KR101896499B1 - 멀티 하전 입자빔 묘화 장치 및 멀티 하전 입자빔 묘화 방법 - Google Patents

멀티 하전 입자빔 묘화 장치 및 멀티 하전 입자빔 묘화 방법 Download PDF

Info

Publication number
KR101896499B1
KR101896499B1 KR1020160101565A KR20160101565A KR101896499B1 KR 101896499 B1 KR101896499 B1 KR 101896499B1 KR 1020160101565 A KR1020160101565 A KR 1020160101565A KR 20160101565 A KR20160101565 A KR 20160101565A KR 101896499 B1 KR101896499 B1 KR 101896499B1
Authority
KR
South Korea
Prior art keywords
shot
time
stage
irradiation
irradiation time
Prior art date
Application number
KR1020160101565A
Other languages
English (en)
Other versions
KR20170019326A (ko
Inventor
료이치 요시카와
히데오 이노우에
하야토 키무라
야스오 카토
준 야시마
Original Assignee
가부시키가이샤 뉴플레어 테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 뉴플레어 테크놀로지 filed Critical 가부시키가이샤 뉴플레어 테크놀로지
Publication of KR20170019326A publication Critical patent/KR20170019326A/ko
Application granted granted Critical
Publication of KR101896499B1 publication Critical patent/KR101896499B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/20Masks or mask blanks for imaging by charged particle beam [CPB] radiation, e.g. by electron beam; Preparation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/76Patterning of masks by imaging
    • G03F1/78Patterning of masks by imaging by charged particle beam [CPB], e.g. electron beam patterning of masks
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/7045Hybrid exposures, i.e. multiple exposures of the same area using different types of exposure apparatus, e.g. combining projection, proximity, direct write, interferometric, UV, x-ray or particle beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70766Reaction force control means, e.g. countermass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/045Beam blanking or chopping, i.e. arrangements for momentarily interrupting exposure to the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/24Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • H01J37/243Beam current control or regulation circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/302Controlling tubes by external information, e.g. programme control
    • H01J37/3023Programme control
    • H01J37/3026Patterning strategy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • H01J37/3177Multi-beam, e.g. fly's eye, comb probe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/043Beam blanking
    • H01J2237/0435Multi-aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/045Diaphragms
    • H01J2237/0451Diaphragms with fixed aperture
    • H01J2237/0453Diaphragms with fixed aperture multiple apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20278Motorised movement
    • H01J2237/20285Motorised movement computer-controlled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20292Means for position and/or orientation registration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30405Details
    • H01J2237/30416Handling of data
    • H01J2237/30422Data compression
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30433System calibration
    • H01J2237/30438Registration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31761Patterning strategy
    • H01J2237/31762Computer and memory organisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31761Patterning strategy
    • H01J2237/31764Dividing into sub-patterns

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electron Beam Exposure (AREA)

Abstract

본 발명의 일 태양의 멀티 하전 입자빔 묘화 장치는, 멀티빔의 샷마다, 멀티빔의 각 빔의 조사 시간 중 최대 조사 시간을 취득하는 최대 조사 시간 취득 처리 회로와, 샷마다 취득된 최대 조사 시간을 이용하여 시료의 묘화 영역이 분할된 복수의 단위 영역에서의 단위 영역마다 스테이지가 이동하면서 상기 단위 영역을 멀티빔에 의한 복수 회의 샷으로 조사하는 경우의 각 샷의 최대 조사 시간을 합계한 단위 영역 묘화 시간을 연산하는 단위 영역 묘화 시간 연산 처리 회로와, 단위 영역 묘화 시간을 이용하여 스테이지 속도가 가변속이 되도록 단위 영역마다 스테이지의 속도를 연산하는 스테이지 속도 연산 처리 회로와, 스테이지의 속도를 가변속으로 제어하는 스테이지 제어 처리 회로를 구비한 것을 특징으로 한다.

Description

멀티 하전 입자빔 묘화 장치 및 멀티 하전 입자빔 묘화 방법 {MULTI-CHARGED PARTICLE BEAM WRITING APPARATUS AND MUTLI-CHARGED PARTICLE BEAM WRITING METHOD}
본 발명은 멀티 하전 입자빔 묘화 장치 및 멀티 하전 입자빔 묘화 방법에 관한 것으로, 예를 들면, 멀티빔 묘화에서의 스테이지의 제어 방법에 관한 것이다.
반도체 디바이스의 미세화의 진전을 담당하는 리소그래피 기술은 반도체 제조 프로세스 중에서도 유일하게 패턴을 생성하는 매우 중요한 프로세스이다. 최근, LSI의 고집적화에 수반하여, 반도체 디바이스에 요구되는 회로 선폭은 해마다 미세화되고 있다. 여기서, 전자선(전자빔) 묘화 기술은 본질적으로 우수한 해상성을 가지고 있어, 웨이퍼 등에 전자선을 사용하여 묘화하는 것이 행해지고 있다.
예를 들면, 멀티빔을 사용한 묘화 장치가 있다. 1 개의 전자빔으로 묘화하는 경우에 비해, 멀티빔을 이용함으로써 한 번에 많은 빔을 조사할 수 있으므로 스루풋을 큰 폭으로 향상시킬 수 있다. 이러한 멀티빔 방식의 묘화 장치에서는, 예를 들면, 전자총으로부터 방출된 전자빔을 복수의 홀을 가진 마스크에 통과시켜 멀티빔을 형성하고, 각각 블랭킹 제어되어 차폐되지 않은 각 빔이 광학계로 축소되고, 편향기로 편향되어 시료 상의 원하는 위치로 조사된다.
멀티빔 묘화 장치에서는, 래스터 주사 방식을 기본으로 하여 스테이지를 등속으로 이동시키면서 해당되는 복수의 화소 영역으로 한 번에 멀티빔을 조사해 가는 방법이 채용되어 개발이 진행되고 있다. 또한, 스테이지 속도가 등속 제어라고 해도 스트라이프 영역의 묘화 시작 혹은 묘화 마지막 부분에서 스테이지의 반환에 따른 스테이지 속도 저하가 발생하는 경우가 있다. 이 때, 샷 사이클을 일정하게 한 빔 ON / OFF의 제어를 행하는 경우, 스테이지의 반환 시에 발생하는 스테이지 속도 저하에 의해 도스량 과다가 된다. 이러한 도스량 과다가 되는 것을 방지하기 위한 조사량 조정에 관해, 여분의 조사량을 블랭킹 기구로 컷하는 방법이 개시되어 있다(예를 들면, 일본특허공표공보 제2009-532887호 참조). 그러나, 이러한 방법으로는 고정밀도의 묘화를 행하고 또한 스루풋의 개선을 도모하는 것은 곤란하다.
샷 사이클을 일정하게 한 빔 ON / OFF의 제어만으로는 근접 효과에 기인한 치수 오차가 발생한다. 최근의 미세화의 요구에 대응하여 고정밀화를 도모하기 위해서는, 도스 보정에 의한 근접 효과 보정이 필요하다. 근접 효과를 조사량에 의해 보정하기 위해서는 조사량을 가변으로 제어할 것이 요구된다. 또한, 근접 효과를 조사량에 의해 보정하는 경우, 패턴 밀도가 낮은 영역에서는 조사량을 증가시킬 필요가 있다. 따라서, 패턴 밀도가 낮은 영역에서는 조사 시간이 길고, 패턴 밀도가 높은 영역에서는 조사 시간이 짧게 설정되게 된다.
한편, 스테이지 속도를 종래의 래스터 주사 방식과 마찬가지로 등속 제어를 행하면, 가장 긴 조사 시간의 빔에 맞추어 속도가 결정되게 된다. 이 때문에, 조사 시간이 긴 패턴 밀도가 낮은 영역에 맞추어 스테이지 속도가 결정되게 된다. 그러나, 패턴 밀도가 낮은 영역에서는 원래 조사 시간이 길기 때문에 묘화 시간이 걸리는 데다가, 또한 스테이지 이동 도중에 패턴이 없는 영역이 있는 경우에는 빔을 조사하지 않고 단지 기다리고 있는 시간이 존재하게 된다. 따라서, 패턴 밀도가 낮은 영역에서는 벡터 방식의 싱글빔 묘화 방식보다 스루풋이 나빠진다고 하는 역전 현상이 발생하는 경우가 있다. 멀티빔 묘화 장치에서는 패턴 밀도가 높은 영역에서의 고스루풋 성능이 이러한 역전 현상에 따른 스루풋의 저하를 해소하여 전체적으로 싱글빔 묘화 방식보다 스루풋을 높이고 있다.
그러나, 조사 시간이 긴 패턴 밀도가 낮은 영역에 맞추어 스테이지 속도가 결정되므로, 패턴 밀도가 높은 영역에서는 빔 조사가 종료되었어도 다음 샷을 기다리는 대기 시간이 발생하게 된다. 따라서, 멀티빔 묘화 방식이 본래 가지는 고스루풋 성능을 충분히 달성할 수 없다.
본 발명의 실시 형태는, 고정밀도이며 또한 스루풋 성능을 더 높이는 것이 가능한 멀티 하전 입자빔 묘화 장치 및 멀티 하전 입자빔 묘화 방법을 제공한다.
본 발명의 일 태양의 멀티 하전 입자빔 묘화 장치는,
묘화 대상이 될 시료를 재치하는 이동 가능한 스테이지를 가지며, 하전 입자빔에 의한 멀티빔을 이용하여 시료에 패턴을 묘화하는 묘화 기구와,
멀티빔의 샷마다, 멀티빔의 각 빔의 조사 시간 중 최대 조사 시간을 취득하는 최대 조사 시간 취득 처리 회로와,
샷마다 취득된 최대 조사 시간을 이용하여 시료의 묘화 영역이 분할된 복수의 단위 영역에서의 단위 영역마다 스테이지가 이동하면서 상기 단위 영역을 멀티빔에 의한 복수 회의 샷으로 조사하는 경우의 각 샷의 최대 조사 시간을 합계한 단위 영역 묘화 시간을 연산하는 단위 영역 묘화 시간 연산 처리 회로와,
단위 영역 묘화 시간을 이용하여 스테이지 속도가 가변속이 되도록 단위 영역마다 스테이지의 속도를 연산하는 스테이지 속도 연산 처리 회로와,
스테이지의 속도를 가변속으로 제어하는 스테이지 제어 처리 회로
를 구비한 것을 특징으로 한다.
본 발명의 일 태양의 멀티 하전 입자빔 묘화 방법은,
하전 입자빔에 의한 멀티빔의 샷마다, 멀티빔의 각 빔의 조사 시간 중 최대 조사 시간을 취득하고,
샷마다 취득된 최대 조사 시간을 이용하여 묘화 대상이 될 시료의 묘화 영역이 분할된 복수의 단위 영역에서의 단위 영역마다 시료를 재치하는 스테이지가 이동하면서 상기 단위 영역을 멀티빔에 의한 복수 회의 샷으로 조사하는 경우의 각 샷의 최대 조사 시간을 합계한 단위 영역 묘화 시간을 연산하고,
단위 영역 묘화 시간을 이용하여 스테이지 속도가 가변속이 되도록 단위 영역마다 스테이지의 속도를 연산하고,
스테이지의 속도를 가변속으로 제어하면서 하전 입자빔에 의한 멀티빔을 이용하여 상기 시료에 패턴을 묘화하는 것을 특징으로 한다.
본 발명의 다른 태양의 멀티 하전 입자빔 묘화 방법은,
묘화할 패턴의 패턴 밀도가 높은 시료 상의 영역을 묘화하는 경우에는 시료가 재치된 스테이지의 스테이지 속도를 고속으로 제어하고, 패턴 밀도가 낮은 시료 상의 영역을 묘화하는 경우에는 스테이지의 스테이지 속도를 저속으로 제어하도록 스테이지의 스테이지 속도를 가변속으로 제어하면서 하전 입자빔에 의한 멀티빔을 이용하여 시료에 패턴을 묘화하는 것을 특징으로 한다.
도 1은 실시 형태 1에서의 묘화 장치의 구성을 나타내는 개념도이다.
도 2는 실시 형태 1에서의 성형 애퍼처 어레이 부재의 구성을 나타내는 개념도이다.
도 3은 실시 형태 1에서의 블랭킹 애퍼처 어레이부의 일부를 나타내는 상면 개념도이다.
도 4는 실시 형태 1에서의 묘화 동작의 일례를 설명하기 위한 개념도이다.
도 5는 실시 형태 1에서의 멀티빔의 조사 영역과 묘화 대상 화소의 일례를 나타내는 도면이다.
도 6은 실시 형태 1에서의 멀티빔의 묘화 방법의 일례를 설명하기 위한 도면이다.
도 7은 실시 형태 1에서의 묘화 방법의 주요부 공정을 나타내는 순서도이다.
도 8(a)와 도 8(b)는 실시 형태 1에서의 최대 조사 시간의 단축 처리를 설명하기 위한 일례를 나타내는 도면이다.
도 9(a) 내지 도 9(f)는 실시 형태 1에서의 스테이지 속도와 다른 인자와의 관계의 일례를 나타내는 도면이다.
도 10(a)와 도 10(b)는 실시 형태 1에서의 샷 시간의 단축과 패턴 밀도와의 관계를 설명하기 위한 도면이다.
도 11은 실시 형태 2에서의 묘화 장치의 구성을 나타내는 개념도이다.
도 12는 실시 형태 2에서의 개별 블랭킹 제어 회로와 공통 블랭킹 제어 회로의 내부 구성을 나타내는 개념도이다.
도 13은 실시 형태 2에서의 묘화 방법의 주요부 공정을 나타내는 순서도이다.
도 14는 실시 형태 2에서의 자릿수 n = 10으로 하는 경우의 각 자릿수와 각 자리의 조사 시간의 관계를 나타내는 비트 가공 테이블을 나타내는 도면이다.
도 15(a)와 도 15(b)는 실시 형태 2에서의 최대 조사 시간의 단축 처리를 설명하기 위한 일례를 나타내는 도면이다.
도 16은 실시 형태 2에서의 조사 시간 배열 데이터의 일부의 일례를 나타내는 도면이다.
도 17은 실시 형태 2에서의 1 샷 중의 조사 스텝의 일부에 대한 빔 ON / OFF 전환 동작을 나타내는 타이밍 차트이다.
도 18은 실시 형태 2에서의 블랭킹 동작을 설명하기 위한 개념도이다.
도 19는 실시 형태 3에서의 묘화 장치의 구성을 나타내는 개념도이다.
도 20은 실시 형태 3에서의 묘화 방법의 주요부 공정을 나타내는 순서도이다.
도 21은 실시 형태 3에서의 빈도 함수 그래프의 일례를 나타내는 도면이다.
도 22는 실시 형태 3에서의 빈도 함수 그래프의 다른 일례를 나타내는 도면이다.
도 23(a) 내지 도 23(c)는 실시 형태 3에서의 최대 조사 시간의 단축 처리를 설명하기 위한 일례를 나타내는 도면이다.
이하, 실시 형태에서는 하전 입자빔의 일례로서 전자빔을 이용한 구성에 대해 설명한다. 단, 하전 입자빔은 전자빔에 한정되지 않으며, 이온빔 등의 하전 입자를 이용한 빔이어도 상관없다.
또한, 실시 형태에서는 고정밀도이며 또한 스루풋 성능을 더 높이는 것이 가능한 멀티빔 묘화 장치 및 방법에 대해 설명한다.
실시 형태 1.
도 1은 실시 형태 1에서의 묘화 장치의 구성을 나타내는 개념도이다. 도 1에서 묘화 장치(100)는 묘화 기구(150)와 제어부(160)를 구비하고 있다. 묘화 장치(100)는 멀티 하전 입자빔 묘화 장치의 일례이다. 묘화 기구(150)는 전자 경통(102)과 묘화실(103)을 구비하고 있다. 전자 경통(102) 내에는 전자총(201), 조명 렌즈(202), 성형 애퍼처 어레이 부재(203), 블랭킹 애퍼처 어레이부(204), 축소 렌즈(205), 제한 애퍼처 부재(206), 대물 렌즈(207) 및 편향기(208, 209)가 배치되어 있다. 묘화실(103) 내에는 XY 스테이지(105)가 배치된다. XY 스테이지(105) 상에는, 묘화 시에는 묘화 대상 기판이 되는 마스크 등의 시료(101)가 배치된다. 시료(101)에는 반도체 장치를 제조할 때의 노광용 마스크, 혹은 반도체 장치가 제조되는 반도체 기판(실리콘 웨이퍼) 등이 포함된다. 또한, 시료(101)에는 레지스트가 도포된 아직 아무것도 묘화되지 않은 마스크 블랭크스가 포함된다. XY 스테이지(105) 상에는 또한 XY 스테이지(105)의 위치 측정용의 미러(210)가 배치된다.
제어부(160)는 제어 계산기(110), 메모리(112), 편향 제어 회로(130), 디지털 · 아날로그 변환(DAC) 앰프 유닛(132, 134), 스테이지 제어부(138), 스테이지 위치 측정부(139) 및 자기 디스크 장치 등의 기억 장치(140, 142)를 가지고 있다. 제어 계산기(110), 메모리(112), 편향 제어 회로(130), 스테이지 제어부(138), 스테이지 위치 측정부(139) 및 기억 장치(140, 142)는 도시하지 않은 버스를 개재하여 서로 접속되어 있다. 기억 장치(140)(기억부)에는 묘화 데이터가 묘화 장치(100)의 외부로부터 입력되어 저장되어 있다. 편향 제어 회로(130)에는 DAC 앰프 유닛(132, 134) 및 블랭킹 애퍼처 어레이부(204)가 도시하지 않은 버스를 개재하여 접속되어 있다. 스테이지 위치 측정부(139)는 레이저광을 XY 스테이지(105) 상의 미러(210)에 조사하고, 미러(210)로부터의 반사광을 수광한다. 그리고, 이러한 반사광의 정보를 이용하여 XY 스테이지(105)의 위치를 측정한다.
제어 계산기(110) 내에는 패턴 면적 밀도(ρ(x, y)) 연산부(60), 근접 효과 보정 조사 계수(Dp(x, y)) 연산부(62), 화소 내 패턴 면적 밀도(ρ'(x, y)) 연산부(64), 조사량(D(x, y)) 연산부(66), 조사 시간(t(x, y)) 연산부(68), 배열 가공부(70), 단축 처리부(72), 최대 조사 시간(tmax) 취득부(74), 단위 영역 묘화 시간 연산부(76), 스테이지 속도 연산부(78), 속도 차트 작성부(80), 전송 처리부(82) 및 묘화 제어부(84)가 배치되어 있다. 패턴 면적 밀도(ρ(x, y)) 연산부(60), 근접 효과 보정 조사 계수(Dp(x, y)) 연산부(62), 화소 내 패턴 면적 밀도(ρ'(x, y)) 연산부(64), 조사량(D(x, y)) 연산부(66), 조사 시간(t(x, y)) 연산부(68), 배열 가공부(70), 단축 처리부(72), 최대 조사 시간(tmax) 취득부(74), 단위 영역 묘화 시간 연산부(76), 스테이지 속도 연산부(78), 속도 차트 작성부(80), 전송 처리부(82) 및 묘화 제어부(84)와 같은 각 '~ 부'는 처리 회로를 가지며, 그 처리 회로로서 전기 회로, 컴퓨터, 프로세서, 회로 기판, 양자 회로 혹은 반도체 장치 등을 이용할 수 있다. 또한, 각 '~ 부'는 공통되는 처리 회로(동일한 처리 회로)를 이용해도 된다. 혹은, 상이한 처리 회로(별도의 처리 회로)를 이용해도 된다. 패턴 면적 밀도(ρ(x, y)) 연산부(60), 근접 효과 보정 조사 계수(Dp(x, y)) 연산부(62), 화소 내 패턴 면적 밀도(ρ'(x, y)) 연산부(64), 조사량(D(x, y)) 연산부(66), 조사 시간(t(x, y)) 연산부(68), 배열 가공부(70), 단축 처리부(72), 최대 조사 시간(tmax) 취득부(74), 단위 영역 묘화 시간 연산부(76), 스테이지 속도 연산부(78), 속도 차트 작성부(80), 전송 처리부(82) 및 묘화 제어부(84)에 입출력되는 정보 및 연산 중인 정보는 메모리(112)에 그때마다 저장된다.
여기서, 도 1에서는 실시 형태 1을 설명함에 있어서 필요한 구성을 기재하고 있다. 묘화 장치(100)에 있어서 통상적으로 필요한 그 외의 구성을 구비하고 있어도 상관없다.
도 2는 실시 형태 1에서의 성형 애퍼처 어레이 부재의 구성을 나타내는 개념도이다. 도 2에서 성형 애퍼처 어레이 부재(203)에는 세로(y 방향) m 열 × 가로(x 방향) n 열(m, n ≥ 2)의 홀(개구부)(22)이 소정의 배열 피치로 매트릭스 형상으로 형성되어 있다. 도 2에서는 예를 들면, 가로세로(x, y 방향)로 512 × 512 열의 홀(22)이 형성된다. 각 홀(22)은 모두 동일한 치수 형상의 직사각형으로 형성된다. 혹은, 동일한 외경의 원형이어도 상관없다. 이들 복수의 홀(22)을 전자빔(200)의 일부가 각각 통과함으로써 멀티빔(20)이 형성되게 된다. 여기서는 가로세로(x, y 방향)가 모두 2 열이상의 홀(22)이 배치된 예를 나타냈으나, 이에 한정되지 않는다. 예를 들면, 가로세로(x, y 방향) 중 어느 일방이 복수 열이고 타방은 1 열 뿐이어도 상관없다. 또한, 홀(22)의 배열의 방법은 도 2와 같이 가로세로가 격자 형상으로 배치되는 경우에 한정되지 않는다. 예를 들면, 세로 방향(y 방향) k 단째의 열과 k + 1 단째의 열의 홀끼리가 가로 방향(x 방향)으로 치수(a)만큼 이동하여 배치되어도 된다. 마찬가지로, 세로 방향(y 방향) k + 1단째의 열과 k + 2단째의 열의 홀끼리가 가로 방향(x 방향)으로 치수(b)만큼 이동하여 배치되어도 된다.
도 3은 실시 형태 1에서의 블랭킹 애퍼처 어레이부의 일부를 나타내는 상면 개념도이다. 또한, 도 3에서 전극(24, 26)과 제어 회로(41)의 위치 관계는 일치시켜 기재하지 않았다. 블랭킹 애퍼처 어레이부(204)는 도 3에 나타낸 바와 같이, 도 2에 나타낸 성형 애퍼처 어레이 부재(203)의 각 홀(22)에 대응되는 위치에 멀티빔의 각각의 빔 통과용의 통과홀(25)(개구부)이 개구된다. 그리고, 각 통과홀(25)의 근방 위치에 해당하는 통과홀(25)을 사이에 두고 블랭킹 편향용의 전극(24, 26)의 조(블랭커 : 블랭킹 편향기)가 각각 배치된다. 또한, 각 통과홀(25)의 근방에는, 각 통과홀(25)용의 예를 들면 전극(24)에 편향 전압을 인가하는 제어 회로(41)(로직 회로)가 배치된다. 각 빔용의 2 개의 전극(24, 26)의 타방(예를 들면, 전극(26))은 접지된다. 또한, 각 제어 회로(41)는 제어 신호용의 예를 들면 10 비트의 병렬 배선이 접속된다. 각 제어 회로(41)는 예를 들면 10 비트의 병렬 배선 외에 클록 신호선 및 전원용의 배선이 접속된다. 클록 신호선 및 전원용의 배선은 병렬 배선의 일부의 배선을 유용해도 상관없다. 멀티빔을 구성하는 각각의 빔마다 전극(24, 26)과 제어 회로(41)에 의한 개별 블랭킹 기구(47)가 구성된다. 편향 제어 회로(130)로부터 각 제어 회로(41)용의 제어 신호가 출력된다. 각 제어 회로(41) 내에는 도시하지 않은 시프트 레지스트가 배치되며, 예를 들면 n × m 개의 멀티빔 중 1 열분의 제어 회로 내의 시프트 레지스터가 직렬로 접속된다. 그리고, 예를 들면 n × m 개의 멀티빔 중 1 열분의 제어 신호가 시리즈로 송신되고, 예를 들면 n 회의 클록 신호에 의해 각 빔의 제어 신호가 대응되는 제어 회로(41)에 저장된다.
각 통과홀을 통과하는 전자빔(20)은 각각 독립적으로 이러한 쌍이 되는 2 개의 전극(24, 26)에 인가되는 전압에 의해 편향된다. 이러한 편향에 의해 블랭킹 제어된다. 멀티빔 중 대응 빔을 각각 블랭킹 편향시킨다. 이와 같이, 복수의 블랭커가 성형 애퍼처 어레이 부재(203)의 복수의 홀(22)(개구부)을 통과한 멀티빔 중 각각 대응되는 빔의 블랭킹 편향을 행한다.
도 4는 실시 형태 1에서의 묘화 동작의 일례를 설명하기 위한 개념도이다. 도 4에 나타낸 바와 같이, 시료(101)의 묘화 영역(30)은 예를 들면 y 방향을 향해 소정의 폭으로 직사각형 형상의 복수의 스트라이프 영역(32)으로 가상 분할된다. 먼저, XY 스테이지(105)를 이동시켜 제1 번째의 스트라이프 영역(32)의 좌단, 혹은 더 좌측의 위치에 1 회의 멀티빔(20)의 조사로 조사 가능한 조사 영역(34)이 위치하도록 조정하고, 묘화가 개시된다. 제1 번째의 스트라이프 영역(32)을 묘화할 때에는, XY 스테이지(105)를 예를 들면 -x 방향으로 이동시킴으로써 상대적으로 x 방향으로 묘화를 진행시켜 간다. XY 스테이지(105)는 후술하는 바와 같이 가변속으로 예를 들면 연속 이동시킨다. 제1 번째의 스트라이프 영역(32)의 묘화 종료 후, 스테이지 위치를 -y 방향으로 이동시켜 제2 번째의 스트라이프 영역(32)의 우단, 혹은 더 우측의 위치에 조사 영역(34)이 상대적으로 y 방향에 위치하도록 조정하고, 이번에는 XY 스테이지(105)를 예를 들면 x 방향으로 이동시킴으로써 -x 방향을 향해 동일하게 묘화를 행한다. 제3 번째의 스트라이프 영역(32)에서는 x 방향을 향해 묘화하고, 제4 번째의 스트라이프 영역(32)에서는 -x 방향을 향해 묘화하는 것과 같이 교호로 방향을 변경하면서 묘화함으로써 묘화 시간을 단축시킬 수 있다. 단, 이러한 교호로 방향을 변경하면서 묘화하는 경우에 한정되지 않으며, 각 스트라이프 영역(32)을 묘화할 때 동일한 방향을 향해 묘화를 진행시키도록 해도 상관없다. 1 회의 샷으로는, 성형 애퍼처 어레이 부재(203)의 각 홀(22)을 통과함으로써 형성된 멀티빔에 의해 최대 각 홀(22)과 동일 수의 복수의 샷 패턴이 한 번에 형성된다.
도 5는 실시 형태 1에서의 멀티빔의 조사 영역과 묘화 대상 화소의 일례를 나타내는 도면이다. 도 5에서 스트라이프 영역(32)은 예를 들면 멀티빔의 빔 사이즈로 메쉬 형상의 복수의 메쉬 영역으로 분할된다. 이러한 각 메쉬 영역이 묘화 대상 화소(36)(묘화 위치)가 된다. 묘화 대상 화소(36)의 사이즈는 빔 사이즈에 한정되지 않으며, 빔 사이즈와는 관계 없이 임의의 크기로 구성되는 것이어도 상관없다. 예를 들면, 빔 사이즈의 1 / n(n은 1 이상의 정수)의 사이즈로 구성되어도 상관없다. 도 5의 예에서는 시료(101)의 묘화 영역이 예를 들면 y 방향으로 1 회의 멀티빔(20)의 조사로 조사 가능한 조사 영역(34)(묘화 필드)의 사이즈와 실질적으로 동일한 폭 사이즈로 복수의 스트라이프 영역(32)으로 분할된 경우를 나타내고 있다. 또한, 스트라이프 영역(32)의 폭은 이에 한정되지 않는다. 조사 영역(34)의 n 배(n은 1 이상의 정수)의 사이즈이면 적합하다. 도 5의 예에서는 512 × 512 열의 멀티빔인 경우를 나타내고 있다. 그리고, 조사 영역(34) 내에 1 회의 멀티빔(20)의 조사로 조사 가능한 복수의 화소(28)(빔의 묘화 위치)가 나타나 있다. 바꾸어 말하면, 인접하는 화소(28) 간의 피치가 멀티빔의 각 빔 간의 피치가 된다. 도 5의 예에서는 인접하는 4 개의 화소(28)로 둘러싸이고 또한 4 개의 화소(28) 중 1 개의 화소(28)를 포함하는 정방형의 영역에서 1 개의 그리드(29)를 구성한다. 도 5의 예에서는, 각 그리드(29)는 4 × 4 화소로 구성되는 경우를 나타내고 있다.
도 6은 실시 형태 1에서의 멀티빔의 묘화 방법의 일례를 설명하기 위한 도면이다. 도 6에서는 도 5에서 나타낸 스트라이프 영역(32)을 묘화하는 멀티빔 중 y 방향 3 단째의 좌표(1, 3), (2, 3), (3, 3), ···, (512, 3)의 각 빔으로 묘화하는 그리드의 일부를 나타내고 있다. 도 6의 예에서는 예를 들면, XY 스테이지(105)가 8 빔 피치분의 거리를 이동하는 동안에 4 개의 화소를 묘화(노광)하는 경우를 나타내고 있다. 이러한 4 개의 화소를 묘화(노광)하는 동안, 조사 영역(34)이 XY 스테이지(105)의 이동에 의해 시료(101)와의 상대 위치가 이탈되지 않도록, 편향기(208)에 의해 멀티빔(20) 전체를 일괄 편향시킴으로써 조사 영역(34)을 XY 스테이지(105)의 이동에 추종시킨다. 바꾸어 말하면, 트래킹 제어가 행해진다. 도 6의 예에서는 8 빔 피치분의 거리를 이동하는 동안에 4 개의 화소를 묘화(노광)함으로써 1 회의 트래킹 사이클을 실시하는 경우를 나타내고 있다.
구체적으로는, 스테이지 위치 검출기(139)가 미러(210)에 레이저를 조사하고 미러(210)로부터 반사광을 수광함으로써 XY 스테이지(105)의 위치를 측장한다. 측장된 XY 스테이지(105)의 위치는 제어 계산기(110)에 출력된다. 제어 계산기(110) 내에서는 묘화 제어부(84)가 이러한 XY 스테이지(105)의 위치 정보를 편향 제어 회로(130)에 출력한다. 편향 제어 회로(130) 내에서는 XY 스테이지(105)의 이동에 맞추어 XY 스테이지(105)의 이동에 추종하도록 빔 편향시키기 위한 편향량 데이터(트래킹 편향 데이터)를 연산한다. 디지털 신호인 트래킹 편향 데이터는 DAC 앰프(134)에 출력되고, DAC 앰프(134)는 디지털 신호를 아날로그 신호로 변환한 후 증폭시켜 트래킹 편향 전압으로서 편향기(208)에 인가한다.
그리고, 묘화 기구(150)는 당해 샷에서의 멀티빔의 각 빔의 각각의 조사 시간 중 최대 묘화 시간(T1) 내의 각각의 빔에 대응되는 묘화 시간, 각 빔의 묘화 위치에 멀티빔(20) 중 ON 빔의 각각 대응되는 빔을 조사한다. 구체적으로는 이하와 같이 동작한다.
전자총(201)(방출부)으로부터 방출된 전자빔(200)은 조명 렌즈(202)에 의해 대략 수직으로 성형 애퍼처 어레이 부재(203) 전체를 조명한다. 성형 애퍼처 어레이 부재(203)에는 직사각형의 복수의 홀(개구부)이 형성되고, 전자빔(200)은 모든 복수의 홀(22)이 포함되는 영역을 조명한다. 복수의 홀(22)의 위치에 조사된 전자빔(200)의 각 일부가 이러한 성형 애퍼처 어레이 부재(203)의 복수의 홀(22)을 각각 통과함으로써, 예를 들면 직사각형 형상의 복수의 전자빔(멀티빔)(20a ~ e)이 형성된다. 이러한 멀티빔(20a ~ e)은 블랭킹 애퍼처 어레이부(204)의 각각 대응되는 블랭커(제1 편향기 : 개별 블랭킹 기구) 내를 통과한다. 이러한 블랭커는 각각 개별적으로 통과하는 전자빔(20)을 연산된 묘화 시간(조사 시간)동안만큼 빔 ON, 그 이외에는 빔 OFF가 되도록 편향시킨다(블랭킹 편향을 행함).
블랭킹 애퍼처 어레이부(204)를 통과한 멀티빔(20a ~ e)은 축소 렌즈(205)에 의해 축소되고, 제한 애퍼처 부재(206)에 형성된 중심의 홀을 향해 진행된다. 여기서, 블랭킹 애퍼처 어레이부(204)의 블랭커에 의해 빔 OFF가 되도록 편향된 전자빔(20)은 제한 애퍼처 부재(206)(블랭킹 애퍼처 부재)의 중심의 홀로부터 위치가 벗어나, 제한 애퍼처 부재(206)에 의해 차폐된다. 한편, 블랭킹 애퍼처 어레이부(204)의 블랭커에 의해 편향되지 않거나 혹은 빔 ON이 되도록 편향된 전자빔(20)은 도 1에 나타낸 바와 같이 제한 애퍼처 부재(206)의 중심의 홀을 통과한다. 이러한 개별 블랭킹 기구의 ON / OFF에 의해 블랭킹 제어가 행해져, 빔의 ON / OFF가 제어된다. 이와 같이, 제한 애퍼처 부재(206)는 개별 블랭킹 기구에 의해 빔 OFF의 상태가 되도록 편향된 각 빔을 차폐한다. 그리고, 빔 ON이 되고 나서 빔 OFF가 될 때까지 형성된 제한 애퍼처 부재(206)를 통과한 빔에 의해 1 회분의 샷의 빔이 형성된다. 제한 애퍼처 부재(206)를 통과한 멀티빔(20)은 대물 렌즈(207)에 의해 초점이 맞춰져 원하는 축소율의 패턴상이 되어, 편향기(208) 및 편향기(209)에 의해 제한 애퍼처 부재(206)를 통과한 각 빔(멀티빔(20) 전체)이 동일 방향으로 일괄적으로 편향되고, 각 빔의 시료(101) 상의 각각의 묘화 위치(조사 위치)에 조사된다. 한 번에 조사되는 멀티빔(20)은, 이상적으로는 성형 애퍼처 어레이 부재(203)의 복수의 홀의 배열 피치에 전술한 원하는 축소율을 곱한 피치로 나열되게 된다. 묘화 장치(100)는 묘화 위치를 시프트하면서 차례로 샷 빔을 조사해 가는 방식으로 묘화 동작을 행하며, 원하는 패턴을 묘화할 때, 패턴에 따라 필요한 빔이 블랭킹 제어에 의해 빔 ON으로 제어된다.
도 6의 예에서는 좌표(1, 3)의 빔(1)에 의해 시각 t = 0부터 t = 최대 묘화 시간(T1)까지의 동안에 주목 그리드(29)의 예를 들면 최하단 오른쪽에서 1 번째의 화소에 1 샷째의 빔의 조사가 행해진다. 시각 t = 0부터 t = T1까지의 동안에 XY 스테이지(105)는 예를 들면 2 빔 피치분만큼 -x 방향으로 이동한다. 그 동안 트래킹 동작은 계속되고 있다.
당해 샷의 빔 조사 개시로부터 당해 샷의 최대 묘화 시간(T1)이 경과한 후, 편향기(208)에 의해 트래킹 제어를 위한 빔 편향을 계속하면서, 트래킹 제어를 위한 빔 편향과는 별도로 편향기(209)에 의해 멀티빔(20)을 일괄적으로 편향시킴으로써 각 빔의 묘화 위치(전회의 묘화 위치)를 다음의 각 빔의 묘화 위치(금회의 묘화 위치)로 시프트한다. 도 6의 예에서는, 시각 t = T1이 된 시점에서, 주목 그리드(29)의 최하단 오른쪽에서 1 번째의 화소에서 밑에서부터 2 단째이며 오른쪽에서 1 번째의 화소로 묘화 대상 화소를 시프트한다. 그 동안에도 XY 스테이지(105)는 정속 이동하고 있으므로 트래킹 동작은 계속되고 있다.
그리고, 트래킹 제어를 계속하면서 시프트된 각 빔의 묘화 위치에 당해 샷의 최대 묘화 시간(T2) 내의 각각 대응되는 묘화 시간에 멀티빔(20) 중 ON 빔의 각각 대응되는 빔을 조사한다. 도 6의 예에서는, 좌표(1, 3)의 빔(1)에 의해 시각 t = T1부터 t = T1 + T2까지의 동안에 주목 그리드(29)의 예를 들면 밑에서부터 2 단째이며 오른쪽에서 1 번째의 화소에 2 샷째의 빔의 조사가 행해진다. 시각 t = T1부터 t = T1 + T2까지의 동안에 XY 스테이지(105)는 예를 들면 2 빔 피치분만큼 -x 방향으로 이동한다. 그 동안 트래킹 동작은 계속되고 있다.
도 6의 예에서는, 시각 t = T1 + T2가 된 시점에서, 주목 그리드(29)의 밑에서부터 2 단째이며 오른쪽에서 1 번째의 화소에서 밑에서부터 3 단째이며 오른쪽에서 1 번째의 화소로 편향기(209)에 의한 멀티빔의 일괄 편향에 의해 묘화 대상 화소를 시프트한다. 그 동안에도 XY 스테이지(105)는 이동하고 있으므로 트래킹 동작은 계속되고 있다. 그리고, 좌표(1, 3)의 빔(1)에 의해 시각 t = T1 + T2에서 t = T1 + T2 + T3까지의 동안에 주목 그리드(29)의 예를 들면 밑에서부터 3 단째이며 오른쪽에서 1 번째의 화소에 3 샷째의 빔의 조사가 행해진다. 시각 t = T1 + T2에서 t = T1 + T2 + T3까지의 동안에 XY 스테이지(105)는 예를 들면 2 빔 피치분만큼 -x 방향으로 이동한다. 그 동안 트래킹 동작은 계속되고 있다. 시각 t = T1 + T2 + T3가 된 시점에서, 주목 그리드(29)의 밑에서부터 3 단째이며 오른쪽에서 1 번째의 화소에서 밑에서부터 4 단째이며 오른쪽에서 1 번째의 화소로 편향기(209)에 의한 멀티빔의 일괄 편향에 의해 묘화 대상 화소를 시프트한다. 그 동안에도 XY 스테이지(105)는 이동하고 있으므로 트래킹 동작은 계속되고 있다. 그리고, 좌표(1, 3)의 빔(1)에 의해 시각 t = T1 + T2 + T3에서 t = T1 + T2 + T3 + T4까지의 동안에 주목 그리드(29)의 예를 들면 밑에서부터 4 단째이며 오른쪽에서 1 번째의 화소에 4 샷째의 빔의 조사가 행해진다. 시각 t = T1 + T2 + T3에서 t = T1 + T2 + T3 + T4까지의 동안에 XY 스테이지(105)는 예를 들면 2 빔 피치분만큼 -x 방향으로 이동한다. 그 동안 트래킹 동작은 계속되고 있다. 이상에 의해, 주목 그리드(29)의 오른쪽에서 1 번째의 화소열의 묘화가 종료된다.
도 6의 예에서는, 첫 회 위치에서 3 회 시프트된 후의 각 빔의 묘화 위치에 각각 대응되는 빔을 조사한 후, DAC 앰프 유닛(134)은 트래킹 제어용의 빔 편향을 리셋함으로써 트래킹 위치를 트래킹 제어가 개시된 트래킹 개시 위치로 되돌린다. 바꾸어 말하면, 트래킹 위치를 스테이지 이동 방향과 반대 방향으로 되돌린다. 도 6의 예에서는, 시각 t = T1 + T2 + T3 + T4가 된 시점에서, 주목 그리드(29)의 트래킹을 해제하고 x 방향으로 8 빔 피치분 이탈된 주목 그리드로 빔을 되돌린다. 또한, 도 6의 예에서는 좌표(1, 3)의 빔(1)에 대해 설명하였으나, 그 외의 좌표의 빔에 대해서도 각각의 대응되는 그리드에 대하여 동일하게 묘화가 행해진다. 즉, 좌표(n, m)의 빔은 t = T1 + T2 + T3 + T4의 시점에서 대응되는 그리드에 대하여 오른쪽에서 1 번째의 화소열의 묘화가 종료된다. 예를 들면, 좌표(2, 3)의 빔(2)은 도 6의 빔(1)용의 주목 그리드(29)의 -x 방향으로 인접하는 그리드에 대하여 오른쪽에서 1 번째의 화소열의 묘화가 종료된다.
또한, 각 그리드의 오른쪽에서 1 번째의 화소열의 묘화는 종료되었으므로, 트래킹 리셋한 후에 차회의 트래킹 사이클에서 먼저 편향기(209)는 각 그리드의 밑에서부터 1 단째이며 오른쪽에서 2 번째의 화소에 각각 대응되는 빔의 묘화 위치를 맞추도록(시프트하도록) 편향시킨다.
이상과 같이 동일한 트래킹 사이클 중에는 편향기(208)에 의해 조사 영역(34)을 시료(101)에 대하여 상대 위치가 동일한 위치가 되도록 제어된 상태로 편향기(209)에 의해 1 화소씩 시프트시키면서 각 샷을 행한다. 그리고, 트래킹 사이클이 1 사이클 종료된 후, 조사 영역(34)의 트래킹 위치를 되돌린 후에 도 4의 하단에 나타낸 바와 같이 예를 들면 1 화소 이동된 위치에 1 회째의 샷 위치를 맞추고, 다음의 트래킹 제어를 행하면서 편향기(209)에 의해 1 화소씩 시프트시키면서 각 샷을 행한다. 스트라이프 영역(32)의 묘화 중에 이러한 동작을 반복함으로써, 조사 영역(34a ~ 34o)과 같은 식으로 순차적으로 조사 영역(34)의 위치가 이동해 가고, 당해 스트라이프 영역의 묘화를 행해 간다.
여기서, 이러한 동작을 가령 스테이지의 등속 이동 래스터 주사 방식으로 행하는 경우 T1 = T2 = T3 = T4가 되지만, 실시 형태 1에서는 샷마다 당해 샷의 최대 조사 시간을 가변으로 설정한다. 그리고, XY 스테이지(105)의 스테이지 속도를 가변속으로 제어한다. 실시 형태 1에서는 도 4의 중단에 나타낸 바와 같이 스트라이프 영역(32)을 복수의 컴파트먼트(CPM) 영역(37)(단위 영역의 일례)으로 분할한다. 그리고, CPM 영역(37)마다 XY 스테이지(105)의 스테이지 속도를 가변으로 설정한다. CPM 영역(37)의 사이즈는 x 방향(스트라이프 영역(32)의 긴 방향)에 대해 임의 사이즈여도 상관없다. 단, 조사 영역(34) 이상의 사이즈로 설정하면 보다 적합하다. 또한, 각 CPM 영역(37) 간에 x 방향(스트라이프 영역(32)의 긴 방향)의 사이즈가 동일한 사이즈여도 상이한 사이즈여도 된다. 또한, 1 개의 스트라이프 영역(32) 내에 CPM 영역(37)은 y 방향(스트라이프 영역(32)의 짧은 방향)에 대해서는 1 개 설정한다. 이 때문에, CPM 영역(37)의 y 방향 사이즈는 스트라이프 영역(32)과 동일한 사이즈로 하면 된다.
도 7은 실시 형태 1에서의 묘화 방법의 주요부 공정을 나타내는 순서도이다. 도 7에서 실시 형태 1에서의 묘화 방법은 패턴 면적 밀도(ρ(x, y)) 연산 공정(S102)과, 근접 효과 보정 조사 계수(Dp(x, y)) 연산 공정(S104)과, 화소 내 패턴 면적 밀도(ρ'(x, y)) 연산 공정(S106)과, 조사량(D(x, y)) 연산 및 조사 시간(t(x, y)) 연산 공정(S108)과, 배열 가공 공정(S110)과, 최대 조사 시간 단축 처리 공정(S122)과, 샷마다의 최대 조사 시간(tmax) 취득 공정(S130)과, 단위 영역 묘화 시간 연산 공정(S150)과, 스테이지 속도 연산 공정(S152)과, 스테이지 속도 차트 작성 공정(S154)과, 데이터 전송 처리 공정(S156)과, 묘화 공정(S158)과 같은 일련의 공정을 실시한다.
먼저, 시료(101)의 묘화 영역(30)(혹은 묘화될 칩 영역)은 소정의 폭으로 직사각형 형상의 스트라이프 영역(32)(묘화 영역의 다른 일례)으로 분할된다. 그리고, 각 스트라이프 영역(32)은 복수의 메쉬 형상의 화소 영역(36)(화소)으로 분할된다. 화소 영역(36)(화소)의 사이즈는 예를 들면, 빔 사이즈 혹은 그 이하의 사이즈이면 적합하다. 예를 들면, 10 nm 정도의 사이즈로 하면 적합하다. 화소 영역(36)(화소)은 멀티빔의 1 개의 빔 당 조사 단위 영역이 된다. 각 스트라이프 영역(32)은 복수의 전술한 CPM 영역(37)으로 분할된다.
ρ(x, y) 연산 공정(S102)으로서, ρ(x, y) 연산부(60)는 묘화 영역(여기서는 예를 들면 스트라이프 영역(35))을 소정의 사이즈로 메쉬 형상으로 복수의 근접 메쉬 영역(근접 효과 보정 계산용 메쉬 영역)으로 가상 분할한다. 근접 메쉬 영역의 사이즈는 근접 효과의 영향 범위의 1 / 10 정도, 예를 들면 1 μm 정도로 설정하면 적합하다. ρ(x, y) 연산부(60)는 기억 장치(140)로부터 묘화 데이터를 독출하여 근접 메쉬 영역마다 당해 근접 메쉬 영역 내에 배치되는 패턴의 패턴 면적 밀도(ρ(x, y))를 연산한다.
Dp(x, y) 연산 공정(S104)으로서, Dp(x, y) 연산부(62)는 근접 메쉬 영역마다 근접 효과를 보정하기 위한 근접 효과 보정 조사 계수(Dp(x, y))를 연산한다. 여기서, 근접 효과 보정 조사 계수(Dp(x, y))를 연산하는 메쉬 영역의 사이즈는 패턴 면적 밀도(ρ(x, y))를 연산하는 메쉬 영역의 사이즈와 동일할 필요는 없다. 또한, 근접 효과 보정 조사 계수(Dp(x, y))의 보정 모델 및 그 계산 방법은 종래의 싱글빔 묘화 방식에서 사용되고 있는 방법과 동일해도 상관없다.
ρ'(x, y) 연산 공정(S106)으로서, ρ'(x, y) 연산부(64)는 화소 영역(36)마다 당해 화소 영역(36) 내의 패턴 면적 밀도(ρ'(x, y))를 연산한다.
조사량(D(x, y)) 연산 및 조사 시간(t(x, y)) 연산 공정(S108)으로서, 먼저 D(x, y) 연산부(66)는 화소 영역(묘화 대상 화소)(36)마다 당해 화소 영역(36)에 조사하기 위한 조사량(D(x, y))을 연산한다. 조사량(D(x, y))은 예를 들면, 미리 설정된 기준 조사량(Dbase)에 근접 효과 보정 조사 계수(Dp(x, y))와 패턴 면적 밀도(ρ'(x, y))를 곱한 값으로서 연산하면 된다. 이와 같이, 조사량(D(x, y))은 화소 영역(36)마다 산출된 패턴의 면적 밀도에 비례하여 구하면 적합하다. 이어서, t(x, y) 연산부(68)는 화소 영역(36)마다 당해 화소 영역(36)에 연산된 조사량(D(x, y))을 입사시키기 위한 전자빔의 조사 시간(t(x, y))을 연산한다. 조사 시간(t(x, y))은 조사량(D(x, y))을 전류 밀도(J)로 나눔으로써 연산할 수 있다. 또한, t(x, y) 연산부(68)는 화소 영역(36)마다 얻어진 조사 시간(t(x, y))을 양자화 단위(Δ)(계조치 분해능)로 나눔으로써 정수의 계조치 데이터를 산출한다. 계조치 데이터는 예를 들면 0 ~ 1023의 계조치로 정의된다. 양자화 단위(Δ)는 다양하게 설정 가능한데, 예를 들면 1 ns(나노초) 등으로 정의할 수 있다. 양자화 단위(Δ)는 예를 들면 1 ~ 10 ns의 값을 이용하면 적합하다.
배열 가공 공정(S110)으로서, 배열 가공부(70)는 샷 순으로 화소 영역(36)마다의 조사 시간 데이터를 재배열한다(배열 가공됨). 시료(101) 상의 어느 화소 영역(36)을 멀티빔(20) 중 어느 빔이 조사할지는 묘화 시퀀스에 의해 결정된다. 샷 순으로 배열 가공된 화소 영역(36)마다 얻어진 계조치 데이터는 조사 시간 데이터(샷 데이터)로서 기억 장치(142)에 샷 순으로 기억된다.
최대 조사 시간 단축 처리 공정(S122)으로서, 단축 처리부(72)는 샷마다 대기 시간이 되는 불필요한 시간을 단축하는 최대 조사 시간 단축 처리를 행한다.
도 8(a)와 도 8(b)는 실시 형태 1에서의 최대 조사 시간의 단축 처리를 설명하기 위한 일례를 나타내는 도면이다. 도 8(a)의 예에서는 각 샷에 대해 일률적으로 1023Δ를 최대 조사 시간으로 설정하는 경우를 나타내고 있다. 또한, 도 8(a)의 예에서는 1023Δ를 최대 조사 시간으로 설정한 경우에 연속으로 조사되는 k 샷째의 각 빔(여기서는 빔 1 ~ 5)의 조사 시간과, k + m 샷째의 각 빔의 조사 시간과, k + p 샷째의 각 빔의 조사 시간을 나타내고 있다. k 샷째에 주목하면, 빔 1의 조사 시간은 768Δ로 최대를 나타낸다. 따라서, k 샷째에서는 768Δ의 시간 경과 후 255Δ(= 1023Δ - 768Δ)의 시간이 모든 빔이 조사하고 있지 않은 대기 시간이 된다. k + m 샷째에 주목하면, 빔 2의 조사 시간이 최대를 나타낸다. 따라서, k + m 샷째에서는 빔 2의 조사 시간이 경과한 후 1023Δ의 시간이 될 때까지 모든 빔이 조사하고 있지 않은 대기 시간이 된다. k + p 샷째에 주목하면, 빔 1의 조사 시간이 1023Δ로 최대를 나타낸다. 따라서, k + p 샷째에서는 모든 빔이 조사하고 있지 않은 대기 시간이 존재하지 않는 당초의 최대 조사 시간이 필요한 샷이 된다.
그래서, 단축 처리부(72)는 샷마다 이러한 대기 시간을 단축하는 처리를 행한다. 도 8(b)의 예에서는, k 샷째에 주목하면, 빔 1의 조사 시간이 경과한 후 1023Δ의 시간이 될 때까지가 대기 시간이 된다. 따라서, k 샷째에 대해 이러한 대기 시간을 단축시킨다. 그 결과, k 샷째에 대해 이러한 대기 시간분만큼 묘화 시간을 단축시킬 수 있다. k + m 샷째에 주목하면, 빔 2의 조사 시간이 경과한 후 1023Δ의 시간이 될 때까지가 대기 시간이 된다. 따라서, k + m 샷째에 대해 이러한 대기 시간을 단축시킨다. 그 결과, k + m 샷째에 대해 이러한 대기 시간분만큼 묘화 시간을 단축시킬 수 있다. k + p 샷째에 주목하면, 대기 시간이 발생하지 않았으므로 k + p 샷째에 대해서는 단축시킬 수 없다. 이상과 같이, 모든 샷에 대해 이러한 최대 조사 시간의 단축 처리를 행한다.
샷마다의 최대 조사 시간(tmax) 취득 공정(S130)으로서, tmax 취득부(74)는 멀티빔(20)의 샷마다 멀티빔(20)의 각 빔의 조사 시간 중 최대 조사 시간(tmax)을 취득한다. 도 8(b)의 예에서는, 예를 들면 k 샷째에 주목하면, 단축 후의 최대 조사 시간 768Δ(빔 1의 조사 시간)가 최대 조사 시간(tmax)이 된다.
단위 영역 묘화 시간 연산 공정(S150)으로서, 단위 영역 묘화 시간 연산부(76)는 샷마다 연산된 최대 조사 시간(tmax)을 이용하여 시료(101)의 묘화 영역(예를 들면, 스트라이프 영역(32))이 분할된 복수의 CPM 영역(37)(단위 영역)에서의 CPM 영역(37)마다 XY 스테이지(105)가 이동하면서 당해 CPM 영역(37)을 멀티빔(20)에 의한 복수 회의 샷으로 조사하는 경우의 각 샷의 최대 조사 시간(tmax)을 합계한 단위 영역 묘화 시간을 연산한다. 여기서, 멀티빔(20)의 1 회의 샷으로 조사 가능한 조사 영역(34)(조사 가능 영역)의 기준 위치가 중첩되는 CPM 영역(37)에, 당해 CPM 영역(37)을 멀티빔(20)이 조사하는 경우의 복수 회의 샷의 일부로서 당해 샷을 소속시킨다. 도 4의 하단의 예는 CPM1(CPM 영역(37))과 조사 영역(34a ~ 34o)의 각각의 위치 관계를 예시하고 있다. 도 4의 하단의 예에서는, CPM1(CPM 영역(37))은 조사 영역(34b ~ 34n)의 각각에서 실시되는 샷에 의해 묘화된다.
실시 형태 1에서는 CPM1을 묘화할 복수 회의 샷이 될 지의 여부를 조사 영역(34a ~ 34o)의 기준 위치(11a ~ 11o)가 CPM1 내에 들어가는지의 여부로 판단한다. 기준 위치(11)는 예를 들면 당해 조사 영역(34)의 중심 위치로 설정되면 적합하다. 도 4의 하단의 예에서는 조사 영역(34a ~ 34o) 중 조사 영역(34d ~ 34l)의 기준 위치(11)가 CPM1 내에 들어가므로, 조사 영역(34d ~ 34l)에서 조사된 복수의 샷이 당해 CPM 영역(37)의 묘화 시간을 연산하기 위한 샷이 된다. 도 6의 예에서는 조사 영역(34d ~ 34l)의 각각의 샷 사이클 중에 실행된 4 회씩의 샷이 당해 CPM 영역(37)의 묘화 시간을 연산하기 위한 샷이 된다. CPM 영역(37)마다의 단위 영역 묘화 시간은, 당해 CPM 영역(37)에 소속되는 각 샷의 최대 조사 시간(tmax)을 합계한 Σtmax로 연산할 수 있다. 또한, 묘화 위치의 시프트 시간은 각 샷의 최대 조사 시간에 비해 통상적으로는 충분히 작으므로 무시해도 상관없으나, 무시할 수 없는 경우에는 묘화 위치의 시프트 시간을 포함하여 묘화 시간을 산정하면 된다.
또한, 상기의 설명에서는 묘화의 진행에 따라 묘화 영역 내의 각 샷에 대하여 최대 조사 시간을 구하고, 기준 위치가 CPM 영역에 들어가는 경우의 최대 조사 시간을 적산하여 CPM 영역의 묘화 시간으로 하였으나, 보다 간편하게는, CPM 영역 내의 묘화 패턴에 대한 최대 조사 시간을 CPM 영역마다 구하고, 이 최대 조사 시간으로 CPM 영역 전체를 묘화하는 것으로 하여 CPM 영역의 묘화 시간을 설정해도 충분히 효과가 얻어진다. 또한, 보다 간이하게는, 근접 효과 보정 계수와 패턴 밀도에 의해 조사량(즉, 조사 시간)이 결정되므로, 이 패턴 밀도와 최대 조사 시간의 관계에 따라 패턴 밀도로부터 상정되는 단위 영역당 묘화 시간(스테이지 속도에 대응됨)을 미리 설정해 두고, 이 설정된 단위 영역 묘화 시간에 따라 CPM 단위로 패턴 밀도로부터 직접 묘화 시간을 결정하는 것으로 해도 동일한 효과가 얻어진다. 이들은 성능 요구에 따라 결정하면 된다.
스테이지 속도 연산 공정(S152)으로서, 스테이지 속도 연산부(78)는 단위 영역 묘화 시간을 이용하여 스테이지 속도가 가변속이 되도록 CPM 영역(37)마다 XY 스테이지(105)의 속도를 연산한다. 구체적으로는, 당해 CPM 영역(37)의 스테이지 진행 방향(x 방향)의 사이즈를 당해 CPM 영역(37)의 단위 영역 묘화 시간으로 나눔으로써 당해 CPM 영역(37)의 스테이지 속도를 연산하면 된다. CPM 영역(37)마다 상이한 단위 영역 묘화 시간이 될 수 있으므로, 스테이지 속도는 가변속이 된다.
스테이지 속도 차트 작성 공정(S154)으로서, 속도 차트 작성부(80)는 CPM 영역(37)마다의 스테이지 속도를 이용하여 스테이지 속도 차트를 작성한다.
도 9(a) 내지 도 9(f)는 실시 형태 1에서의 스테이지 속도와 다른 인자와의 관계의 일례를 나타내는 도면이다. 도 9(a)에서는 세로축에 근접 효과 보정 조사 계수(Dp(x, y))의 값을 나타내고, 가로축에 x 방향 위치를 나타내고 있다. 도 9(a)에서는 CPM 영역(37)(구간)마다의 근접 효과 보정 조사 계수(Dp(x, y))의 값의 일례를 나타내고 있다. CPM 영역(37) 내에서 Dp(x, y)는 통상적인 묘화 패턴으로는 다양한 값을 취하지만, 여기서는 모식적으로 영역 내에서 일정한 것으로 하고 있다. 도 9(a)의 예에서는 동일한 근접 효과 보정 조사 계수(Dp(x, y))의 값을 취하는 범위를 CPM 영역(37)으로 설정하고 있다. 따라서, 도 9(a)의 예에서는 CPM 영역(37)의 묘화 진행 방향(x 방향)의 폭 사이즈는 서로 상이하다. 이러한 각 CPM 영역(37)(구간)에 대응되는 패턴 면적 밀도(ρ(x, y))의 일례를 도 9(b)에 나타내고 있다. 도 9(a) 및 도 9(b)에 나타낸 바와 같이, 패턴 면적 밀도(ρ(x, y))가 높은 영역에 비해 낮은 CPM 영역(37)(구간)이 근접 효과 보정 조사 계수(Dp(x, y))의 값이 크다는 것을 알 수 있다. 이는 근접 효과 보정을 행하기 위하여, 패턴 면적 밀도가 낮은 영역에서는 묘화 시에 반사 전자에 의해 받는 노광량이 적기 때문에 패턴 면적 밀도가 높은 영역과 동등한 노광량으로 맞추기 위해 조사량을 증가시킬 필요가 있기 때문이다. 바꾸어 말하면, 패턴 면적 밀도(ρ(x, y))가 높은 영역에 비해 낮은 CPM 영역(37)(구간)이 조사 시간이 길다는 것을 알 수 있다. 도 9(c)에는 종래의 싱글빔의 경우와의 비교를 위하여 참고로서 VSB 방식의 싱글빔 묘화를 상정한 경우의 샷 수의 추이를 나타내고 있다. 싱글빔에서는 패턴 면적 밀도(ρ(x, y))가 높은 영역이 낮은 CPM 영역(37)(구간)에 비해 샷 수가 많아진다. 도 9(d)에는 참고로서 VSB 방식의 싱글빔 묘화를 상정한 경우의 스테이지 속도의 차트를 나타내고 있다. 묘화 시간은 샷 수에 대략 비례하므로, 패턴 면적 밀도(ρ(x, y))가 높은 영역이 낮은 CPM 영역(37)(구간)에 비해 샷 수가 많고, 이에 따라 묘화 시간이 증가하기 때문에 스테이지 속도는 느려진다. 이와 같이, VSB 방식의 싱글빔에서는 스테이지 속도는 패턴 밀도로 결정된다.
도 9(e)에서는 각 CPM 영역(37)(구간)의 묘화 시간의 추이를 조사 영역(34)(묘화 필드)의 위치로 나타내고 있다. 도 9(e)에서는 조사 영역(34)(묘화 필드)이 중첩되는 CPM 영역(37)의 묘화 시간을 조사 영역(34)(묘화 필드)의 기준 위치(여기서는 중심)로 나타내고 있다. 또한, 패턴 밀도가 높은 CPM 영역(37)(구간)의 묘화 시간은 짧으며, 패턴 밀도가 낮은 CPM 영역(37)(구간)의 묘화 시간은 길어진다. 바꾸어 말하면, 조사 영역(34)(묘화 필드)의 묘화 시간의 추이는 도 9(a)에 나타낸 근접 효과 보정 조사 계수(Dp(x, y))의 값의 추이에 비례한다. 도 9(e)에서는 묘화 시간이 긴 CPM 영역(37)(구간)에 소속되는 조사 영역(34)(묘화 필드)을 우선적으로 나타내고 있다. 조사 영역(34)(묘화 필드)의 기준 위치(중심)가 묘화 시간이 짧은 CPM 영역(37)(구간) 내에 있어도, 묘화 영역의 일부가 묘화 시간이 긴 CPM 영역(37)(구간)에 중첩되는 경우에는 긴 조사 시간으로 제어하게 된다. 따라서, 묘화 시간이 긴 CPM 영역(37)(구간)에 소속되는 조사 영역(34)(묘화 필드)이 나타나 있는 영역이 당해 CPM 영역(37)(구간)보다 넓게 나타난다. 이 예에서는 조사 영역(34)(묘화 필드)의 기준 위치를 중심으로 하고 있으므로, 조사 영역(34)(묘화 필드)의 절반의 크기만큼 넓게 나타나 있다.
스테이지 속도는 도 9(f)에 나타낸 바와 같이 추이한다. 전술한 바와 같이 조사 영역(34)(묘화 필드)이 중첩되는 CPM 영역(37)의 묘화 시간에 당해 조사 영역(34)의 트래킹 사이클 중의 복수의 샷이 소속된다. 따라서, 조사 영역(34)(묘화 필드)이 중첩되는 CPM 영역(37)의 스테이지 속도에 당해 조사 영역(34)의 트래킹 사이클 중의 복수의 샷이 소속된다. 그 결과, 도 9(f)에 나타낸 바와 같이 스테이지 속도는 CPM 영역(37)(구간)의 도중에 변화되어 간다. 바꾸어 말하면, 각 CPM 영역(37)(구간)의 속도 영역과 CPM 영역(37)(구간)의 사이에는 오차가 발생한다. 또한, 스테이지 속도는 느린 속도와 빠른 속도가 중첩되는 경우에는 느린 속도가 우선된다. 스테이지 속도가 지나치게 빠르면 조사 시간이 종료되기 전에 스테이지 이동을 보정하기 위한 트래킹량이 과대해져 조사 위치가 편향기(208)의 편향 가능 영역을 벗어나기 때문이다. 또한, 스테이지 속도는 당해 CPM 영역(37)용으로 연산된 속도를 초과하지 않도록 가속 혹은 감속시킨다. 따라서, 느린 속도에서 빠른 속도로 가속하는 경우에는 빠른 속도의 속도 영역에 들어간 후에 당해 빠른 속도의 CPM 영역(37)의 속도까지 가속한다. 반대로, 빠른 속도에서 느린 속도로 감속하는 경우에는 느린 속도의 속도 영역에 들어갈 때까지 감속이 종료되도록 빠른 속도의 속도 영역의 최종부에서 감속한다. 속도 차트 작성부(80)는 이상의 스테이지 속도 차트를 작성한다. 작성된 스테이지 속도 차트 데이터는 기억 장치(142)에 저장된다.
또한 상기와 같이 스테이지 속도를 제어하면, 도면에도 나타난 바와 같이 실제의 묘화 속도보다 스테이지 속도가 느린 경우가 발생하게 되는데, 실제로 묘화할 때에는 전자 광학계의 편향 가능 범위(묘화가 가능한 범위)를 초과하여 묘화할 수는 없다. 이 때문에, 실제의 스테이지 위치와 묘화 제어의 사이에서 소정의 묘화 위치에 샷할 수 있도록 동기를 취하여 묘화를 진행시킬 어떠한 제어 기구가 필요해지는데, 예를 들면, 규정된 묘화 범위(예를 들면, 트래킹 가능 범위)로 스테이지 위치가 이동하는 것을 기다렸다가 소정 부분의 묘화를 실행하도록 하면 된다.
데이터 전송 처리 공정(S156)으로서, 전송 처리부(82)는 기억 장치(142)에 저장된 샷마다의 샷 데이터를 편향 제어 회로(130)에 출력한다. 그리고, 편향 제어 회로(130)는 샷마다 각 빔용의 로직 회로(41)에 샷마다의 샷 데이터를 전송한다. 또한, 편향 제어 회로(130)는 고속 시프트 편향용의 편향 데이터와 트래킹 제어용의 편향 데이터를 생성한다. 그리고, 편향 제어 회로(130)는 각 샷의 타이밍과 동기하여 고속 시프트 편향용의 편향 데이터를 DAC 앰프 유닛(132)에 출력한다. DAC 앰프 유닛(132)은 디지털 신호로 생성된 편향 데이터를 아날로그 데이터로 변환하여 증폭시킨 후에 편향 전압으로서 편향기(209)에 인가한다. 또한, 편향 제어 회로(130)는 트래킹 제어용의 편향 데이터를 편향 영역(34)의 트래킹 동작 타이밍에 맞추어 DAC 앰프 유닛(134)에 출력한다. DAC 앰프 유닛(134)은 디지털 신호로 생성된 편향 데이터를 아날로그 데이터로 변환하여 증폭시킨 후에 편향 전압으로서 편향기(208)에 인가한다.
묘화 공정(S158)으로서, 묘화 제어부(84)의 제어하에 스테이지 제어부(138)는 스테이지 속도 차트를 독출하고, 스테이지 속도 차트를 따라 XY 스테이지(105)의 속도를 가변속으로 제어한다. 이 때, 도 9(f)의 스테이지 속도 차트에 나타낸 바와 같이 스테이지 제어부(138)는 묘화할 패턴의 패턴 밀도가 높은 시료 상의 영역을 묘화하는 경우에는 시료가 재치된 XY 스테이지(105)의 스테이지 속도를 고속으로 제어하고, 패턴 밀도가 낮은 시료 상의 영역을 묘화하는 경우에는 XY 스테이지(105)의 스테이지 속도를 저속으로 제어한다. 또한, 묘화 기구(150)는 XY 스테이지(105)의 이동에 동기하면서 전자빔에 의한 멀티빔(20)을 이용하여 시료(101)에 패턴을 묘화한다. 이와 같이, 스테이지 제어부(138)가 XY 스테이지(105)의 스테이지 속도를 가변속으로 제어하면서, 묘화 기구(150)는 전자빔에 의한 멀티빔(20)을 이용하여 시료(101)에 패턴을 묘화한다. 이 때, 전술한 바와 같이 조사 영역(34)이 시료(101) 상에 세트된 상태로 1 회의 트래킹 사이클 중에 각 빔의 위치를 시프트시키면서 최대 조사 시간이 상이한 멀티빔에 의한 복수 회의 샷이 행해진다. 그리고, 트래킹 사이클의 묘화를 반복해서 행함으로써 스트라이프 영역(32) 전체, 나아가서는 시료(101)의 묘화 영역(30) 전체의 묘화 처리를 진행시켜 간다.
도 10(a)와 도 10(b)는 실시 형태 1에서의 샷 시간의 단축과 패턴 밀도와의 관계를 설명하기 위한 도면이다. 도 10(a)의 예에서는 각 샷에 대해 일률적으로 예를 들면 1023Δ를 최대 조사 시간(설정 가능 최대 조사 시간)으로 설정하는 경우를 나타내고 있다. 고밀도부(패턴 밀도가 높은 영역)의 각 샷에서는 조사 시간에 생략 가능 부분(시간)이 존재한다. 이에 반해, 저밀도부(패턴 밀도가 낮은 영역)의 샷에서는 조사 시간에 생략 가능 부분(시간)이 존재하지 않는다. 따라서, 실시 형태 1에서는 도 10(b)에 나타낸 바와 같이 고밀도부(패턴 밀도가 높은 영역)의 각 샷의 생략 가능 부분(시간)을 단축시킨다. 이에 따라, 샷마다의 최대 조사 시간을 가변으로 하여 각 샷의 묘화 시간을 큰 폭으로 단축시킬 수 있다. 바꾸어 말하면, 묘화 기구(150)는 멀티빔(20)의 샷마다의 최대 조사 시간에 따라 각 샷에서의 다음 샷으로의 전환 기간이 가변이 되도록 멀티빔(20)에 의한 복수 회의 샷을 행한다. 구체적으로는, 묘화 기구(150)는 1 회의 멀티빔(20)의 샷에 설정 가능한 설정 가능 최대 조사 시간 중 샷마다의 최대 조사 시간을 초과하는 시간을 단축시켜 다음 멀티빔의 샷을 행한다. 그리고, 샷마다의 최대 조사 시간을 가변으로 함으로써, 고밀도부(패턴 밀도가 높은 영역)에서의 XY 스테이지(105)의 스테이지 속도를 빠르게 하는 것과 같이 스테이지 속도를 가변으로 할 수 있다.
이상과 같이, 실시 형태 1에 따르면 멀티빔 묘화에서 XY 스테이지(105)를 가변속으로 이동시킴으로써 스루풋 성능을 더 높일 수 있다.
또한, 스트라이프 영역(32) 중에 패턴이 존재하지 않는 영역이 있다면 그 영역을 1 개의 CPM 영역(37)으로 설정하고, 이러한 패턴이 존재하지 않는 CPM 영역(37)(NULL 영역)에 대해서는 고속으로 스테이지 이동을 하면 된다. 이에 따라, 스루풋 성능을 더 높일 수 있다.
실시 형태 2.
실시 형태 1에서는 1 회의 샷에 대해 멀티빔의 각 빔이 각각 필요한 조사 시간만큼 연속 조사하는 경우에 대해 설명하였다. 각 샷 내의 빔의 조사 방법은 이에 한정되지 않는다. 실시 형태 2에서는 1 회의 샷을 복수의 분할 샷으로 나누고 분할된 빔을 동일한 위치에 차례로 조사하는 구성에 대해 설명한다.
도 11은 실시 형태 2에서의 묘화 장치의 구성을 나타내는 개념도이다. 도 11에서 묘화 장치(100)는 전자 경통(102) 내의 블랭킹 애퍼처 어레이부(204)와 제한 애퍼처 부재(206)의 사이에 추가로 편향기(212)를 배치한 점, 제어부(160)가 추가로 로직 회로(131)를 가지는 점 및 제어 계산기(110) 내에 분할 샷 데이터 생성부(86)를 추가로 배치한 점, 최대 조사 시간(tmax) 취득부(74) 대신에 최대 조사 시간(tmax) 연산부(75)를 배치한 점 이외에는 도 1과 동일하다. 또한, 이하에 특별히 설명한 점 이외의 내용은 실시 형태 1과 동일하다.
로직 회로(131)는 편향 제어 회로(130)에 접속된다. 또한, 로직 회로(131)는 편향기(212)에 접속된다.
패턴 면적 밀도(ρ(x, y)) 연산부(60), 근접 효과 보정 조사 계수(Dp(x, y)) 연산부(62), 화소 내 패턴 면적 밀도(ρ'(x, y)) 연산부(64), 조사량(D(x, y)) 연산부(66), 조사 시간(t(x, y)) 연산부(68), 배열 가공부(70), 단축 처리부(72), 최대 조사 시간(tmax) 연산부(75), 분할 샷 데이터 생성부(86), 단위 영역 묘화 시간 연산부(76), 스테이지 속도 연산부(78), 속도 차트 작성부(80), 전송 처리부(82) 및 묘화 제어부(84)와 같은 각 '~ 부'는 처리 회로를 가지며, 그 처리 회로로서 전기 회로, 컴퓨터, 프로세서, 회로 기판, 양자 회로 혹은 반도체 장치 등을 이용할 수 있다. 또한, 각 '~ 부'는 공통되는 처리 회로(동일한 처리 회로)를 이용해도 된다. 혹은, 상이한 처리 회로(별도의 처리 회로)를 이용해도 된다. 패턴 면적 밀도(ρ(x, y)) 연산부(60), 근접 효과 보정 조사 계수(Dp(x, y)) 연산부(62), 화소 내 패턴 면적 밀도(ρ'(x, y)) 연산부(64), 조사량(D(x, y)) 연산부(66), 조사 시간(t(x, y)) 연산부(68), 배열 가공부(70), 단축 처리부(72), 최대 조사 시간(tmax) 연산부(75), 분할 샷 데이터 생성부(86), 단위 영역 묘화 시간 연산부(76), 스테이지 속도 연산부(78), 속도 차트 작성부(80), 전송 처리부(82) 및 묘화 제어부(84)에 입출력되는 정보 및 연산 중인 정보는 메모리(112)에 그때마다 저장된다.
도 12는 실시 형태 2에서의 개별 블랭킹 제어 회로와 공통 블랭킹 제어 회로의 내부 구성을 나타내는 개념도이다. 도 12에서 묘화 장치(100) 본체 내의 블랭킹 애퍼처 어레이부(204)에 배치된 개별 블랭킹 제어용의 각 로직 회로(41)에는 시프트 레지스터(40), 레지스터(42) 및 AND 연산기(44)가 배치된다. 또한, AND 연산기(44)에 대해서는 생략해도 상관없다. 실시 형태 2에서는 종래에 예를 들면 10 비트의 제어 신호에 의해 제어되던 각 빔용의 개별 블랭킹 제어를 예를 들면 1 비트의 제어 신호에 의해 제어한다. 즉, 시프트 레지스터(40), 레지스터(42) 및 AND 연산기(44)에는 1 비트의 제어 신호가 입출력된다. 제어 신호의 정보량이 적음으로써 제어 회로의 설치 면적을 줄일 수 있다. 바꾸어 말하면, 설치 스페이스가 좁은 블랭킹 애퍼처 어레이부(204) 상에 로직 회로를 배치하는 경우에도 보다 작은 빔 피치로 보다 많은 빔을 배치할 수 있다. 이는 블랭킹 애퍼처 어레이부(204)를 투과하는 전류량을 증가시켜, 즉 묘화 스루풋을 향상시킬 수 있다.
또한, 공통 블랭킹용의 편향기(212)에는 앰프가 배치되고, 로직 회로(131)에는 레지스터(50) 및 카운터(52)가 배치된다. 이는, 동시에 복수의 상이한 제어를 행하는 것이 아니라 ON / OFF 제어를 행하는 1 회로이면 되기 때문에, 고속으로 응답시키기 위한 회로를 배치하는 경우에도 설치 스페이스, 회로의 사용 전류 제한의 문제가 발생하지 않는다. 따라서 이 앰프는 블랭킹 애퍼처 상에 실현 가능한 앰프보다 현격히 고속으로 동작한다. 이 앰프는 예를 들면 10 비트의 제어 신호에 의해 제어한다. 즉, 레지스터(50) 및 카운터(52)에는 예를 들면 10 비트의 제어 신호가 입출력된다.
실시 형태 2에서는, 전술한 개별 블랭킹 제어용의 각 로직 회로(41)에 의한 빔 ON / OFF 제어와, 멀티빔 전체를 일괄적으로 블랭킹 제어하는 공통 블랭킹 제어용의 로직 회로(131)에 의한 빔 ON / OFF 제어의 양방을 이용하여 각 빔의 블랭킹 제어를 행한다.
도 13은 실시 형태 2에서의 묘화 방법의 주요부 공정을 나타내는 순서도이다. 도 13에서 실시 형태 2에서의 묘화 방법은 배열 가공 공정(S110)과 최대 조사 시간 단축 처리 공정(S122)의 사이에 분할 샷 데이터 생성 공정(S120)을 실시한다는 점 이외에는 도 7과 동일하다.
패턴 면적 밀도(ρ(x, y)) 연산 공정(S102)부터 배열 가공 공정(S110)까지의 각 공정의 내용은 실시 형태 1과 동일하다.
분할 샷 데이터 생성 공정(S120)으로서, 분할 샷 데이터 생성부(86)는 1 회분의 샷을 동일한 위치에 연속으로 조사되는 조사 시간이 상이한 복수 회의 분할 샷으로 분할하기 위한 분할 샷 데이터를 생성한다. 분할 샷 데이터 생성부(86)는 샷마다 멀티빔의 각 빔의 조사 시간을 양자화 단위(Δ)(계조치 분해능)로 나눈 계조치(N)를 미리 설정된 자릿수(n)의 2 진수의 값으로 변환한다. 예를 들면, N = 50이면 50 = 25 + 24 + 21이므로, 예를 들면, 10 자리의 2 진수의 값으로 변환하면 “0000110010”이 된다. 예를 들면, N = 500이면 마찬가지로 “0111110100”이 된다. 예를 들면, N = 700이면 마찬가지로 “1010111100”이 된다. 예를 들면, N = 1023이면 마찬가지로 “1111111111”이 된다. 각 빔의 조사 시간은 샷마다 각 빔이 조사하게 되는 메쉬 영역에 정의된 조사 시간이 상당한다.
자릿수(n)는 2 자리 이상이면 되나, 바람직하게는 4 자리 이상, 보다 바람직하게는 8 자리 이상이 적합하다. 여기서는 일례로서 10 자리를 이용한다.
실시 형태 2에서는 각 빔의 샷마다 당해 빔의 조사를, 변환된 2 진수의 각 자리의 값을 각각 10 진수로 정의한 경우에 상당하는 계조치에 Δ를 곱한 조사 시간으로서 각 자리를 조합한 자릿수(n) 회의 조사로 분할한다. 바꾸어 말하면, 1 샷을 Δan -12n-1, ···Δak2k, ···Δa121, Δa020의 각 조사 시간의 복수의 분할 샷으로 분할한다. 자릿수 n = 10으로 하는 경우, 1 샷은 10 회의 분할 샷(조사 스텝)으로 분할된다. ak는 각 자리의 비트값을 나타낸다. 따라서, 비트값이 1인 자리에 대응되는 분할 샷에서는 빔이 조사되지만, 비트값이 0인 자리에 대응되는 분할 샷에서는 빔이 조사되지 않게 된다.
도 14는 실시 형태 2에서의 자릿수 n = 10으로 하는 경우의 각 자릿수와 각 자리의 조사 시간의 관계를 나타내는 비트 가공 테이블을 나타내는 도면이다. 도 14에서 1 자리째(k = 0)(1 비트째)의 조사 시간은 Δ, 2 자리째(k = 1)(2 비트째)의 조사 시간은 2Δ, 3 자리째(k = 2)(3 비트째)의 조사 시간은 4Δ, 4 자리째(k = 3)(4 비트째)의 조사 시간은 8Δ, ···, 10 자리째(k = 9)(10 비트째)의 조사 시간이 512Δ가 된다.
예를 들면 자릿수 n = 10으로 하는 경우, N = 700이면 10 자리째(10 비트째)의 조사 시간이 Δ × 512가 된다. 9 자리째(9 비트째)의 조사 시간이 Δ × 0 = 0이 된다. 8 자리째(8 비트째)의 조사 시간이 Δ × 128이 된다. 7 자리째(7 비트째)의 조사 시간이 Δ × 0 = 0이 된다. 6 자리째(6 비트째)의 조사 시간이 Δ × 32가 된다. 5 자리째(5 비트째)의 조사 시간이 Δ × 16이 된다. 4 자리째(4 비트째)의 조사 시간이 Δ × 8이 된다. 3 자리째(3 비트째)의 조사 시간이 Δ × 4가 된다. 2 자리째(2 비트째)의 조사 시간이 Δ × 0 = 0이 된다. 1 자리째(1 비트째)의 조사 시간이 Δ × 0 = 0이 된다. 이들의 합계 시간은 700Δ이다. 이와 같이, 분할 샷 데이터 생성부(86)는 멀티빔의 빔마다Δan -12n-1, ···Δak2k, ···Δa121, Δa020의 각 조사 시간의 복수 회의 분할 샷 중에서 조사할 화소(조사 위치)에 필요한 조사 시간이 얻어지는 분할 샷의 조가 선택되도록 분할 샷 데이터를 생성한다. 또한, 조사 시간이 0인 경우(N = 0)에는 모든 분할 샷을 선택하지 않는 데이터 “0000000000”을 생성하면 된다.
그리고, 예를 들면 자릿수가 큰 쪽에서부터 차례로 조사하는 경우, 예를 들면 Δ = 1 ns라고 하면, 1 회째의 조사 스텝이 512 ns(빔 ON)의 조사가 된다. 2 회째의 조사 스텝이 0 ns(빔 OFF)의 조사가 된다. 3 회째의 조사 스텝이 128 ns(빔 ON)의 조사가 된다. 4 회째의 조사 스텝이 0 ns(빔 OFF)의 조사가 된다. 5 회째의 조사 스텝이 32 ns(빔 ON)의 조사가 된다. 6 회째의 조사 스텝이 16 ns(빔 ON)의 조사가 된다. 7 회째의 조사 스텝이 8 ns(빔 ON)의 조사가 된다. 8 회째의 조사 스텝이 4 ns(빔 ON)의 조사가 된다. 9 회째의 조사 스텝이 0 ns(빔 OFF)의 조사가 된다. 10 회째의 조사 스텝이 0 ns(빔 OFF)의 조사가 된다.
최대 조사 시간 단축 처리 공정(S122)으로서, 단축 처리부(72)는 샷마다 대기 시간이 되는 불필요한 시간을 단축하는 최대 조사 시간 단축 처리를 행한다.
도 15는 실시 형태 2에서의 최대 조사 시간의 단축 처리를 설명하기 위한 일례를 나타내는 도면이다. 도 15(a) 및 도 15(b)에서는 전술한 예를 들면 10 회의 분할 샷 중 32Δ 미만의 조사 시간이 되는 분할 샷에 대해서는 도시를 생략하였다. 도 15(a)의 예에서는 각 샷에 대해 일률적으로 10 회의 분할 샷을 행하도록 설정하는 경우를 나타내고 있다. 바꾸어 말하면, 각 샷에 대해 일률적으로 1023Δ를 최대 조사 시간으로 설정하는 경우를 나타내고 있다. 또한, 도 15(a)의 예에서는 k 샷째의 각 빔(여기서는 빔 1 ~ 5)의 각 분할 샷의 샷 유무와, k + m 샷째의 각 빔의 각 분할 샷의 샷 유무와, k + p 샷째의 각 빔의 각 분할 샷의 샷 유무를 나타내고 있다.
k 샷째에 주목하면, 빔 1에서는 32Δ의 조사 시간이 되는 분할 샷, 256Δ의 조사 시간이 되는 분할 샷 및 512Δ의 조사 시간이 되는 분할 샷에서는 빔 ON이 된다. 그러나, 64Δ 및 128Δ의 조사 시간이 되는 분할 샷에서는 빔 OFF가 된다. 따라서, 빔 1에서는 64Δ 및 128Δ의 조사 시간이 되는 분할 샷의 기간은 대기 시간이 된다. 빔 2에서는 64Δ의 조사 시간이 되는 분할 샷 및 256Δ의 조사 시간이 되는 분할 샷에서는 빔 ON이 된다. 그러나, 32Δ, 128Δ 및 512Δ의 조사 시간이 되는 분할 샷에서는 빔 OFF가 된다. 따라서, 빔 2에서는 32Δ, 128Δ 및 512Δ의 조사 시간이 되는 분할 샷의 기간은 대기 시간이 된다. 마찬가지로, 빔 3에서는 32Δ, 64Δ, 128Δ 및 512Δ의 조사 시간이 되는 분할 샷의 기간은 대기 시간이 된다. 마찬가지로, 빔 4에서는 32Δ, 128Δ 및 512Δ의 조사 시간이 되는 분할 샷의 기간은 대기 시간이 된다. 마찬가지로, 빔 5에서는 32Δ, 64Δ, 128Δ 및 512Δ의 조사 시간이 되는 분할 샷의 기간은 대기 시간이 된다. 따라서, k 샷째에서는 128Δ의 조사 시간이 되는 분할 샷의 기간이 모든 빔이 조사하고 있지 않은 대기 시간이 된다. 마찬가지로, k + m 샷째에서는 512Δ의 조사 시간이 되는 분할 샷의 기간이 모든 빔이 조사하고 있지 않은 대기 시간이 된다. 이에 반해, k + p 샷째에서는 모든 빔이 조사하고 있지 않은 분할 샷의 기간이 존재하지 않는 모든 분할 샷이 필요한 샷이 된다. 바꾸어 말하면, 당초의 최대 조사 시간이 필요한 샷이 된다.
그래서, 단축 처리부(72)는 샷마다 이러한 대기 시간을 단축하는 처리를 행한다. 바꾸어 말하면, 단축 처리부(72)는 샷마다 멀티빔(20) 중 어느 빔에도 선택되지 않은 분할 샷의 기간을 단축시킨다. 도 15(b)의 예에서는, k 샷째에 주목하면, 128Δ의 조사 시간이 되는 분할 샷의 기간이 대기 시간이 된다. 따라서, k 샷째에 대해 128Δ의 조사 시간이 되는 분할 샷을 생략함으로써 대기 시간을 단축시킨다. 그 결과, k 샷째에 대해 이러한 대기 시간분만큼 묘화 시간을 단축시킬 수 있다. k + m 샷째에 주목하면, 512Δ의 조사 시간이 되는 분할 샷의 기간이 대기 시간이 된다. 따라서, k + m 샷째에 대해 512Δ의 조사 시간이 되는 분할 샷을 생략함으로써 대기 시간을 단축시킨다. k + p 샷째에 주목하면, 대기 시간이 발생하지 않았으므로 k + p 샷째에 대해서는 단축시킬 수 없다. 이상과 같이, 모든 샷에 대해 이러한 최대 조사 시간의 단축 처리를 행한다.
샷마다의 최대 조사 시간(tmax) 취득 공정(S130)으로서, 최대 조사 시간(tmax) 연산부(75)는 샷마다 남은 분할 샷의 조사 시간의 합계를 당해 샷의 최대 조사 시간(tmax)으로서 연산한다.
단위 영역 묘화 시간 연산 공정(S150)부터 스테이지 속도 차트 작성 공정(S154)까지의 각 공정의 내용은 실시 형태 1과 동일하다.
데이터 전송 처리 공정(S156)으로서, 전송 처리부(82)는 각 빔의 샷마다 n 자리의 2 진수 데이터로 변환된 조사 시간 배열 데이터를 편향 제어 회로(130)에 출력한다. 편향 제어 회로(130)는 샷마다 각 빔용의 로직 회로(41)에 조사 시간 배열 데이터를 출력한다. 또한, 이와 동기하여 편향 제어 회로(130)는 공통 블랭킹용의 로직 회로(131)에 각 분할 샷의 타이밍 데이터를 출력한다.
도 16은 실시 형태 2에서의 조사 시간 배열 데이터의 일부의 일례를 나타내는 도면이다. 도 16에서는 멀티빔을 구성하는 빔 중 예를 들면 빔 1 ~ 5에 대한 소정의 샷의 조사 시간 배열 데이터의 일부를 나타내고 있다. 도 16의 예에서는 빔 1 ~ 5에 대해 k 비트째(k 자리째)의 분할 샷의 조사 스텝에서 k - 3 비트째(k - 3 자리째)의 분할 샷의 조사 스텝까지의 조사 시간 배열 데이터를 나타내고 있다. 도 16의 예에서는 빔 1에 대해 k 비트째(k 자리째)에서 k - 3 비트째(k - 3 자리째)까지의 분할 샷의 조사 스텝에 대해 데이터 “1101”을 나타낸다. 빔 2에 대해 k 비트째(k 자리째)에서 k - 3 비트째(k - 3 자리째)까지의 분할 샷의 조사 스텝에 대해 데이터 “1100”을 나타낸다. 빔 3에 대해 k 비트째(k 자리째)에서 k - 3 비트째(k - 3 자리째)까지의 분할 샷의 조사 스텝에 대해 데이터 “0110”을 나타낸다. 빔 4에 대해 k 비트째(k 자리째)에서 k - 3 비트째(k - 3 자리째)까지의 분할 샷의 조사 스텝에 대해 데이터 “0111”을 나타낸다. 빔 5에 대해 k 비트째(k 자리째)에서 k - 3 비트째(k - 3 자리째)까지의 분할 샷의 조사 스텝에 대해 데이터 “1011”을 나타낸다.
실시 형태 2에서는 도 12에 나타낸 바와 같이 로직 회로(41)에 시프트 레지스터(40)를 이용하고 있으므로, 데이터 전송 시에 편향 제어 회로(130)는 동일한 비트(동일한 자릿수)의 데이터를 빔의 배열순(혹은 식별 번호순)으로 블랭킹 애퍼처 어레이부(204)의 각 로직 회로(41)에 데이터 전송한다. 또한, 동기용의 클록 신호(CLK1), 데이터 독출용의 리드 신호(read) 및 AND 연산기 신호(BLK 신호)를 출력한다. 도 16의 예에서는, 예를 들면 빔 1 ~ 5의 k 비트째(k 자리째)의 데이터로서 뒤의 빔측에서부터 “10011”의 각 1 비트 데이터를 전송한다. 각 빔의 시프트 레지스터(40)는 클록 신호(CLK1)에 따라 상위측에서부터 차례로 데이터를 다음 시프트 레지스터(40)에 전송한다. 예를 들면, 빔 1 ~ 5의 k 비트째(k 자리째)의 데이터는 5 회의 클록 신호에 의해, 빔 1의 시프트 레지스터(40)에는 1 비트 데이터인 “1”이 저장된다. 빔 2의 시프트 레지스터(40)에는 1 비트 데이터인 “1”이 저장된다. 빔 3의 시프트 레지스터(40)에는 1 비트 데이터인 “0”이 저장된다. 빔 4의 시프트 레지스터(40)에는 1 비트 데이터인 “0”이 저장된다. 빔 5의 시프트 레지스터(40)에는 1 비트 데이터인 “1”이 저장된다.
이어서, 각 빔의 레지스터(42)가 리드 신호(read)를 입력하면, 각 빔의 레지스터(42)가 시프트 레지스터(40)로부터 각각의 빔의 k 비트째(k 자리째)의 데이터를 판독한다. 도 16의 예에서는, k 비트째(k 자리째)의 데이터로서 빔 1의 레지스터(42)에는 1 비트 데이터인 “1”이 저장된다. k 비트째(k 자리째)의 데이터로서 빔 2의 레지스터(42)에는 1 비트 데이터인 “1”이 저장된다. k 비트째(k 자리째)의 데이터로서 빔 3의 레지스터(42)에는 1 비트 데이터인 “0”이 저장된다. k 비트째(k 자리째)의 데이터로서 빔 4의 레지스터(42)에는 1 비트 데이터인 “0”이 저장된다. k 비트째(k 자리째)의 데이터로서 빔 5의 레지스터(42)에는 1 비트 데이터인 “1”이 저장된다. 각 빔의 개별 레지스터(42)는 k 비트째(k 자리째)의 데이터를 입력하면 그 데이터에 따라 ON / OFF 신호를 AND 연산기(44)에 출력한다. k 비트째(k 자리째)의 데이터가 “1”이면 ON 신호를, “0”이면 OFF 신호를 출력하면 된다. 그리고, AND 연산기(44)에서는 BLK 신호가 ON 신호이며 레지스터(42)의 신호가 ON이면 앰프(46)에 ON 신호를 출력하고, 앰프(46)는 ON 전압을 개별 블랭킹 편향기의 전극(24)에 인가한다. 그 이외에는, AND 연산기(44)는 앰프(46)에 OFF 신호를 출력하고, 앰프(46)는 OFF 전압을 개별 블랭킹 편향기의 전극(24)에 인가한다.
그리고, 이러한 k 비트째(k 자리째)의 데이터가 처리되고 있는 동안에, 편향 제어 회로(130)는 다음 k - 1 비트째(k - 1 자리째)의 데이터를 빔의 배열순(혹은 식별 번호순)으로 블랭킹 애퍼처 어레이부(204)의 각 로직 회로(41)에 데이터 전송한다. 도 16의 예에서는, 예를 들면 빔 1 ~ 5의 k - 1 비트째(k - 1 자리째)의 데이터로서 뒤의 빔측에서부터 “01111”의 각 1 비트 데이터를 전송한다. 각 빔의 시프트 레지스터(40)는 클록 신호(CLK1)에 따라 상위측에서부터 차례로 데이터를 다음 시프트 레지스터(40)에 전송한다. 예를 들면, 빔 1 ~ 5의 k - 1 비트째(k - 1 자리째)의 데이터는 5 회의 클록 신호에 의해, 빔 1의 시프트 레지스터(40)에는 1 비트 데이터인 “1”이 저장된다. 빔 2의 시프트 레지스터(40)에는 1 비트 데이터인 “1”이 저장된다. 빔 3의 시프트 레지스터(40)에는 1 비트 데이터인 “1”이 저장된다. 빔 4의 시프트 레지스터(40)에는 1 비트 데이터인 “1”이 저장된다. 빔 5의 시프트 레지스터(40)에는 1 비트 데이터인 “0”이 저장된다. 그리고, 편향 제어 회로(130)는 k 비트째의 조사 시간이 종료되면 다음 k - 1 비트째(k - 1 자리째)의 리드 신호를 출력한다. k - 1 비트째(k - 1 자리째)의 리드 신호에 의해 각 빔의 레지스터(42)가 시프트 레지스터(40)로부터 각각의 빔의 k - 1 비트째(k - 1 자리째)의 데이터를 판독하면 된다. 이하, 마찬가지로 1 비트째(1 자리째)의 데이터 처리까지 진행하면 된다. 편향 제어 회로(130)에 의해 리드 신호를 출력하는 타이밍을 각 분할 샷의 조사 시간에 대응시켜 제어함으로써, 복수의 분할 샷 중 일부의 분할 샷을 생략해도 나머지 각 분할 샷의 조사 시간에 맞출 수 있다. 또한, 생략된 분할 샷에 대해서는 조사 시간 배열 데이터의 전송을 생략함으로써 효율적으로 다음 분할 샷으로 이동할 수 있다.
여기서, 도 12에 나타낸 AND 연산기(44)에 대해서는 생략해도 상관없다. 단, 로직 회로(41) 내의 각 소자 중 어느 하나가 고장나서 빔 OFF로 할 수 없는 상태에 빠진 경우 등에 AND 연산기(44)를 배치함으로써 빔을 OFF로 제어할 수 있다는 점에서 효과적이다. 또한, 도 12에서는 시프트 레지스터를 직렬로 한 1 비트의 데이터 전송 경로를 이용하고 있으나, 복수의 병렬의 전송 경로를 마련함으로써 2 비트 이상의 데이터로 제어할 수도 있어 전송의 고속화를 도모할 수 있다.
묘화 공정(S158)으로서, 묘화 제어부(84)의 제어하에 스테이지 제어부(138)는 스테이지 속도 차트를 독출하고, 스테이지 속도 차트를 따라 XY 스테이지(105)의 속도를 가변속으로 제어한다. 이 때, 도 9(f)의 스테이지 속도 차트에 나타낸 바와 같이 스테이지 제어부(138)는 묘화할 패턴의 패턴 밀도가 높은 시료 상의 영역을 묘화하는 경우에는 시료가 재치된 XY 스테이지(105)의 스테이지 속도를 고속으로 제어하고, 패턴 밀도가 낮은 시료 상의 영역을 묘화하는 경우에는 XY 스테이지(105)의 스테이지 속도를 저속으로 제어한다. 또한, 묘화 기구(150)는 XY 스테이지(105)의 이동에 동기하면서 전자빔에 의한 멀티빔(20)을 이용하여 1 회분의 샷을 동일한 위치에 연속으로 조사되는 조사 시간이 상이한 복수 회의 분할 샷으로 나누어 시료(101)에 패턴을 묘화한다.
도 17은 실시 형태 2에서의 1 샷 중의 조사 스텝의 일부에 대한 빔 ON / OFF 전환 동작을 나타내는 타이밍 차트이다. 도 17에서는 예를 들면, 멀티빔을 구성하는 복수의 빔 중 1 개의 빔(빔 1)에 대해 나타내고 있다. 여기서는 예를 들면, 빔 1의 k 비트째(k 자리째)에서 k - 3 비트째(k - 3 자리째)까지의 분할 샷에 대해 나타내고 있다. 조사 시간 배열 데이터는 예를 들면, k 비트째(k 자리째)가 “1”, k - 1 비트째(k - 1 자리째)가 “1”, k - 2 비트째(k - 2 자리째)가 “0”, k - 3 비트째(k - 3 자리째)가 “1”인 경우를 나타내고 있다.
먼저, k 비트째(k 자리째)의 리드 신호의 입력에 의해, 개별 레지스터(42)는 저장되어 있는 k 비트째(k 자리째)의 데이터(1 비트)에 따라 ON / OFF 신호를 출력한다.
k 비트째(k 자리째)의 데이터가 ON 데이터이므로, 개별 앰프(46)(개별 앰프 1)는 ON 전압을 출력하여 빔 1용의 블랭킹 전극(24)에 ON 전압을 인가한다. 한편, 공통 블랭킹용의 로직 회로(131) 내에서는 당해 샷에서 사용하는 분할 샷의 각 분할 샷의 타이밍 데이터에 따라 ON / OFF를 전환한다. 공통 블랭킹 기구에서는 각 분할 샷의 조사 시간만큼 ON 신호를 출력한다. 당해 샷의 복수의 분할 샷이 512Δ, 256Δ, 64Δ, 32Δ의 각 조사 시간이 되는 4 회의 분할 샷으로 구성되는 경우, 예를 들면 Δ = 1 ns라고 하면, 1 회째의 분할 샷의 조사 시간이 512Δ = 512 ns가 된다. 2 회째의 분할 샷의 조사 시간이 256Δ = 256 ns가 된다. 3 회째의 분할 샷의 조사 시간이 64Δ = 64 ns가 된다. 4 회째의 분할 샷의 조사 시간이 32Δ = 32 ns가 된다. 로직 회로(131) 내에서는 레지스터(50)에 각 분할 샷의 타이밍 데이터가 입력되면 레지스터(50)가 k 자리째(k 비트째)의 ON 데이터를 출력하고, 카운터(52)가 k 자리째(k 비트째)의 조사 시간을 카운트하여 이러한 조사 시간의 경과 시에 OFF가 되도록 제어된다. 생략된 분할 샷에 대해서는, 각 분할 샷의 타이밍 데이터의 입력을 생략하고 또한 대응되는 조사 시간 배열 데이터의 전송을 생략함으로써 효율적으로 묘화 시간의 단축을 행할 수 있다.
또한, 공통 블랭킹 기구에서는 개별 블랭킹 기구의 ON / OFF 전환에 대하여 앰프(46)의 전압 안정 시간(세틀링 시간)(S1 / S2)을 경과한 후에 ON / OFF 전환을 행한다. 도 17의 예에서는 개별 앰프 1이 ON이 된 후, OFF에서 ON으로 전환 시의 개별 앰프 1의 세틀링 시간(S1)을 경과한 후에 공통 앰프가 ON이 된다. 이에 따라, 개별 앰프 1의 시작 시의 불안정한 전압에서의 빔 조사를 배제할 수 있다. 그리고, 공통 앰프는 대상이 되는 k 자리째(k 비트째)의 조사 시간의 경과 시에 OFF가 된다. 그 결과, 실제의 빔은 개별 앰프와 공통 앰프가 모두 ON이었을 경우에 빔 ON이 되어 시료(101)에 조사된다. 따라서, 공통 앰프의 ON 시간이 실제의 빔의 조사 시간이 되도록 제어된다. 한편, 개별 앰프 1이 OFF가 될 때는 공통 앰프가 OFF가 된 후, 세틀링 시간(S2)을 경과한 후에 개별 앰프 1이 OFF가 된다. 이에 따라, 개별 앰프 1의 시작 시의 불안정한 전압에서의 빔 조사를 배제할 수 있다.
이상과 같이, 개별 블랭킹 기구에 의해 각 빔의 ON / OFF 전환이 행해지는 제어와는 별도로, 공통 블랭킹 기구(로직 회로(131) 및 편향기(212) 등)를 이용해 멀티빔 전체에 대하여 일괄적으로 빔의 ON / OFF 제어를 행하고, k 비트째의 각 조사 스텝(조사)에 대응되는 조사 시간만큼 빔 ON의 상태가 되도록 블랭킹 제어를 행한다. 이에 따라, 멀티빔의 각 샷은 동일한 위치에 연속으로 조사되는 조사 시간이 상이한 복수 회의 분할 샷으로 분할된다. 그리고, 시료(101)에 묘화될 패턴에 따라 복수 회의 분할 샷의 횟수가 가변으로 설정된다. 설정되는 분할 샷의 조사 시간의 합계가 짧을수록 당해 샷의 최대 조사 시간을 짧게 할 수 있다. 그리고, 샷마다의 최대 조사 시간을 가변으로 함으로써, 고밀도부(패턴 밀도가 높은 영역)에서의 XY 스테이지(105)의 스테이지 속도를 빠르게 하는 것과 같이 스테이지 속도를 가변으로 할 수 있다.
도 18은 실시 형태 2에서의 블랭킹 동작을 설명하기 위한 개념도이다. 블랭킹 애퍼처 어레이부(204)를 통과한 멀티빔(20a ~ e)은 축소 렌즈(205)에 의해 축소되고, 제한 애퍼처 부재(206)에 형성된 중심의 홀을 향해 진행된다. 여기서, 블랭킹 애퍼처 어레이부(204)의 블랭커에 의해 편향된 전자빔(20)은, 제한 애퍼처 부재(206)(블랭킹 애퍼처 부재)의 중심의 홀로부터 위치가 벗어나, 제한 애퍼처 부재(206)에 의해 차폐된다. 한편, 블랭킹 애퍼처 어레이부(204)의 블랭커에 의해 편향되지 않은 전자빔(20)은, 편향기(212)(공통 블랭킹 기구)에 의해 편향되지 않는다면 도 11에 나타낸 바와 같이 제한 애퍼처 부재(206)의 중심의 홀을 통과한다. 이러한 개별 블랭킹 기구의 ON / OFF와 공통 블랭킹 기구의 ON / OFF의 조합에 의해 블랭킹 제어가 행해져, 빔의 ON / OFF가 제어된다. 이와 같이, 제한 애퍼처 부재(206)는 개별 블랭킹 기구 혹은 공통 블랭킹 기구에 의해 빔 OFF의 상태가 되도록 편향된 각 빔을 차폐한다. 그리고, 빔 ON이 되고 나서 빔 OFF가 될 때까지 형성된 제한 애퍼처 부재(206)를 통과한 빔에 의해 1 회분의 샷을 추가로 분할한 복수의 분할 샷의 각 빔이 형성된다. 제한 애퍼처 부재(206)를 통과한 멀티빔(20)은 대물 렌즈(207)에 의해 초점이 맞춰져 원하는 축소율의 패턴상이 되어, 편향기(208)에 의해 제한 애퍼처 부재(206)를 통과한 각 빔(멀티빔(20) 전체)이 동일 방향으로 일괄적으로 편향되고, 각 빔의 시료(101) 상의 각각의 조사 위치에 조사된다. 또한, 예를 들면 XY 스테이지(105)가 연속 이동하고 있을 때, 빔의 조사 위치가 XY 스테이지(105)의 이동에 추종하도록 편향기(208)에 의해 제어된다. 한 번에 조사되는 멀티빔(20)은, 이상적으로는 애퍼처 부재(203)의 복수의 홀의 배열 피치에 전술한 원하는 축소율을 곱한 피치로 나열되게 된다.
이상과 같이, 실시 형태 2에 따르면 1 회분의 샷을 동일한 위치에 연속으로 조사되는 조사 시간이 상이한 복수 회의 분할 샷으로 분할하여 묘화하는 멀티빔 묘화에서 XY 스테이지(105)를 가변속으로 이동시킴으로써, 스루풋 성능을 더 높일 수 있다.
실시 형태 3.
실시 형태 2에서는 예를 들면, n 자리의 2 진수 중 큰 자리로 정의되는 조사 시간의 분할 샷측에서부터 차례로 각 빔의 조사 시간을 배분한다. 따라서, 예를 들면 1023Δ를 10 회의 분할 샷으로 나누는 경우, 조사 시간이 512Δ 이상이면 복수의 분할 샷 중 가장 조사 시간이 긴 512Δ의 분할 샷이 당해 샷 중에 반드시 포함되게 된다. 또한, 샷마다 멀티빔의 각 빔의 조사를 복수의 분할 샷으로 나눈 경우에, 모든 빔에서 조사에 이용하지 않는 분할 샷이 존재하지 않는다면 최대 조사 시간의 단축으로 이어지지 않는다. 그래서, 실시 형태 3에서는 분할 샷의 조사 시간이 2kΔ에 한정되지 않는 2n- 1Δ보다 짧은 특정값의 분할 샷을 이용하여 최대 조사 시간의 단축을 도모하는 구성에 대해 설명한다.
도 19는 실시 형태 3에서의 묘화 장치의 구성을 나타내는 개념도이다. 도 19에서 제어 계산기(110) 내에 단축 처리부(72) 대신에 최대 조사 시간(tmax) 취득부(74), 빈도 함수 연산부(88), T1 연산부(90), m1 연산부(92) 및 M2 연산부(94)를 추가한 점 이외에는 도 11과 동일하다. 또한, 이하에 특별히 설명한 점 이외의 내용은 실시 형태 2와 동일하다.
패턴 면적 밀도(ρ(x, y)) 연산부(60), 근접 효과 보정 조사 계수(Dp(x, y)) 연산부(62), 화소 내 패턴 면적 밀도(ρ'(x, y)) 연산부(64), 조사량(D(x, y)) 연산부(66), 조사 시간(t(x, y)) 연산부(68), 배열 가공부(70), 최대 조사 시간(tmax) 취득부(74), 빈도 함수 연산부(88), T1 연산부(90), m1 연산부(92), M2 연산부(94), 분할 샷 데이터 생성부(86), 최대 조사 시간(tmax) 연산부(75), 단위 영역 묘화 시간 연산부(76), 스테이지 속도 연산부(78), 속도 차트 작성부(80), 전송 처리부(82) 및 묘화 제어부(84)와 같은 각 '~ 부'는 처리 회로를 가지며, 그 처리 회로로서 전기 회로, 컴퓨터, 프로세서, 회로 기판, 양자 회로 혹은 반도체 장치 등을 이용할 수 있다. 또한, 각 '~ 부'는 공통되는 처리 회로(동일한 처리 회로)를 이용해도 된다. 혹은, 상이한 처리 회로(별도의 처리 회로)를 이용해도 된다. 패턴 면적 밀도(ρ(x, y)) 연산부(60), 근접 효과 보정 조사 계수(Dp(x, y)) 연산부(62), 화소 내 패턴 면적 밀도(ρ'(x, y)) 연산부(64), 조사량(D(x, y)) 연산부(66), 조사 시간(t(x, y)) 연산부(68), 배열 가공부(70), 최대 조사 시간(tmax) 취득부(74), 빈도 함수 연산부(88), T1 연산부(90), m1 연산부(92), M2 연산부(94), 분할 샷 데이터 생성부(86), 최대 조사 시간(tmax) 연산부(75), 단위 영역 묘화 시간 연산부(76), 스테이지 속도 연산부(78), 속도 차트 작성부(80), 전송 처리부(82) 및 묘화 제어부(84)에 입출력되는 정보 및 연산 중인 정보는 메모리(112)에 그때마다 저장된다.
도 20은 실시 형태 3에서의 묘화 방법의 주요부 공정을 나타내는 순서도이다. 도 20에서 실시 형태 3에서의 묘화 방법은 샷마다의 최대 조사 시간(tmax) 취득 공정(S130)과 단위 영역 묘화 시간 연산 공정(S150)의 사이에 빈도 함수 연산 공정(S132)과, T1 연산 공정(S134)과, m1, M2 연산 공정(S136)과, 분할 샷 데이터 생성 공정(S138)과, 최대 조사 시간(tmax) 재연산 공정(S140)을 실시한다는 점 및 최대 조사 시간 단축 공정(S122)을 삭제한다는 점 이외에는 도 7과 동일하다.
패턴 면적 밀도(ρ(x, y)) 연산 공정(S102)부터 샷마다의 최대 조사 시간(tmax) 취득 공정(S130)까지의 각 공정의 내용은 실시 형태 1과 동일하다.
빈도 함수 연산 공정(S132)으로서, 빈도 함수 연산부(88)는 시료(101)를 묘화하기 위한 전체 샷의 각 샷의 최대 조사 시간(tmax)의 빈도를 정의한 조사 시간(t)에 의존하는 빈도 함수(F(t))를 연산한다. 바꾸어 말하면, 묘화 레이아웃마다 빈도 함수(F(t))를 연산한다. 혹은, 스트라이프 영역마다 혹은 CPM 영역(37)마다 당해 영역을 묘화하기 위한 전체 샷의 각 샷의 최대 조사 시간(tmax)의 빈도를 정의한 조사 시간(t)에 의존하는 빈도 함수(F(t))를 연산해도 된다. CPM 영역(37)마다 빈도 함수(F(t))를 연산하는 경우, 각각의 CPM 영역(37)에 소속시킬 조사 영역(34)의 결정 방법은 실시 형태 1과 동일해도 된다. 따라서, 소속되는 복수의 조사 영역(34)의 각 조사 영역(34)에서 트래킹 사이클 중에 행하는 복수의 샷이 당해 CPM 영역(37)에 소속되는 복수 회의 샷에 해당한다.
도 21은 실시 형태 3에서의 빈도 함수 그래프의 일례를 나타내는 도면이다. 세로축에 빈도(동일한 최대 조사 시간의 샷 개수)를 나타낸다. 가로축에 조사 시간을 나타낸다. 최소의 최대 조사 시간(Tmin)과 최대의 최대 조사 시간(T2)이 존재하며, Tmin과 T2와의 사이에서 동일한 최대 조사 시간의 샷 개수가 분포하게 된다. 또한, 여기서는 실제 조사가 없는 샷은 대상 외로 하고 있다.
T1 연산 공정(S134)으로서, T1 연산부(90)는 Tmin과 T2와의 사이에서 이하의 조건을 만족하는 조사 시간(T1)을 연산한다. Tmin에서 T1까지의 빈도 함수(F(t))의 적분값(면적)(S1)(= ΣF(t), Tmin ≤ t ≤ T1)과, T1에서 T2까지의 빈도 함수(F(t))의 적분값(면적)(S2)(= ΣF(t), T1 < t ≤ T2)을 정의한다. 여기서, 적분값(면적)은 각각의 범위에 있는 샷의 개수를 나타내고 있다. 멀티빔의 제어 시퀀스 상의 묘화 시간(Tc)은 이하의 식(1)로 정의할 수 있다. 식(1)에서는 스테이지 이동에 수반하는 대기 시간을 무시한 경우를 나타내고 있다. 또한 여기서의 설명에서는, 앞의 실시 형태 2에서 설명한 실제 조사가 없는 분할 샷의 시간은 삭제한다고 하는 부분에 관해서는 도시 및 식의 표현에서 생략하였다. 실제 조사가 없는 분할 샷의 시간을 삭제하는 것을 병용하면 그 만큼 더 시간 단축을 할 수 있게 된다.
(1) Tc = S1 · T1 + S2 · T2
이는, 특정값(T2 - T1)의 분할 샷이 효율적으로 생략됨으로써, S1에 포함되는 샷은 최대 조사 시간(T1)으로 묘화되고, 또한 S2에 포함되는 샷은 최대 조사 시간(T2)으로 묘화되는 경우의 묘화 시간을 나타내고 있다.
또한, 실시 형태 3에서의 특정값을 이용하지 않고 각 샷을 각각의 최대 조사 시간으로 묘화한 경우, 모든 샷이 최대 조사 시간(T2)으로 묘화되므로, 멀티빔의 제어 시퀀스 상의 묘화 시간(Tc)은 이하의 식(2)로 정의할 수 있다.
(2) Tc = (S1 + S2) · T2
실시 형태 3에서 T1 연산부(90)는 식(1)에 나타내는 묘화 시간(Tc)을 최소로 하는 조사 시간(T1)을 연산한다.
도 22는 실시 형태 3에서의 빈도 함수 그래프의 다른 일례를 나타내는 도면이다. 세로축에 빈도(동일한 최대 조사 시간의 샷 개수)를 나타낸다. 가로축에 조사 시간을 나타낸다. 도 22에서는 보다 단순한 예로서 빈도 함수 F(t) = k로 일정한 경우를 가정하고 있다. 이러한 경우, 식(1)은 이하의 식(3)과 같이 변형할 수 있다.
(3) Tc = S1 · T1 + S2 · T2
= k(T1 - Tmin) · T1 + k(T2 - T1) · T2
= k{T12 - (Tmin + T2) · T1 + T22}
여기서 예를 들면, 근접 효과 보정 계수(후방 산란 계수) η = 0.6으로 하고 패턴 면적 밀도가 100%에서의 조사 시간(조사량)을 1.0으로 한 경우, 후방 산란 전자에 의한 노광을 포함한 노광량을 일정하게 하기 위해서는 패턴 면적 밀도가 50%에서의 조사 시간(조사량)이 1.23(상대값), 패턴 면적 밀도가 0%(0%에 가까우며 0%는 아님)에서의 조사 시간(조사량)이 1.6(상대값)에 상당한다. 따라서, Tmin = 1.0, T2 = 1.6을 식(3)에 대입하면, 식(3)은 이하의 식(4)로 변형할 수 있다.
(4) Tc = k(T12 - 2.6 · T1 + 2.56)
따라서, 식(4)를 시간(t)으로 미분하고 미분값 = 0으로서 묘화 시간(Tc)의 최소값을 구하면, 조사 시간(T1)은 T1 = 1.3이 된다. 따라서, 이 예에서는 분할 샷의 특정값(T2 - T1)을 0.3(상대값)으로 하면 묘화 시간을 최소로 할 수 있게 된다.
(케이스 1)
예를 들면, 묘화 영역 내에서 패턴 면적 밀도가 50%인 영역이 95%, 패턴 면적 밀도가 0%인 영역(0%에 가까우며 0%가 아닌 영역)이 5%가 되는 레이아웃인 경우의 묘화 시간은 이하와 같이 계산할 수 있다. 또한, 이러한 경우 묘화 시간을 최소로 하는 T1의 값을 패턴 면적 밀도가 50%에서의 조사 시간(조사량)의 1.23(상대값)을 포함하도록, 예를 들면 T1 = 1.25(상대값)로 한다.
(1-1) 실시 형태 3에서의 특정값을 이용하지 않는 경우
Tc = (0.95 + 0.05) × 1.6 = 1.6(상대값)
(1-2) 실시 형태 3에서의 특정값을 이용하여 분할 샷을 행하는 경우
Tc = 0.95 × 1.25 + 0.05 × 1.6 = 1.27(상대값)
따라서, 1.27 / 1.6 = 0.79가 되어, 실시 형태 3에서의 특정값을 이용하여 분할 샷을 행하는 경우, 묘화 시간이 0.79 배로 단축될 수 있다. 따라서, 스테이지 속도를 가변속으로 적절히 제어할 수 있다면 약 20%의 속도 향상이 가능해진다.
(케이스 2)
또한 예를 들면, 묘화 영역 내에서 패턴 면적 밀도가 100%인 영역이 95%, 패턴 면적 밀도가 0%인 영역(0%에 가까우며 0%가 아닌 영역)이 5%가 되는 레이아웃인 경우의 묘화 시간은 이하와 같이 계산할 수 있다. 또한, 이러한 경우 묘화 시간을 최소로 하는 T1의 값을 패턴 면적 밀도가 100%에서의 조사 시간(조사량)의 1.0(상대값)을 포함하도록, 예를 들면 T1 = 1.05(상대값)로 한다.
(2-1) 실시 형태 3에서의 특정값을 이용하지 않는 경우
Tc = (0.95 + 0.05) × 1.6 = 1.6(상대값)
(2-2) 실시 형태 3에서의 특정값을 이용하여 분할 샷을 행하는 경우
Tc = 0.95 × 1.05 + 0.05 × 1.6 = 1.08(상대값)
따라서, 1.08 / 1.6 = 0.68이 되어, 실시 형태 3에서의 특정값을 이용하여 분할 샷을 행하는 경우, 묘화 시간이 0.68 배로 단축될 수 있다. 따라서, 스테이지 속도를 가변속으로 적절히 제어할 수 있다면 약 30%의 속도 향상이 가능해진다.
m1, M2 연산 공정(S136)으로서, M2 연산부(94)는 특정값(M2Δ)(제1 특정값)의 계조치(M2)를 연산한다. 특정값(M2Δ)은 T2 - T1로 정의된다. 특정값(M2Δ)의 계조치(M2)는 이하의 식(5)로 정의된다. 여기서, 연산에 의해 발생하는 나머지(δ2)는, 계조가 100 이상 있는 것과 같은 경우에는 발생하는 오차가 충분히 작으므로 무시해도 상관없다. 계조가 100 이하로 오차를 무시할 수 없는 경우에는, 묘화 시간의 단축 효과가 얻어지도록 적절히 나머지(δ2)를 올림 혹은 버림하는 처리를 선택하면 된다.
(5) M2 = (T2 - T1) / Δ
이어서, m1 연산부(92)는 조사 시간(T1)의 계조치(M1)(= T1 / Δ)를 이용하여 특정값(m1Δ)(제2 특정값)의 계조치(m1)를 연산한다. 특정값(m1Δ)의 계조치(m1)는 이하의 식(6-1)로 정의된다. 2 진수의 자릿수(n)는 이하의 식(6-2)을 만족하는 최대수로 한다.
(6-1) m1 = M1 - (2n - 1)
(6-2) M1 ≥ 2n - 1
이상에 의해, 1 샷을 복수의 분할 샷으로 분할하기 위한 조사 시간열(M2Δ, m1Δ, 2n-1Δ, 2n- 2Δ, ···, 20Δ)을 얻을 수 있다. 구체적으로는, 조사 시간이 T1에서 T2의 각 샷은 (M2Δ, m1Δ, 2n- 1Δ, 2n- 2Δ, ···, 20Δ)의 조사 시간으로 설정되는 (n + 2) 회의 분할 샷으로 묘화되고, 조사 시간이 Tmin에서 T1의 각 샷은 (m1Δ, 2n- 1Δ, 2n-2Δ, ···, 20Δ)의 조사 시간으로 설정되는 (n + 1) 회의 분할 샷으로 묘화된다.
따라서, 각 샷은 예를 들면 n = 10으로 한 종래의 최대 조사 시간 1023Δ를 2 진수로 정의한 경우의 최대 자리로 정의되는 조사 시간 512Δ의 분할 샷 대신에 조사 시간 512Δ 이하가 되는 조사 시간 M2Δ의 분할 샷으로 할 수 있다. 따라서, 2의 거듭제곱에 한정되지 않는 임의의 최대 조사 시간을 설정함으로써 묘화 시간의 단축이 가능하다. 또한, 각 샷의 최대 조사 시간이 M1Δ 이상인지의 여부에 따라 분할 샷 수를 변경할 수 있다.
분할 샷 데이터 생성 공정(S138)으로서, 분할 샷 데이터 생성부(86)는 1 회분의 샷을 동일한 위치에 연속으로 조사되는 조사 시간이 상이한 복수 회의 분할 샷으로 분할하기 위한 분할 샷 데이터를 생성한다. 분할 샷 데이터 생성부(86)는 샷마다 멀티빔의 각 빔의 조사 시간을 양자화 단위(Δ)(계조치 분해능)로 나눈 계조치(N)를 미리 설정된 (M2, m1, 2n-1, 2n-2, ···, 20)의 조사 시간열의 조합으로 변환한다. 구체적으로는 이하와 같이 변환한다.
대상 빔의 조사 시간의 계조치(Ts)가 Ts > M1인 경우에는 비트(M2) = 1로 하고 나머지 조사 시간의 계조치(Ts1)(= Ts - M2)를 다음으로 배분한다. Ts1 > 2n - 1인 경우에는 비트(m1) = 1로 하고 나머지 조사 시간의 계조치(Ts2)(= Ts1 - m1)를 다음으로 배분한다. Ts1 ≤ 2n - 1인 경우에는 비트(m1) = 0으로 하고 나머지 조사 시간의 계조치(Ts2)(= Ts1)를 다음으로 배분한다. 나머지 조사 시간의 계조치(Ts2)는 Ts2 ≤ 2n - 1이 되므로, (2n-1, 2n-2, ···, 20) 중 적어도 1 개를 이용한 조사 시간의 계조치의 조합으로 변환한다. 따라서, Ts > M1인 경우에는 (M2Δ, m1Δ, 2n- 1Δ, 2n- 2Δ, ···, 20Δ)의 조사 시간으로 설정되는 (n + 2) 회의 분할 샷으로 변환된다.
한편, 대상 빔의 조사 시간의 계조치(Ts)가 Ts ≤ M1인 경우에는 비트(M2) = 0으로 하고 나머지 조사 시간의 계조치(Ts1)(= Ts)를 다음으로 배분한다. Ts1 > 2n - 1인 경우에는 비트(m1) = 1로 하고 나머지 조사 시간의 계조치(Ts2)(= Ts1 - m1)를 다음으로 배분한다. Ts1 ≤ 2n - 1인 경우에는 비트(m1) = 0으로 하고 나머지 조사 시간의 계조치(Ts2)(= Ts1)를 다음으로 배분한다. 나머지 조사 시간의 계조치(Ts2)는 Ts2 ≤ 2n - 1이 되므로, (2n-1, 2n-2, ···, 20) 중 적어도 1 개를 이용한 조사 시간의 계조치의 조합으로 변환한다. 따라서, Ts ≤ M1인 경우에는 (m1Δ, 2n- 1Δ, 2n- 2Δ, ···, 20Δ)의 조사 시간으로 설정되는 (n + 1) 회의 분할 샷으로 변환된다.
당해 묘화 레이아웃에 대해 예를 들면 T2 = 850Δ, T1 = 700Δ인 경우를 계산한다. 이러한 경우, M2 = 150, M1 = 700이 된다. 따라서, M1 ≥ 2n - 1을 만족하는 최대수(n)는 n = 9가 된다. 따라서, m1 = 189(= 700 - 511)가 된다. 따라서, 복수의 분할 샷의 조사 시간의 계조치열은 (150, 189, 28, 27, ···, 20)이 된다.
여기서, 어느 한 샷의 최대 조사 시간에 대응되는 빔의 조사 시간의 계조치 Ts = 850을 복수 회의 분할 샷으로 분할하는 경우를 계산한다. Ts > M1이므로, 비트(M2 = 150) = 1이 된다. 나머지인 Ts1(= 700)은 Ts1 > 2n - 1(= 511)이므로, 비트(m1 = 189) = 1이 된다. 나머지인 Ts1(= 511)은 Ts1 = 28 + 27 + 26 + 25 + 24 + 23 + 22 + 21 + 20이 된다. 따라서, 이러한 빔은 11 회의 분할 샷으로 변환되며, 분할 샷 데이터는 (11111111111)이 된다. 분할 샷의 횟수는 예를 들면 최대 조사 시간 1023Δ를 2 진수 변환한 10 회의 경우보다 증가해 있으나, 분할 샷의 조사 시간의 합계는 1023Δ 미만으로 할 수 있다.
이어서, 어느 한 샷의 최대 조사 시간에 대응되는 빔의 조사 시간의 계조치 Ts = 700을 복수 회의 분할 샷으로 분할하는 경우를 계산한다. Ts ≤ M1이므로, 비트(M2 = 150) = 0이 된다. 나머지인 Ts1(= 700)은 Ts1 > 2n - 1(= 511)이므로, 비트(m1 = 189) = 1이 된다. 나머지인 Ts1(= 511)은 Ts1 = 28 + 27 + 26 + 25 + 24 + 23 + 22 + 21 + 20이 된다. 따라서, 이러한 빔은 10 회의 분할 샷으로 변환되며, 분할 샷 데이터는 (1111111111)이 된다. 따라서, 1 회분의 분할 샷을 생략할 수 있다. 또한, 특정값(M2Δ)의 분할 샷이 불필요하다는 것을 나타내기 위해, 분할 샷 데이터는 11 자리의 (01111111111)로 정의하면 적합하다. 분할 샷의 횟수는 예를 들면 최대 조사 시간 1023Δ를 2 진수 변환한 10 회의 경우와 동일하나, 분할 샷의 조사 시간의 합계는 1023Δ보다 작게 할 수 있다. 또한, 계조치(Ts)가 700보다 작은 경우에는, 분할 샷 데이터는 지정된 계조치가 되도록 적절히 1과 0의 조합으로 표현된다.
또한, 특정값(M2Δ)의 분할 샷과 특정값(m1Δ)의 분할 샷이 불필요하다는 것을 나타내기 위해, 분할 샷 데이터는 11 자리의 (00111111111)로 정의하면 적합하다. 분할 샷의 횟수는 예를 들면 최대 조사 시간 1023Δ를 2 진수 변환한 10 회의 경우보다 적게 할 수 있으며 또한 분할 샷의 조사 시간의 합계는 1023Δ보다 큰 폭으로 작게 할 수 있다. 또한, 분할 샷의 특정값을 복수 개 설정하는 것도 효과적이다. 예를 들면, 최대 조사 시간이 3 종류로 편재하는 것과 같은 경우에는, Tmin, T1, T2에 추가로 T3를 더하여 T1, T2, T3의 각각의 최대 조사 시간으로 묘화되도록 설정하면 묘화 시간의 추가적인 단축을 도모할 수 있다. 특정값의 개수를 늘리면 보다 세세한 설정이 가능해져 묘화 시간의 단축 효과를 기대할 수 있으나, 그 반면 처리가 복잡해지고 또한 분할 샷 수의 증가에 의해 전환의 오버헤드가 증가하여 오히려 묘화 시간을 증가시키게 되기도 한다. 이 때문에, 분할 샷의 특정값을 몇 개 마련할지는 효율을 봐서 판단하면 된다.
도 23(a) 내지 도 23(c)는 실시 형태 3에서의 최대 조사 시간의 단축 처리를 설명하기 위한 일례를 나타내는 도면이다. 도 23(a), 도 23(b) 및 도 23(c)에서는 전술한 복수 회의 분할 샷 중 32Δ 미만의 조사 시간이 되는 분할 샷에 대해서는 도시를 생략하였다.
도 23(a)의 예에서는 각 샷에 대해 최대 조사 시간을 1023Δ로 설정하고 일률적으로 10 회의 분할 샷을 행하도록 설정하는 경우를 나타내고 있다. 또한, 도 23(a)의 예에서는 k 샷째의 각 빔(여기서는 빔 1 ~ 5)의 각 분할 샷의 샷 유무와, k + m 샷째의 각 빔의 각 분할 샷의 샷 유무와, k + p 샷째의 각 빔의 각 분할 샷의 샷 유무를 나타내고 있다.
도 23(a)에서 k 샷째에 주목하면, 빔 1에서는 512Δ 및 32Δ의 조사 시간이 되는 분할 샷에서는 빔 ON이 된다. 그러나, 256Δ, 128Δ 및 64Δ의 조사 시간이 되는 분할 샷에서는 빔 OFF가 된다. 빔 2, 4에서는 256Δ 및 64Δ의 조사 시간이 되는 분할 샷에서는 빔 ON이 된다. 그러나, 512Δ, 128Δ 및 32Δ의 조사 시간이 되는 분할 샷에서는 빔 OFF가 된다. 빔 3, 5에서는 256Δ의 조사 시간이 되는 분할 샷에서는 빔 ON이 된다. 그러나, 512Δ, 128Δ, 64Δ 및 32Δ의 조사 시간이 되는 분할 샷에서는 빔 OFF가 된다. 도 23(a)에서 k + m 샷째에 주목하면, 빔 1 ~ 5 모두가 512Δ의 조사 시간이 되는 분할 샷에서는 빔 OFF가 된다. 도 23(a)에서 k + p 샷째에 주목하면, 빔 1에서는 512Δ, 256Δ 및 32Δ의 조사 시간이 되는 분할 샷에서는 빔 ON이 된다. 그러나, 128Δ 및 64Δ의 조사 시간이 되는 분할 샷에서는 빔 OFF가 된다. 빔 2, 3, 5에서는 조사 시간이 0이다. 빔 4에서는 32Δ의 조사 시간이 되는 분할 샷에서는 빔 ON이 된다. 그러나, 512Δ, 256Δ, 128Δ 및 64Δ의 조사 시간이 되는 분할 샷에서는 빔 OFF가 된다.
이에 반해, 실시 형태 3에서는 512Δ 대신에 특정값(M2Δ, m1Δ)을 이용한다. 근접 효과 보정 묘화를 상정하면, 통상적으로 M2Δ + m1Δ는 도 23(a)에 나타내는 2 진수의 최대 자리의 조사 시간(여기서는 512Δ)보다 짧게 할 수 있다. 그 결과, 도 23(b)에서 k 샷째에 주목하면, 511Δ보다 조사 시간이 긴 빔 1의 조사 시간을 m1Δ의 조사 시간이 되는 분할 샷 및 256Δ 및 128Δ 및 64Δ의 조사 시간이 되는 분할 샷으로 대체할 수 있다. 빔 2 ~ 5는 모두 28Δ ~ 20Δ까지의 합계인 511Δ 이하의 조사 시간이므로 분할 샷의 배분은 도 23(a)와 동일하다. 그 결과, 511Δ + m1Δ를 초과하는 부분이 대기 시간이 되므로 도 23(c)에 나타낸 바와 같이 단축시킬 수 있다. 도 23(b)에서 k + m 샷째에 주목하면, 빔 1 ~ 5는 모두 28Δ ~ 20Δ까지의 합계인 511Δ 이하의 조사 시간이므로 분할 샷의 배분은 도 23(a)와 동일하다. 그 결과, 511Δ를 초과하는 부분이 대기 시간이 되므로 도 23(c)에 나타낸 바와 같이 단축시킬 수 있다. 도 23(b)에서 k + p 샷째에 주목하면, 511Δ보다 조사 시간이 긴 빔 1의 조사 시간을 M2Δ 및 m1Δ의 조사 시간이 되는 분할 샷 및 256Δ 및 128Δ 및 64Δ의 조사 시간이 되는 분할 샷으로 대체할 수 있다. 빔 2 ~ 5는 모두 28Δ ~ 20Δ까지의 합계인 511Δ 이하의 조사 시간이므로 분할 샷의 배분은 도 23(a)와 동일하다. 그 결과, 511Δ + M2Δ + m1Δ를 초과하는 부분이 대기 시간이 되므로 도 23(c)에 나타낸 바와 같이 단축시킬 수 있다. 또한, 여기서의 기재는 생략하였으나, 추가로 실제 조사가 없는 분할 샷의 시간을 삭제하는 방법을 아울러 실시함으로써 조사 시간을 더 단축시킬 수 있다.
최대 조사 시간(tmax) 재연산 공정(S140)으로서, 최대 조사 시간(tmax) 연산부(75)는 샷마다 단축 처리된 분할 샷의 조사 시간의 합계를 당해 샷의 최대 조사 시간(tmax)으로서 연산한다.
단위 영역 묘화 시간 연산 공정(S150)부터 묘화 공정(S158)의 각 내용은 실시 형태 2와 동일하다.
이상과 같이, 실시 형태 3에 따르면 특정값(M2Δ, m1Δ)을 이용하여 동일한 위치에 연속으로 조사되는 조사 시간이 상이한 복수 회의 분할 샷으로 분할함으로써, 1 회분의 샷을 모두 2 진수 변환하는 경우보다 조사 시간을 단축 가능하게 할 수 있다. 또한, 특정값(M2Δ, m1Δ)을 이용하여 추가적으로 근접 효과 보정 등의 조사량 가변 묘화에서 효과적으로 조사 시간을 단축 가능하게 할 수 있다. 그리고, 특정값(M2Δ, m1Δ)을 이용해 동일한 위치에 연속으로 조사되는 조사 시간이 상이한 복수 회의 분할 샷으로 분할하여 묘화하는 멀티빔 묘화에서 XY 스테이지(105)를 가변속으로 이동시킴으로써 스루풋 성능을 더 높일 수 있다. 또한 분할 샷의 특정값에 관해서는, 빔 전류의 변동 등에 수반하여 조사 시간이 변화되는 경우에는 그 변화를 예측하여 설정되면 된다. 또한, 분할 샷의 특정값을 결정하기 위한 보다 간편한 방법으로서 예를 들면, 모든 묘화 패턴에 대하여 상기에서 빈도 함수 F(t) = k로 일정한 경우를 가정한 예와 같이 특정한 고정값(예를 들면 T1 = 1.3)을 채용하는 것으로 해도, 최적은 아니어도 충분한 묘화 시간 단축 효과가 얻어진다. 또한, 분할 샷의 특정값을 레이아웃마다 혹은 품종마다 대표적인 패턴으로 최적값을 결정해 두는 것도 효과적이며, 또한 경험적으로 결정하는 것으로 해도 효과적이다. 분할 샷의 특정값은 다양한 방법으로 결정할 수 있으나, 보다 정확한 최적값을 구하고자 하면 순서가 복잡하여 처리 시간이 많이 걸리게 된다. 이 때문에, 분할 샷의 특정값의 결정 방법은 요구에 맞추어 적절히 선택되면 된다.
이상, 구체예를 참조하여 실시 형태에 대해 설명하였다. 그러나, 본 발명은 이들 구체예에 한정되지 않는다.
또한, 장치 구성 또는 제어 방법 등 본 발명의 설명에 직접 필요하지 않은 부분 등에 대해서는 기재를 생략하였으나, 필요한 장치 구성 또는 제어 방법을 적절히 선택하여 이용할 수 있다. 예를 들면, 묘화 장치(100)를 제어하는 제어부 구성에 대해서는 기재를 생략하였으나, 필요한 제어부 구성을 적절히 선택하여 이용하는 것은 말할 필요도 없다.
그 외에 본 발명의 요소를 구비하며 당업자가 적절히 설계 변경할 수 있는 모든 멀티 하전 입자빔 묘화 장치 및 방법은 본 발명의 범위에 포함된다.
본 발명의 몇 개의 실시 형태를 설명하였으나, 이들 실시 형태는 예로서 제시한 것이며, 발명의 범위를 한정하는 것은 의도하고 있지 않다. 이들 신규 실시 형태는 그 외의 다양한 형태로 실시되는 것이 가능하며, 발명의 요지를 일탈하지 않는 범위에서 다양한 생략, 치환, 변경을 행할 수 있다. 이들 실시 형태 또는 그 변형은 발명의 범위 또는 요지에 포함되고, 또한 특허 청구의 범위에 기재된 발명과 그 균등 범위에 포함된다.

Claims (10)

  1. 묘화 대상이 될 시료를 재치하는 이동 가능한 스테이지를 가지며, 하전 입자빔에 의한 멀티빔을 이용하여 상기 시료에 패턴을 묘화하는 묘화 기구와,
    상기 멀티빔의 샷마다, 상기 멀티빔의 각 빔의 조사 시간 중 최대 조사 시간을 취득하는 최대 조사 시간 취득 처리 회로와,
    샷마다 취득된 상기 최대 조사 시간을 이용하여 시료의 묘화 영역이 분할된 복수의 단위 영역에서의 단위 영역마다, 상기 스테이지가 이동하면서 해당 단위 영역을 멀티빔에 의한 복수 회의 샷으로 조사하는 경우의 각 샷의 최대 조사 시간을 합계한 단위 영역 묘화 시간을 연산하는 단위 영역 묘화 시간 연산 처리 회로와,
    상기 단위 영역 묘화 시간을 이용하여 스테이지 속도가 가변속이 되도록 상기 단위 영역마다 상기 스테이지의 속도를 연산하는 스테이지 속도 연산 처리 회로와,
    상기 스테이지의 속도를 가변속으로 제어하는 스테이지 제어 처리 회로
    를 구비한 것을 특징으로 하는 멀티 하전 입자빔 묘화 장치.
  2. 제1항에 있어서,
    상기 멀티빔의 1 회의 샷으로 조사 가능한 조사 가능 영역의 기준 위치가 중첩되는 단위 영역에, 해당 단위 영역을 멀티빔이 조사하는 경우의 상기 복수 회의 샷의 일부로서 해당 샷을 소속시키는 것을 특징으로 하는 멀티 하전 입자빔 묘화 장치.
  3. 제2항에 있어서,
    상기 조사 가능 영역이 상기 시료 상에 세트된 상태로 각 빔의 위치를 시프트시키면서 최대 조사 시간이 상이한 멀티빔에 의한 복수 회의 샷이 행해지는 것을 특징으로 하는 멀티 하전 입자빔 묘화 장치.
  4. 제1항에 있어서,
    상기 멀티빔의 각 샷은 동일한 위치에 연속으로 조사되는 복수 회의 분할 샷으로 분할되고,
    상기 시료에 묘화될 패턴에 따라 상기 복수 회의 분할 샷의 횟수가 가변으로 설정되는 것을 특징으로 하는 멀티 하전 입자빔 묘화 장치.
  5. 제1항에 있어서,
    상기 묘화 기구는, 상기 멀티빔의 샷마다의 최대 조사 시간에 따라 각 샷에서의 다음 샷으로의 전환 기간이 가변이 되도록 상기 멀티빔에 의한 상기 복수 회의 샷을 행하는 것을 특징으로 하는 멀티 하전 입자빔 묘화 장치.
  6. 제5항에 있어서,
    상기 묘화 기구는, 1 회의 멀티빔의 샷에 설정 가능한 설정 가능 최대 조사 시간 중 상기 샷마다의 최대 조사 시간을 초과하는 시간을 단축시켜 다음 멀티빔의 샷을 행하는 것을 특징으로 하는 멀티 하전 입자빔 묘화 장치.
  7. 제1항에 있어서,
    상기 멀티빔의 각 샷은 동일한 위치에 연속으로 조사되는 복수 회의 분할 샷으로 분할되고,
    상기 멀티빔의 빔마다, 상기 복수 회의 분할 샷 중에서 조사 위치의 조사 시간이 얻어지는 분할 샷의 조가 선택되도록 분할 샷 데이터를 생성하는 분할 샷 데이터 생성 처리 회로를 더 구비한 것을 특징으로 하는 멀티 하전 입자빔 묘화 장치.
  8. 제7항에 있어서,
    상기 멀티빔의 샷마다, 상기 멀티빔의 어느 빔에도 선택되지 않은 분할 샷의 기간을 단축하는 단축 처리 회로를 더 구비한 것을 특징으로 하는 멀티 하전 입자빔 묘화 장치.
  9. 하전 입자빔에 의한 멀티빔의 샷마다, 상기 멀티빔의 각 빔의 조사 시간 중 최대 조사 시간을 취득하고,
    샷마다 취득된 상기 최대 조사 시간을 이용하여 묘화 대상이 될 시료의 묘화 영역이 분할된 복수의 단위 영역에서의 단위 영역마다, 상기 시료를 재치하는 스테이지가 이동하면서 해당 단위 영역을 멀티빔에 의한 복수 회의 샷으로 조사하는 경우의 각 샷의 최대 조사 시간을 합계한 단위 영역 묘화 시간을 연산하고,
    상기 단위 영역 묘화 시간을 이용하여 스테이지 속도가 가변속이 되도록 상기 단위 영역마다 상기 스테이지의 속도를 연산하고,
    상기 스테이지의 속도를 가변속으로 제어하면서 하전 입자빔에 의한 멀티빔을 이용하여 상기 시료에 패턴을 묘화하는 것을 특징으로 하는 멀티 하전 입자빔 묘화 방법.
  10. 묘화할 패턴의 패턴 밀도가 높은 시료 상의 영역을 묘화하는 경우에는 상기 시료가 재치된 스테이지의 스테이지 속도를 고속으로 제어하고, 패턴 밀도가 낮은 시료 상의 영역을 묘화하는 경우에는 상기 스테이지의 스테이지 속도를 저속으로 제어하도록 상기 스테이지의 스테이지 속도를 가변속으로 제어하고,
    가변속으로 제어되는 상기 스테이지의 이동에 동기하면서 하전 입자빔에 의한 멀티빔을 이용하여 상기 시료에 패턴을 묘화하는 것을 특징으로 하는 멀티 하전 입자빔 묘화 방법.
KR1020160101565A 2015-08-11 2016-08-10 멀티 하전 입자빔 묘화 장치 및 멀티 하전 입자빔 묘화 방법 KR101896499B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2015-158747 2015-08-11
JP2015158747A JP6577787B2 (ja) 2015-08-11 2015-08-11 マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法

Publications (2)

Publication Number Publication Date
KR20170019326A KR20170019326A (ko) 2017-02-21
KR101896499B1 true KR101896499B1 (ko) 2018-09-07

Family

ID=57996087

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160101565A KR101896499B1 (ko) 2015-08-11 2016-08-10 멀티 하전 입자빔 묘화 장치 및 멀티 하전 입자빔 묘화 방법

Country Status (4)

Country Link
US (1) US9934935B2 (ko)
JP (1) JP6577787B2 (ko)
KR (1) KR101896499B1 (ko)
TW (1) TWI613530B (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6617066B2 (ja) * 2016-03-25 2019-12-04 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
JP6804389B2 (ja) * 2017-05-30 2020-12-23 株式会社ニューフレアテクノロジー 描画装置および描画方法
JP6743787B2 (ja) * 2017-09-13 2020-08-19 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及びブランキング回路の故障診断方法
JP6930431B2 (ja) 2018-01-10 2021-09-01 株式会社ニューフレアテクノロジー アパーチャのアライメント方法及びマルチ荷電粒子ビーム描画装置
JP7024616B2 (ja) * 2018-06-08 2022-02-24 株式会社ニューフレアテクノロジー データ処理方法、データ処理装置、及びマルチ荷電粒子ビーム描画装置
JP7189729B2 (ja) * 2018-10-30 2022-12-14 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置およびマルチ荷電粒子ビーム描画方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090134343A1 (en) 2007-11-26 2009-05-28 Nuflare Technology, Inc. Tracking control method and electron beam writing system
US8030626B2 (en) 2009-02-12 2011-10-04 Nuflare Technology, Inc. Apparatus and method for charged-particle beam writing

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2706599B2 (ja) 1992-07-20 1998-01-28 株式会社日立製作所 電子線描画方法とその装置
DE69738276T2 (de) 1996-03-04 2008-04-03 Canon K.K. Elektronenstrahl-Belichtungsgerät, Belichtungsverfahren und Verfahren zur Erzeugung eines Objekts
JP4995261B2 (ja) 2006-04-03 2012-08-08 イーエムエス ナノファブリカツィオン アーゲー パターン化ビームの総合変調を持つ粒子ビーム露光装置
US8017286B2 (en) * 2008-09-01 2011-09-13 D2S, Inc. Method for design and manufacture of a reticle using a two-dimensional dosage map and charged particle beam lithography
US9057956B2 (en) * 2011-02-28 2015-06-16 D2S, Inc. Method and system for design of enhanced edge slope patterns for charged particle beam lithography
KR102005083B1 (ko) * 2011-02-28 2019-07-29 디2에스, 인코포레이티드 하전 입자 빔 리소그래피를 사용하여 패턴들을 형성하는 방법 및 시스템
JP6027798B2 (ja) 2012-07-10 2016-11-16 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び多重描画用の荷電粒子ビームの照射時間振り分け方法
JP6215586B2 (ja) 2012-11-02 2017-10-18 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画方法及びマルチ荷電粒子ビーム描画装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090134343A1 (en) 2007-11-26 2009-05-28 Nuflare Technology, Inc. Tracking control method and electron beam writing system
US8030626B2 (en) 2009-02-12 2011-10-04 Nuflare Technology, Inc. Apparatus and method for charged-particle beam writing

Also Published As

Publication number Publication date
US9934935B2 (en) 2018-04-03
JP2017037976A (ja) 2017-02-16
TW201716880A (zh) 2017-05-16
TWI613530B (zh) 2018-02-01
KR20170019326A (ko) 2017-02-21
JP6577787B2 (ja) 2019-09-18
US20170047194A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
KR101896499B1 (ko) 멀티 하전 입자빔 묘화 장치 및 멀티 하전 입자빔 묘화 방법
US9437396B2 (en) Multi charged particle beam writing apparatus, and multi charged particle beam writing method
JP6353278B2 (ja) マルチ荷電粒子ビーム描画方法及びマルチ荷電粒子ビーム描画装置
KR101868599B1 (ko) 멀티 하전 입자빔 묘화 방법 및 멀티 하전 입자빔 묘화 장치
KR101633405B1 (ko) 멀티 하전 입자빔 묘화 방법 및 멀티 하전 입자빔 묘화 장치
KR101828906B1 (ko) 멀티 하전 입자빔 묘화 방법 및 멀티 하전 입자빔 묘화 장치
KR101595787B1 (ko) 멀티 하전 입자빔 묘화 방법 및 멀티 하전 입자빔 묘화 장치
JP6653125B2 (ja) マルチ荷電粒子ビーム描画方法及びマルチ荷電粒子ビーム描画装置
KR102026649B1 (ko) 멀티 하전 입자빔 묘화 장치 및 멀티 하전 입자빔 묘화 방법
KR101781078B1 (ko) 멀티 하전 입자빔 묘화 장치 및 멀티 하전 입자빔 묘화 방법
JP2019114748A (ja) マルチ荷電粒子ビーム描画方法及びマルチ荷電粒子ビーム描画装置
KR101968609B1 (ko) 멀티 하전 입자빔 노광 방법 및 멀티 하전 입자빔의 블랭킹 장치
KR101922624B1 (ko) 멀티 하전 입자빔 노광 방법 및 멀티 하전 입자빔 노광 장치
CN117055296A (zh) 覆盖率计算方法、装置、带电粒子束描绘方法、装置及程序制品

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant