄소수 6~12의 방향족 탄화수소기이며, 특히 바람직한 기는, 탄소수 1~12의 직쇄상 알킬기, 탄소수 3~12의 분기 알킬기, 및 탄소수 6~12의 환형 탄화수소기이다.That is, B in the general formula (II) is a compound having a monoester structure composed of aliphatic saturated hydrocarbons and cyclic saturated hydrocarbons having 1 to 20 carbon atoms, or B is an amino group or carbamate having a linear or cyclic amino group ≪ / RTI > structure. R 1, R 2, R 3, R 4 and R 5 are each independently a linear alkyl group having 1 to 12 carbon atoms, a branched alkyl group having 3 to 12 carbon atoms, a vinyl group, a straight chain alkenyl group or a branched alkenyl group having 3 to 12 carbon atoms, A straight chain halogenated alkyl group having 3 to 12 carbon atoms, a branched halogenated alkyl group having 3 to 12 carbon atoms, a straight chain halogenated alkenyl group having 3 to 12 carbon atoms or a branched halogenated alkenyl group having 3 to 12 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, A halogen-substituted cycloalkyl group having 3 to 12 carbon atoms, a halogen-substituted cycloalkenyl group having 3 to 12 carbon atoms, or an aromatic hydrocarbon group having 6 to 12 carbon atoms, more preferably a straight-chain alkyl group having 1 to 12 carbon atoms, A straight chain alkenyl group or a branched alkenyl group having 3 to 12 carbon atoms, a straight chain halogenated alkyl group having 1 to 12 carbon atoms, a branched halogenated alkyl group having 3 to 12 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, Alkyl group, carbon A cycloalkenyl group having 3 to 12 carbon atoms, or an aromatic hydrocarbon group having 6 to 12 carbon atoms. Particularly preferred groups are a linear alkyl group having 1 to 12 carbon atoms, a branched alkyl group having 3 to 12 carbon atoms, and a cyclic hydrocarbon group having 6 to 12 carbon atoms .

그 구체적인 예로는, 2-메톡시에틸 아세테이트, 2-메톡시에틸프로피오네이트, 2-메톡시에틸 부틸레이트, 2-메톡시에틸 이소부틸레이트, 2-메톡시에틸 피발레이트, 2-메톡시에틸 펜타노에이트, 2-메톡시에틸 3-메틸부타노에이트, 2-메톡시에틸 2,3-디메틸부타노에이트, 2-메톡시에틸 3,3-디메틸부타노에이트, 2-메톡시에틸 2,3,3-트리메틸부타노에이트, 2-메톡시에틸 2,2,3,3,-테트라메틸부타노에이트, 2-메톡시에틸 3-에틸부타노에이트, 2-메톡시에틸 2,3-디에틸부타노에이트, 2-메톡시에틸 3,3-디에틸부타노에이트, 2-메톡시에틸 2,3,3-트리에틸부타노에이트, 2-메톡시에틸 2,2,3,3,-테트라에틸부타노에이트, 2-메톡시에틸 2-에틸-3-메틸부타노에이트, 2-메톡시에틸 3-에틸-3-메틸부타노에이트, 2-메톡시에틸 2-에틸-3,3-디메틸부타노에이트, 2-메톡시에틸 2,2,3,3,-테트라메틸부타노에이트, 2-메톡시에틸 2-메틸펜타노에이트, 2-메톡시에틸 3-메틸펜타노에이트, 2-메톡시에틸 4-메틸펜타노에이트, 2-메톡시에틸 2,3-디메틸펜타노에이트, 2-메톡시에틸 2,2-디메틸펜타노에이트, 2-메톡시에틸 3,3-디메틸펜타노에이트, 2-메톡시에틸 4,4-디메틸펜타노에이트, 2-메톡시에틸 2,4-디메틸펜타노에이트, 2-메톡시에틸 3,4-디메틸펜타노에이트, 2-메톡시에틸 3,3,4-트리메틸펜타노에이트, 2-메톡시에틸 2,3,3-트리메틸펜타노에이트, 2-메톡시에틸 2,2,3-트리메틸펜타노에이트, 2-메톡시에틸 2,3,4-트리메틸펜타노에이트, 2-메톡시에틸 2,3,3-트리메틸펜타노에이트, 2-메톡시에틸 2,2,3,3,-테트라메틸페나노에이트, 2-메톡시에틸 3-에틸펜타노에이트, 2-메톡시에틸 2,3-디에틸펜타노에이트, 2-메톡시에틸 3,3-디에틸펜타노에이트, 2-메톡시에틸 2,3,3-트리에틸펜타노에이트, 2-메톡시에틸 2,2,3,3,-테트라에틸펜타노에이트, 2-메톡시에틸 2-에틸-3-메틸펜타노에이트, 2-메톡시에틸 3-에틸-3-메틸펜타노에이트, 2-메톡시에틸 2-에틸-3,3-디메틸펜타노에이트, 2-메톡시에틸 2,2,3,3,-테트라메틸펜타노에이트,2-메톡시에틸 시클로헥산카르복실레이트, 2-메톡시에틸 2-메틸시클로헥산카르복실레이트, 2-메톡시에틸 3-메틸시클로헥산카르복실레이트, 2-메톡시에틸 시클로헥-2-센카르복실레이트, 2-메톡시에틸 시클로헥-2-센카르복실레이트, 2-메톡시에틸 카바메이트, 2-메톡시에틸 메틸카바메이트, 2-메톡시에틸 에틸카바메이트, 2-메톡시에틸 디메틸카바메이트, 2-메톡시에틸 디에틸카바메이트, 2-메톡시에틸 피페리딘-1-카르복실레이트, 2-메톡시에틸 2-메틸피페리딘-1-카르복실레이트, 2-메톡시에틸 3-메틸피페리딘-1-카르복실레이트, 2-메톡시에틸 2,3-디메틸피페리딘-1-카르복실레이트, 2-메톡시에틸 2,4-디메틸피페리딘-1-카르복실레이트, 2-메톡시에틸 2,5-디메틸피페리딘-1-카르복실레이트, 2-메톡시에틸 2,6-디메틸피페리딘-1-카르복실레이트, 2-에톡시에틸 아세테이트, 2-에톡시에틸프로피오네이트, 2-에톡시에틸 부틸레이트, 2-에톡시에틸 이소부틸레이트, 2-에톡시에틸 피발레이트, 2-에톡시에틸 펜타노에이트, 2-에톡시에틸 3-메틸부타노에이트, 2-에톡시에틸 2,3-디메틸부타노에이트, 2-에톡시에틸 3,3-디메틸부타노에이트, 2-에톡시에틸 2,3,3-트리메틸부타노에이트, 2-에톡시에틸 2,2,3,3,-테트라메틸부타노에이트, 2-에톡시에틸 3-에틸부타노에이트, 2-에톡시에틸 2,3-디에틸부타노에이트, 2-메톡시에틸 3,3-디에틸부타노에이트, 2-에톡시에틸 2,3,3-트리에틸부타노에이트, 2-에톡시에틸 2,2,3,3,-테트라에틸부타노에이트, 2-에톡시에틸 2-에틸-3-메틸부타노에이트, 2-에톡시에틸 3-에틸-3-메틸부타노에이트, 2-에톡시에틸 2-에틸-3,3-디메틸부타노에이트, 2-에톡시에틸 2,2,3,3,-테트라메틸부타노에이트, 2-에톡시에틸 2-메틸펜타노에이트, 2-에톡시에틸 3-메틸펜타노에이트, 2-에톡시에틸 4-메틸펜타노에이트, 2-에톡시에틸 2,3-디메틸펜타노에이트, 2-에톡시에틸 2,2-디메틸펜타노에이트, 2-에톡시에틸 3,3-디메틸펜타노에이트, 2-에톡시에틸 4,4-디메틸펜타노에이트, 2-에톡시에틸 2,4-디메틸펜타노에이트, 2-에톡시에틸 3,4-디메틸펜타노에이트, 2-에톡시에틸 3,3,4-트리메틸펜타노에이트, 2-에톡시에틸 2,3,3-트리메틸펜타노에이트, 2-에톡시에틸 2,2,3-트리메틸펜타노에이트, 2-에톡시에틸 2,3,4-트리메틸펜타노에이트, 2-에톡시에틸 2,3,3-트리메틸펜타노에이트, 2-에톡시에틸 2,2,3,3,-테트라메틸페나노에이트, 2-에톡시에틸 3-에틸펜타노에이트, 2-에톡시에틸 2,3-디에틸펜타노에이트, 2-에톡시에틸 3,3-디에틸펜타노에이트, 2-에톡시에틸 2,3,3-트리에틸펜타노에이트, 2-에톡시에틸 2,2,3,3,-테트라에틸펜타노에이트, 2-에톡시에틸 2-에틸-3-메틸펜타노에이트, 2-에톡시에틸 3-에틸-3-메틸펜타노에이트, 2-에톡시에틸 2-에틸-3,3-디메틸펜타노에이트, 2-에톡시에틸 2,2,3,3,-테트라메틸펜타노에이트,2-에톡시에틸 시클로헥산카르복실레이트, 2-에톡시에틸 2-메틸시클로헥산카르복실레이트, 2-에톡시에틸 3-메틸시클로헥산카르복실레이트, 2-에톡시에틸 시클로헥-2-센카르복실레이트, 2-에톡시에틸 시클로헥-2-센카르복실레이트, 2-에톡시에틸 카바메이트, 2-에톡시에틸 메틸카바메이트, 2-에톡시에틸 에틸카바메이트, 2-에톡시에틸 디메틸카바메이트, 2-에톡시에틸 디에틸카바메이트, 2-에톡시에틸 피페리딘-1-카르복실레이트, 2-에톡시에틸 2-에틸피페리딘-1-카르복실레이트, 2-에톡시에틸 3-에틸피페리딘-1-카르복실레이트, 2-에톡시에틸 2,3-디메틸피페리딘-1-카르복실레이트, 2-에톡시에틸 2,4-디메틸피페리딘-1-카르복실레이트, 2-에톡시에틸 2,5-디메틸피페리딘-1-카르복실레이트, 2-에톡시에틸 2,6-디메틸피페리딘-1-카르복실레이트 등이다.Specific examples thereof include 2-methoxyethyl acetate, 2-methoxyethylpropionate, 2-methoxyethylbutylate, 2-methoxyethylisobutylate, 2-methoxyethylpivalate, 2- Methoxyethyl 3-methylbutanoate, 2-methoxyethyl 3-methylbutanoate, 2-methoxyethyl 3,3-dimethylbutanoate, 2-methoxyethyl 2-methoxyethyl 2,2,3,3-tetramethylbutanoate, 2-methoxyethyl 3-ethyl butanoate, 2-methoxyethyl 2, 3-diethyl butanoate, 2-methoxyethyl 3,3-diethyl butanoate, 2-methoxyethyl 2,3,3-triethyl butanoate, 2-methoxyethyl 2,2,3 Methoxyethyl 2-ethyl-3-methylbutanoate, 2-methoxyethyl 3-ethyl-3-methylbutanoate, 2-methoxyethyl 2-ethyl -3,3-dimethyl butanoate, 2-methoxyethyl 2,2,3,3-tetramethylbutanoate Methoxyethyl 3-methylpentanoate, 2-methoxyethyl 2-methylpentanoate, 2-methoxyethyl 3-methylpentanoate, 2-methoxyethyl 4-methylpentanoate, 2-methoxyethyl 2,3- 2-methoxyethyl 2,2-dimethyl pentanoate, 2-methoxy ethyl 3,3-dimethyl pentanoate, 2-methoxy ethyl 4,4-dimethyl pentanoate, 2-methoxy ethyl 2-methoxyethyl 3,4-dimethylpentanoate, 2-methoxyethyl 3,3,4-trimethylpentanoate, 2-methoxyethyl 2,3,3- Trimethylpentanoate, 2-methoxyethyl 2,2,3-trimethylpentanoate, 2-methoxyethyl 2,3,4-trimethylpentanoate, 2-methoxyethyl 2,3,3-trimethylpenta 2-methoxyethyl 2,2,3,3-tetramethylphenanoate, 2-methoxyethyl 3-ethylpentanoate, 2-methoxyethyl 2,3-diethylpentanoate, 2-methoxyethyl 3,3-diethylpentanoate, 2-methoxyethyl 2,3,3-triethylpentanoate 2-methoxyethyl 2,2,3,3-tetraethylpentanoate, 2-methoxyethyl 2-ethyl-3-methylpentanoate, 2-methoxyethyl 3-ethyl- Pentanoate, 2-methoxyethyl 2-ethyl-3,3-dimethylpentanoate, 2-methoxyethyl 2,2,3,3-tetramethylpentanoate, 2-methoxyethylcyclohexanecarboxylic acid 2-methoxyethyl 2-methylcyclohexanecarboxylate, 2-methoxyethyl 3-methylcyclohexanecarboxylate, 2-methoxyethylcyclohex-2-enecarboxylate, 2-methoxy 2-methoxyethyl methylcarbamate, 2-methoxyethyl ethylcarbamate, 2-methoxyethyl dimethylcarbamate, 2-methoxy ethylcarbamate, 2- 2-methoxyethyl 2-methylpiperidine-1-carboxylate, 2-methoxyethyl 3-methylpiperidine, 2-methoxyethylpiperidine-1-carboxylate, -1-carboxylate, 2-methoxy Dimethyl 2,3-dimethylpiperidine-1-carboxylate, 2-methoxyethyl 2,4-dimethylpiperidine-1-carboxylate, 2-methoxyethyl 2,5-dimethylpiperidine- 1-carboxylate, 2-methoxyethyl 2,6-dimethylpiperidine-1-carboxylate, 2-ethoxyethyl acetate, 2-ethoxyethyl propionate, 2-ethoxyethyl butyrate, Ethoxyethyl isobutyrate, 2-ethoxyethyl pivalate, 2-ethoxyethyl pentanoate, 2-ethoxyethyl 3-methyl butanoate, 2-ethoxyethyl 2,3-dimethylbutano 2-ethoxyethyl 3,3-dimethylbutanoate, 2-ethoxyethyl 2,3,3-trimethylbutanoate, 2-ethoxyethyl 2,2,3,3-tetramethylbutanoate Ethoxyethyl 3-ethylbutanoate, 2-ethoxyethyl 2,3-diethyl butanoate, 2-methoxyethyl 3,3-diethyl butanoate, 2-ethoxyethyl 2 , 3,3-triethyl butanoate, 2-ethoxyethyl 2,2,3,3-tetra 3-methylbutanoate, 2-ethoxyethyl 2-ethyl-3-methylbutanoate, 2-ethoxyethyl 3-ethyl- Butanoate, 2-ethoxyethyl 2,2,3,3-tetramethylbutanoate, 2-ethoxyethyl 2-methylpentanoate, 2-ethoxyethyl 3-methylpentanoate, 2- Ethoxyethyl 4-methylpentanoate, 2-ethoxyethyl 2,3-dimethylpentanoate, 2-ethoxyethyl 2,2-dimethylpentanoate, 2-ethoxyethyl 3,3-dimethylpentano Ethoxyethyl 4,4-dimethylpentanoate, 2-ethoxyethyl 2,4-dimethylpentanoate, 2-ethoxyethyl 3,4-dimethylpentanoate, 2-ethoxyethyl 3 , 3,4-trimethylpentanoate, 2-ethoxyethyl 2,3,3-trimethylpentanoate, 2-ethoxyethyl 2,2,3-trimethylpentanoate, 2-ethoxyethyl 2,3 , 4-trimethylpentanoate, 2-ethoxyethyl 2,3,3-trimethylpentanoate, 2-ethoxyethyl 2,2, 3,3-diethylpentanoate, 3,3, -tetramethylphenanoate, 2-ethoxyethyl 3-ethylpentanoate, 2-ethoxyethyl 2,3-diethylpentanoate, 2-ethoxyethyl 3,3- 2-ethoxyethyl 2,3,3-triethylpentanoate, 2-ethoxyethyl 2,2,3,3-tetraethylpentanoate, 2-ethoxyethyl 2-ethyl-3 Methylpentanoate, 2-ethoxyethyl 3-ethyl-3-methylpentanoate, 2-ethoxyethyl 2-ethyl-3,3-dimethylpentanoate, 2-ethoxyethyl 2,2,3 2-ethoxyethyl 2-methylcyclohexanecarboxylate, 2-ethoxyethyl 3-methylcyclohexanecarboxylate, 2-ethoxyethylcyclohexanecarboxylate, 2- 2-ethoxyethylcyclohexy-2-ene carboxylate, 2-ethoxyethylcyclohexy-2-ene carboxylate, 2- ethoxyethylcycamate, 2- ethoxyethylmethylcarbamate, 2- ethoxy Ethyl ethyl carbamate, 2-ethoxy ethyl dimethyl carbamate, 2-ethoxyethyldiethylcarbamate, 2-ethoxyethylpiperidine-1-carboxylate, 2-ethoxyethyl 2-ethylpiperidine-1-carboxylate, 2- ethoxyethyl 3- 2-ethoxyethyl 2,3-dimethylpiperidine-1-carboxylate, 2-ethoxyethyl 2,4-dimethylpiperidine-1-carboxylate , 2-ethoxyethyl 2,5-dimethylpiperidine-1-carboxylate, and 2-ethoxyethyl 2,6-dimethylpiperidine-1-carboxylate.

한편 제2 내부전자공여체는 특별한 제한은 없으며, 따라서 알코올류, 에테르류, 케톤류, 카르복실산류 등과 같이 올레핀 중합용 지글러계 촉매의 제조에 내부전자공여체로서 사용가능한 화합물이라면 제한없이 사용가능하지만, 그 중에서도 카르복실산 화합물을 사용하는 것이 바람직하고, 벤젠-1,2-디카르복실산 에스테르 형태의 화합물로부터 선택된 하나 또는 그 이상을 혼합하여 제2 내부전자공여체로서 사용하는 것이 더욱 바람직하다. 상기 벤젠-1,2-디카르복실산에스테르 화합물의 구체적인 예로는, 디메틸프탈레이트, 디에틸프탈레이트, 디노말프로필프탈레이트, 디이소프로필프탈레이트, 디노말부틸프탈레이트, 디이소부틸프탈레이트 디노말펜틸프탈레이트, 디(2-메틸부틸)프탈레이트, 디(3-메틸부틸)프탈레이트, 디(3-메틸펜틸)크탈레이트, 디이소헥실프탈레이트, 디네오헥실프탈레이트, 디(2,3-디메틸부틸)프탈레이트, 디노말헵틸프탈레이트, 디(2-메틸헥실)프탈레이트, 디(2-에틸펜틸)프탈레이트, 디이소헵틸프탈레이트, 디네오헵틸프탈레이트, 디노말옥틸프탈레이트, 디(2-메틸헵틸)프탈레이트, 디이소옥틸프탈레이트, 디(3-에틸헥실)프탈레이트, 디네오옥틸프탈레이트, 디노말노닐프탈레이트, 디이소노닐프탈레이트, 디노말데실프탈레이트, 디이소데실프탈레이트 등을 들 수 있다.The second internal electron donor is not particularly limited and can be used without limitation as long as it is a compound that can be used as an internal electron donor in the production of a Ziegler-based catalyst for olefin polymerization such as alcohols, ethers, ketones, and carboxylic acids. , It is preferable to use a carboxylic acid compound, and it is more preferable to use a mixture of one or more selected from benzene-1,2-dicarboxylic acid ester type compounds as a second internal electron donor. Specific examples of the benzene-1,2-dicarboxylic acid ester compound include dimethyl phthalate, diethyl phthalate, dinompropyl phthalate, diisopropyl phthalate, dinomal butyl phthalate, diisobutyl phthalate dinomentyl phthalate, di (2-methylbutyl) phthalate, di (3-methylbutyl) phthalate, di (3-methylpentyl) citalate, diisobutylphthalate, dineohexylphthalate, di (2-methylhexyl) phthalate, di (2-ethylhexyl) phthalate, diisobutylphthalate, dineoheptyl phthalate, dinomal octyl phthalate, di Di (3-ethylhexyl) phthalate, dineoctyl phthalate, dinonononyl phthalate, diisononyl phthalate, dinomadecyl phthalate, diisodecyl phthalate and the like .

한편 제2 내부전자공여체로는 1,3-디에테르류의 사용도 매우 바람직하며, 다음의 [일반식 III]와 같은 구조로 표현되는 화합물이 매우 바람직하다. On the other hand, as the second internal electron donor, the use of 1,3-diethers is also highly desirable, and compounds represented by the following formula [III] are highly preferred.

R6R7C(CH2OR8)(CH2OR9) ………… [III]R 6 R 7 C (CH 2 OR 8 ) (CH 2 OR 9 ) ... ... ... [III]

식 중, R6 및 R7는 동일하거나 상이하고, C1-C18 알킬, C3-C18 시클로알킬 또는 C7-C18 아릴 라디칼이고; R8 및 R9는 동일하거나 상이하고, C1-C4 알킬 라디칼이거나; 위치 2의 탄소 원자가, 2 또는 3 개의 불포화를 함유하고 탄소수 5, 6 또는 7로 이루어진 시클릭 또는 폴리시클릭에 속하는 1,3-디에테르류이다.Wherein R6 and R7 are the same or different and are C1-C18alkyl, C3-C18cycloalkyl or C7-C18aryl radicals; R8 and R9 are the same or different and are a C1-C4 alkyl radical; The carbon atom at position 2 is a 1,3-diether containing cyclic or polycyclic, containing 2 or 3 unsaturations and consisting of 5, 6 or 7 carbon atoms.

상기 단계 (2)은 상기 단계 (1)의 결과물의 온도를 60~150℃, 바람직하게는 80~130℃까지 서서히 승온시키면서, 승온 과정 중에 내부전자공여체를 투입하여 1~3시간 동안 반응시킴으로써 수행되는 것이 바람직한데, 상기 온도가 60℃ 미만이거나 반응시간이 1시간 미만이면 반응이 완결되기 어렵고, 상기 온도가 150℃를 초과하거나 반응시간이 3시간을 초과하면 부반응에 의해 결과물인 촉매의 중합활성 또는 중합체의 입체규칙성이 낮아질 수 있다.In the step (2), the temperature of the resultant product of step (1) is gradually raised to 60 to 150 ° C, preferably 80 to 130 ° C, and the internal electron donor is added during the temperature raising process to perform the reaction for 1 to 3 hours If the temperature is less than 60 ° C or the reaction time is less than 1 hour, the reaction is difficult to be completed. If the temperature exceeds 150 ° C or the reaction time exceeds 3 hours, the polymerization reaction of the resultant catalyst Or the stereoregularity of the polymer may be lowered.

상기 제1, 2 내부전자공여체는, 상기 승온과정 중에 투입되는 한, 그 투입 온도 및 투입 횟수는 크게 제한되지 않으며, 서로 다른 두 가지 이상의 내부전자공여체를 동시에 혹은 다른 온도에서 주입하여도 무관하다. 상기 두 내부전자공여체의 전체 사용량에선 제한이 없으나 사용하는 두 내부전자공여체 전체의 몰수는 사용된 디알콕시마그네슘 1몰에 대하여 제1 내부전자공여체는 0.001~2.0몰을 제2 내부전자공여체는 0.001~2.0몰을 사용하는 것이 바람직한데, 상기 범위를 벗어나면, 결과물인 촉매의 중합활성 또는 중합체의 입체규칙성이 낮아질 수 있어 바람직하지 않다.As long as the first and second inner electron donors are charged during the temperature raising process, the charging temperature and the number of times of charging are not particularly limited, and two or more different inner electron donors may be injected at the same time or at different temperatures. The total amount of the two internal electron donors is not limited, but the total number of moles of the two internal electron donors used is 0.001 to 2.0 moles for the first internal electron donor and 0.001 to 2.0 moles for the second internal electron donor per mole of dialkoxymagnesium used. It is preferable to use 2.0 moles of the catalyst. Outside of the above range, the polymerization activity of the resultant catalyst or the stereoregularity of the polymer may be lowered.

상기 고체촉매의 제조공정 중 단계 (3)는, 60~150℃, 바람직하게는 80~130℃의 온도에서 단계 (2)의 결과물과 티타늄할라이드를 2차 이상 반응시키는 공정이다. 이때 사용되는 티타늄할라이드의 예로는 상기의 일반식(I)의 티타늄할라이드를 들 수 있다.The step (3) of the production of the solid catalyst is a step of reacting the result of step (2) with the titanium halide at a temperature of 60 to 150 ° C, preferably 80 to 130 ° C. An example of the titanium halide to be used at this time is titanium halide of the above-mentioned general formula (I).

고체촉매의 제조공정에 있어서, 각 단계에서의 반응은, 질소 기체 분위기에서, 수분 등을 충분히 제거시킨 교반기가 장착된 반응기 중에서 실시하는 것이 바람직하다.In the production process of the solid catalyst, the reaction in each step is preferably carried out in a reactor equipped with a stirrer in which water and the like are sufficiently removed in a nitrogen gas atmosphere.

상기와 같은 방법으로 제조되는 본 발명의 고체촉매는, 마그네슘, 티타늄, 할로겐화합물 및 내부전자공여체를 포함하여 이루어지며, 촉매 활성의 측면을 고려해 볼 때, 마그네슘 5~40중량%, 티타늄 0.5~10중량%, 할로겐 50~85중량%, 및 제1 내부전자공여체 0.01~20중량%, 제2 내부전자공유체 0.1 ~20중량%를 포함하여 이루어지는 것이 바람직하다. The solid catalyst of the present invention produced by the above-described method comprises magnesium, titanium, a halogen compound and an internal electron donor. Considering the catalytic activity, the solid catalyst comprises 5 to 40% by weight of magnesium, 0.5 to 10% , 50 to 85% by weight of halogen, 0.01 to 20% by weight of a first inner electron donor, and 0.1 to 20% by weight of a second inner electron hole fluid.

본 발명의 촉매 제조방법에 의하여 제조되는 고체촉매는 프로필렌 중합 또는 공중합 방법에 적합하게 사용될 수 있으며, 본 발명에 의해 제조되는 고체촉매를 이용한 프로필렌 중합 또는 공중합 방법은 상기 고체촉매와 조촉매 및 외부전자공여체의 존재하에 프로필렌을 중합 또는 프로필렌과 다른 알파올레핀을 공중합시키는 것을 포함한다.The solid catalyst prepared by the catalyst preparation method of the present invention can be suitably used for the propylene polymerization or copolymerization method, and the propylene polymerization or copolymerization method using the solid catalyst produced by the present invention is characterized in that the solid catalyst, the cocatalyst, Polymerizing propylene in the presence of a donor or copolymerizing propylene with other alpha olefins.

본 발명에 있어서 공중합에 사용하는 알파 올레핀으로는 탄소수 2-20의 알파올레핀(탄소수 3의 프로필렌은 제외)으로부터 선택되는적어도 1종의 올레핀으로 구체적으로는 에틸렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 비닐시클로헥산 등이 가능하며, 알파올레핀류는 1종 또는 2종이상 사용할 수 있으며, 그중에서도 에틸렌 및 1-부텐이 적합하며, 특히 에틸렌이 바람직하다.The alpha-olefins used in copolymerization in the present invention are at least one olefin selected from alpha-olefins having 2 to 20 carbon atoms (excluding propylene having 3 carbon atoms), and specific examples thereof include ethylene, 1-butene, -Methyl-1-pentene, vinylcyclohexane, and the like. The alpha olefins may be used alone or in combination of two or more. Of these, ethylene and 1-butene are suitable, and ethylene is particularly preferable.

상기 고체촉매는 중합 반응의 성분으로서 사용되기 전에 에틸렌 또는 알파올레핀으로 전중합하여 사용할 수 있다.The solid catalyst can be used in the prepolymerized state with ethylene or alpha olefin before being used as a component of the polymerization reaction.

전중합 반응은 탄화수소 용매(예를 들어, 헥산), 상기 촉매 성분 및 유기알루미늄 화합물(예를 들어, 트리에틸알루미늄)의 존재 하에서, 충분히 낮은 온도와 에틸렌 또는 알파올레핀 압력 조건에서 수행될 수 있다. 전중합은 촉매 입자를 중합체로 둘러싸서 촉매 형상을 유지시켜 중합 후에 중합체의 형상을 좋게 하는데 도움을 준다. 전중합 후의 중합체/촉매의 중량비는 약 0.1~20:1인 것이 바람직하다.The prepolymerization reaction can be carried out in the presence of a hydrocarbon solvent (e.g. hexane), the catalyst component and an organoaluminum compound (e.g. triethylaluminum) at sufficiently low temperatures and under ethylene or alpha olefin pressure conditions. Pre-polymerization helps encapsulate the catalyst particles in the polymer to maintain the shape of the catalyst to improve the shape of the polymer after polymerization. The weight ratio of polymer / catalyst after pre-polymerization is preferably about 0.1 to 20: 1.

상기 프로필렌 중합 또는 공중합 방법에서 조촉매 성분으로는 주기율표 제II족 또는 제III족의 유기금속 화합물이 사용될 수 있으며, 그 예로서, 바람직하게는 알킬알루미늄 화합물이 사용된다. 상기 알킬알루미늄 화합물은 일반식 (IV)로 표시된다:As the promoter component in the propylene polymerization or copolymerization method, an organometallic compound of Group II or Group III of the periodic table can be used, and as an example thereof, an alkyl aluminum compound is preferably used. The alkyl aluminum compound is represented by the general formula (IV)

AlR3 …………(IV) AlR 3 ... ... ... ... (IV)

여기에서, R은 탄소수 1~6개의 알킬기이다. Here, R is an alkyl group having 1 to 6 carbon atoms.

상기 알킬알루미늄 화합물의 구체예로는, 트리메틸알루미늄, 트리에틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 트리이소부틸알루미늄 및 트리옥틸알루미늄 등을 들 수 있다.Specific examples of the alkylaluminum compound include trimethylaluminum, triethylaluminum, tripropylaluminum, tributylaluminum, triisobutylaluminum and trioctylaluminum.

상기 고체촉매 성분에 대한 상기 조촉매 성분의 비율은, 중합 방법에 따라서 다소 차이는 있으나, 고체 촉매 성분 중의 티타늄 원자에 대한 조촉매 성분 중의 금속 원자의 몰비가 1~1000의 범위인 것이 바람직하며, 보다 바람직하게는 10~300의 범위인 것이 좋다. 만약, 고체촉매 성분 중의 티타늄 원자에 대한 조촉매 성분 중의 금속 원자, 예를 들어 알루미늄 원자의 몰비가 상기 1~1000의 범위를 벗어나게 되면, 중합 활성이 크게 저하되는 문제가 있다. The ratio of the cocatalyst component to the solid catalyst component varies depending on the polymerization method, but it is preferable that the molar ratio of metal atoms in the cocatalyst component to the titanium atom in the solid catalyst component is in the range of 1 to 1000, And more preferably in the range of 10 to 300. If the molar ratio of the metal atom in the cocatalyst component to the titanium atom in the solid catalyst component, for example, the aluminum atom, is out of the above range of 1 to 1000, the polymerization activity is greatly reduced.

상기 프로필렌 중합 또는 공중합 방법에서, 상기 외부전자공여체로는 다음의 일반식 (V)로 표시되는 알콕시실란 화합물 중 1종 또는 2종이상 혼합물을 사용할 수 있다: In the propylene polymerization or copolymerization method, as the external electron donor, one or a mixture of two or more alkoxysilane compounds represented by the following formula (V) may be used:

R1 mR2 nSi(OR3)(4-m-n) ………… (V) R 1 m R 2 n Si (OR 3 ) (4-m n) ... ... ... (V)

여기에서, R1, R2은 동일하거나 다를 수 있으며, 탄소수 1~12개의 선형 또는 분지형 또는 시클릭 알킬기, 또는 아릴기이고, R3는 탄소수 1~6개의 선형 또는 분지형 알킬기이고, m, n은 각각 0 또는 1이고, m+n은 1 또는 2이다. Wherein R 1 and R 2 may be the same or different and are a linear or branched or cyclic alkyl group or an aryl group having 1 to 12 carbon atoms, R 3 is a linear or branched alkyl group having 1 to 6 carbon atoms, and m , n is 0 or 1, respectively, and m + n is 1 or 2.

상기 외부전자공여체의 구체예로는, 노르말프로필트리메톡시실란, 디노르말프로필디메톡시실란, 이소프로필트리메톡시실란, 디이소프로필디메톡시실란, 노르말부틸트리메톡시실란, 디노르말부틸디메톡시실란, 이소부틸트리메톡시실란, 디이소부틸디메톡시실란, 터셔리부틸트리메톡시실란, 디터셔리부틸디메톡시실란, 노르말펜틸트리메톡시실란, 디노르말펜틸디메톡시실란, 시클로펜틸트리메톡시실란, 디시클로펜틸디메톡시실란, 시클로펜틸메틸디메톡시실란, 시클로펜틸에틸디메톡시실란,시클로펜틸프로필디메톡시실란, 시클로헥실트리메톡시실란, 디시클로헥실디메톡시실란, 시클로헥실메틸디메톡시실란, 시클로헥실에틸디메톡시실란, 시클로헥실프로필디메톡시실란,시클로헵틸트리메톡시실란,디시클로헵틸디메톡시실란, 시클로헵틸메틸디메톡시실란, 시클로헵틸에틸디메톡시실란, 시클로헵틸프로필디메톡시실란, 페닐트리메톡시실란, 디페닐디메톡시실란, 페닐메틸디메톡시실란, 페닐에틸디메톡시실란, 페닐프로필디메톡시실란, 노르말프로필트리에톡시실란, 디노르말프로필디에톡시실란, 이소프로필트리에톡시실란, 디이소프로필디에톡시실란, 노르말부틸트리에톡시실란, 디노르말부틸디에톡시실란, 이소부틸트리에톡시실란, 디이소부틸디에톡시실란, 터셔리부틸트리에톡시실란, 디터셔리부틸디에톡시실란, 노르말펜틸트리에톡시실란, 디노르말펜틸디에톡시실란, 시클로펜틸트리에톡시실란, 디시클로펜틸디에톡시실란, 시클로펜틸메틸디에톡시실란, 시클로펜틸에틸디에톡시실란, 시클로펜틸프로필디에톡시실란, 시클로헥실트리에톡시실란, 디시클로헥실디에톡시실란,시클로헥실메틸디에톡시실란, 시클로헥실에틸디에톡시실란, 시클로헥실프로필디에톡시실란, 시클로헵틸트리에톡시실란, 디시클로헵틸디에톡시실란, 시클로헵틸메틸디에톡시실란, 시클로헵틸에틸디에톡시실란, 시클로헵틸프로필디에톡시실란, 페닐트리에톡시실란, 디페닐디에톡시실란, 페닐메틸디에톡시실란, 페닐에틸디에톡시실란 및 페닐프로필디에톡시실란 등이며, 이 중에서 1종 이상을 단독 또는 혼합하여 사용할 수 있다.Specific examples of the external electron donor include, but are not limited to, n-propyltrimethoxysilane, dinormalpropyldimethoxysilane, isopropyltrimethoxysilane, diisopropyldimethoxysilane, n-butylbutyltrimethoxysilane, dinormal butyldimethoxy Silane, isobutyltrimethoxysilane, diisobutyldimethoxysilane, tertiarybutyltrimethoxysilane, ditertiarybutyldimethoxysilane, n-pentyltrimethoxysilane, dinormalpentyldimethoxysilane, cyclopentyltrimethoxy Silane, dicyclopentyldimethoxysilane, cyclopentylmethyldimethoxysilane, cyclopentylethyldimethoxysilane, cyclopentylpropyldimethoxysilane, cyclohexyltrimethoxysilane, dicyclohexyldimethoxysilane, cyclohexylmethyldimethoxysilane, cyclohexylmethyldimethoxysilane, , Cyclohexylethyldimethoxysilane, cyclohexylpropyldimethoxysilane, cycloheptyltrimethoxysilane, dicycloheptyldimethoxysilane, cycloheptylmethane Cyclohexyldimethoxysilane, cycloheptyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, phenylmethyldimethoxysilane, phenylethyldimethoxysilane, phenylpropyldimethoxysilane, n-dodecyldimethoxysilane, Propyltriethoxysilane, dinormalpropyldiethoxysilane, isopropyltriethoxysilane, diisopropyldiethoxysilane, n-butylbutyltriethoxysilane, dinormalbutyldiethoxysilane, isobutyltriethoxysilane, diisobutyl Diethoxy silane, tertiary butyl triethoxy silane, ditertiary butyl diethoxy silane, normal pentyl triethoxy silane, dinormal pentyl diethoxy silane, cyclopentyl triethoxy silane, dicyclopentyl diethoxy silane, cyclopentyl methyl Diethoxy silane, cyclopentyl ethyl diethoxy silane, cyclopentyl propyl diethoxy silane, cyclohexyl triethoxy silane, dicyclohexyl diethoxy silane, Cyclohexylmethyldiethoxysilane, cyclohexylethyldiethoxysilane, cyclohexylpropyldiethoxysilane, cycloheptyltriethoxysilane, dicycloheptyldiethoxysilane, cycloheptylmethyldiethoxysilane, cycloheptylethyldiethoxysilane, cycloheptylethyldiethoxysilane, cyclohexylpropyldiethoxysilane, Heptylpropyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, phenylmethyldiethoxysilane, phenylethyldiethoxysilane, and phenylpropyldiethoxysilane. Of these, at least one of them may be used alone or in combination have.

상기 고체촉매에 대한 상기 외부전자공여체의 사용량은 중합 방법에 따라서 다소 차이는 있으나, 촉매 성분 중의 티타늄 원자에 대한 외부전자공여체 중의 실리콘 원자의 몰비가 0.1~500의 범위인 것이 바람직하며, 1~100의 범위인 것이 보다 바람직하다. 만일, 상기 고체촉매 성분 중의 티타늄 원자에 대한 외부전자공여체 중의 실리콘 원자의 몰비가 0.1 미만이면 생성되는 프로필렌 중합체의 입체규칙성이 현저히 낮아져 바람직하지 않고, 500을 초과하면 촉매의 중합 활성이 현저히 떨어지는 문제점이 있다. Although the amount of the external electron donor to be used for the solid catalyst varies depending on the polymerization method, the molar ratio of the silicon atoms in the external electron donor to the titanium atom in the catalyst component is preferably in the range of 0.1 to 500, more preferably 1 to 100 Is more preferable. If the molar ratio of the silicon atom in the external electron donor to the titanium atom in the solid catalyst component is less than 0.1, the resulting stereoregularity of the resulting propylene polymer becomes significantly low, and if it exceeds 500, the polymerization activity of the catalyst is significantly reduced .

상기 프로필렌 중합 또는 공중합 방법에 있어서, 중합 반응의 온도는 20~120℃인 것이 바람직한데, 중합 반응의 온도가 20℃ 미만이면 반응이 충분하게 진행되지 못하여 바람직하지 않고, 120℃를 초과하면 활성의 저하가 심하고, 중합체 물성에도 좋지 않은 영향을 주므로 바람직하지 않다.In the above-mentioned propylene polymerization or copolymerization method, the polymerization reaction temperature is preferably 20 to 120 ° C. If the polymerization reaction temperature is less than 20 ° C, the reaction does not proceed sufficiently, which is undesirable. It is undesirable because it causes considerable deterioration and adversely affects the physical properties of the polymer.

본 발명은 폴리프로필렌 제조용 고체촉매의 제조방법에 대한 것으로써 디알콕시마그네슘을 금속할라이드와의 반응을 통해서 생성된 담체와 티타늄할라이드, 유기전자공여체 등으로 이루어진 고체촉매 제조방법 및 이를 이용한 폴리프로필렌 제조방법을 제공하는 것으로써, 특히 본 발명에 사용하는 2종 이상의 유기전자공여체 중 카보닐기와 알콕시기가 포함된 내부전자공여체를 사용하는 것으로써 슬러리 중합법, 벌크중합법 또는 기상중합법 등의 다양한 형태의 프로필렌 중합공정에 적용이 가능하며, 높은 활성과 입체규칙성이 우수하며 수소반응성이 우수한 폴리프로필렌을 제조할 수 있을 뿐만 아니라, 알파올레핀과의 공중합을 통하여 높은 고무함량의 블록공중합체를 제조할 수 있다.The present invention relates to a process for producing a solid catalyst for the production of polypropylene, which comprises a solid catalyst prepared by reacting a dialkoxy magnesium with a metal halide, a titanium halide, an organic electron donor and the like, and a process for producing a polypropylene It is possible to use an internal electron donor containing a carbonyl group and an alkoxy group among two or more kinds of organic electron donors used in the present invention to form various forms such as a slurry polymerization method, a bulk polymerization method and a gas phase polymerization method It is possible to prepare a polypropylene which is applicable to the polymerization process of propylene, which is excellent in high activity and stereoregularity and which is excellent in hydrogen reactivity, and also can produce a block copolymer having a high rubber content through copolymerization with an alpha olefin have.

이하 실시예 및 비교예에 의해 본 발명을 상세히 설명하나, 이에 의해 본 발명이 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

실시예 1
Example 1

1. 고체촉매의 제조 1. Preparation of solid catalyst

질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 112ml와 디에톡시마그네슘(평균입경 20㎛인 구형이고, 입도분포지수가 0.86이고, 겉보기밀도가 0.35g/cc인 것) 15g을 투입하고 10℃로 유지하면서, 사염화티타늄 20ml를 톨루엔 30ml에 희석하여 1시간에 걸쳐 투입한 후, 반응기의 온도를 100℃까지 올려 주면서 2-에톡시에틸 부틸레이트 1.8g, 2-이소부틸-2-이소프로필-1,3-디메톡시프로판 1.5g, 디이소부틸프탈레이트 1.0g, 을 순차적으로 주입하였다. 100℃에서 2시간 동안 유지한 다음, 90℃로 온도를 내려 교반을 멈추고 상등액을 제거하고, 추가로 톨루엔 200ml를 사용하여 1회 세척하였다. 여기에 톨루엔 120ml와 사염화티타늄 20ml를 투입하여 온도를 100℃까지 올려 2시간 동안 유지하였으며, 이 과정을 1회 반복 수행하였다. 숙성과정이 끝난 상기의 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고, 40℃에서 노말헥산으로 매회당 200ml씩 5회 세척하여 연노랑색의 고체촉매성분을 얻었다. 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매성분 중의 티타늄 함량은 2.0중량%였다.
To a glass reactor equipped with a stirrer having a volume of 1 liter sufficiently substituted with nitrogen, 112 ml of toluene and 15 g of diethoxy magnesium (sphere having an average particle size of 20 μm and a particle size distribution index of 0.86 and an apparent density of 0.35 g / cc) 20 ml of titanium tetrachloride was diluted with 30 ml of toluene and added over 1 hour while maintaining the temperature at 10 ° C. The temperature of the reactor was raised to 100 ° C. and 1.8 g of 2-ethoxyethylbutylate, 1.5 g of isopropyl-1, 3-dimethoxypropane and 1.0 g of diisobutyl phthalate were sequentially injected. The mixture was maintained at 100 DEG C for 2 hours, then cooled down to 90 DEG C, stirring was stopped, the supernatant was removed, and further washed once with 200 mL of toluene. 120 ml of toluene and 20 ml of titanium tetrachloride were added thereto, and the temperature was raised to 100 ° C and maintained for 2 hours. This procedure was repeated once. The aged slurry mixture thus obtained was washed twice with 200 ml of toluene per one time and washed with n-hexane at 40 ° C for five times with 200 ml each time to obtain a pale yellow solid catalyst component. The titanium content in the solid catalyst component obtained by flowing in flowing nitrogen for 18 hours was 2.0% by weight.

2. 폴리프로필렌 중합 2. Polymerization of polypropylene

4리터 크기의 고압용 스테인레스제 반응기내에 상기의 고체촉매 10mg과 트리에틸알루미늄 10mmol, 디시클로펜틸메틸디메톡시실란 1mmol을 투입하였다. 이어서 수소 7000ml와 액체상태의 프로필렌 2.4L를 차례로 투입한 후, 온도를 70℃까지 올려서 중합을 실시하였다. 중합 개시 후 2시간이 경과하면 반응기의 온도를 상온까지 떨어뜨리면서 밸브를 열어 반응기 내부의 프로필렌을 완전히 탈기시켰다.
10 mg of the above solid catalyst, 10 mmol of triethylaluminum and 1 mmol of dicyclopentylmethyldimethoxysilane were fed into a 4-liter high-pressure stainless steel reactor. Then, 7000 ml of hydrogen and 2.4 L of liquid propylene were added in turn, and the temperature was raised to 70 ° C to perform polymerization. After 2 hours from the start of the polymerization, the temperature of the reactor was dropped to room temperature, and the valve was opened to completely degas propylene inside the reactor.

그 결과 얻어진 중합체를 분석하여, 표 1에 나타내었다.The resulting polymer was analyzed and is shown in Table 1.

여기서, 촉매활성, 입체규칙성은 다음과 같은 방법으로 결정하였다.Here, the catalytic activity and stereoregularity were determined by the following method.

① 촉매활성(kg-PP/g-cat) = 중합체의 생성량(kg)÷촉매의 양(g)① Catalyst activity (kg-PP / g-cat) = amount of polymer produced (kg) ÷ amount of catalyst (g)

② 입체규칙성(X.I.): 혼합크실렌 중에서 결정화되어 석출된 불용성분의 중량%(2) Stereoregularity (XI): Weight% of insoluble matter crystallized and crystallized in mixed xylene

③ 용융흐름성(g/10 min): ASTM1238에 의해, 230℃, 2.16kg 하중에서 측정한 값
(3) Melt flowability (g / 10 min): Measured by ASTM 1238 at 230 ° C under a load of 2.16 kg

3. 프로필렌계 블록공중합 3. Propylene block copolymerization

질소로 충진된 2.0리터의 교반기가 달린 스테인레스제 반응기내에 상기의 고체촉매 5mg을 넣고 트리에틸알루미늄 3밀리몰, 디시클로펜틸디메톡시실란(DCPDMS) 0.3밀리몰을 주입한 다음, 액화프로필렌 1.2 리터와 수소 5000밀리리터를 주입후 20℃에서 5분간 예비중합을 실시한 후 70℃에서 40분간 호모프로필렌 중합을 실시하였다. 호모단 중합이 종료된 다음, 반응기의 온도를 실온으로 낮추면서 모노머를 퍼지하고 난 후, 에틸렌/(에틸렌+프로필렌) 의 몰비를 0.4가 되도록 한 혼합가스를 반응기 내에 주입한 다음, 70℃로 승온시켜서 60분 동안 중합시켜 프로필렌계 블록 공중합체를 얻을 수 있었다.
In a stainless steel reactor equipped with a stirrer of 2.0 liters filled with nitrogen, 5 mg of the above solid catalyst was charged, and 0.3 mmol of triethylaluminum and 0.3 mmol of dicyclopentyldimethoxysilane (DCPDMS) were introduced. Then, 1.2 liters of liquefied propylene and hydrogen After injection of milliliter, prepolymerization was carried out at 20 ° C for 5 minutes and homopolymerization was carried out at 70 ° C for 40 minutes. After completion of the homopolymerization, the monomer was purged while lowering the temperature of the reactor to room temperature, and a mixed gas of ethylene / (ethylene + propylene) molar ratio of 0.4 was injected into the reactor. Then, And polymerized for 60 minutes to obtain a propylene block copolymer.

① 블록공중합체 활성(ICP 활성, kg-PP/g-cat) = 중합체의 생성량(kg)÷촉매의 양(g)(1) Block copolymer activity (ICP activity, kg-PP / g-cat) = amount of polymer produced (kg) ÷ amount of catalyst (g)

② 에틸렌 프로필렌 고무함량(EPR, wt%): 공중합체를 크실렌으로 추출하여 크실렌을 제거한 후 석출된 성분의 중량%(2) Ethylene Propylene Rubber Content (EPR, wt%): The copolymer was extracted with xylene to remove the xylene, and the weight%

③ 공중합체 내의 에틸렌의 함량(B-C2): 공중합체를 샘플링하여 적외선 분광기(FT-IR)에 의해 측정된 에틸렌의 함량(표준샘플에 의해 작성된 검량선을 기초로 산출됨)(3) Content of ethylene in the copolymer (B-C2): The content of ethylene measured by infrared spectroscopy (FT-IR) sampled from the copolymer (calculated based on the calibration curve prepared by the standard sample)

④ EPR 중의 에틸렌 함량(PER-C2,wt%): (공중합체 내의 에틸렌함량)/(에틸렌 프로필렌 고무함량) * 100
④ Ethylene content in EPR (PER-C2, wt%): (ethylene content in copolymer) / (ethylene propylene rubber content) * 100

실시예 2Example 2

실시예 1의 1. 고체촉매의 제조에 있어서, 2-에톡시에틸 부틸레이트 대신 2-메톡시에틸 피발레이트 3g와 2-이스펜틸-2-이소프로필-1,3-디메톡시프로판 1.0g 을 혼합한 용액과 디이소부틸프탈레이트 2.0g을 순차적으로 주입한 후, 승온하면서 촉매를 제조하였다. 고체촉매성분 중의 티타늄 함량은 2.1중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었다.
In the preparation of the solid catalyst of Example 1, 3 g of 2-methoxyethyl pivalate and 1.0 g of 2-isopentyl-2-isopropyl-1,3-dimethoxypropane were used instead of 2-ethoxyethyl butyrate And 2.0 g of diisobutyl phthalate were successively injected into the reactor, and the catalyst was prepared while the temperature was raised. The content of titanium in the solid catalyst component was 2.1% by weight. Next, polypropylene polymerization was carried out in the same manner as in Example 1, and the results are shown in Table 1.

실시예 3Example 3

실시예 1의 1. 고체촉매의 제조에 있어서, 디이소부틸프탈레이트 과 2-에톡시에틸 부틸레이트 대신 메톡시에틸 시클로헥산 카르복실레이트 3.0g을 디이소부틸프탈레이트 4.2g에 혼합한 후 2-이소부틸-2-이소프로필 1,3-디메톡시프로판 1g 과 혼합하여, 혼합물을 사용하여 촉매를 제조하였다. 고체촉매성분 중의 티타늄 함량은 2.2중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었다.
In the preparation of the solid catalyst of Example 1, 3.0 g of methoxyethyl cyclohexanecarboxylate was mixed with 4.2 g of diisobutyl phthalate in place of diisobutyl phthalate and 2-ethoxyethyl butyrate, and 2-iso Butyl-2-isopropyl 1,3-dimethoxypropane, and the mixture was used to prepare a catalyst. The titanium content in the solid catalyst component was 2.2% by weight. Next, polypropylene polymerization was carried out in the same manner as in Example 1, and the results are shown in Table 1.

실시예 4Example 4

실시예 1의 고체촉매의 제조에 있어서, 2-메톡시에틸 부틸레이트 대신 2-에톡시에틸 디메틸카바메이트 2.8g 에 디이소부틸프탈레이트 1.8g 과 2-이소펜틸-2-이소프로필-1,3-디메톡시프로판 1.5g를 각각 순차적으로 주입하여 촉매를 제조하였다. 고체촉매성분 중의 티타늄 함량은 2.1중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었다.
In the preparation of the solid catalyst of Example 1, 2.8 g of 2-ethoxyethyl dimethylcarbamate was used instead of 2-methoxyethylbutylate, 1.8 g of diisobutylphthalate and 2 g of 2-isopentyl-2-isopropyl- And 1.5 g of dimethoxypropane were sequentially injected to prepare a catalyst. The content of titanium in the solid catalyst component was 2.1% by weight. Next, polypropylene polymerization was carried out in the same manner as in Example 1, and the results are shown in Table 1.

실시예 5
Example 5

1. 고체촉매의 제조 1. Preparation of solid catalyst

질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 112ml와 디에톡시마그네슘(평균입경 20㎛인 구형이고, 입도분포지수가 0.86이고, 겉보기밀도가 0.35g/cc인 것) 15g을 투입하고 10℃로 유지하면서, 사염화티타늄 20ml를 톨루엔 30ml에 희석하여 1시간에 걸쳐 투입한 후, 반응기의 온도를 100℃까지 올려 주면서 디이소부틸프탈레이트 1.0g와 2-이소펜틸-2-이소프로필-1,3-디메톡시프로판 혼합액을 주입한 다음 2-메톡시에틸 피페리딘-1-카르복실레이트 3.0g을 주입한 다음 온도를 100℃까지 올려 2시간 동안 유지하여 촉매를 제조하였다. 흐르는 질소에서 건조 후 얻어진 고체촉매성분 중의 티타늄 함량은 2.1중량%였다.
To a glass reactor equipped with a stirrer having a volume of 1 liter sufficiently substituted with nitrogen, 112 ml of toluene and 15 g of diethoxy magnesium (sphere having an average particle size of 20 μm and a particle size distribution index of 0.86 and an apparent density of 0.35 g / cc) 20 ml of titanium tetrachloride was diluted with 30 ml of toluene and added over 1 hour while maintaining the temperature at 10 ° C. The temperature of the reactor was raised to 100 ° C. and 1.0 g of diisobutyl phthalate and 2-isopentyl-2-isopropyl- Methoxyethylpiperidine-1-carboxylate was poured into the flask. Then, the temperature was raised to 100 ° C and maintained for 2 hours to prepare a catalyst. The content of titanium in the solid catalyst component obtained after drying in flowing nitrogen was 2.1% by weight.

비교예 1Comparative Example 1

실시예 1의 1. 고체촉매의 제조에 있어서, 내부도너로써 디이소부틸프탈레이트 4.7g을 사용하여 촉매를 제조하였다. 고체촉매성분 중의 티타늄 함량은 2.2중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었다.
Example 1, 1. In the preparation of the solid catalyst, 4.7 g of diisobutyl phthalate was used as an internal donor to prepare a catalyst. The titanium content in the solid catalyst component was 2.2% by weight. Next, polypropylene polymerization was carried out in the same manner as in Example 1, and the results are shown in Table 1.

비교예 2
Comparative Example 2

1. 고체촉매의 제조1. Preparation of solid catalyst

질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 150ml, 테트라하이드로퓨란 12ml, 부탄올 20ml, 마그네슘클로라이드 21g을 투입하고 110℃로 승온 후, 1시간을 유지시켜 균일 용액을 얻었다. 용액의 온도를 15℃로 냉각하고, 사염화티타늄 25ml를 투입한 후 반응기의 온도를 60℃에서 1시간에 걸쳐 승온하고, 10분 동안 숙성 후 15분간 정치시켜 담체를 가라앉히고, 상부의 용액을 제거하였다. 반응기 내에 남은 슬러리는 200ml의 톨루엔을 투입하고, 교반, 정치, 상등액 제거 과정을 2회 반복하여 세척하였다. 150 ml of toluene, 12 ml of tetrahydrofuran, 20 ml of butanol and 21 g of magnesium chloride were charged into a glass reactor equipped with a 1-liter stirrer sufficiently substituted with nitrogen, and the temperature was raised to 110 ° C and maintained for 1 hour to obtain a homogeneous solution. The temperature of the solution was cooled to 15 ° C and 25 ml of titanium tetrachloride was added. The temperature of the reactor was elevated at 60 ° C over 1 hour, aged for 10 minutes, allowed to stand for 15 minutes to allow the carrier to settle, Respectively. The remaining slurry in the reactor was charged with 200 ml of toluene and washed by repeating stirring, setting, and removal of the supernatant twice.

이렇게 얻어진 슬러리에 톨루엔 150ml를 주입한 후 15℃에서 사염화티타늄 25ml를 톨루엔 50ml에 희석하여 1시간에 걸쳐 투입한 후, 반응기의 온도를 30℃까지 분당 0.5℃의 속도로 올려 주었다. 반응 혼합물을 30℃에서 1시간 동안 유지한 다음, 디이소부틸프탈레이트 4.5mL와 2-이소펜틸-2-이소프로필-1,3-디메톡시프로판 3ml를 주입하고, 다시 분당 0.5℃의 속도로 110℃까지 승온시켰다. After 150 ml of toluene was poured into the slurry thus obtained, 25 ml of titanium tetrachloride was diluted with 50 ml of toluene at 15 ° C and added over 1 hour. The temperature of the reactor was increased to 30 ° C at a rate of 0.5 ° C per minute. The reaction mixture was maintained at 30 DEG C for 1 hour, then 4.5 mL of diisobutylphthalate and 3 mL of 2-isopentyl-2-isopropyl-1,3-dimethoxypropane were injected, and 110 DEG C Lt; 0 > C.

110℃에서 1시간 동안 유지한 다음, 90℃로 온도를 내려 교반을 멈추고 상등액을 제거하고, 추가로 톨루엔 200ml를 사용하여 동일한 방법으로 1회 세척하였다. 여기에 톨루엔 150ml와 사염화티타늄 50ml를 투입하여 온도를 110℃까지 올려 1시간 동안 유지하였다. 숙성과정이 끝난 상기의 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고, 40℃에서 헥산으로 매회당 200ml씩 5회 세척하여 연노랑색의 고체촉매성분을 얻었다. 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매성분 중의 티타늄 함량은 3.3중량%였다.After maintaining at 110 DEG C for 1 hour, the temperature was lowered to 90 DEG C and stirring was stopped, and the supernatant was removed, and further washed once with 200 mL of toluene in the same manner. 150 ml of toluene and 50 ml of titanium tetrachloride were added thereto, and the temperature was elevated to 110 ° C and maintained for 1 hour. The aged slurry mixture was washed twice with 200 ml of toluene and washed with hexane (200 ml) at 40 캜 for 5 times each time to obtain a pale yellow solid catalyst component. The titanium content in the solid catalyst component obtained by drying in flowing nitrogen for 18 hours was 3.3% by weight.

활성
(g-PP/g cat 2h)
activation
(g-PP / g cat 2h)
X/S
(wt%)
X / S
(wt%)
MI
(g/10min)
MI
(g / 10 min)
MWDMWD
실시예1Example 1 73,00073,000 1.11.1 6666 4.04.0 실시예2Example 2 76,00076,000 1.21.2 6161 4.04.0 실시예3Example 3 81,00081,000 1.21.2 7070 4.14.1 실시예4Example 4 82,00082,000 1.11.1 7878 4.04.0 실시예5Example 5 79,00079,000 1.11.1 7373 4.14.1 비교예1Comparative Example 1 65,00065,000 1.51.5 1313 4.24.2 비교예2Comparative Example 2 56,00056,000 1.91.9 2525 4.04.0

프로필렌계 공중합Propylene-based copolymerization ICP 활성
(g-PP/g cat)
ICP activity
(g-PP / g cat)
EPR
(wt%)
EPR
(wt%)
B-C2
(wt%)
B-C2
(wt%)
PER-C2
(wt%)
PER-C2
(wt%)
실시예1Example 1 56,00056,000 3636 2020 5656 실시예2Example 2 58,00058,000 3737 2121 5757 실시예3Example 3 53,00053,000 3838 2121 5555 실시예4Example 4 55,00055,000 3838 2121 5555 실시예5Example 5 52,00052,000 3737 2020 5454 비교예1Comparative Example 1 48,00048,000 2323 1212 5252 비교예2Comparative Example 2 41,00041,000 2929 1414 4848

Claims (6)

티타늄, 마그네슘, 할로겐, 및 하기 일반식(II)으로 표시되는 비방향족 알콕시에스테르계 화합물과 프탈산에스테르 또는 1,3-디에테르류로 이루어진 내부전자공여체를 포함하는 것을 특징으로 하는 프로필렌 중합용 고체촉매:
Figure 112017063679351-pat00002

여기에서, B는 탄소수가 1~20개까지의 지방족 포화탄화수소 및 환형의 포화탄화수소로 구성된 모노 에스테르 구조를 갖는 화합물이거나, B가 아미노기, 또는 직쇄형 또는 환형아미노기로 이루어진 카바메이트 구조를 갖는 화합물이며, R1, R2, R3, R4, R5는 각각 독립적으로 탄소수 1~12의 직쇄상 알킬기, 탄소수 3~12의 분기 알킬기, 비닐기, 탄소수3~12의 직쇄상 알케닐기 또는 분기 알케닐기, 탄소수 1~12의 직쇄상 할로겐 치환 알킬기, 탄소수 3~12의 분기 할로겐 치환 알킬기, 탄소수 3~12의 직쇄상 할로겐 치환 알케닐기 또는 분기 할로겐 치환 알케닐기, 탄소수3~12의 시클로알킬기, 탄소수 3~12의 시클로알케닐기, 탄소수 3~12의 할로겐 치환 시클로알킬기, 탄소수 3~12의 할로겐 치환 시클로알케닐기, 또는 탄소수 6~12의 방향족 탄화수소기이다.
A solid catalyst for propylene polymerization characterized by containing titanium, magnesium, halogen, and an internal electron donor composed of a nonaromatic alkoxyester compound represented by the following formula (II) and a phthalate ester or a 1,3-diether :
Figure 112017063679351-pat00002

Here, B is a compound having a monoester structure composed of aliphatic saturated hydrocarbons and cyclic saturated hydrocarbons having 1 to 20 carbon atoms, or B is a compound having a carbamate structure composed of an amino group or a linear or cyclic amino group , A straight chain alkyl group having 1 to 12 carbon atoms, a branched alkyl group having 3 to 12 carbon atoms, a vinyl group, a straight chain alkenyl group or a branched alkenyl group having 3 to 12 carbon atoms, a straight chain alkyl group having 1 to 12 carbon atoms, A straight chain halogenated alkyl group having 3 to 12 carbon atoms, a branched halogenated alkyl group having 3 to 12 carbon atoms, a straight chain halogenated alkenyl group having 3 to 12 carbon atoms or a branched halogenated alkenyl group having 3 to 12 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, A cycloalkenyl group having 3 to 12 carbon atoms, a halogen-substituted cycloalkyl group having 3 to 12 carbon atoms, a halogen-substituted cycloalkenyl group having 3 to 12 carbon atoms, or an aromatic hydrocarbon group having 6 to 12 carbon atoms.
제 1항에 있어서, 상기 고체촉매는 마그네슘 5~40중량%, 티타늄 0.5~10중량%, 할로겐 50~85중량%, 및 제1 내부전자공여체 0.01~20중량%, 제2 내부전자공유체 0.1~20중량% 를 포함하는 것을 특징으로 하는 프로필렌 중합용 고체촉매.The solid catalyst of claim 1, wherein the solid catalyst comprises 5 to 40 wt.% Of magnesium, 0.5 to 10 wt.% Of titanium, 50 to 85 wt.% Of halogen, 0.01 to 20 wt.% Of a first inner electron donor, By weight based on the total weight of the solid catalyst for propylene polymerization. 제 1항에 있어서, 상기 고체촉매는 알콕시에스테르 내부전자공여체 0.01~20중량%를 포함하는 것을 특징으로 하는 프로필렌 중합용 고체촉매.The solid catalyst for polymerization of propylene according to claim 1, wherein the solid catalyst comprises 0.01 to 20 wt% of an alkoxyester internal electron donor. 제 1항에 있어서, 상기 고체촉매에 사용되는 2종 이상의 내부전자공여체는 알콕시 에스테르와 프탈산 에스테르 또는 1,3-디에테르 형태를 포함하는 것을 특징으로 하는 프로필렌 중합용 고체촉매.The solid catalyst for polymerization of propylene according to claim 1, wherein the two or more internal electron donors used in the solid catalyst include alkoxy esters and phthalic acid esters or 1,3-diether forms. 제 1항 또는 제 2항에 따른 고체촉매와, 조촉매로서 AlR3(여기에서, R은 탄소수 1~6개의 알킬기이다) 및 외부전자공여체로서 R1 mR2 nSi(OR3)(4-m-n)(여기에서, R1과 R2는 동일하거나 다를 수 있으며, 탄소수 1~12개의 선형 또는 분지형 또는 시클릭 알킬기, 또는 아릴기이고, R3는 탄소수 1~6개의 선형 또는 분지형 알킬기이고, m, n은 각각 0 또는 1이고, m+n은 1 또는 2이다)의 존재하에 프로필렌을 중합, 또는 프로필렌과 다른 알파올레핀을 공중합시키는 것을 포함하는 프로필렌 중합체 또는 공중합체의 제조방법.A process for producing a solid catalyst according to any one of claims 1 to 3 , which comprises reacting AlR 3 (wherein R is an alkyl group having 1 to 6 carbon atoms) as a cocatalyst and R 1 m R 2 n Si (OR 3 ) (4 -mn wherein R 1 and R 2 may be the same or different and each is a linear or branched or cyclic alkyl group having 1 to 12 carbon atoms or an aryl group and R 3 is a linear or branched An alkyl group, m and n are each 0 or 1, and m + n is 1 or 2, or copolymerizing propylene with other alpha olefins. 제 1항 또는 제 4항에 기재된 고체촉매 하에서, 프로필렌 단독 중합 또는 프로필렌과 에틸렌의 공중합 후, 프로필렌과 에틸렌, 또는 프로필렌과 알파올레핀의 공중합을 행하는 것을 특징으로 하는 프로필렌 중합체 또는 공중합체의 제조방법.A process for producing a propylene polymer or a copolymer, which comprises subjecting propylene homopolymerization or copolymerization of propylene and ethylene to copolymerization of propylene with ethylene or propylene with an alpha olefin under the solid catalyst according to any one of claims 1 to 4.
KR1020170084374A 2017-07-03 2017-07-03 A solid catalyst for producing polypropylene and a method for preparation of block copolymer KR101930165B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170084374A KR101930165B1 (en) 2017-07-03 2017-07-03 A solid catalyst for producing polypropylene and a method for preparation of block copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170084374A KR101930165B1 (en) 2017-07-03 2017-07-03 A solid catalyst for producing polypropylene and a method for preparation of block copolymer

Publications (1)

Publication Number Publication Date
KR101930165B1 true KR101930165B1 (en) 2018-12-17

Family

ID=65007409

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170084374A KR101930165B1 (en) 2017-07-03 2017-07-03 A solid catalyst for producing polypropylene and a method for preparation of block copolymer

Country Status (1)

Country Link
KR (1) KR101930165B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3670546A1 (en) * 2018-12-20 2020-06-24 Hanwha Total Petrochemical Co., Ltd. Solid catalyst for propylene polymerization and method of producing block copolymer using the same
KR102156075B1 (en) * 2019-03-11 2020-09-16 효성화학 주식회사 Ziegler-Natta procatalyst compositions AND OLEFINE polymerization process
KR20210047151A (en) * 2019-10-21 2021-04-29 한화토탈 주식회사 A solid catalyst for Polypropylene polymerization and a method for low Volatile organic compound
CN113024697A (en) * 2019-12-24 2021-06-25 韩华道达尔有限公司 Process for preparing catalyst for ethylene polymerization
KR102544796B1 (en) 2023-02-17 2023-07-04 공주대학교 산학협력단 A solid catalyst for polymerizing olefin comprising novel internal electron donors and a preparation method for the same
KR102544797B1 (en) 2023-02-17 2023-07-04 공주대학교 산학협력단 A solid catalyst for polymerizing olefin comprising novel internal electron donors and a preparation method for the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11427657B2 (en) * 2018-12-20 2022-08-30 Hanwha Total Petrochemical Co., Ltd. Solid catalyst for propylene polymerization and method of producing block copolymer using the same
CN111349185A (en) * 2018-12-20 2020-06-30 韩华道达尔有限公司 Solid catalyst for propylene polymerization and method for producing block copolymer using the same
KR20200077232A (en) * 2018-12-20 2020-06-30 한화토탈 주식회사 A solid catalyst for producing polypropylene and a method for preparation of block copolymer
EP3670546A1 (en) * 2018-12-20 2020-06-24 Hanwha Total Petrochemical Co., Ltd. Solid catalyst for propylene polymerization and method of producing block copolymer using the same
KR102178630B1 (en) * 2018-12-20 2020-11-13 한화토탈 주식회사 A solid catalyst for producing polypropylene and a method for preparation of block copolymer
KR102156075B1 (en) * 2019-03-11 2020-09-16 효성화학 주식회사 Ziegler-Natta procatalyst compositions AND OLEFINE polymerization process
KR102259307B1 (en) 2019-10-21 2021-05-31 한화토탈 주식회사 A solid catalyst for Polypropylene polymerization and a method for low Volatile organic compound
KR20210047151A (en) * 2019-10-21 2021-04-29 한화토탈 주식회사 A solid catalyst for Polypropylene polymerization and a method for low Volatile organic compound
CN113024697A (en) * 2019-12-24 2021-06-25 韩华道达尔有限公司 Process for preparing catalyst for ethylene polymerization
EP3842463A1 (en) * 2019-12-24 2021-06-30 Hanwha Total Petrochemical Co., Ltd. Preparation method of catalyst for ethylene polymerization
CN113024697B (en) * 2019-12-24 2023-12-01 韩华道达尔能源有限公司 Process for preparing catalyst for ethylene polymerization
KR102544796B1 (en) 2023-02-17 2023-07-04 공주대학교 산학협력단 A solid catalyst for polymerizing olefin comprising novel internal electron donors and a preparation method for the same
KR102544797B1 (en) 2023-02-17 2023-07-04 공주대학교 산학협력단 A solid catalyst for polymerizing olefin comprising novel internal electron donors and a preparation method for the same

Similar Documents

Publication Publication Date Title
KR101930165B1 (en) A solid catalyst for producing polypropylene and a method for preparation of block copolymer
KR102178630B1 (en) A solid catalyst for producing polypropylene and a method for preparation of block copolymer
KR101114073B1 (en) A method for preparation of a solid catalyst for polymerization of propylene
KR101235445B1 (en) A method for the preparation of a solid catalyst for olefin polymerization
KR101836008B1 (en) Process of manufacture of catalyst and propylene polymer that use this or copolymer for propylene polymerization
KR101795317B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
KR101395471B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
KR101338783B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene using the same
KR101908866B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
KR101699590B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene using the catalyst
KR101255913B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene using the same
KR101965982B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
KR101123523B1 (en) A method for preparation of a solid catalyst for polymerization of propylene
KR101454516B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
KR102453530B1 (en) A solid catalyst for propylene-based block copolymerization and a method for preparation of block copolymer
KR101540513B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene using the catalyst
KR101207672B1 (en) A method for preparing a solid catalyst for propylene polymerization
KR101447346B1 (en) A method for preparing solid catalyst for propylene polymerization, a solid catalyst prepared by the same and a method for preparation of polypropylene using the catalyst
KR101624036B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene using the catalyst
KR101139024B1 (en) A method for preparation of a solid catalyst for polymerization of propylene
KR101150579B1 (en) Method for polymerization and copolymerization of propylene
KR101251801B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene using the same
KR101374480B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
KR20100138655A (en) Method for polymerization and copolymerization of propylene
KR20120004053A (en) A method for preparing a solid catalyst for propylene polymerization

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant