KR101983027B1 - Process for Preparing Water Dispersible Silica Nanoparticle - Google Patents

Process for Preparing Water Dispersible Silica Nanoparticle Download PDF

Info

Publication number
KR101983027B1
KR101983027B1 KR1020130011529A KR20130011529A KR101983027B1 KR 101983027 B1 KR101983027 B1 KR 101983027B1 KR 1020130011529 A KR1020130011529 A KR 1020130011529A KR 20130011529 A KR20130011529 A KR 20130011529A KR 101983027 B1 KR101983027 B1 KR 101983027B1
Authority
KR
South Korea
Prior art keywords
silica nanoparticles
water
silica
present
basic substance
Prior art date
Application number
KR1020130011529A
Other languages
Korean (ko)
Other versions
KR20140098625A (en
Inventor
현택환
김태호
모하메드레자 쇼코히메르
Original Assignee
서울대학교산학협력단
기초과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단, 기초과학연구원 filed Critical 서울대학교산학협력단
Priority to KR1020130011529A priority Critical patent/KR101983027B1/en
Priority to PCT/KR2014/000822 priority patent/WO2014119913A1/en
Publication of KR20140098625A publication Critical patent/KR20140098625A/en
Application granted granted Critical
Publication of KR101983027B1 publication Critical patent/KR101983027B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F26/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F26/06Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • C08F26/10N-Vinyl-pyrrolidone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating

Abstract

본 발명은 수분산성 실리카 나노입자의 제조 방법에 관한 것이다. 보다 상세하게는, 본 발명은 C1-C4 알콜과 물의 혼합물에 폴리비닐 피롤리돈을 녹인 용액에 염기성 물질과 실리카 전구체를 첨가하여 반응시키는 단계를 포함하는, 실리카 나노입자 제조 방법에 대한 것이다.The present invention relates to a method for producing water-dispersible silica nanoparticles. More particularly, the present invention relates to a method for producing silica nanoparticles, which comprises reacting a solution obtained by dissolving polyvinylpyrrolidone in a mixture of C 1 -C 4 alcohol and water by adding a basic substance and a silica precursor .

Figure R1020130011529
Figure R1020130011529

Description

수분산성이 뛰어난 실리카 나노입자 제조 방법{Process for Preparing Water Dispersible Silica Nanoparticle}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a process for preparing a silica nanoparticle having excellent water-

본 발명은 수분산성이 뛰어난 실리카 나노입자의 제조 방법에 관한 것이다. 보다 상세하게는, 본 발명은 C1-C5 알콜과 물의 혼합물에 폴리비닐 피롤리돈을 녹인 용액에 염기성 물질과 실리카 전구체를 첨가하여 반응시키는 단계를 포함하는, 실리카 나노입자 제조 방법에 대한 것이다.The present invention relates to a method for producing silica nanoparticles excellent in water dispersibility. More particularly, the present invention relates to a method for producing silica nanoparticles, which comprises reacting a solution obtained by dissolving polyvinylpyrrolidone in a mixture of C 1 -C 5 alcohol and water by adding a basic substance and a silica precursor .

안정화제(stabilizer), 촉매작용(catalysis), MRI 조영제, 흡착 재료(adsorptive material) 및 약물 전달과 같은 다양한 응용을 목적으로 실리카 나노입자가 연구되고 있다.Silica nanoparticles have been studied for various applications such as stabilizers, catalysis, MRI contrast agents, adsorptive materials, and drug delivery.

약물 전달에 사용되기에 적합한 물질들은 수분산성, 생체적합성, 상업적 스케일업의 용이성 및 생체로부터의 제거와 같은 몇 가지 특징이 있다. 특히, 실리카는 미국 FDA(U.S. Food and Drug Administration)에 의해 "generally recognized as safe (GRAS)"라고 승인받은 물질이다.Suitable materials for drug delivery include several characteristics such as water dispersibility, biocompatibility, ease of commercial scale-up and removal from the body. In particular, silica is a substance approved by the US Food and Drug Administration (FDA) as "generally recognized as safe (GRAS)".

실리카 나노입자는 생물의학적 용도로서 사용될 잠재력이 큰 물질인데, 이는 실리카 나노입자가 견고하고(robust), 표면적이 크며, 화학적으로 비활성이고, 표면을 용이하게 개질할 수 있기 때문이다. 따라서 저비용 및 확장가능한, 잘 정의된(well-defined) 수분산성(water dispersible) 실리카 나노입자를 합성 방법을 도입하는 것이 매우 중요하다.Silica nanoparticles are potentially high potential materials for use in biomedical applications because silica nanoparticles are robust, have a large surface area, are chemically inert, and can easily modify the surface. It is therefore very important to introduce well-defined, water dispersible silica nanoparticles that are low cost and scalable.

스퇴버 합성법(Stober synthesis)은 실리카 나노입자 제조 방법으로서 널리 이용된다. 상기 스퇴버 합성법은, 실온 및 알칼리 조건에서 에탄올과 물의 혼합물 내에서 테트라에틸 오르쏘실리케이트(tetraethyl orthosilicate (TEOS))의 축합반응을 포함한다.Stober synthesis is widely used as a method for producing silica nanoparticles. The dextran synthesis method involves the condensation reaction of tetraethyl orthosilicate (TEOS) in a mixture of ethanol and water at room temperature and under alkaline conditions.

그러나 상기 스퇴버 합성법에 의해 합성된 실리카 나노입자는 물에 분산되지 아니하고, 수분산성 실리카 나노입자를 얻기 위해서는 폴리에틸렌 글리콜 실란 분자들에 의한 도핑 또는 작용기화와 같은 여러 단계의 개질 과정이 요구된다. 또한, 상기 개질 과정은 대개 실리카 나노입자의 응집(aggregation) 및 낮은 안정성을 초래한다.However, the silica nanoparticles synthesized by the Stevber synthesis method are not dispersed in water. In order to obtain the water-dispersible silica nanoparticles, various steps such as doping or functionalization with polyethylene glycol silane molecules are required. In addition, the modification process usually results in aggregation and low stability of the silica nanoparticles.

실리카 나노입자를 제조하는 다른 한 가지 방법으로는, 역상 마이크로에멀젼 방법(F. J. Arriagada and K. Osseo-Asare, Journal of Colloid and Interface Science, 1999, 211, 210)이 있다. 상기 역상 마이크로에멀젼 방법에 따르면, 물이 유상에서 계면활성제에 의하여 작은 마이크로에멀젼을 형성하는데, 상기 마이크로에멀젼을 주형으로 사용하고 TEOS를 전구체로서 사용하며 알카리성 촉매를 사용함으로써 실리카 나노입자가 생성된다.Another method for producing silica nanoparticles is the reverse phase microemulsion method (FJ Arriagada and K. Osseo-Asare, Journal of Colloid and Interface Science, 1999 , 211, 210). According to the reversed phase microemulsion method, water forms a small microemulsion in the oil phase with a surfactant, and silica nanoparticles are produced by using the microemulsion as a template, using TEOS as a precursor, and using an alkaline catalyst.

그러나 역상 마이크로에멀젼 방법에서는 대량의 계면활성제가 사용되고, 실제 응용에서는 대부분 이 계면활성제를 제거하여야 하는 문제점이 있다. 또한, 역상 마이크로에멀젼 방법의 특성상 실리카 나노입자를 대량으로 합성하기 어렵다.However, in the reversed phase microemulsion method, a large amount of a surfactant is used, and in practical applications, most surfactants have to be removed. In addition, it is difficult to synthesize silica nanoparticles in a large amount due to the characteristics of the reversed phase microemulsion method.

대한민국 특허 제10-0759841호는 실리카의 원료로 실리콘 알콕사이드(Silicon Alkoxide), 용매로는 알콜, 촉매로 암모니아수 그리고 물을 사용하여 반응물을 가수분해 및 축중합 반응을 통해 150 nm 이상 크기의 구형 실리카 나노 입자를 합성하는 방법을 개시하고 있다.Korean Patent No. 10-0759841 discloses a process for producing a silica nanocrystal having a size of 150 nm or more by hydrolysis and polycondensation of a reaction product using silicon alkoxide as a raw material of silica, alcohol as an alcohol, ammonia water as a catalyst, Discloses a method for synthesizing particles.

그러나 상기 대한민국 특허 제10-0759841호의 방법에 의해 제조된 실리카의 크기는 본 발명의 방법에 의해 제조되는 실리카의 크기보다 훨씬 더 크다. 즉, 본 발명의 방법에 따르면, 100 nm 이하의 균일한 크기를 갖는 실리카 나노입자를 제조할 수 있다.However, the size of the silica produced by the method of Korean Patent No. 10-0759841 is much larger than the size of the silica produced by the method of the present invention. That is, according to the method of the present invention, silica nanoparticles having a uniform size of 100 nm or less can be produced.

또한, 본 발명의 방법에 의해 제조된 실리카 나노입자는 수분산성이 매우 뛰어나고, 수분산성을 장기간 유지한다.In addition, the silica nanoparticles produced by the method of the present invention are excellent in water dispersibility and maintain water dispersibility for a long time.

본 발명자들은 폴리비닐 피롤리돈(polyvinyl pyrolidone (PVP))을 사용하면, 추가적인 개질 과정이나 작용기화 과정 없이도, 1 단계의 과정만으로 수분산성 실리카 나노입자를 합성할 수 있음을 확인하여 본 발명을 완성하기에 이르렀다.The inventors of the present invention confirmed that water-dispersible silica nanoparticles can be synthesized by only one step without using any additional reforming process or functionalization process by using polyvinyl pyrolidone (PVP) It came to the following.

본 발명의 목적은 C1-C4 알콜과 물의 혼합물에 폴리비닐 피롤리돈을 녹인 용액에 염기성 물질과 실리카 전구체를 첨가하여 반응시키는 단계를 포함하는, 실리카 나노입자 제조 방법을 제공하는 것이다.An object of the present invention is to provide a method for producing silica nanoparticles, which comprises reacting a solution obtained by dissolving polyvinylpyrrolidone in a mixture of C 1 -C 4 alcohol and water by adding a basic substance and a silica precursor and reacting.

본 발명의 목적은 C1-C4 알콜과 물의 혼합물에 폴리비닐 피롤리돈을 녹인 용액에 염기성 물질과 실리카 전구체를 첨가하여 반응시키는 단계를 포함하는, 실리카 나노입자 제조 방법을 제공함으로써 달성될 수 있다.The object of the present invention can be achieved by providing a method for producing silica nanoparticles comprising the step of adding a basic substance and a silica precursor to a solution obtained by dissolving polyvinylpyrrolidone in a mixture of C 1 -C 4 alcohol and water, have.

본 발명의 실리카 나노입자 제조 방법에 있어서, 상기 C1-C5 알콜은 메탄올, 에탄올, 프로판올, 이소프로판올, 부탄올, 이소부탄올, 펜탄올 또는 이소펜탄올로부터 선택될 수 있다.In the method for producing silica nanoparticles of the present invention, the C 1 -C 5 alcohol may be selected from methanol, ethanol, propanol, isopropanol, butanol, isobutanol, pentanol or isopentanol.

본 발명의 실리카 나노입자 제조 방법에 있어서, 상기 폴리비닐 피롤리돈의 중량평균 분자량(MW)이 5,000 내지 55,000인 것이 바람직하다.In the silica nanoparticle production process of the present invention, it is preferred that the weight average molecular weight of the polyvinylpyrrolidone (M W) is 5,000 to 55,000.

또한, 본 발명의 실리카 나노입자 제조 방법에 있어서, 상기 염기성 물질(basic material)은 암모니아, 수산화나트륨 또는 수산화칼륨으로부터 선택될 수 있다.Further, in the method for producing silica nanoparticles of the present invention, the basic material may be selected from ammonia, sodium hydroxide, or potassium hydroxide.

본 발명의 방법에 있어서, 상기 실리카 전구체는 테트라에틸 오르쏘실리케이트(tetraethyl orthosilicate, TEOS), 테트라메틸 오르쏘실리케이트(tetramethyl orthosilicate, TMOS), 테트라부틸 오르쏘실리케이트(tetrabuthyl orthosilicate, TBOS), 테트라클로로실란(tetrachlorosilane, SiCl4) 또는 소듐 실리케이트(sodium silicate)로부터 선택될 수 있다.In the process of the present invention, the silica precursor is selected from the group consisting of tetraethyl orthosilicate (TEOS), tetramethyl orthosilicate (TMOS), tetrabutyl orthosilicate (TBOS), tetrachlorosilane It may be selected from (tetrachlorosilane, SiCl 4) or sodium silicate (sodium silicate).

본 발명의 방법에 의해 제조되는 실리카 나노입자는 20 nm 내지 100 nm 크기이고, 물에 잘 분산된다.The silica nanoparticles prepared by the method of the present invention have a size of 20 nm to 100 nm and are well dispersed in water.

본 발명의 방법에 따르면, 종래 기술과 대비하여, 1 단계의 간단한 합성 과정을 통해, 입자의 크기가 20 nm 내지 100 nm의 매우 작은 실리카 나노입자를 제조할 수 있다.According to the method of the present invention, very small silica nanoparticles having a particle size of 20 nm to 100 nm can be prepared through a simple synthesis process in a single step in comparison with the prior art.

또한, 제조된 실리카 나노입자의 표면 개질 과정 없이도, 수분산성이 뛰어나고 장기간 응집없이 수분산성을 유지하는 실리카 나노입자를 제조할 수 있다.In addition, silica nanoparticles having excellent water dispersibility and maintaining water dispersibility without agglomeration for a long period of time can be produced without the surface modification process of the prepared silica nanoparticles.

도 1은 본 발명의 실시예 1에서 합성한 수분산성 실리카 나노입자에 대한 (a) TEM(투과전자현미경) 사진, (b) FE-SEM(장 방출 주사전자현미경) 사진 및 (c) 합성된 지 1달 후에 측정한 DLS(동적 광산란법) 다이어그램이다.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a TEM (transmission electron microscope) photograph, (b) FE-SEM (field emission scanning electron microscope) photograph, and (c) DLS (dynamic light scattering method) diagram measured one month later.

이하, 다음의 실시예 또는 도면을 들어 본 발명을 보다 구체적으로 설명하고자 한다. 그러나 다음의 실시예 또는 도면에 대한 설명은 본 발명의 구체적인 실시 태양을 특정하여 설명하고자 하는 것일 뿐이며, 본 발명의 권리 범위를 이들에 기재된 내용으로 한정하거나 제한해석하고자 의도하는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples or drawings. It is to be understood, however, that the following description of the embodiments or drawings is intended to illustrate specific embodiments of the invention and is not intended to be exhaustive or to limit the scope of the invention to the precise forms disclosed.

실시예Example 1. 실리카 나노입자의 합성 1. Synthesis of Silica Nanoparticles

25 mg의 폴리비닐 피롤리돈(분자량: 10,000)을 10 mL의 에탄올 및 2 mL의 물에 용해시키고 실온에서 15분 동안 격렬히 교반한 후, 0.5 mL의 암모니아를 첨가하였다. 이렇게 얻은 용액을 격렬히 교반하면서, 0.5 mL의 TEOS(tetraethyl orthosilicate)를 신속히 첨가하였고, 이렇게 얻은 혼합물을 실온에서 5시간 동안 교반하여 자립형 수분산성(self-standing water dispersible) 실리카 나노입자를 제조하였다. 14,000 rpm에서 20분 동안 원심분리하여 상기 실리카 나노입자를 분리하였고 에탄올을 사용하여 세척하였다. 이렇게 얻은 자립형 수분산성 실리카 나노입자는 증류수에 재분산되었고, 1달이 지난 후에도 응집 없이 수분산성을 그대로 유지하였다.25 mg of polyvinylpyrrolidone (molecular weight: 10,000) was dissolved in 10 mL of ethanol and 2 mL of water and vigorously stirred at room temperature for 15 minutes, then 0.5 mL of ammonia was added. 0.5 mL of tetraethyl orthosilicate (TEOS) was rapidly added thereto with vigorous stirring, and the mixture thus obtained was stirred at room temperature for 5 hours to prepare self-standing water dispersible silica nanoparticles. The silica nanoparticles were separated by centrifugation at 14,000 rpm for 20 minutes and washed with ethanol. The self-standing water-dispersible silica nanoparticles thus obtained were redispersed in distilled water, and retained their water dispersibility without agglomeration even after one month.

도 1(a) 및 1(b)의 TEM 및 FE-SEM 사진을 보면, 상기 자립형 수분산성 실리카 나노입자의 크기가 비교적 균일하고 45 nm 크기의 구형임을 알 수 있다. 또한, 본 실시예에서 합성된 지 1달이 지난 실리카 나노입자에 대한 도 1(c)의 DLS 다이어그램에 의하면, 상기 자립형 수분산성 실리카 나노입자의 평균 크기는 약 50 nm이고, 응집없이 수분산성을 잘 유지하고 있음을 알 수 있다.TEM and FE-SEM photographs of FIGS. 1 (a) and 1 (b) show that the size of the self-standing water-dispersible silica nanoparticles is relatively uniform and spherical with a size of 45 nm. In addition, according to the DLS diagram of FIG. 1 (c) for silica nanoparticles past one month after being synthesized in this embodiment, the average size of the self-standing water dispersible silica nanoparticles is about 50 nm and the water dispersibility And it is well maintained.

Claims (7)

C1-C5 알콜과 물의 혼합물에 폴리비닐 피롤리돈을 녹인 용액에 염기성 물질을 첨가하는 단계;
상기 염기성 물질을 첨가한 용액에 실리카 전구체를 첨가하여 반응시키는 단계; 및
상기 실리카 전구체를 첨가하여 반응시켜 얻은 혼합물을 교반하여 실리카 나노입자를 제조하는 단계를 포함하고,
상기 폴리비닐 피롤리돈의 중량평균 분자량이 5,000 내지 55,000인 것임을 특징으로 하고,
상기 실리카 나노입자는 증류수에 재분산된 후 1달이 지난 후에도 응집 없이 수분산성을 그대로 유지하는 것을 특징으로 하는 실리카 나노입자 제조 방법.
Adding a basic substance to a solution obtained by dissolving polyvinylpyrrolidone in a mixture of C 1 -C 5 alcohol and water;
Adding a silica precursor to a solution to which the basic substance is added and reacting; And
Adding the silica precursor, and reacting the resulting mixture to prepare silica nanoparticles,
Wherein the weight average molecular weight of the polyvinyl pyrrolidone is 5,000 to 55,000,
Wherein the silica nanoparticles maintain the water dispersibility without agglomeration even after one month from being redispersed in distilled water.
제1항에 있어서, 상기 C1-C5 알콜이 메탄올, 에탄올, 프로판올, 이소프로판올, 부탄올, 이소부탄올, 펜탄올 및 이소펜탄올로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 실리카 나노입자 제조 방법.The method of claim 1, wherein the C 1 -C 5 alcohol is selected from the group consisting of methanol, ethanol, propanol, isopropanol, butanol, isobutanol, pentanol and isopentanol. 삭제delete 제1항에 있어서, 상기 염기성 물질이 암모니아, 수산화나트륨 및 수산화칼륨으로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 실리카 나노입자 제조 방법.The method of claim 1, wherein the basic substance is selected from the group consisting of ammonia, sodium hydroxide, and potassium hydroxide. 제1항에 있어서, 상기 실리카 전구체가 테트라에틸 오르쏘실리케이트, 테트라메틸 오르쏘실리케이트, 테트라부틸 오르쏘실리케이트, 테트라클로로실란 및 소듐 실리케이트로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 실리카 나노입자 제조 방법.The method of claim 1, wherein the silica precursor is selected from the group consisting of tetraethylorthosilicate, tetramethylorthosilicate, tetrabutylorthosilicate, tetrachlorosilane, and sodium silicate. 제1항에 있어서, 상기 실리카 나노입자의 크기가 20 nm 내지 100 nm인 것임을 특징으로 하는 실리카 나노입자 제조 방법.The method of claim 1, wherein the size of the silica nanoparticles is 20 nm to 100 nm. 삭제delete
KR1020130011529A 2013-01-31 2013-01-31 Process for Preparing Water Dispersible Silica Nanoparticle KR101983027B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020130011529A KR101983027B1 (en) 2013-01-31 2013-01-31 Process for Preparing Water Dispersible Silica Nanoparticle
PCT/KR2014/000822 WO2014119913A1 (en) 2013-01-31 2014-01-28 Method for manufacturing silica nanoparticles with excellent water dispersion properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130011529A KR101983027B1 (en) 2013-01-31 2013-01-31 Process for Preparing Water Dispersible Silica Nanoparticle

Publications (2)

Publication Number Publication Date
KR20140098625A KR20140098625A (en) 2014-08-08
KR101983027B1 true KR101983027B1 (en) 2019-05-28

Family

ID=51262567

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130011529A KR101983027B1 (en) 2013-01-31 2013-01-31 Process for Preparing Water Dispersible Silica Nanoparticle

Country Status (2)

Country Link
KR (1) KR101983027B1 (en)
WO (1) WO2014119913A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102255227B1 (en) * 2018-07-31 2021-05-24 전북대학교산학협력단 Method for preparing an aspect ratio-controllable bullet-like silica colloid, and bullet-like silica colloid therefrom
EP4038159A1 (en) * 2019-09-30 2022-08-10 Saudi Arabian Oil Company Methods for reducing condensation
CN113880107A (en) * 2020-07-01 2022-01-04 中国石油化工股份有限公司 ZSM-5 molecular sieve and synthesis method and application thereof
KR102635292B1 (en) * 2021-08-26 2024-02-08 경희대학교 산학협력단 Pore-structured ceramic nanoparticles, pore-structured ceramic nanoparticles-carbon allotrope composite, and method for manufacturing the same
CN115820332A (en) * 2022-11-25 2023-03-21 潍坊奥润德新材料科技有限公司 Water-based fully-synthetic cutting fluid and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100759841B1 (en) * 2005-10-12 2007-09-18 요업기술원 Preparation method for silica nanospheres
KR100766748B1 (en) * 2006-06-15 2007-10-12 주식회사 에코프로 Fabrication of the catalytic complex with the spherical carbon/silica nano-complex support
KR20080063007A (en) * 2006-12-29 2008-07-03 엘지마이크론 주식회사 A silica nano paticle and method for manufacturing thereof
CN103025847B (en) * 2010-07-30 2014-08-13 海洋王照明科技股份有限公司 Metal nano particles doped with silicate luminescent materials and preparation methods thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Colloids and Surfaces A: Physicochem. Eng. Aspects., 305 (2007) 97-104*

Also Published As

Publication number Publication date
KR20140098625A (en) 2014-08-08
WO2014119913A1 (en) 2014-08-07

Similar Documents

Publication Publication Date Title
KR101983027B1 (en) Process for Preparing Water Dispersible Silica Nanoparticle
Ghimire et al. Renaissance of Stöber method for synthesis of colloidal particles: New developments and opportunities
Teng et al. Mesoporous organosilica hollow nanoparticles: synthesis and applications
Mansur et al. CdSe quantum dots stabilized by carboxylic-functionalized PVA: synthesis and UV–vis spectroscopy characterization
JP4654428B2 (en) Highly dispersed silica nano hollow particles and method for producing the same
US9080056B2 (en) Process for preparing silica microparticles
JP5477192B2 (en) Method for producing silica particles
US20140356272A1 (en) Volume production method for uniformly sized silica nanoparticles
Das et al. Synthesis and physicochemical characterization of mesoporous SiO2 nanoparticles
US10106428B2 (en) Method for producing surface-modified silica nanoparticles, and surface-modified silica nanoparticles
US20200010623A1 (en) Disintegratable porous organometaloxide material
US20180065859A1 (en) Silica nanostructures, large-scale fabrication methods, and applications thereof
JP2010502795A (en) New nanoparticles
CN109574507B (en) Nano-scale spherical bioactive glass and preparation method thereof
Rahman et al. Effect of anion electrolytes on the formation of silica nanoparticles via the sol–gel process
WO2010021400A1 (en) Silica nanoparticle structure and process for production of same
Ottenbrite et al. Self‐Catalyzed Synthesis of Organo‐Silica Nanoparticles
JP6004272B2 (en) Chiral metal oxide structure and method for producing the same
Yamamoto et al. Mesoporous silica nanoparticles with dispersibility in organic solvents and their versatile surface modification
JP6102393B2 (en) Method for producing hollow silica nanoparticles
Huang et al. Organosilane micellization for direct encapsulation of hydrophobic quantum dots into silica beads with highly preserved fluorescence
CN109502594B (en) Silicon oxide nanotube with asymmetric internal and external surface properties and preparation method and application thereof
JP2011001205A (en) Method of manufacturing porous silica capsule
JP2009197142A (en) Organomodified silica fine particles and manufacturing method for it
CN114591517B (en) Preparation method of size-adjustable AIE nano particles

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant