KR101848855B1 - Novel pyrene compound, preparation method thereof, carbon nanotubes surface modified with the same, carbon nanotube-bucky paper comprising the same and preparationa method thereof - Google Patents

Novel pyrene compound, preparation method thereof, carbon nanotubes surface modified with the same, carbon nanotube-bucky paper comprising the same and preparationa method thereof Download PDF

Info

Publication number
KR101848855B1
KR101848855B1 KR1020160139944A KR20160139944A KR101848855B1 KR 101848855 B1 KR101848855 B1 KR 101848855B1 KR 1020160139944 A KR1020160139944 A KR 1020160139944A KR 20160139944 A KR20160139944 A KR 20160139944A KR 101848855 B1 KR101848855 B1 KR 101848855B1
Authority
KR
South Korea
Prior art keywords
carbon nanotube
formula
carbon nanotubes
carbon
same
Prior art date
Application number
KR1020160139944A
Other languages
Korean (ko)
Inventor
최준
장시훈
박노형
정원영
임대영
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020160139944A priority Critical patent/KR101848855B1/en
Application granted granted Critical
Publication of KR101848855B1 publication Critical patent/KR101848855B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/612Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety
    • C07C69/616Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety polycyclic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • C07C2603/50Pyrenes; Hydrogenated pyrenes

Abstract

The present invention relates to: a novel pyrene compound; a manufacturing method thereof; carbon nanotubes surface modified using the same; and carbon nanotube-buckypaper comprising the same. The buckypaper manufactured with carbon nanotube dispersion which is uniformly dispersed at high density by the novel pyrene compound of the present invention has an increased density and a slight orientation. In addition, pyrene groups at both ends induce intermolecular connection of the carbon nanotubes to improve the electric conductivity. The carbon nanotube-buckypaper comprising the surface-modified carbon nanotubes has improved mechanical strength and electrical characteristics, and thus can be applied to various fields when manufactured as a composite material.

Description

신규 피렌 화합물, 이를 이용하여 표면 개질된 탄소나노튜브, 이를 포함하는 탄소나노튜브-버키페이퍼 및 이의 제조방법{Novel pyrene compound, preparation method thereof, carbon nanotubes surface modified with the same, carbon nanotube-bucky paper comprising the same and preparationa method thereof}A novel pyrene compound, a surface-modified carbon nanotube using the same, a carbon nanotube-bucky paper containing the same, and a method for producing the same, and a method for manufacturing the carbon nanotube-bucky paper and a carbon nanotube-bucky paper the same and preparationa method thereof}

본 발명은 신규 피렌 화합물, 이를 이용하여 표면 개질된 탄소나노튜브, 이를 포함하는 탄소나노튜브-버키페이퍼 및 이의 제조방법에 관한 것이다. The present invention relates to a novel pyrene compound, a carbon nanotube surface-modified using the same, a carbon nanotube-bucky paper comprising the same, and a method for producing the same.

탄소나노튜브(Carbon Nano Tubes; CNT)는 탄소 동소체 중의 하나로서, 일반적으로 수 ㎚ 내지 수십 ㎚의 지름과 수 ㎛에서 수백 ㎛의 길이를 갖는, 종횡비가 수십에서 수천에 달하는 극히 작은 실린더형 재료이다. 상기 탄소나노튜브는 그 직경에 따라 0.7~3㎚인 단일벽 탄소나노튜브(Single-wall carbon nanotubes; SWNT), 2~20㎚인 다중벽 탄소나노튜브(Multi-wall carbon nanotubes; MWNT)로 나눌 수 있다.Carbon nanotubes (CNTs) are one of the carbon isotopes, which are extremely small cylindrical materials having a diameter of several nanometers to several tens of nanometers in diameter, a length of several micrometers to several hundreds of micrometers, and an aspect ratio of tens to thousands . The carbon nanotubes are divided into single-wall carbon nanotubes (SWNTs) of 0.7 to 3 nm and multi-wall carbon nanotubes (MWNTs) of 2 to 20 nm depending on their diameters .

이러한 탄소나노튜브는 전자정보통신, 환경, 에너지 및 의약 분야 등 폭넓은 분야에서 응용이 기대되는 꿈의 소재로 불리고 있다. 그러나 이러한 커다란 기대에도 탄소나노튜브의 응집 현상은 기계적 강도와 전도 특성을 향상시킬 수 있는 3차원적 네트워크 구조형성을 방해하기 때문에 그 활용에 대한 큰 걸림돌이 되고 있다. 따라서 이러한 응집현상을 해결하기 위한 기술은 탄소나노튜브의 미래시장을 확장하고 가치를 높이기 위해 매우 중요한 의미가 있다.These carbon nanotubes are said to be a dream material that is expected to be applied in a wide range of fields such as electronic information communication, environment, energy and medicine. However, even with such large expectations, aggregation of carbon nanotubes is a major obstacle to the utilization of carbon nanotubes because it hinders formation of a three-dimensional network structure that can improve mechanical strength and conduction characteristics. Therefore, the technique for solving such coagulation phenomenon is very important for expanding the future market of carbon nanotubes and increasing its value.

탄소나노튜브의 효과적 분산을 위하여 초음파를 이용한 물리적 방법과 튜브표면에 화학적인 방법으로 저분자 물질 혹은 고분자 물질을 도입하여 튜브간의 인력을 차단함으로써 분산을 가능하게 하는 표면 개질 방법들이 연구되고 있다. In order to effectively disperse carbon nanotubes, surface modification methods have been researched, which are physical methods using ultrasonic waves and chemical methods on the surface of tubes by introducing low molecular substances or high molecular substances to block the attractive force between the tubes.

일 예로, 대한민국 특허등록 제10-1451300호는 신규 피렌 화합물이 탄소나노튜브의 고유 구조에 변형을 가하지 않고 탄소나노튜브 표면을 비공유 결합으로 개질하여 탄소나노튜브를 폴리카보네이트 매트릭스 내에 균일하게 분산시킬 수 있다고 개시하고 있다. For example, Korean Patent Registration No. 10-1451300 discloses that a novel pyrene compound modifies the surface of a carbon nanotube to a non-covalent bond without modifying the inherent structure of the carbon nanotube to uniformly disperse the carbon nanotube in the polycarbonate matrix .

대한민국 특허등록 제10-1451300호Korean Patent Registration No. 10-1451300

본 발명의 과제는 탄소나노튜브의 고유 구조에 변형을 가하지 않으면서 탄소나노튜브의 분산성을 향상시킬 수 있을 뿐만 아니라 탄소나노튜브 분자 간 연결을 유도하여 전기전도도를 상승시킬 수 있는 신규한 탄소나노튜브 표면 개질 물질을 제공하는 것이다.Disclosure of Invention Technical Problem [8] Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to provide a novel carbon nanotube capable of improving the dispersibility of carbon nanotubes without inducing a change in the inherent structure of carbon nanotubes, And to provide a tube surface modification material.

본 발명의 다른 과제는 상기한 신규한 탄소나노튜브 표면 개질 물질로 탄소나노튜브의 분산성을 향상된 탄소나노튜브를 제공하는 것이다.Another object of the present invention is to provide a carbon nanotube having improved dispersibility of carbon nanotubes with the novel carbon nanotube surface modifying material.

본 발명의 또 다른 과제는 상기한 신규한 탄소나노튜브 표면 개질 물질이 흡착되어 분산성이 향상된 탄소나노튜브를 포함하여, 기계적 물성 및 전기전도도가 향상된 탄소나노튜브-버키페이퍼 및 이의 제조방법을 제공하는 것이다. Another object of the present invention is to provide a carbon nanotube-bucky paper having improved mechanical properties and electric conductivity including carbon nanotubes in which the novel carbon nanotube surface modifying material is adsorbed and improved in dispersibility, and a method for producing the same .

상기한 과제를 달성하기 위해 본 발명은,According to an aspect of the present invention,

하기 화학식 1로 표시되는 신규 피렌 화합물을 제공한다:There is provided a novel pyrene compound represented by the following Formula 1:

[화학식 1][Chemical Formula 1]

Figure 112016104103235-pat00001
Figure 112016104103235-pat00001

(상기 화학식 1에서,(In the formula 1,

R1 및 R2는 서로 같거나 상이하며, 각각 독립적으로 C1-C5 알킬렌기 또는 C2-C6 알켄일렌기이고, R 1 and R 2 are the same or different and are each independently a C 1 -C 5 alkylene group or a C 2 -C 6 alkenylene group,

Z는 컨쥬게이트 단위 또는 에스테르이다).Z is a conjugate unit or an ester.

또한 본 발명은 하기 화학식 1의 피렌 화합물이 비공유결합으로 탄소나노튜브 표면에 흡착되어 표면이 개질된 탄소나노튜브를 제공한다:The present invention also provides a carbon nanotube having a surface modified by adsorbing a pyrene compound represented by the following formula (1) on the surface of a carbon nanotube by noncovalent bonding:

[화학식 1][Chemical Formula 1]

Figure 112016104103235-pat00002
Figure 112016104103235-pat00002

(상기 화학식 1에서,(In the formula 1,

R1 및 R2는 서로 같거나 상이하며, 각각 독립적으로 C1-C5 알킬렌기 또는 C2-C6 알켄일렌기이고, R 1 and R 2 are the same or different and are each independently a C 1 -C 5 alkylene group or a C 2 -C 6 alkenylene group,

Z는 컨쥬게이트 단위 또는 에스테르이다).Z is a conjugate unit or an ester.

또한 본 발명은Also,

전술한 바의 개질화된 탄소나노튜브를 포함하는 탄소나노튜브-버키페이퍼(buckypaper)을 제공한다. A carbon nanotube-buckypaper comprising the above-described modified carbon nanotubes is provided.

또한 본 발명은Also,

탄소나노튜브를 물에 분산시켜 탄소나노튜브 수분산물을 얻는 1단계;A first step of dispersing the carbon nanotubes in water to obtain a carbon nanotube water dispersion;

상기 탄소나노튜브 수분산물에 하기 화학식 1의 피렌 화합물을 추가하여 탄소나노튜브를 개질하는 2단계; 및A second step of modifying the carbon nanotubes by adding a pyrene compound represented by the following formula (1) to the carbon nanotube water dispersion; And

상기 피렌 화합물이 추가된 수분산물을 이용하여 습식 초지법을 통해 탄소나노튜브-버키페이퍼(buckypaper)를 제조하는 3단계In the third step of producing a carbon nanotube-buckypaper using a wet pasting method using the hydrated product added with the pyrene compound

를 포함하는 탄소나노튜브-버키페이퍼(buckypaper)의 제조방법을 제공한다:The present invention provides a method for producing a carbon nanotube-buckypaper comprising:

[화학식 1][Chemical Formula 1]

Figure 112016104103235-pat00003
Figure 112016104103235-pat00003

(상기 화학식 1에서,(In the formula 1,

R1 및 R2는 서로 같거나 상이하며, 각각 독립적으로 C1-C5 알킬렌기 또는 C2-C6 알켄일렌기이고, R 1 and R 2 are the same or different and are each independently a C 1 -C 5 alkylene group or a C 2 -C 6 alkenylene group,

Z는 컨쥬게이트 단위 또는 에스테르이다).Z is a conjugate unit or an ester.

본 발명의 신규 피렌 화합물은 탄소나노튜브의 고유 구조에 변형을 가하지 않고 탄소나노튜브 표면을 비공유 결합을 통해 개질하여 탄소나노튜브의 응집을 방지하여 분산성을 향상시킨다. 또한, 양 말단의 피렌기가 탄소나노튜브의 분자간 연결을 유도하여 전기전도도를 향상시킨다. 이렇게 표면 개질된 탄소나노튜브를 포함하는 탄소나노튜브-버키페이퍼는 밀도가 상승하고 약간의 배향성을 가지며 기계적 강도 및 전기적 특성이 향상되므로, 복합재료로 제조되는 경우 다양한 분야에 응용될 수 있다. The novel pyrene compound of the present invention modifies the carbon nanotube surface through non-covalent bonding without modifying the inherent structure of the carbon nanotube, thereby preventing agglomeration of the carbon nanotube and improving dispersibility. Further, the pyrene groups at both ends induce intermolecular connection of the carbon nanotubes to improve the electric conductivity. The carbon nanotube-bucky paper including the surface-modified carbon nanotubes has increased density, has a slight orientation, has improved mechanical strength and electrical characteristics, and can be applied to various fields when it is made of a composite material.

도 1은 실시예 1 및 실시예 2의 CNT-버키페이퍼를 주사 전자현미경으로 관찰한 사진이다.
도 2는 실시예 2(non-covelent), 비교예 1(pristine) 및 비교예 2(SOCl2)의 CNT-버키페이퍼에 대한 라만 스펙트럼을 나타낸 것이다.
도 3은 비교예 1(HPH), 비교예 4(SOCl2) 및 실시예 2(NCF)의 CNT-버키페이퍼의 시간과 온도에 따른 전기전도도 안정성을 측정 결과이다.
1 is a photograph of a CNT-bucky paper of Example 1 and Example 2 observed with a scanning electron microscope.
2 shows Raman spectra for CNT-bucky paper of Example 2 (non-covelent), Comparative Example 1 (pristine) and Comparative Example 2 (SOCl 2 ).
3 shows the results of measurement of electrical conductivity stability of CNT-bucky paper of Comparative Example 1 (HPH), Comparative Example 4 (SOCl 2 ) and Example 2 (NCF) according to time and temperature.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 신규 피렌 화합물은 하기 화학식 1로 표시된다:The novel pyrene compounds of the present invention are represented by the following Formula 1:

[화학식 1][Chemical Formula 1]

Figure 112016104103235-pat00004
Figure 112016104103235-pat00004

(상기 화학식 1에서,(In the formula 1,

R1 및 R2는 서로 같거나 상이하며, 각각 독립적으로 C1-C5 알킬렌기 또는 C2-C6 알켄일렌기이고, R 1 and R 2 are the same or different and are each independently a C 1 -C 5 alkylene group or a C 2 -C 6 alkenylene group,

Z는 컨쥬게이트 단위 또는 에스테르이다).Z is a conjugate unit or an ester.

바람직하게는 상기 컨쥬게이트 단위는 벤젠, 피리디늄, 티오페늄이다. 이러한 컨쥬게이트 단위는 카본나노튜브 분자 사이 컨쥬게이트 경로를 형성하여 전기 전도도를 상승시킬 수 있다.Preferably, the conjugate unit is benzene, pyridinium, thiophenium. Such a conjugate unit can form a conjugate path between carbon nanotube molecules to increase the electric conductivity.

구체적으로 상기 화학식 1로 표시되는 화합물은 하기 화학식 2 또는 하기 화학식 3으로 표시되는 화합물이다:Specifically, the compound represented by the formula (1) is a compound represented by the following formula (2) or (3)

[화학식 2](2)

Figure 112016104103235-pat00005
Figure 112016104103235-pat00005

[화학식 3](3)

Figure 112016104103235-pat00006
Figure 112016104103235-pat00006

본 발명의 신규 피렌 화합물은 말단에 피렌기를 가지고 있어 탄소나노튜브 표면과 π-π 상호 작용이 가능하므로 비공유 결합을 통해 탄소나노튜브 표면의 sp2 카본 구조 손상 없이 개질을 효과적으로 유도할 수 있다. 특히, 양 말단에 위치하는 피렌기에 둘 다 탄소나노튜브 분자가 연결될 경우 전기전도도 상승효과가 우수하며 기계적 거동의 상승에도 영향을 미친다. Pyrene novel compounds of the present invention the carbon nanotube surface via non-covalent binding, so it has an pyrene at the terminal can be a carbon nanotube surface and the π-π interaction sp 2 The reforming can be effectively induced without damaging the carbon structure. In particular, when both carbon nanotube molecules are connected to the pyrene groups located at both ends, the synergistic effect of electric conductivity is excellent and the mechanical behavior is also increased.

상기 화학식 2로 표시되는 피렌 화합물은 하기 반응식 1로 표시되는 바와 같이, 화학식 4의 화합물과 화학식 5의 화합물을 에스테르화 반응시키는 방법으로 제조될 수 있다: The pyrene compound represented by Formula 2 may be prepared by a method of esterifying a compound of Formula 4 and a compound of Formula 5 as shown in Reaction Scheme 1 below:

[반응식 1][Reaction Scheme 1]

Figure 112016104103235-pat00007
Figure 112016104103235-pat00007

이때 에스테르화 반응의 수행을 용이하게 하기 위해 화학식 4의 화합물에 클로라이드를 도입시킨 후 화학식 5의 화합물과 함께 염기 조건 하에 에스테르화 반응시켜 본 발명의 화학식 2의 화합물을 얻을 수 있다. 이러한 에스테르화 반응은 유기화학 분야에서 통상적으로 널리 알려졌으며, 반응 용매, 반응 온도, 반응 시간 등의 반응 조건은 반응물질, 생성물질 등을 고려하여 적절히 선택할 수 있다. 일예로, 용매는 벤젠, 톨루엔, 테트라하이드로퓨란, 디클로로메탄 등을 사용할 수 있으며, 염기로는 트리에틸아민 등을 사용할 수 있다.At this time, in order to facilitate the esterification reaction, the compound of formula (4) may be obtained by introducing chloride into the compound of formula (4) followed by esterification reaction with the compound of formula (5) under a basic condition. Such esterification reaction is widely known in the field of organic chemistry, and the reaction conditions such as reaction solvent, reaction temperature, reaction time and the like can be appropriately selected in consideration of a reactant, a producing material and the like. For example, benzene, toluene, tetrahydrofuran, dichloromethane and the like can be used as the solvent. As the base, triethylamine and the like can be used.

반응 결과 얻어진 화합물은 유기화학 분야에서 사용되는 일반적인 여과, 세척, 건조 및 농축시키는 단계를 거쳐 단리될 수 있다.The resulting compound can be isolated by conventional filtration, washing, drying and concentration steps used in the field of organic chemistry.

상기 화학식 3의 화합물은 이에 제한되지는 않으나, 하기 반응식 2에 나타낸 바와 같이, 화학식 6의 화합물과 화학식 7의 화합물을 반응시키는 방법으로 제조될 수 있다: The compound of formula (3) may be prepared by reacting a compound of formula (6) with a compound of formula (7) as shown in the following reaction formula (2)

[반응식 2][Reaction Scheme 2]

Figure 112016104103235-pat00008
Figure 112016104103235-pat00008

구체적으로, 화학식 6의 피리딘과 화학식 7의 알데하이드를 이용한 크노에베나겔 축합(Knoevenagel Condensation)으로 이중결합을 생성한다. 이러한 크노에베나겔 축합반응은 유기화학 분야에서 통상적으로 널리 알려졌으며, 반응 용매, 반응 온도, 반응 시간 등의 반응 조건은 반응물질, 생성물질 등을 고려하여 적절히 선택할 수 있다. 반응 결과 얻어진 화합물은 유기화학 분야에서 사용되는 일반적인 여과, 세척, 건조 및 농축시키는 단계를 거쳐 단리될 수 있다.Concretely, Knoevenagel condensation using pyridine of formula (6) and aldehyde of formula (7) produces a double bond. The condensation reaction of naphthoquinone is widely known in the field of organic chemistry. Reaction conditions such as reaction solvent, reaction temperature, and reaction time can be appropriately selected in consideration of the reactant and the produced material. The resulting compound can be isolated by conventional filtration, washing, drying and concentration steps used in the field of organic chemistry.

본 발명은 상기한 피렌 화합물을 탄소나노튜브 표면 개질제로 응용한다. 이때 피렌 화합물은 비공유 결합으로 탄소나노튜브 표면에 흡착되어 그 표면을 개질함으로써 응집성을 개선할 수 있다. 상기 탄소나노튜브는 단일벽 탄소나노튜브(SWNT), 다중벽 탄소나노튜브(MWNT), 탄소나노섬유(CNF), C60, 탄소나노파우더(CNP) 및 다이아몬드 나노파우더(DNP)로 이루어진 군에서 선택되는 1종을 사용할 수 있다. The present invention applies the pyrene compound as a carbon nanotube surface modifier. At this time, the pyrene compound is adsorbed on the surface of the carbon nanotube by noncovalent bonding, and the surface of the carbon nanotube is modified to improve cohesion. The carbon nanotubes may be selected from the group consisting of single wall carbon nanotubes (SWNTs), multiwall carbon nanotubes (MWNTs), carbon nanofibers (CNFs), C 60s , carbon nanopowders (CNPs), and diamond nano powders One selected species can be used.

이렇게 표면이 개질된 탄소나노튜브를 이용하여 안정된 탄소나노튜브 수분산물을 제조하고, 이를 이용하여 습식 초지방법(wet-laid)으로 탈수, 초지 및 건조시킴으로써 탄소나노튜브-버키페이퍼를 제조할 수 있다. Carbon nanotube-bucky paper can be prepared by preparing a stable carbon nanotube water dispersion using the surface-modified carbon nanotubes and dehydrating, papermaking and drying the same using a wet-laid method .

본 발명에 따른 탄소나노튜브-버키페이퍼는,In the carbon nanotube-bucky paper according to the present invention,

탄소나노튜브를 물에 분산시켜 탄소나노튜브 수분산물을 얻는 1단계;A first step of dispersing the carbon nanotubes in water to obtain a carbon nanotube water dispersion;

상기 탄소나노튜브 수분산물에 상기 화학식 1의 피렌 화합물을 추가하여 탄소나노튜브를 개질하는 2단계; 및A second step of modifying the carbon nanotubes by adding the pyrene compound of Formula 1 to the carbon nanotube water dispersion; And

상기 피렌 화합물이 추가된 수분산물을 이용하여 습식 초지법을 통해 탄소나노튜브-버키페이퍼(buckypaper)를 제조하는 3단계In the third step of producing a carbon nanotube-buckypaper using a wet pasting method using the hydrated product added with the pyrene compound

를 거쳐 제조된다. Lt; / RTI >

이하 각 단계별로 상세히 설명한다.Each step will be described in detail below.

먼저, 탄소나노튜브를 물에 분산시켜 탄소나노튜브 수분산물을 얻는다. First, carbon nanotubes are dispersed in water to obtain carbon nanotube water dispersion.

이때 탄소나노튜브를 물에 분산 시 공지의 분산제를 첨가한 후 초음파 처리를 통해 탄소나노튜브를 양호하게 분산시킨다. 이후 고압 호모게나이져를 이용하여 처리함으로써 고농도의 안정된 수분산물을 얻는다. 구체적으로, 20,000 내지 40,000 psi로 총 1회 내지 5회 고압 호모게나이져를 통과시킨다. At this time, when carbon nanotubes are dispersed in water, a known dispersant is added and the carbon nanotubes are well dispersed by ultrasonic treatment. And then treated with a high pressure homogenizer to obtain a high concentration of stable water dispersion. Specifically, the high pressure homogenizer is passed through a total of 1 to 5 times at 20,000 to 40,000 psi.

이어서, 상기 탄소나노튜브 수분산물에 상기 화학식 1의 피렌 화합물을 추가하여 탄소나노튜브를 개질한다. 추가되는 피렌 화합물의 함량은 탄소나노튜브 수분산물에 대해 0.005 내지 0.2 중량% 범위로 사용한다. 만약 피렌 화합물의 사용 함량이 상기 범위 미만이면 기계적 강도 및 전기 전도도가 향상되는 효과를 기대하기 어려운 문제가 있고, 이와 반대로 상기 범위를 초과하면 CNT의 높은 전도도를 감소시킬 가능성이 있어 오히려 마이너스 효과가 발생하기 때문이다.Then, the pyrene compound of Formula 1 is added to the carbon nanotube water dispersion to modify the carbon nanotubes. The content of the added pyrene compound is in the range of 0.005 to 0.2% by weight based on the carbon nanotube water dispersion. If the amount of the pyrene compound used is less than the above range, there is a problem that mechanical strength and electrical conductivity are not improved. On the contrary, if the content exceeds the above range, there is a possibility of decreasing the high conductivity of CNT. .

다음으로, 상기 피렌 화합물이 추가된 수분산물을 이용하여 습식 초지법을 통해 탄소나노튜브-버키페이퍼(buckypaper)를 제조한다. Next, a carbon nanotube-buckypaper is prepared by wet pasting using the hydrated product to which the pyrene compound is added.

이러한 습식 초지방법은 당 업계에서 널리 알려진 공지 기술이므로, 본 명세서에서 더욱 자세한 설명은 생략하기로 한다. 본 발명의 제조방법은 공정이 간단하고 친환경적인 이점이 있다. Since such a wet grass papermaking method is well known in the art, a detailed description thereof will be omitted herein. The manufacturing method of the present invention is advantageous in that the process is simple and eco-friendly.

전술한 본 발명의 방법에 따라서 제조된 CNT-버키페이퍼는 피렌 유도체에 의해 탄소나노튜브 응집 방지 그리고 탄소나노튜브 사이의 전기적 연결효과를 통해 더욱 치밀한 물성을 갖는다. The CNT-bucky paper prepared according to the method of the present invention described above has finer physical properties through prevention of carbon nanotube aggregation and electrical connection between carbon nanotubes by pyrene derivatives.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 더욱 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are provided to further understand the present invention, and the present invention is not limited by the examples.

제조예Manufacturing example 1: 화학식 2의 화합물 제조 1: Preparation of compound of formula (2)

1-피렌뷰티르산 0.59g (2.03mmol)을 15ml의 SOCl2에 분산시키고 디메틸포름아마이드(DMF) 몇 방울을 가하였다. 이 혼합물을 2시간 동안 환류한 후 용매를 감압 제거하고 20ml의 무수 테트라하이드로퓨란(THF)를 가하였다. 1-하이드록시메틸피렌 0.47g (2.03mmol)을 4-디메틸아미노피리딘(DMAP) 0.25g (2.04mmol)과 트리에틸아민 0.3 ml (1.97mmol) 과 함께 혼합하여 용액을 만든 후 0 ℃로 온도를 내리고 앞서 만든 acid chloride 화합물 (in THF)과 천천히 떨어뜨려 섞은 후 상온에서 12시간 이상 교반하였다. 그 후 이 혼합물을 2시간 동안 환류하고 클로로포름 50ml를 가하였다. 증류수로 여러 번 씻어내고 MgSO4로 수분 제거 후 용매를 감압 제거하였다. 생성물을 펜탄, CH2Cl2, 아세톤 전개액을 써서 여러 번 칼럼 크로마토그래피(SiO2)로 정제하였다(수율: 74%).0.59 g (2.03 mmol) of 1-pyrenebutyric acid was dispersed in 15 ml of SOCl 2 and a few drops of dimethylformamide (DMF) were added. The mixture was refluxed for 2 hours, the solvent was then removed under reduced pressure, and 20 ml of anhydrous tetrahydrofuran (THF) was added. 0.47 g (2.03 mmol) of 1-hydroxymethyl pyrene was mixed with 0.25 g (2.04 mmol) of 4-dimethylaminopyridine (DMAP) and 0.3 ml (1.97 mmol) of triethylamine to prepare a solution. The solution was slowly dropped with the previously prepared acid chloride compound (in THF) and stirred at room temperature for 12 hours or more. The mixture was then refluxed for 2 hours and 50 ml of chloroform was added. After washing several times with distilled water, water was removed with MgSO 4 , and the solvent was removed under reduced pressure. The product was purified by column chromatography (SiO 2 ) several times using pentane, CH 2 Cl 2 , and acetone developing solution (yield: 74%).

1H NMR (CDCl3, ppm): 1.94 (m, 2H), 2.96 (t, 2H), 3.05 (t, 2H), 5.32 (s, 2H), 7.96 (d, 2H), 8.05 ~ 8.22 (m, 16H) 1H NMR (CDCl 3, ppm) : 1.94 (m, 2H), 2.96 (t, 2H), 3.05 (t, 2H), 5.32 (s, 2H), 7.96 (d, 2H), 8.05 ~ 8.22 (m, 16H)

제조예Manufacturing example 2: 화학식 3의 화합물 제조 2: Preparation of compound of formula (3)

1-(브로모메틸)피렌 2.54g (8.6mmol) 과 4-피콜린 2ml를 60ml의 아세토니트릴에 녹이고 12시간 이상 환류하였다. 상온으로 식힌 후 용매를 감압 제거하고 남은 생성물을 에테르로 여러 번 씻어낸 후 여과하고 진공 건조하였다.2.54 g (8.6 mmol) of 1- (bromomethyl) pyrene and 2 ml of 4-picoline were dissolved in 60 ml of acetonitrile and refluxed for 12 hours or more. After cooling to room temperature, the solvent was removed under reduced pressure, and the remaining product was washed several times with ether, followed by filtration and vacuum drying.

위에서 합성한 4-메틸-1-(피렌-1-일메틸)피리디-1-니움 브로마이드 1.84g (4.74mmol)을 피렌 1-카바알데하이드 1.3g (5.69mmol)과 함께 50ml의 메탄올에 분산시키고 2ml의 피페리딘을 가한 후 12시간 이상 환류하였다. 상온으로 식힌 후 침전물을 여과하여 얻고 THF, CH2Cl2, 펜탄으로 여러 번 씻어내어 생성물을 얻었다(수율: 63%).1.84 g (4.74 mmol) of 4-methyl-1- (pyrene-1-ylmethyl) pyridm-1-ynium bromide synthesized above was dispersed in 50 ml of methanol together with 1.3 g (5.69 mmol) of pyrene 1-carbaldehyde 2 ml of piperidine was added thereto, and the mixture was refluxed for at least 12 hours. After cooling to room temperature, the precipitate was filtered and washed several times with THF, CH 2 Cl 2 , and pentane to give the product (yield: 63%).

1H NMR (CDCl3, ppm): 6.68 (s, 2H), 7.86 (d, 1H), 8.09 ~ 8.20 (m, 6H), 8.24 ~ 8.30 (m, 6H), 8.36 ~ 8.45 (m, 5H), 8.55 ~ 8.59 (m, 2H), 8.70 (d, 1H), 9.02 (d, 1H), 9.15 ~ 9.18 (m, 2H) 1H NMR (CDCl 3, ppm) : 6.68 (s, 2H), 7.86 (d, 1H), 8.09 ~ 8.20 (m, 6H), 8.24 ~ 8.30 (m, 6H), 8.36 ~ 8.45 (m, 5H), 2H), 8.70 (d, 1H), 9.02 (d, 1H), 9.15-9.18 (m, 2H)

실시예Example 1:  One: 개질된Reformed 탄소나노튜브를 이용한  Using carbon nanotubes CNTCNT -- 버키페이퍼Bucky paper 제조 Produce

증류수 1L에 kolliphor P 188(aldrich) 2g을 넣고 상온에서 2시간 200rpm으로 기계적인 교반을 실시하였다. CNT(10~15 nm 직경/180~200 ㎛ 길이/순도 97%, 한화 화학) 2 g을 넣고 상온에서 추가로 24 시간 동안 200 rpm으로 기계적인 교반을 실시하여 CNT 수분산물을 제조하였다. 얻어진 CNT 수분산물을 30분 동안 상온에서 40 kHz 진동수로 초음파 (Branson 8510) 처리하였다. 2 g of kolliphor P 188 (aldrich) was added to 1 L of distilled water, and mechanical stirring was performed at room temperature for 2 hours at 200 rpm. 2 g of CNT (diameter of 10 to 15 nm / length of 180 to 200 탆 / purity of 97%, Hanwha Chemical) was added and mechanical stirring was performed at room temperature for further 24 hours at 200 rpm to prepare a CNT water dispersion. The obtained CNT water dispersion was ultrasonicated (Branson 8510) at a frequency of 40 kHz at room temperature for 30 minutes.

고압 호모게나이져 Inlet Reservoir에 CNT 수분산물을 넣고 기계적 교반을 하면서 투입하여 30,000 psi로 총 3회 고압 호모게나이징 하였다. Outlet 노즐을 통해 샘플을 채취하면서 맑은 물이 나올 때까지 물로 계속 세척하였다. 상기 수분산물에 제조예 1의 화합물 0.2g 씩 메탄올에 녹인 후 투입하여 추가적으로 4시간 200rpm으로 기계적 교반을 수행하여 CNT 표면을 개질하였다. 이후 수분산물을 연구실급(Lab scale)의 수동제지기(hand sheet former)로 이동시켜 교반 후 CNT 습식 초지(wet-laid) 버키페이퍼를 형성하였다. 얻어진 CNT 버키페이퍼를 상온에서 24시간 1차 건조 시킨 후 80℃ 컨벡션 오븐에서 72시간 2차 건조하였다. CNT water dispersion was added to the high pressure homogenizer Inlet Reservoir, and the mixture was subjected to high pressure homogenization three times at 30,000 psi with mechanical stirring. Samples were taken through the Outlet nozzles and washed continuously with clear water until clear. 0.2 g of the compound of Preparation Example 1 was dissolved in methanol, and the mixture was further stirred at 200 rpm for 4 hours to modify the CNT surface. The water was then transferred to a lab scale hand sheet former and stirred to form CNT wet-laid bucky paper. The obtained CNT bucky paper was first dried at room temperature for 24 hours, and then dried in a convection oven at 80 ° C for 72 hours.

실시예Example 2:  2: 개질된Reformed 탄소나노튜브를 이용한  Using carbon nanotubes CNTCNT -- 버키페이퍼Bucky paper 제조 Produce

상기 실시예 1에서 제조예 1의 화합물 대신 제조예 2의 화합물을 사용한 것을 제외하고는 동일하게 수행하였다. The procedure of Example 1 was repeated except that the compound of Preparation Example 2 was used instead of the compound of Preparation Example 1.

비교예Comparative Example 1 One

상기 실시예 1에서 제조예 1의 화합물을 사용하지 않은 것을 제외하고는 동일하게 수행하였다. The same procedure was carried out except that the compound of Preparation Example 1 was not used in Example 1.

비교예Comparative Example 2:화학적으로2: chemically 개질된Reformed 탄소나노튜브를 이용한  Using carbon nanotubes CNTCNT -- 버키페이퍼Bucky paper 제조 Produce

상기 실시예 1에서 건조된 CNT-버키페이퍼를 SOCl2 (1mol/L in methylenechloride) 용액에 20 min 담근 후 상온에서 공기 중에 24시간 건조한 것을 제외하고는 동일하게 수행하였다. The CNT-bucky paper dried in Example 1 was immersed in a SOCl 2 (1 mol / L in methylenechloride) solution for 20 minutes, and dried in air at room temperature for 24 hours.

비교예Comparative Example 3:화학적으로3: chemically 개질된Reformed 탄소나노튜브를 이용한  Using carbon nanotubes CNTCNT -- 버키페이퍼Bucky paper 제조 Produce

상기 실시예 2에서 건조된 CNT-버키페이퍼를 SOCl2 (1mol/L in methylenechloride) 용액에 20 min 담근 후 상온에서 공기 중에 24시간 건조한 것을 제외하고는 동일하게 수행하였다. The CNT-bucky paper dried in Example 2 was immersed in SOCl 2 (1 mol / L in methylenechloride) solution for 20 minutes and then dried in air at room temperature for 24 hours.

비교예Comparative Example 4: CNT4: CNT -- 버키페이퍼Bucky paper 제조 Produce

증류수 1L에 kolliphor P 188(aldrich) 2g을 넣고 상온에서 2시간 200rpm으로 기계적인 교반을 실시하였다. CNT(10~15 nm 직경/180~200 ㎛ 길이/순도 97%, 한화 화학) 2 g을 넣고 상온에서 추가로 24시간 200 rpm으로 기계적인 교반을 실시하여 CNT 수분산물을 제조하였다. 얻어진 CNT 수분산물을 연구실급(Lab scale)의 수동제지기(hand sheet former)로 이동시켜 교반 후 CNT 습식 초지(wet-laid) 버키페이퍼를 형성하였다. 얻어진 CNT 버키페이퍼를 상온에서 24시간 1차 건조 시킨 후 80℃ 컨벡션 오븐에서 72시간 2차 건조하였다. 이후 건조된 CNT-버키페이퍼를 SOCl2 (1mol/L in methylenechloride) 용액에 20 min 담근 후 상온에서 공기 중에 24시간 건조한 것을 제외하고는 동일하게 수행하였다. 2 g of kolliphor P 188 (aldrich) was added to 1 L of distilled water, and mechanical stirring was performed at room temperature for 2 hours at 200 rpm. 2 g of CNT (10 to 15 nm diameter / length of 180 to 200 탆 / purity of 97%, Hanwha Chemical) was added and mechanical stirring was performed at room temperature for further 24 hours at 200 rpm to prepare CNT water dispersion. The obtained CNT water dispersion was transferred to a hand-scale sheet hand-held press holder and stirred to form CNT wet-laid bucky paper. The obtained CNT bucky paper was first dried at room temperature for 24 hours, and then dried in a convection oven at 80 ° C for 72 hours. Thereafter, the dried CNT-bucky paper was immersed in a SOCl 2 (1 mol / L in methylenechloride) solution for 20 minutes and then dried in the air at room temperature for 24 hours.

실험예Experimental Example 1: FE- 1: FE- SEMSEM

상기 실시예 1 및 2에서 제조된 CNT-버키페이퍼를 주사 전자현미경을 관찰하고, 그 결과를 도 1에 나타내었다. The CNT-bucky paper produced in Examples 1 and 2 was observed with a scanning electron microscope, and the results are shown in FIG.

도 1을 참조하면, 본 발명의 피렌 화합물로 개질된 탄소나노튜브를 포함하는 CNT-버키페이퍼는 더욱 치밀한 조직을 가지며, CNT가 일부 정렬되는 효과도 나타내었다. Referring to FIG. 1, CNT-bucky paper comprising carbon nanotubes modified with the pyrene compound of the present invention has a more dense structure and shows some alignment of CNTs.

실험예Experimental Example 2: 라만  2: Rahman 스텍트럼Spectrum

도 2는 실시예 2(non-covelent), 비교예 1(pristine) 및 비교예 2(SOCl2)의 CNT-버키페이퍼에 대한 라만 스펙트럼을 나타낸 것이다.2 shows Raman spectra for CNT-bucky paper of Example 2 (non-covelent), Comparative Example 1 (pristine) and Comparative Example 2 (SOCl 2 ).

도 2에 나타난 바와 같이, SOCl2 처리를 하는 경우 화학적 개질로 인해 G-band 상승 및 비대칭성이 사라지나, 실시예 2와 같이 피렌 화합물로 비공유 결합을 통한 개질을 하는 경우 라만 피크에 변화가 거의 없음을 알 수 있다. 이는 SOCl2 처리 시 CNT sp2 혼성 오비탈 구조에 변형이 생기나 비공유 결합을 통한 표면 개질로는 전혀 변형이 없음을 의미한다.As shown in Figure 2, SOCl 2 The G-band rise and asymmetry disappear due to the chemical modification. However, when the modification is performed by non-covalent bonding with the pyrene compound as in Example 2, it can be seen that there is almost no change in the Raman peak. SOCl 2 The CNT sp 2 hybrid orbital structure is deformed at the treatment, but the surface modification by non - covalent bonding means that there is no deformation at all.

실험예Experimental Example 2: 물성 측정 2: Measurement of physical properties

(1) 전도도(1) Conductivity

두께가 측정된 시험편을 고른 표면의 바닥에 위치시킨 후 1mm 간격의 4개 탐침으로 구성된 four point probe를 이용하여 전류와 전압을 측정하고 이를 통하여 표면저항값을 구한 후 보정계수를 적용하여 시험편에 대한 전도도를 측정하였다. 장비는 표면저항측정기(Advanced instrument technology, CMT-100S, Korea)를 이용하였다. 그 결과는 표 1에 나타내었다.After measuring the thickness of the specimen, the current and voltage were measured using a four point probe consisting of four probes spaced 1 mm apart from the bottom of the selected surface. Conductivity was measured. The instrument was a surface resistance meter (CMT-100S, Korea). The results are shown in Table 1.

구분division (S/cm)(S / cm) 두께(mm)Thickness (mm) 밀도(g/cm3)Density (g / cm 3) 실시예 1Example 1 812.08812.08 0.030.03 0.810.81 실시예 2Example 2 946.33946.33 0.030.03 0.840.84 비교예 1Comparative Example 1 412.91412.91 0.030.03 0.650.65 비교예 2Comparative Example 2 932.90932.90 0.030.03 0.810.81 비교예 3Comparative Example 3 1077.521077.52 0.030.03 0.820.82

상기 표 1을 참조하면, 본 발명의 신규 피렌 화합물로 탄소나노튜브 표면 개질하는 경우 탄소나노튜브 분자간 연결효과로 전기전도도가 현저히 상승하였다. 특히 화학식 3의 피렌 화합물을 사용하는 경우 컨쥬게이트 확장 및 internal charge로 인해 가장 높은 전기전도도를 나타내었다. 비교예 2 및 비교예 3의 경우 SOCl2 처리로 인해 전기전도도가 추가적으로 상승하였으나 그 효과는 크지 않았다. Referring to Table 1, when the carbon nanotubes were surface-modified with the novel pyrene compound of the present invention, the electrical conductivity of the carbon nanotubes was remarkably increased due to the interconnection between the carbon nanotubes. Particularly, when the pyrene compound of formula (3) was used, the highest electrical conductivity was exhibited due to conjugation extension and internal charge. In the case of Comparative Example 2 and Comparative Example 3, the electric conductivity was further increased due to SOCl 2 treatment, but the effect was not significant.

(2) 기계적 물성(2) Mechanical properties

시험편은 양변에서 최소 100mm 내의 위치에서 채취하고, 시험편은 세로 100mm 및 가로 20mm의 크기로 재단하였다. 이때 복합재료의 불균일한 절단 또는 부위별 불균일에 대한 위험성을 등을 피하여 채취하였다. 만능재료시험기(Instron 3343, USA)를 이용하여 클램프 간격을 60mm로 하고 시험편을 그 사이에 파지한 후 물성측정기의 하중이 그래프의 영점에 위치하도록 시편을 곧게 펴서 위치시켰다. 100mm/min의 속도로 시험편을 정속 신장시켜 각 시험편에 대한 물성을 측정하였다. 그 결과는 표 2에 나타내었다.The test specimens were taken from a position at least 100 mm from both sides, and the specimens were cut to a size of 100 mm in length and 20 mm in width. At this time, the non-uniform cutting of the composite material or the risk of irregularity in each part was taken. Using a universal material tester (Instron 3343, USA), the clamp spacing was set to 60 mm, and the test specimen was gripped therebetween. The specimen was then straightened so that the load of the specimen was located at the zero point of the graph. The specimens were continuously stretched at a speed of 100 mm / min to measure the physical properties of each test piece. The results are shown in Table 2.

구분division 인장강도(Mpa)Tensile Strength (Mpa) 인장탄성률(Gpa)Tensile modulus (Gpa) 신장률(%)Elongation (%) 실시예 1Example 1 39.8539.85 5.255.25 2.472.47 실시예 2Example 2 43.943.9 5.365.36 2.692.69 비교예 1Comparative Example 1 23.5323.53 3.433.43 2.192.19

상기 표 2를 참조하면, 피렌 화합물을 이용하여 표면 개질된 CNT를 포함하는 CNT-버키페이퍼는 피렌 화합물에 의한 정렬 유도 및 밀도 증가로 비교예 1 보다 기계적 강도가 상승하였음을 확인할 수 있었다. Referring to Table 2, CNT-bucky paper containing CNTs surface-modified with pyrene compounds showed higher mechanical strength than Comparative Example 1 due to alignment induction and density increase by pyrene compounds.

실험예Experimental Example 3: 시간 및 온도에 따른 전기전도도 안정성 측정 3: Measurement of electrical conductivity stability with time and temperature

비교예 1, 비교예 4 및 실시예 2의 CNT-버키페이퍼의 시간과 온도에 따른 전기전도도 안정성을 측정하고, 그 결과를 도 3에 나타내었다.The electrical conductivity stability of the CNT-bucky paper of Comparative Example 1, Comparative Example 4 and Example 2 according to time and temperature was measured, and the results are shown in FIG.

시간에 따른 전기전도도 안정성은 상온 (25℃)에서 해당 시간 경과 후 측정하였고, 온도에 따른 전기전도도 안정성은 convection oven에 샘플 투입 후 해당 온도에서 6시간 경과 후 측정하였다.The electrical conductivity stability over time was measured at room temperature (25 ℃) after the elapse of time, and the electrical conductivity stability with temperature was measured after 6 hours at the corresponding temperature after the sample was introduced into the convection oven.

도 3을 참조하면, 비교예 4(SOCl2)의 경우 화학적 개질 방법은 온도(100 이하에서도)나 시간에 따라 전도도가 손상(저항이 증가)되나, 비교예 1(단순 고압 호모게나이저 처리) 및 실시예 2(NCF)는 탄소나노튜브의 손상이 없어 시간 및 온도에 따른 전기전도도 안정성이 우수함을 알 수 있다. Referring to FIG. 3, in the case of Comparative Example 4 (SOCl 2 ), the chemical modification method has a deteriorated conductivity (increase in resistance) at a temperature (even at 100 ° C or less) ) And Example 2 (NCF) showed no damage to the carbon nanotubes and excellent electrical conductivity stability with time and temperature.

Claims (10)

하기 화학식 1로 표시되는 신규 피렌 화합물:
[화학식 1]
Figure 112017107920506-pat00009

(상기 화학식 1에서,
R1 및 R2는 서로 같거나 상이하며, 각각 독립적으로 C1-C5 알킬렌기 또는 C2-C6 알켄일렌기이고,
Z는 벤젠, 피리디늄, 티오페늄 또는 에스테르이다).
A novel pyrene compound represented by the following Formula 1:
[Chemical Formula 1]
Figure 112017107920506-pat00009

(In the formula 1,
R 1 and R 2 are the same or different and are each independently a C 1 -C 5 alkylene group or a C 2 -C 6 alkenylene group,
Z is benzene, pyridinium, thiophenium or ester.
삭제delete 제1항에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 2 또는 하기 화학식 3으로 표시되는 것인 신규 피렌 화합물:
[화학식 2]
Figure 112016104103235-pat00010

[화학식 3]
Figure 112016104103235-pat00011
The novel pyrene compound according to claim 1, wherein the compound represented by the formula (1) is represented by the following formula (2) or (3)
(2)
Figure 112016104103235-pat00010

(3)
Figure 112016104103235-pat00011
하기 화학식 1의 피렌 화합물이 비공유결합으로 탄소나노튜브 표면에 흡착되어 표면이 개질된 탄소나노튜브:
[화학식 1]
Figure 112017107920506-pat00012

(상기 화학식 1에서,
R1 및 R2는 서로 같거나 상이하며, 각각 독립적으로 C1-C5 알킬렌기 또는 C2-C6 알켄일렌기이고,
Z는 벤젠, 피리디늄, 티오페늄 또는 에스테르이다).
A carbon nanotube in which a pyrene compound of the following formula (1) is adsorbed on the surface of a carbon nanotube by non-covalent bonding and the surface is modified:
[Chemical Formula 1]
Figure 112017107920506-pat00012

(In the formula 1,
R 1 and R 2 are the same or different and are each independently a C 1 -C 5 alkylene group or a C 2 -C 6 alkenylene group,
Z is benzene, pyridinium, thiophenium or ester.
제4항에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 2 또는 하기 화학식 3으로 표시되는 것인 탄소나노튜브:
[화학식 2]
Figure 112016104103235-pat00013

[화학식 3]
Figure 112016104103235-pat00014
The carbon nanotube according to claim 4, wherein the compound represented by Formula 1 is represented by Formula 2 or Formula 3:
(2)
Figure 112016104103235-pat00013

(3)
Figure 112016104103235-pat00014
제4항에 있어서, 상기 탄소나노튜브는 단일벽 탄소나노튜브(SWNT), 다중벽 탄소나노튜브(MWNT), 탄소나노섬유(CNF), C60, 탄소나노파우더(CNP) 및 다이아몬드 나노파우더(DNP)로 이루어진 군에서 선택되는 1종인 것인 탄소나노튜브:The method of claim 4, wherein the carbon nanotube is selected from the group consisting of single wall carbon nanotubes (SWNTs), multiwall carbon nanotubes (MWNTs), carbon nanofibers (CNFs), C 60 , carbon nanopowders (CNPs) DNP). ≪ / RTI >< RTI ID = 0.0 & 제4항 내지 제6항 중 어느 한 항에 따른 개질화된 탄소나노튜브를 포함하는 탄소나노튜브-버키페이퍼(buckypaper).A carbon nanotube-buckypaper comprising the reformed carbon nanotubes according to any one of claims 4 to 6. 탄소나노튜브를 물에 분산시켜 탄소나노튜브 수분산물을 얻는 1단계;
상기 탄소나노튜브 수분산물에 하기 화학식 1의 피렌 화합물을 추가하여 탄소나노튜브를 개질하는 2단계; 및
상기 피렌 화합물이 추가된 수분산물을 이용하여 습식 초지법을 통해 탄소나노튜브-버키페이퍼(buckypaper)를 제조하는 3단계
를 포함하는 탄소나노튜브-버키페이퍼(buckypaper)의 제조방법:
[화학식 1]
Figure 112017107920506-pat00015

(상기 화학식 1에서,
R1 및 R2는 서로 같거나 상이하며, 각각 독립적으로 C1-C5 알킬렌기 또는 C2-C6 알켄일렌기이고,
Z는 벤젠, 피리디늄, 티오페늄 또는 에스테르이다).
A first step of dispersing the carbon nanotubes in water to obtain a carbon nanotube water dispersion;
A second step of modifying the carbon nanotubes by adding a pyrene compound represented by the following formula (1) to the carbon nanotube water dispersion; And
In the third step of producing a carbon nanotube-buckypaper using a wet pasting method using the hydrated product added with the pyrene compound
A method for producing a carbon nanotube-buckypaper comprising:
[Chemical Formula 1]
Figure 112017107920506-pat00015

(In the formula 1,
R 1 and R 2 are the same or different and are each independently a C 1 -C 5 alkylene group or a C 2 -C 6 alkenylene group,
Z is benzene, pyridinium, thiophenium or ester.
제8항에 있어서, 상기 탄소나노튜브 수분산물은 탄소나노튜브를 물에 추가한 후 고압 호모게나이져를 통과시켜 제조하는 것인 탄소나노튜브-버키페이퍼(buckypaper)의 제조방법. The method of claim 8, wherein the carbon nanotube water dispersion is prepared by adding carbon nanotubes to water and then passing the mixture through a high pressure homogenizer. 제9항에 있어서, 상기 탄소나노튜브 수분산물은 20,000 내지 40,000 psi로 총 1회 내지 5회 고압 호모게나이져를 통과시켜 제조하는 것인 탄소나노튜브-버키페이퍼(buckypaper)의 제조방법.
10. The method of claim 9, wherein the carbon nanotube water dispersion is prepared by passing a high pressure homogenizer through a total of 1 to 5 times at 20,000 to 40,000 psi.
KR1020160139944A 2016-10-26 2016-10-26 Novel pyrene compound, preparation method thereof, carbon nanotubes surface modified with the same, carbon nanotube-bucky paper comprising the same and preparationa method thereof KR101848855B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160139944A KR101848855B1 (en) 2016-10-26 2016-10-26 Novel pyrene compound, preparation method thereof, carbon nanotubes surface modified with the same, carbon nanotube-bucky paper comprising the same and preparationa method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160139944A KR101848855B1 (en) 2016-10-26 2016-10-26 Novel pyrene compound, preparation method thereof, carbon nanotubes surface modified with the same, carbon nanotube-bucky paper comprising the same and preparationa method thereof

Publications (1)

Publication Number Publication Date
KR101848855B1 true KR101848855B1 (en) 2018-04-16

Family

ID=62082192

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160139944A KR101848855B1 (en) 2016-10-26 2016-10-26 Novel pyrene compound, preparation method thereof, carbon nanotubes surface modified with the same, carbon nanotube-bucky paper comprising the same and preparationa method thereof

Country Status (1)

Country Link
KR (1) KR101848855B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101451300B1 (en) 2011-12-23 2014-10-17 한국화학연구원 Novel pyrene compound, preparation method thereof, preparation method of carbon nanotubes and carbon nanotube/polycarbonate nanocomposites functionalized with the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101451300B1 (en) 2011-12-23 2014-10-17 한국화학연구원 Novel pyrene compound, preparation method thereof, preparation method of carbon nanotubes and carbon nanotube/polycarbonate nanocomposites functionalized with the same

Similar Documents

Publication Publication Date Title
Xu et al. Mechanical flexible PI/MWCNTs nanocomposites with high dielectric permittivity by electrospinning
JP3676337B2 (en) Gel-like composition comprising carbon nanotube and ionic liquid and method for producing the same
Tzounis et al. The interphase microstructure and electrical properties of glass fibers covalently and non-covalently bonded with multiwall carbon nanotubes
Georgakilas et al. Multipurpose organically modified carbon nanotubes: from functionalization to nanotube composites
Zhang et al. Mechanical properties of graphene films enhanced by homo-telechelic functionalized polymer fillers via π–π stacking interactions
US8052952B2 (en) Composite and method of manufacturing the same
Jiang et al. Macroscopic nanotube fibers spun from single-walled carbon nanotube polyelectrolytes
US20050087726A1 (en) Composite and method of manufacturing the same
US9115220B2 (en) Method for functionalization of nanoscale fibers and nanoscale fiber films
WO2009102023A1 (en) Nanocarbon material dispersion, method for producing the same, and nanocarbon material structure
JP3985025B2 (en) Amphiphilic compound, soluble carbon nanotube composite
CN107636216A (en) Isolation of semiconductor single-walled nanotube or metallic single-wall nanotube and its method
JP5068330B2 (en) Carbon nanotube bulk material and method for producing the same
Zhou et al. Efficient grafting of hyperbranched polyglycerol from hydroxyl‐functionalized multiwalled carbon nanotubes by surface‐initiated anionic ring‐opening polymerization
JP4005571B2 (en) Amphiphilic hexaperihexabenzocoronene derivatives
Massoumi et al. In situ chemical oxidative graft polymerization of aniline from phenylamine end-caped poly (ethylene glycol)-functionalized multi-walled carbon nanotubes
Dumas et al. Polybenzoxazine nanocomposites: case study of carbon nanotubes
Vennerberg et al. Anisotropic buckypaper through shear-induced mechanical alignment of carbon nanotubes in water
KR101848855B1 (en) Novel pyrene compound, preparation method thereof, carbon nanotubes surface modified with the same, carbon nanotube-bucky paper comprising the same and preparationa method thereof
Chen et al. Compositing polyetherimide with polyfluorene wrapped carbon nanotubes for enhanced interfacial interaction and conductivity
Talla et al. Electrical transport measurements of highly conductive nitrogen-doped multiwalled carbon nanotubes/poly (bisphenol A carbonate) composites
JP2005125428A (en) Carbon nano-tube structure and its manufacturing method
KR101451300B1 (en) Novel pyrene compound, preparation method thereof, preparation method of carbon nanotubes and carbon nanotube/polycarbonate nanocomposites functionalized with the same
Nakashima et al. Specific molecular interaction and recognition at single-walled carbon nanotube surfaces
KR102382709B1 (en) Short-molecule-attached boron nitride nanotubes and method for colloidal solution using the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant