KR101812534B1 - Method for preparing GO-CNT composite fibers, GO-Graphene composite fibers, GO-Graphene-CNT composite fibers - Google Patents

Method for preparing GO-CNT composite fibers, GO-Graphene composite fibers, GO-Graphene-CNT composite fibers Download PDF

Info

Publication number
KR101812534B1
KR101812534B1 KR1020160079885A KR20160079885A KR101812534B1 KR 101812534 B1 KR101812534 B1 KR 101812534B1 KR 1020160079885 A KR1020160079885 A KR 1020160079885A KR 20160079885 A KR20160079885 A KR 20160079885A KR 101812534 B1 KR101812534 B1 KR 101812534B1
Authority
KR
South Korea
Prior art keywords
graphene
fiber
graphene oxide
composite fiber
gel
Prior art date
Application number
KR1020160079885A
Other languages
Korean (ko)
Inventor
박상윤
신민균
김혁준
여창수
조윤제
조강래
Original Assignee
재단법인 차세대융합기술연구원
주식회사 퓨리텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 차세대융합기술연구원, 주식회사 퓨리텍 filed Critical 재단법인 차세대융합기술연구원
Priority to KR1020160079885A priority Critical patent/KR101812534B1/en
Priority to PCT/KR2017/001239 priority patent/WO2018004099A1/en
Application granted granted Critical
Publication of KR101812534B1 publication Critical patent/KR101812534B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/06Washing or drying
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06HMARKING, INSPECTING, SEAMING OR SEVERING TEXTILE MATERIALS
    • D06H5/00Seaming textile materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

The present invention provides a method for manufacturing a graphene oxide/carbon nanotube composite fiber having a dual junction structure, a graphene oxide/graphene composite fiber or a graphene oxide/graphene/carbon nanotube composite fiber, comprising the steps of: a) spinning a graphene oxide dispersion solution to a coagulation bath containing a first coagulation ingredient to manufacture a first gel fiber; b) spinning a carbon nanotube dispersion solution, a graphene dispersion solution or a mixed solution thereof to a coagulation bath containing the first coagulation ingredient to manufacture a second gel fiber, which is performed in parallel with the a) step; and c) bonding the first gel fiber and the second gel fiber, which are manufactured at the same time, to each other, and cleaning and drying the same. A graphene oxide/carbon nanotube composite fiber, a graphene oxide/graphene composite fiber or a graphene oxide/graphene/carbon nanotube composite fiber manufactured by the present invention can be used as an electrode material of a battery, a super capacitor and the like because of high porosity and high conductivity.

Description

이종 접합구조를 가지는 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/그래핀/탄소나노튜브 복합섬유의 제조 방법{Method for preparing GO-CNT composite fibers, GO-Graphene composite fibers, GO-Graphene-CNT composite fibers}TECHNICAL FIELD [0001] The present invention relates to a method for preparing a grafted oxide / carbon nanotube composite fiber having a hetero-junction structure, a grafted oxide / -Graphene composite fibers, GO-Graphene-CNT composite fibers}

본 발명은 이종 접합구조를 가지는 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/그래핀/탄소나노튜브 복합섬유를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing graphene oxide / carbon nanotube conjugated fiber, graphene oxide / graphene conjugated fiber or graphene oxide / graphene / carbon nanotube conjugated fiber having a heterojunction structure.

그래핀(Graphene), 탄소나노튜브(Carbon-Nanotube, 이하 'CNT')와 같은 나노탄소계열 물질은 전기적 특성, 열적 특성, 유연성, 기계적 강도가 매우 우수하여 차세대 전자 재료, 방열 재료, 초고강도 구조 재료로 주목받고 있는 첨단 소재이다.Nano-carbon materials such as Graphene and Carbon-Nanotube (CNT) have excellent electrical properties, thermal properties, flexibility, and mechanical strength, so that they can be used as next generation electronic materials, It is a high-tech material attracting attention as a material.

그래핀은 탄소 원자들이 sp2 혼성으로 육각형 벌집 모양을 이루는 2차원 평면 구조의 탄소 동소체로서, 단층 그래핀의 두께는 탄소원자 1개의 두께인 0.2 ~ 0.3 nm이고, 단층 그래핀은 물론, 10층 이하, 바람직하게는 2, 3층 정도의 적층 그래핀 구조 역시 통상적인 그래핀의 범주에 속한다.Graphene is a carbon isotope with a two-dimensional planar structure in which carbon atoms form a hexagonal honeycomb structure by sp 2 hybridization. The thickness of the single-layer graphene is 0.2 to 0.3 nm, which is one carbon atom thick. Hereinafter, the laminated graphene structure of about two or three layers is also within the general graphene category.

그래핀의 제조 방법으로는 화학기상증착법(CVD), 에피텍셜 성장법(Epitaxial Growth), 비산화 박리법(Nonoxidative Exfoliation), 화학적 박리법(Chemical Exfoliation) 등이 알려져 있다. 이 중 화학기상증착법, 에피텍셜 성장법, 비산화 박리법은 고품질의 순수 그래핀을 얻을 수 있는 장점이 있으나, 그래핀의 수율이 낮아 대량생산이 어렵고, 제조 비용이 높은 단점이 있어 현재 그 사용에 큰 제한이 있다. As a method of producing graphene, there are known chemical vapor deposition (CVD), epitaxial growth, nonoxidative exfoliation, and chemical exfoliation. Among them, the chemical vapor deposition method, the epitaxial growth method, and the non-oxidative peeling method are advantageous in that they can obtain high quality pure graphene. However, since the graphene yield is low, mass production is difficult and the manufacturing cost is high. There is a big restriction on.

한편, 화학적 박리법은 도 1에 도시된 바와 같이 흑연을 강산(질산,황산 등)으로 산화하고, 기계적(초음파 분쇄 또는 호모게나이저 분쇄)으로 박리시켜 산소관능기가 형성된 그래핀산화물(Graphene Oxide, 'GO')[도 1(a)]로 만든 다음, 일련의 화학적 환원(reduction)[도 1(b)] 및/또는 열적 환원 과정[도 1(c)]을 통해 산소관능기를 제거하여 그래핀[도 1(d)]을 제조하는 방법으로, 순수 그래핀과 구별되도록 '환원된 그래핀산화물(reduced GO, 'rGO')'로 호칭한다. 상기 '환원된 그래핀산화물(rGO)'는 그래핀의 산화 및 환원을 거치는 과정에서 그래핀 표면에 다소의 탄소 결함(carbon defection)이 발생되고, 산소관능기의 완전한 제거가 어려워 순수 그래핀에 비해서는 전기전도도 특성이 다소 떨어지지만, 대량 생산이 가능하고, 제조 비용이 낮다는 점과 순수 그래핀에 견주어 전기전도도, 열전도도에서 큰 차이가 없다는 점에서 현재 가장 널리 이용되고 있다.As shown in FIG. 1, the chemical peeling method is a method in which graphene oxide (Graphene Oxide) is formed by oxidizing graphite with a strong acid (nitric acid, sulfuric acid or the like) and peeling by mechanical (ultrasonic pulverization or homogenizer pulverization) 'GO') [Fig. 1 (a)] and then removing the oxygen functionality through a series of chemical reduction [Fig. 1 (b)] and / or thermal reduction process [Fig. 1 (c) (Reduced GO, 'rGO') 'to distinguish it from pure graphene, as a method for producing a pin [FIG. 1 (d)]. In the 'reduced graphene oxide (rGO)', a few carbon defects are generated on the surface of the graphene during the oxidation and reduction of graphene, and it is difficult to completely remove the oxygen functional groups, Is widely used at present because it has a low electrical conductivity, but can be mass-produced, has a low manufacturing cost, and has no significant difference in electric conductivity and thermal conductivity compared to pure graphene.

그래핀산화물(GO)은 산화과정에서 생성되는 산소관능기들로 인해 그래핀과는 전혀 다른 전기적 특성을 가진다. 그래핀 자체는 탄소동소체이므로 비극성, 소수성을 띠고, 상온에서 구리보다 100배 높은 전기전도성을 가지는 데 반해, 그래핀산화물은 표면/가장자리에 형성된 산소관능기들(에폭시, 하이드록시, 카르복시기 등)로 인해 극성, 친수성을 띠며, 절연체 또는 극히 낮은 전기전도, 열전도 특성을 지닌다.Graphene oxide (GO) has electrical properties that are quite different from graphene due to the oxygen functional groups generated during the oxidation process. Graphene itself is a non-polar, hydrophobic, and 100-fold higher electrical conductivity than copper at room temperature, since it is a carbon isotope, whereas graphene oxide is formed by the oxygen functional groups (epoxy, hydroxy, carboxy, etc.) Polarity, and hydrophilic, and has an insulator or extremely low electrical conductivity and thermal conductivity.

그래핀산화물(GO)은 비록 '환원된 그래핀산화물(rGO)'의 중간체에 속하지만, 그래핀산화물에 형성된 산소관능기로 인해 표면 개질이 용이할 뿐 아니라, 기능성 물질의 접합이 가능하여 생물학적 응용에 유망한 물질로 평가되고 있다. 예컨대, 그래핀산화물 표면에 핵산, (단일사슬) DNA, RNA, 압타머, 펩티드, 단백질, 항체, 성장인자, 효소 등의 생체분자 또는 고분자를 접합시킴으로써, 타겟물질의 검출(전기적 신호 또는 형광, 소광)에 이용할 수 있다.Although graphene oxide (GO) belongs to the intermediate of reduced graphene oxide (rGO), surface modification is facilitated owing to the oxygen functional groups formed in the graphene oxide, and functional materials can be bonded, As a promising material. For example, a biomolecule or a polymer such as a nucleic acid, a DNA (single chain), an RNA, an extramamer, a peptide, a protein, an antibody, a growth factor, Quenching).

탄소나노튜브(CNT)는 탄소 원자들이 sp2 혼성으로 육각형 벌집 모양을 이루는 원기둥 나노구조의 탄소 동소체로서, 벽을 이루고 있는 결합 수에 따라서 단일벽 탄소나노튜브(Single-walled CNT, 'SWNT'), 이중벽 탄소나노튜브(Double-walled CNT, 'DWNT'), 다중벽 탄소나노튜브(Multi-walled CNT, 'MWNT')로 구분된다.Carbon nanotubes (CNTs) are carbon nanotubes of hexagonal honeycomb structure with carbon atoms sp 2 hybridized. Single-walled carbon nanotubes (SWNTs) , Double-walled carbon nanotubes (DWNTs), and multi-walled carbon nanotubes (MWNTs).

탄소나노튜브 제조법은 화학기상증착법, 아크 방전법, 레이저 증발법, 플라즈마 토치법, 이온 충격법 등이 알려져 있다. 이들 중 화학기상증착법은 탄소 나노튜브의 대량 생산과 성장 제어가 가능한 장점이 있다.The carbon nanotube manufacturing method is known as a chemical vapor deposition method, an arc discharge method, a laser evaporation method, a plasma torch method, and an ion impact method. Among them, the chemical vapor deposition method has an advantage of mass production and growth control of carbon nanotubes.

그래핀과 탄소나노튜브는 높은 전기전도성과 비표면적을 가지므로 슈퍼캐패시터, 센서, 배터리, 액추에이터 용도의 전극(전극 활물질), 터치패널, 플렉서블 디스플레이, 고효율 태양전지, 방열필름, 코팅 재료, 바닷물 담수화 필터, 이차전지용 전극, 초고속 충전기 등 다양한 분야에 이용될 수 있다.Since graphene and carbon nanotubes have high electrical conductivity and specific surface area, electrodes (electrode active material) for use in supercapacitors, sensors, batteries and actuators, touch panels, flexible displays, high efficiency solar cells, heat dissipation films, coating materials, A filter, an electrode for a secondary battery, an ultra-fast charger, and the like.

근래들어 그래핀, 그래핀산화물, 탄소나노튜브의 존재와 물리적 특성이 알려지면서 이들을 이용하여 섬유 또는 복합 섬유로 제작하려는 다양한 연구들이 진행되고 있다. 특히 습식 방사공정을 이용한 연구들이 활발히 이루어지고 있다.Recently, the existence of graphene, graphene oxide, carbon nanotubes and their physical properties have been known, and various studies have been made to fabricate them as fibers or composite fibers. Particularly, researches using wet spinning processes are being actively carried out.

도 2는 그래핀산화물의 습식 방사법(a) 및 습식 방사공정에서 그래핀산화물(또는 그래핀, 나노탄소튜브)이 정렬되는 과정(b)을 나타내는 모식도이다.Fig. 2 is a schematic diagram showing a wet spinning process (a) of graphene oxide and a process (b) in which graphene oxide (or graphene, nanocarbon tube) is aligned in a wet spinning process.

도 2를 참조하여 설명하면, 그래핀산화물 방사용액은 방사구금(토출노즐)을 통해 응고욕으로 토출되어 응집되는 데, 그래핀산화물의 정렬과정은 시린지 속에 무방향성과 무질서하게 위치한 그래핀산화물이 미세 내경의 방사 노즐을 따라 이동하면서 유체간의 전단응력(shear stress)에 의해 노즐의 축 방향으로 정렬되고(I), 응고욕에 토출된 후 정렬된 그래핀산화물은 응고욕에서 용매 교환(sovent change)과정을 통해 자기조립에 의해 젤 섬유(gel fibers)가 형성되고(II), 상기 젤 섬유는 일련의 연신, 수세, 건조 과정을 거쳐 그래핀산화물 섬유로 제조된다. 상기 제조된 그래핀산화물 섬유는 전기적 특성을 위해 그래핀산화물 섬유를 열적 또는 화학적 환원 처리하는 추가 공정을 거친다. 그래핀, 탄소나노튜브의 습식 방사공정 역시 상술한 그래핀산화물 방사공정과는 큰 차이가 없으나, 후술하는 바와 같이 응고욕 특성이 완전히 달라 종래 공지된 습식 방사법으로는 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/탄소나노튜브 복합섬유 제조가 사실상 불가능하다.Referring to FIG. 2, the graphene oxide spinning solution is discharged into a coagulation bath through a spinneret (discharge nozzle) and agglomerates. The graphene oxide aligning process is performed by using a graphene oxide (I) of the nozzle by shear stress between the fluids as they move along the spinneret of the fine inner diameter, and the graphene oxide aligned after being discharged into the coagulation bath is subjected to sovent change (II), the gel fibers are formed into graphene oxide fibers through a series of stretching, washing and drying processes. The prepared graphene oxide fibers are subjected to an additional process for thermal or chemical reduction treatment of the graphene oxide fibers for electrical properties. The wet spinning process of graphene and carbon nanotubes is not significantly different from the graphene oxide spinning process described above. However, as described later, the coagulating bath characteristics are completely different. Conventionally known wet spinning processes include graphene oxide / Or graphene oxide / carbon nanotube composite fibers is practically impossible.

습식 방사공정에서는 방사용액의 종류 및 특성과, 이에 적합한 응고욕 성분, 조성의 선정이 매우 중요한 데, 그래핀과 탄소나노튜브는 비극성, 비수용성으로 비슷한 응고욕 특성을 가지는 반면, 그래핀산화물은 극성, 수용성으로 그래핀, 탄소나노튜브와는 전혀 다른 응고욕 특성을 가진다.In the wet spinning process, it is very important to select the type and characteristics of the spinning solution and the suitable coagulation bath composition and composition. Graphene and carbon nanotubes are nonpolar, Polarity and water-solubility, it has a coagulating bath property completely different from graphene and carbon nanotubes.

그래핀, 탄소나노튜브의 응고욕 특성Coagulation bath characteristics of graphene, carbon nanotube

그래핀, 탄소나노튜브는 비극성, 소수성을 띠고, 층간 반데르발스력에 의해 서로 응집되므로 물에 전혀 분산되지 않고, 대부분의 유기용매에도 잘 분산되지 않는다. 따라서 계면활성제와 초음파 처리를 통해 그래핀, 탄소나노튜브 분산액을 제조하여 방사용액으로 이용한다.Since graphene and carbon nanotubes are nonpolar and hydrophobic and aggregate with each other due to interlayer van der Waals force, they are not dispersed at all in water and are not well dispersed in most organic solvents. Therefore, graphene and carbon nanotube dispersions are prepared through surfactant and ultrasonic treatment and used as spinning solution.

그래핀, 탄소나노튜브의 응고(응집) 성분으로는 폴리비닐알코올(PVA), 폴리메틸메타아크릴레이트(PMMA), 폴리에틸렌이민(PEI), 폴리비닐필로리돈(PVP), 폴리에틸렌옥사이드(PEO) 등의 수용성 고분자가 알려져 있다. 그래핀 방사용액 또는 탄소나노튜브 방사용액이 노즐을 통해 응고욕에 방사되면, 상기 수용성 고분자는 방사 섬유 상에 침투하여 계면활성제를 대체하여 섬유상에 고분자 매트릭스를 형성함으로써 그래핀 섬유, 탄소나노튜브 섬유, 보다 정확히는 그래핀/고분자 복합섬유, 탄소나노튜브/고분자 복합섬유가 제조된다.Examples of coagulation components of graphene and carbon nanotubes include polyvinyl alcohol (PVA), polymethyl methacrylate (PMMA), polyethyleneimine (PEI), polyvinylpyrrolidone (PVP), polyethylene oxide (PEO) Are known as water-soluble polymers. When the graphene spinning solution or the carbon nanotube spinning solution is radiated to the coagulating bath through the nozzle, the water-soluble polymer penetrates the spinning fiber to replace the surfactant to form a polymer matrix on the fiber, , More precisely, graphene / polymer composite fibers, carbon nanotube / polymer composite fibers are produced.

대한민국 특허공개 제10-2012-0105179호는 a)그래핀(환원된 그래핀 또는 환원된 그래핀산화물)을 계면활성제와 함께 용매에 분산시켜 분산액을 제조하는 단계; 및 b) 상기 분산액을 고분자(PVA) 용액에 혼입하여 습식 방사한 후 건조시켜 섬유를 제조하는 단계를 포함하는 그래핀/PVA 복합섬유 제조 방법을 개시하고 있고, Korean Patent Laid-Open Publication No. 10-2012-0105179 discloses a method for producing a dispersion comprising: a) dispersing graphene (reduced graphene or reduced graphene oxide) together with a surfactant in a solvent to prepare a dispersion; And b) wet-spinning the dispersion with a polymer (PVA) solution, followed by drying to prepare a fiber. Also disclosed is a method for producing a graphene / PVA composite fiber,

대한민국 특허공개 제10-2012-0107026호는 상기 특허에서 제조된 그래핀/PVA 복합섬유에 추가적으로 열처리하거나 강산으로 처리하여 PVA 고분자를 제거하여 그래핀 섬유를 제조하는 방법을 개시하고 있다.Korean Patent Laid-Open No. 10-2012-0107026 discloses a method for producing graphene fibers by further treating a graphene / PVA conjugate fiber produced in the above patent with heat treatment or treatment with strong acid to remove PVA polymer.

대한민국 특허등록 제10-1182380호는 그래핀/탄소나노튜브 분산액을 PVA 응고욕에 방사시켜 그래핀/탄소나노튜브/PVA 복합섬유를 제조하는 방법을 개시하고 있으나, 상기 그래핀은 그래핀산화물(GO)이 아닌, 환원된 그래핀산화물(rGO) 또는 화학적으로 개질된 환원된 그래핀산화물(RCCG)이 이용한다.Korean Patent Registration No. 10-1182380 discloses a method of producing a graphene / carbon nanotube / PVA conjugate fiber by spinning a graphene / carbon nanotube dispersion liquid into a PVA coagulating bath, wherein the graphene graphene oxide (RGO) or a chemically modified reduced graphene oxide (RCCG), rather than a graphene oxide (GO).

탄소나노튜브 섬유의 습식 방사공정은 하기와 같이 여러 문헌에 개시되어 있다.The wet spinning process of carbon nanotube fibers is disclosed in various documents as follows.

Vigolo 등은 계면활성제(1.0wt% 도데실설폰산나트륨(SDS))를 이용하여 0.35wt% SWNT 분산액을 만든 다음, 5wt% 폴리비닐알코올(PVA)/증류수 응고욕에 방사시켜 탄소나노튜브 섬유를 최초로 제조하였다(Vigolo, B. et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290, 1331-1334 (2000)).Vigolo et al. Prepared a 0.35 wt% SWNT dispersion using a surfactant (1.0 wt% sodium dodecylsulfonate (SDS)) and then spinning it in a 5 wt% polyvinyl alcohol (PVA) / distilled water coagulating bath to first produce carbon nanotube fibers (Vigolo, B. et al., Macroscopic fibers and ribbons of oriented carbon nanotubes, Science 290, 1331-1334 (2000)).

Munoz 등은 세틸트리메틸암모늄 브로마이드(CTAB), 도데실벤젠설폰산나트륨(SDBS), 도데실설폰산리튬(LDS)의 계면활성제를 이용하여 SWNT 분산액을 만든 다음, 폴리에틸렌이민(PEI)/증류수 응고욕에 방사시켜 SWNT/PEI 섬유를 제조하였다(Adv. Mater. 2005, 17, No.8, April 18). 제조된 SWNT/PEI 섬유는 SWNT/PVA 복합섬유에 비해 전기전도성이 100배 증가되는 것이 확인되었다.Munoz et al. Prepared SWNT dispersions using cetyltrimethylammonium bromide (CTAB), sodium dodecylbenzenesulfonate (SDBS), and lithium dodecylsulfonate (LDS) surfactants and then dissolved in a polyethyleneimine (PEI) / distilled water coagulation bath (SWNT / PEI) fibers were prepared by spinning ( Adv. Mater . 2005, 17, No. 8, April 18). It was confirmed that the prepared SWNT / PEI fiber had a 100 times increase in electrical conductivity compared to the SWNT / PVA composite fiber.

그래핀산화물의 응고욕 특성Coagulation bath characteristics of graphene oxide

상술한 그래핀, 탄소나노튜브와 달리, 그래핀산화물의 응고욕으로는 CTAB, 키토산, CaCl2, NaOH, KOH 등이 알려져 있고, 이들 중에서도 CTAB이 주로 이용된다.Unlike the graphene and carbon nanotubes described above, CTAB, chitosan, CaCl 2 , NaOH, KOH and the like are known as coagulation baths of graphene oxide, and CTAB is mainly used among them.

그래핀산화물의 응집과정은 CTAB 등 양전하로 대전된 분자를 이용한 비용매 침전(non-solvent precipitation), 환원제(NaOH)를 이용한 분산 불안정(dispersion destabilization)(Nat. Comm. 2011, 2, 571.), CaCl2 등을 이용한 2가 이온(Ca2+)에 의한 그래핀산화물 가교(ionic cross-linking)(Adv. Mater.2013, 25, 188.), 키토산 등을 이용한 고분자전해질 착물화(polyelectrolyte complexation)(Adv. Func. Mater.2013, 23, 5345.) 등이 알려져 있다.The coagulation process of graphene oxides is based on non-solvent precipitation using positively charged molecules such as CTAB, dispersion destabilization using NaOH ( Nat. Comm. 2011, 2, 571.) , Ionic cross-linking with divalent ions (Ca 2+ ) using CaCl 2 ( Adv. Mater. 2013, 25, 188.), and polyelectrolyte complexation using chitosan ) ( Adv. Func. Mater . 2013, 23, 5345.) are known.

상기에서 주목할 점은 그래핀산화물과 그래핀/탄소나노튜브는 서로 응고욕 특성이 달라 종래 공지의 습식 방사공정으로는 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/(그래핀+탄소나노튜브) 복합섬유 제조가 불가능하다는 것이다.It should be noted that graphene oxide and graphene / carbon nanotubes have different coagulating bath characteristics, and thus, in the conventional wet spinning process, graphene oxide / carbon nanotube conjugated fiber, graphene oxide / It is impossible to manufacture a pin oxide / (graphene + carbon nanotube) conjugated fiber.

예를 들어, 그래핀산화물의 응고매인 CTAB은 탄소나노튜브에서는 반대로 분산제 역할을 하므로, 그래핀산화물/탄소나노튜브 분산액을 CTAB 응고욕에 방사할 경우 그래핀산화물은 응고되지만 탄소나노튜브는 응고되지 않고, 분사되어 정량비를 갖는 그래핀산화물/탄소나노튜브 섬유화(젤화)가 발생되지 않는다. 반면, PVA는 탄소나노튜브, 그래핀의 응고매로 작용하지만, 그래핀산화물에서는 반대로 분산제 역할을 하므로, 그래핀산화물/탄소나노튜브 분산액을 PVA 응고욕에 방사할 경우 탄소나노튜브, 그래핀은 응고되지만 그래핀산화물은 응고되지 않아 역시 섬유화(젤화)가 발생되지 않는다.For example, CTAB, which is a coagulant of graphene oxide, acts as an anti-dispersant in carbon nanotubes, so when the graphene oxide / carbon nanotube dispersion is spun into a CTAB coagulation bath, the graphene oxide solidifies but the carbon nanotubes do not solidify , And the graphene oxide / carbon nanotube fiberization (gelation) having a quantitative ratio is not generated. On the other hand, since PVA acts as a coagulant for carbon nanotubes and graphenes, but acts as a dispersant for graphene oxide, when the graphene oxide / carbon nanotube dispersion is spun into a PVA coagulation bath, carbon nanotubes and graphene But the graphene oxide is not solidified, so that no fibrosis (gelation) occurs.

전술한 바와 같이 그래핀, 탄소나노튜브는 전기전도성, 열전도성이 매우 우수하여 제조되는 섬유 역시 전기전도도, 열전도도가 매우 우수하다. 이와 반대로 그래핀산화물은 전기전도성, 열전도성이 낮아 제조되는 섬유 역시 절연체이거나 낮은 전기전도도, 열전도를 가진다.As described above, graphene and carbon nanotubes are excellent in electrical conductivity and thermal conductivity, and fibers produced thereby are also excellent in electrical conductivity and thermal conductivity. Conversely, graphene oxide has low electrical conductivity and low thermal conductivity, so that fibers produced are also insulators, have low electrical conductivity and thermal conductivity.

그래핀이나 탄소나노튜브 기반의 나노소재가 배터리, 슈퍼커패시터의 전극소재에 이용되기 위해서는 높은 전기전도도와 다공성(표면적, 에너지 저장능력)이 요구되는 데, 이러한 특성은 그래핀산화물, 그래핀, 탄소나노튜브 등의 나노소재의 복합를 통해 향상될 수 있다.The use of graphene or carbon nanotube-based nanomaterials in electrode materials for batteries and supercapacitors requires high electrical conductivity and porosity (surface area, energy storage capacity) Nanotubes, and the like.

그래핀산화물과 탄소나노튜브(또는 그래핀)로 이루어진 복합섬유는 GO와 CNT의 함량비에 따라 전기전도도, 열전도도를 제어할 수 있으며, 인장강도, 탄성도, 신율등의 기계적 특성을 극대화할 수 있다. 그리고 rGO, CNT는 초음파처리 과정 중, 불가피하게 결함, 입경크기 감소가 발생하는데 비해, 습식공정에 사용되는 GO는 평균입경이 수십 um내외로 큰 GO를 사용하므로 기계적 특성이 우수하고, 환원시 전기전도도가 우수하다.Composite fiber composed of graphene oxide and carbon nanotube (or graphene) can control electrical conductivity and thermal conductivity according to the content ratio of GO and CNT and maximize mechanical properties such as tensile strength, elasticity and elongation . In contrast, rGO and CNT inevitably cause defect and particle size reduction during ultrasonic treatment, whereas the GO used in the wet process has excellent mechanical properties because GO having a mean particle size of several tens of μm is used, Excellent conductivity.

또한, 그래핀산화물은 그래핀, 탄소나노튜브에 비해 생체분자(핵산, 압타머, 효소 등), 고분자 등 다양한 기능성 물질의 도입이 가능한 반면, 전기전도성을 위해서는 추가적인 화학적/열적 환원공정 또는 후처리 공정이 요구되는 데, 이러한 환원공정, 후처리 공정에 의해 상기 기능성 물질이 분해되거나 파괴되어 기능이 감쇄되거나 상실된다. 따라서, 상술한 환원공정, 후처리 공정없이도 높은 물성을 가지는 그래핀 복합섬유의 개발이 요구된다.In addition, graphene oxide can introduce various functional materials such as biomolecules (nucleic acids, platamers, enzymes, etc.) and polymers in comparison with graphene and carbon nanotubes, while additional electrical / chemical thermal / The functional substance is decomposed or destroyed by the reduction process and the post-process, so that the function is attenuated or lost. Therefore, development of a graphene conjugate fiber having high physical properties is demanded without the above-mentioned reduction step and post-treatment step.

본 발명은 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/그래핀/탄소나노튜브 복합섬유를 제조하는 방법을 제공하는 데 그 목적이 있다.An object of the present invention is to provide a method for producing graphene oxide / carbon nanotube composite fibers, graphene oxide / graphene composite fibers or graphene oxide / graphene / carbon nanotube composite fibers.

상기 기술적 과제를 해결하기 위하여, 본 발명은, According to an aspect of the present invention,

a) 그래핀산화물 분산액을 제1 응고성분을 포함하는 응고욕에 방사시켜 제1 젤 섬유를 제조하는 공정; 및 b) 탄소나노튜브 분산액 또는 그래핀 분산액 또는 이의 혼합 분산액을 제2 응고성분을 포함하는 응고욕에 방사시켜 제2 젤 섬유를 제조하는 공정이 동시에 이루어지고, c) 상기 동시 제조된 제1 젤 섬유와 제2 젤 섬유를 서로 접합하고, 수세, 건조하는 것을 특징으로 하는, 이종 접합구조를 가지는 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/그래핀/탄소나노튜브 복합섬유 제조 방법을 제공한다.a) spinning a graphene oxide dispersion into a coagulation bath comprising a first coagulation component to produce a first gel fiber; And b) spinning the carbon nanotube dispersion or graphene dispersion or a mixed dispersion thereof into a coagulation bath containing a second coagulation component to simultaneously produce a second gel fiber, c) Graphen oxide / carbon nanotube composite fiber having a heterogeneous bonding structure, graphen oxide / graphene conjugate fiber or graphene oxide / graphene composite fiber, characterized in that the fiber and the second gel fiber are bonded to each other, / Carbon nanotube composite fiber.

상기 제1 응고성분은 CTAB, 키토산, CaCl2, NaOH, KOH 으로 구성된 군에서 선택되는 1종 이상인 것이 바람직하다.The first solidification component is preferably at least one selected from the group consisting of CTAB, chitosan, CaCl 2 , NaOH, and KOH.

상기 제2 응고성분은 폴리비닐알코올(PVA), 폴리메틸메타아크릴레이트(PMMA), 폴리에틸렌이민(PEI), 폴리비닐필로리돈(PVP), 폴리에틸렌옥사이드(PEO)으로 이루어진 군에서 선택되는 1종 이상인 것이 바람직하다.Wherein the second coagulation component is selected from the group consisting of polyvinyl alcohol (PVA), polymethylmethacrylate (PMMA), polyethyleneimine (PEI), polyvinylpyrrolidone (PVP), polyethylene oxide Or more.

제1 젤 섬유와 제2 젤 섬유의 접합은 사이드-바이-사이드(side-by-side) 형태일 수 있다. 또한 제1 젤 섬유와 제2 젤 섬유는 꼬임 구조를 가질 수 있다.The bonding of the first and second gel fibers may be in a side-by-side configuration. The first and second gel fibers may also have a twisted structure.

한편, 제1 젤 섬유와 제2 젤 섬유의 접합은 쉬쓰-코어(sheath-core) 형태일 수 있다.On the other hand, the bonding of the first gel fiber and the second gel fiber may be in the form of a sheath-core.

본 발명에 따라 제조된 이종 접합된 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/그래핀/탄소나노튜브 복합섬유는 다공도가 높은 그래핀산화물과 전기전도도가 높은 탄소나노튜브 또는 그래핀이 모두 포함하고 이들 이종 성분 간에 낮은 계면저항을 가지는 형태로 접합되므로 높은 다공성과 전도성을 가져 배터리, 슈퍼커패시터의 전극 소재로 유용하게 이용될 수 있다.The heterophasic grafted oxide / carbon nanotube conjugated fiber, graphene oxide / graphene conjugated fiber, or graphene oxide / graphene / carbon nanotube conjugated fiber produced according to the present invention has a high porosity and a high electrical conductivity And carbon nanotubes or graphenes, and they are bonded to each other in a form having a low interfacial resistance between them. Therefore, the carbon nanotube has high porosity and conductivity, and thus can be effectively used as an electrode material for batteries and supercapacitors.

도 1은 화학박리법에 따른 그래핀산화물(GO)으로부터 '환원된 그래핀산화물(rGO)'을 생성하는 과정을 나타낸 그래핀 구조의 모식도이다.
도 2는 그래핀산화물의 습식 방사법(도 2a) 및 습식 방사공정에서 그래핀산화물(또는 그래핀, 나노탄소튜브)이 정렬되는 과정(도 2b)을 나타내는 모식도이다.
도 3은 Roll-to-roll 공정으로 제조 중인 그래핀산화물 젤 섬유와 탄소나노튜브 젤 섬유의 접합과정을 나타내는 사진이다.
도 4는 본 발명의 실시예 2에 따라 제조된 이종 접합구조를 가지는 그래핀산화물/탄소나노튜브 복합섬유의 광학현미경 사진이다.
도 5는 본 발명의 실시예 2에 따라 제조된 이종 접합구조를 가지는 그래핀산화물/탄소나노튜브 복합섬유 측면의 전자현미경 사진이다.
도 6은 본 발명의 실시예 2에 따라 제조된 이종 접합구조를 가지는 그래핀산화물/탄소나노튜브 복합섬유 단면의 전자현미경 사진이다.
1 is a schematic diagram of a graphene structure showing a process of producing a 'reduced graphene oxide (rGO)' from a graphene oxide (GO) according to a chemical stripping method.
FIG. 2 is a schematic diagram showing wet spinning of graphene oxide (FIG. 2A) and a process of aligning graphene oxide (or graphene, nanocarbon tube) in a wet spinning process (FIG. 2B).
FIG. 3 is a photograph showing a process of bonding a graft oxide gel fiber and a carbon nanotube gel fiber in a roll-to-roll process.
FIG. 4 is an optical microscope image of a graphene oxide / carbon nanotube composite fiber having a heterojunction structure according to Example 2 of the present invention. FIG.
FIG. 5 is an electron micrograph of a side view of a graphene oxide / carbon nanotube composite fiber having a heterojunction structure according to Example 2 of the present invention. FIG.
6 is an electron micrograph of a cross section of a graphene oxide / carbon nanotube composite fiber having a heterojunction structure produced according to Example 2 of the present invention.

본 발명자들은 그래핀산화물과 탄소나노튜브이 접합된 복합섬유 개발에 예의 노력한 결과, 그래핀산화물과 탄소나노튜브를 각각 습식 방사하여 얻어진 젤 섬유(gel fibers) 끼리 응집력이 발생하여, 젤 섬유화 상태에서 접합시키고, 수세 건조 후에도 접합상태가 그대로 유지되는 것을 확인하여 본 발명을 완성하였다.The present inventors have made intensive efforts to develop conjugated fibers in which graphene oxide and carbon nanotubes are bonded together. As a result, cohesive force is generated between gel fibers obtained by wet spinning of graphene oxide and carbon nanotubes, And the bonding state was maintained even after washing with water. Thus, the present invention was completed.

본 발명에 있어 "이종 접합"은 서로 다른 성분이 상호 접합된 것을 의미한다.In the present invention, "heterojunction" means that the different components are mutually bonded.

본 발명에 따른 이종 접합된 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/그래핀/탄소나노튜브 복합섬유 제조 방법은,The method for producing a heterogeneously bonded graphene oxide / carbon nanotube conjugated fiber, a graphene oxide / graphene conjugated fiber or a graphene oxide / graphene / carbon nanotube conjugated fiber according to the present invention comprises:

a) 그래핀산화물 분산액을 제1 응고성분을 포함하는 응고욕에 방사시켜 제1 젤 섬유를 제조하는 공정; 및a) spinning a graphene oxide dispersion into a coagulation bath comprising a first coagulation component to produce a first gel fiber; And

b) 탄소나노튜브 분산액 또는 그래핀 분산액 또는 이의 혼합 분산액을 제2 응고성분을 포함하는 응고욕에 방사시켜 제2 젤 섬유를 제조하는 공정이 동시에 이루어지고,b) spinning the carbon nanotube dispersion or graphene dispersion or a mixed dispersion thereof into a coagulation bath containing a second coagulation component to produce a second gel fiber,

c) 상기 동시 제조된 제1 젤 섬유와 제2 젤 섬유를 서로 접합하고, 수세, 건조하는 공정을 포함하여 이루어진다.c) joining together the first gel fiber and the second gel fiber produced simultaneously, and washing and drying the first gel fiber and the second gel fiber.

그래핀산화물(GO)의 습식 방사Wet emissivity of graphene oxide (GO)

본 발명에 있어서, 그래핀산화물(GO)은 화학적 박리법을 이용하여 제조된다.In the present invention, graphene oxide (GO) is produced by a chemical stripping method.

그래핀산화물은 강산을 이용해 흑연을 산화시켜 그래핀 층간에 산소관능기가 도입된 팽창 산화흑연을 만들고, 용액 상에서 초음파분쇄나 급속가열을 하는 것으로 제조된다.The graphene oxide is produced by oxidizing graphite using a strong acid to make expanded graphite with oxygen functional groups introduced between the graphene layers and ultrasonic pulverizing or rapid heating in solution.

Staudenmaier와 Hamdi는 황산/질산 혼합물을 이용하여 산화흑연을 제조하는 방법을 개시하고 있으나, 현재 대부분의 그래핀산화물은 농황산(fuming sulfuric acid)에 질산나트륨/염소산칼륨을 섞은 혼합물을 이용하여 흑연을 산화시키는 Hummers 방법 또는 이의 변형 방법을 주로 이용하여 제조된다.Staudenmaier and Hamdi disclose a method for producing graphite oxide using a sulfuric acid / nitric acid mixture, but most of the graphene oxides presently are oxidized graphite using a mixture of sodium nitrate / potassium chlorate with fuming sulfuric acid Or by using a Hummers method or a modified method thereof.

그래핀산화물은 그래핀의 표면 또는/및 말단에 에폭시기, 하이드록시기, 말단에 카르복시기 또는 카르보닐기 등 다양한 산소관능기 그룹이 형성된 구조를 가진다.The graphene oxide has a structure in which various oxygen functional group groups such as an epoxy group, a hydroxyl group, and a terminal carboxyl group or carbonyl group are formed on the surface or / and the terminal of graphene.

상기 그래핀산화물은 절연체를 가지며, 산화 정도, 특성에 따라 낮은 전도성을 가지나, 그래핀 또는 탄소나노튜브에 비해서는 극히 미미한 수준이다.The graphene oxide has an insulator and has low conductivity depending on the degree of oxidation and characteristics, but is extremely small compared to graphene or carbon nanotubes.

본 발명에 따른 그래핀산화물은 기능성 물질이 부착된 그래핀산화물을 포함한다. 상기 기능성 물질은 예컨대, 바이오센서 분야에서 타겟물질의 검출을 위해 이용하는 다양한 감지물질이다. 상기 기능성 물질은 핵산, DNA, RNA, 압타머, 펩티드, 단백질, 항체, 성장인자, 효소, 형광물질, 소광물질, 생체분자, 기능성 고분자일 수 있다. 상기 기능성 물질은 그래핀산화물의 관능기와 결합되어 형성될 수 있다. 상기 감지물질이 타겟물질과 결합 또는 반응하면 전기적 신호 또는 형광(또는 소광)을 관찰함으로써 특정 핵산, 단백질, 성장인자와 같은 중요한 생체분자를 성공적으로 검출할 수 있게 된다. 상기 기능성 물질에 따른 전기적 신호는 본 발명에 따른 복합섬유의 전기전도성 물질인 그래핀, 탄소나노튜브를 통해 전달됨으로써 낮은 전기적 신호에도 불구하고 높은 검출력을 제공할 수 있다.The graphene oxide according to the present invention includes graphene oxide to which a functional material is attached. The functional material is, for example, various sensing materials used for the detection of a target substance in the biosensor field. The functional material may be a nucleic acid, a DNA, an RNA, an extramamer, a peptide, a protein, an antibody, a growth factor, an enzyme, a fluorescent substance, a minerals substance, a biomolecule, and a functional polymer. The functional material may be formed by bonding with the functional group of the graphene oxide. When the sensing material binds to or reacts with a target material, it is possible to successfully detect important biomolecules such as specific nucleic acids, proteins, and growth factors by observing an electrical signal or fluorescence (or extinction). The electrical signal according to the functional material is transmitted through the electroconductive material of the composite fiber according to the present invention through the graphene and carbon nanotubes, so that it can provide a high detection power despite the low electrical signal.

한편, 본 발명에 따른 그래핀산화물은 화학적으로 개질된 그래핀산화물을 포함할 수 있다. 그래핀산화물의 화학적 개질은 예컨대, 유기 단분자들을 그래핀산화물의 산소관능기(에폭시기, 하이드록시기, 카르복시기 등)들과 반응시켜 제조될 수 있다. 아민기를 가지는 유기 단분자는 하기 반응식에 보이는 바와 같이 그래핀산화물의 에폭시기와 반응하여 유기 단분자가 그래핀산화물에 도입된다(Polymer(Korea), Vol. 35, No. 3, pp 265-271, 2011).Meanwhile, the graphene oxide according to the present invention may include chemically modified graphene oxide. Chemical modification of the graphene oxide can be produced, for example, by reacting organic monomers with an oxygen functional group (epoxy group, hydroxyl group, carboxyl group, etc.) of the graphene oxide. The organic single molecule having an amine group reacts with the epoxy group of the graphene oxide as shown in the following reaction formula to introduce an organic monomolecule into the graphene oxide ( Polymer (Korea), Vol. 35, No. 3, pp 265-271, 2011).

Figure 112016061601612-pat00001
Figure 112016061601612-pat00001

이소시아네이트로 기능기화된 그래핀산화물은 극성용매에서 분산성이 크게 향상되는 것으로 보고된다(S. Stankovich, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Carbon, 44, 3342 (2006)).It is reported that graphene oxide functionalized with isocyanate greatly improves the dispersibility in polar solvents (S. Stankovich, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Carbon, 44, 3342 (2006)).

상기 그래핀산화물은 상기 산소관능기 그룹에 의해 극성, 친수성을 띠므로 물, 유기용매, 물/유기용매와 같은 극성용매에 잘 분산된다.Since the graphene oxide is polar and hydrophilic due to the oxygen functional group, it is well dispersed in a polar solvent such as water, organic solvent or water / organic solvent.

상기 그래핀산화물의 용매로는 증류수, 디메틸포름아미드, 메탄올, 에탄올, 에틸렌글리콜, n-부탄올, tert-부틸알코올, 이소프로필알코올, n-프로판올, 에틸아세테이트, 디메틸설폭사이드, 테트라하이드로퓨란 등이 이용될 수 있으나, 이 중에서 증류수 또는 증류수/유기용매가 바람직하다.Examples of the solvent of the graphene oxide include distilled water, dimethylformamide, methanol, ethanol, ethylene glycol, n-butanol, tert -butyl alcohol, isopropyl alcohol, n-propanol, ethyl acetate, dimethyl sulfoxide and tetrahydrofuran Among them, distilled water or distilled water / organic solvent is preferable.

그래핀산화물 농도는 방사용액 대비 1 ~ 20 mg/mL(0.1 ~ 2wt%)인 것이 바람직하나 이에 한정되지는 않는다.The graphene oxide concentration is preferably 1 to 20 mg / mL (0.1 to 2 wt%) based on the spray solution, but is not limited thereto.

그래핀산화물 방사액은 통상의 습식 방사법에 따르고, 그래핀산화물의 응고성분(본 발명에서 제1 응고성분)은 CTAB, 키토산, CaCl2, NaOH, KOH 으로 구성된 군에서 선택될 수 있으나, 이에 한정되지는 않는다. The graphene oxide spinning solution may be selected from the group consisting of CTAB, chitosan, CaCl 2 , NaOH, KOH, and the coagulation component of graphene oxide (first coagulation component in the present invention) It does not.

상기 제1 응고성분 중에서 CTAB은 양이온성 계면활성제이나 그래핀산화물의 응고매로서 가장 널리 알려져 있다. CaCl2는 2가 이온(Ca2+)에 의해 그래핀산화물이 서로 가교되어 응집되는 것을 알려져 있다(Adv. Mater.2013, 25, 188.). NaOH, KOH는 환원제로서 그래핀산화물의 환원을 통한 응집을 발생시키는 것으로 알려져 있다(Nat. Comm. 2011, 2, 571.). 키토산은 고분자전해질 착물화(polyelectrolyte complexation)에 의해 그래핀산화물을 응집하는 것으로 알려져 있다(Adv. Func. Mater.2013, 23, 5345.)Among the first coagulation components, CTAB is most widely known as a coagulant of cationic surfactant or graphene oxide. CaCl 2 is known to be agglomerated by graphene oxides crosslinked by divalent ions (Ca 2+ ) ( Adv. Mater. 2013, 25, 188.). NaOH and KOH are known to cause aggregation through reduction of graphene oxide as a reducing agent ( Nat. Comm. 2011, 2, 571.). Chitosan is known to aggregate graphene oxide by polyelectrolyte complexation ( Adv. Func. Mater . 2013, 23, 5345.)

상기 제1 응고성분은 수용성을 띠며, 본 발명의 응고욕은 상기 제1 응고성분 을 증류수에 용해시켜 제조될 수 있다. 또한, 상기 제1 응고성분의 용매로는 디메틸포름아미드, 메탄올, 에탄올, 에틸렌글리콜, n-부탄올, tert-부틸알코올, 이소프로필알코올, n-프로판올, 에틸아세테이트, 디메틸설폭사이드, 테트라하이드로퓨란 등의 유기 용매가 이용될 수 있다. 본 발명에서 응고용 용매로는 증류수가 바람직하나 이에 제한되지는 않는다.The first coagulation component is water-soluble, and the coagulation bath of the present invention can be prepared by dissolving the first coagulation component in distilled water. The first coagulation component may be selected from the group consisting of dimethylformamide, methanol, ethanol, ethylene glycol, n-butanol, tert-butyl alcohol, isopropyl alcohol, n-propanol, ethyl acetate, dimethylsulfoxide and tetrahydrofuran Of organic solvents may be used. In the present invention, distilled water is preferably used as an emulsifying solvent, but the present invention is not limited thereto.

상기 제1 응고성분의 응고액 농도는 그래핀산화물의 종래 습식 방사공정에서 공지된 응고욕 농도(함량wt%)에서 이용될 있다.The coagulating liquid concentration of the first coagulation component may be used at a known coagulating bath concentration (content wt%) in a conventional wet spinning process of graphene oxide.

예를 들어, 응고욕에서 CTAB 농도는 0.03~0.1wt%, 바람직하게는 0.05wt%(0.5 mg/mL)이며, CaCl2, NaOH, KOH은 3~10wt%이나, 이에 제한되지는 않는다.For example, the CTAB concentration in the coagulating bath is 0.03 to 0.1 wt%, preferably 0.05 wt% (0.5 mg / mL), and CaCl 2 , NaOH, and KOH are not limited to 3 to 10 wt%.

상기 그래핀산화물 분산액을 방사구금(방사노즐)을 통해 제1 응고성분을 포함하는 응고욕에 방사시키면 제1 응고성분이 방사용액에 서서히 침투, 용매 치환을 일으켜 방사용액이 부풀면서 섬유화(젤화)가 일어나면서 말랑말랑한 그래핀산화물 젤 섬유(본 발명에서 제1 젤 섬유)가 형성된다.When the graphene oxide dispersion is spun through a spinneret (spinning nozzle) into a coagulation bath containing the first coagulation component, the first coagulation component slowly permeates into the spinning solution, causing solvent substitution, causing the spinning solution to swell, And a soft gelatin oxide gel fiber (first gel fiber in the present invention) is formed.

그래핀(Graphene, rGO 포함)의 습식 방사Wet emissivity of graphene (including rGO)

본 발명에 따른 그래핀은 기계적 박리법, 화학기상증착법(CVD), 에피텍셜 성장법(Epitaxial Growth), 비산화 박리법(Nonoxidative Exfoliation) 등으로 제조될 수 있으나, 상술한 그래핀산화물을 고온열처리 또는 화학적으로 환원시켜 제조되는 환원된 그래핀산화물(rGO)을 이용하는 것이 바람직하다. 본 발명에 따른 그래핀으로는 화학적으로 개질된 그래핀(Chemically converted graphene, CCG), 화학적으로 개질된 환원 그래핀(rCCG)도 이용될 수 있다. 본 발명에 따른 그래핀은 환원된 그래핀산화물(rGO)인 것이 더욱 바람직하다.The graphene according to the present invention can be produced by a mechanical stripping method, a chemical vapor deposition (CVD) method, an epitaxial growth method or a nonoxidative exfoliation method. However, Or a reduced graphene oxide (rGO) produced by chemical reduction is preferably used. As the graphene according to the present invention, chemically converted graphene (CCG) or chemically modified reduction graphene (rCCG) may be used. More preferably, the graphene according to the present invention is a reduced graphene oxide (rGO).

상기 환원공정에서 열처리, 화학적 환원처리는 이미 다양한 방법이 공지되어 있다. 그래핀산화물의 대표적 환원제로는 하이드라진, 소듐 하이드라진, 하이드라진 하이드레이트(hydrazine hydrate) 등의 하이드라진계, 하이드로퀴논(hydroquinone), 소듐 보로하이드라이드(NaBH4), 아스코빅산(ascorbic acid), 글루코스(glucose) 등이 이용될 수 있으나, 이에 제한되지는 않는다.Various methods of heat treatment and chemical reduction treatment in the reduction step are already known. Representative reducing agents of graphene oxide include hydrazine compounds such as hydrazine, sodium hydrazine and hydrazine hydrate, hydroquinone, sodium borohydride (NaBH 4 ), ascorbic acid, glucose, But the present invention is not limited thereto.

그래핀(또는 환원된 그래핀산화물)은 비극성 또는 매우 약한 극성, 소수성을 가지므로 계면활성제를 이용하여 용매에 분산시킨다. 상기 계면활성제로는 도데실벤젠설폰산나트륨(SDBS), 도데실설폰산나트륨(SDS), 리그노설폰산나트륨(SLS), 라우레스설폰산나트륨(SLES), 라우릴 에테르 설폰산나트륨(SLES), 미레스설폰산나트륨(Sodium myreth sulfate), 도데실설폰산리튬(LDS)의 친수성 설폰산기(SO3 -)를 가지는 음이온성 계면활성제, 또는 세틸트리메틸암모늄 브로마이드(CTAB), 세틸트리메틸암모늄클로라이드(CTAC), 세틸피리디늄클로라이드(CPC), 도데실트리메틸암모늄 브로마이드(DTAB), 테트라데실트리메틸암모늄 브로마이드(TTAB), 테트라트리메틸암모늄 브로마이드(TMB), 디옥타데실디메틸암모늄브로마이드(DODAB), 디메틸디옥타데실암모늄클로라이드(DODMAC)의 양이온 계면활성제, 또는 Tween 20, 40, 60, 80, Triton X-100, 글리세롤알킬에스테르(Glycerol alkyl esters), 글리세릴라우릴에스테르(Glyceryl laurate esters), 폴리에틸렌글리콜소르비탄알킬에스테르(Polyoxyethylene glycol sorbitan alkyl esters), 폴리에틸렌글리콜옥타데실에테르의 비이온성 계면활성제가 이용될 수 있다. 본 발명에서는 제한되지는 않으나 친수성 설폰산기(SO3 -)를 가지는 음이온성 계면활성제를 이용하여 수분산시키는 것이 바람직하다. 본 발명에 따른 그래핀을 효과적으로 분산하기 위하여 초음파 처리가 추가될 수 있다.Since graphene (or reduced graphene oxide) has a non-polar or very weak polarity and hydrophobicity, it is dispersed in a solvent using a surfactant. Examples of the surfactant include sodium dodecylbenzenesulfonate (SDBS), sodium dodecylsulfonate (SDS), sodium lignosulfonate (SLS), sodium laureth sulfate (SLES), sodium lauryl ether sulfonate (SLES) (CTAB), cetyltrimethylammonium chloride (CTAC), anionic surfactants having a hydrophilic sulfonic acid group (SO 3 - ) of dodecylsulfonyl lithium (LDS), or anionic surfactants such as cetyltrimethylammonium bromide (CPC), dodecyltrimethylammonium bromide (DTAB), tetradecyltrimethylammonium bromide (TTAB), tetratrimethylammonium bromide (TMB), dioctadecyldimethylammonium bromide (DODAB), dimethyl dioctadecylammonium Triton X-100, Glycerol alkyl esters, Glyceryl laurate esters, < RTI ID = 0.0 > Li a glycol sorbitan alkyl ester nonionic surfactant (Polyoxyethylene glycol sorbitan alkyl esters), polyethylene glycol octadecyl ether may be used. Although not limited in the present invention, it is preferable to disperse water by using an anionic surfactant having a hydrophilic sulfonic acid group (SO 3 - ). Ultrasonic processing may be added to effectively disperse the graphene according to the present invention.

상기 그래핀 또는 그래핀산화물은 시트 조각 형태로 존재하는 데, "그래핀 플레이크"(Graphene flake), "그래핀 시트", "그래핀 결정"으로 지칭될 수 있다. 본 발명에 따른 그래핀 플레이크의 평균 직경은 수 μm 이상이고, 그래핀 또는 그래핀산화물의 층수가 3층 이하인 것이 바람직하다.The graphene or graphene oxide is present in the form of a sheet, which may be referred to as "graphene flake", "graphene sheet", "graphene crystal". The average diameter of the graphene flakes according to the present invention is preferably several micrometers or more, and the number of graphene or graphene oxide layers is preferably three or less.

그래핀 농도는 방사용액 대비 1 ~ 20 mg/mL(0.1 ~ 2wt%)인 것이 바람직하나 이에 한정되지는 않는다.The concentration of graphene is preferably 1 to 20 mg / mL (0.1 to 2 wt%), but is not limited thereto.

본 발명에서 탄소나노튜브 분산액의 응고성분(본 발명에서 제2 응고성분)은 폴리비닐알코올(PVA), 폴리메틸메타아크릴레이트(PMMA), 폴리에틸렌이민(PEI), 폴리비닐필로리돈(PVP), 폴리에틸렌옥사이드(PEO)으로 이루어진 군에서 선택될 수 있으나 이에 한정되지는 않는다. 상기 PVA, PMMA, PEI, PVP, PEO는 2~40wt%, 바람직하게는 5~10wt%이나, 이에 제한되지는 않는다.In the present invention, the solidification component (second solidification component in the present invention) of the carbon nanotube dispersion liquid is a polyvinyl alcohol (PVA), polymethylmethacrylate (PMMA), polyethyleneimine (PEI), polyvinylpyrrolidone (PVP) , Polyethylene oxide (PEO), but are not limited thereto. The PVA, PMMA, PEI, PVP, and PEO are 2 to 40 wt%, preferably 5 to 10 wt%, but are not limited thereto.

상기 그래핀 분산액을 방사구금(방사노즐)을 통해 제2 응고성분을 포함하는 응고욕에 방사시키면 제2 응고성분이 방사용액에 서서히 침투, 용매 치환을 일으켜 방사용액이 부풀면서 섬유화(젤화)가 일어나면서 말랑말랑한 그래핀 젤 섬유(본 발명에서 제2 젤 섬유)가 형성된다.When the graphene dispersion is spun through a spinneret (spinning nozzle) into a coagulation bath containing a second coagulation component, the second coagulation component slowly permeates into the spinning solution and causes solvent substitution, resulting in swelling of the spinning solution, A flaky graphene fiber (second gel fiber in the present invention) is formed as it arises.

탄소나노튜브(Carbon-Nanotube, CNT)의 습식 방사Wet spinning of Carbon-Nanotube (CNT)

본 발명에 있어서, 탄소나노튜브(CNT)는 단일벽 탄소나노튜브(SWNT, Single-walled CNT), 이중벽 탄소나노튜브(DWNT, Double-walled CNT), 다중벽 탄소나노튜브(MWNT, Multi-walled CNT)이 가능하나, 전기전도성과 기계적 특성을 고려하여 SWNT가 더욱 바람직하다. CNT는 화학기상증착법(CVD), 아크 방전법, 레이저 증발법 등 공지의 방법을 통해 제조될 수 있다.In the present invention, the carbon nanotubes (CNTs) may be single walled carbon nanotubes (SWNTs), double walled carbon nanotubes (DWNTs), multi-walled carbon nanotubes (MWNTs) CNT) is possible, but SWNT is more preferable considering electrical conductivity and mechanical characteristics. CNTs can be produced by a known method such as chemical vapor deposition (CVD), arc discharge, or laser evaporation.

탄소나노튜브는 비극성이며, CNT 측벽 상호에 강한 반데르발스력(van der Waals forces)을 가지므로 물과 같은 극성용매, 유기용매에는 잘 용해되거나 분산되지 않는다. 따라서 CNT의 효과적인 분산을 위해 계면활성제와 초음파를 이용하여 분산하는 것이 바람직하다.Carbon nanotubes are non-polar and have strong van der Waals forces on CNT sidewalls, so they are not well dissolved or dispersed in polar and organic solvents such as water. Therefore, it is preferable to disperse the CNTs using a surfactant and ultrasonic waves for effective dispersion of the CNTs.

상기 계면활성제로는 상술한 그래핀 분산을 위한 계면활성제들이 동일하게 이용될 수 있다.Surfactants for dispersing graphene may be used as the surfactant.

상기 계면활성제 농도는 CNT 분산에 있어 중요하다. 계면활성제의 농도가 낮으면 분산 안정성이 떨어지고, 너무 높으면 삼투압은 depletion-induced aggregation을 일으킨다. 상기 분산액에서 CNT와 계면활성제의wt% 비율는 1:2~1:3 인 것이 바람직하나, 계면활성제의 종류에 따라 변동될 수 있다.The surfactant concentration is important for CNT dispersion. The lower the concentration of the surfactant, the lower the dispersion stability. If too high, the osmotic pressure causes depletion-induced aggregation. The weight ratio of CNT to surfactant in the dispersion is preferably 1: 2 to 1: 3, but may vary depending on the kind of the surfactant.

CNT의 응고성분은 상기 그래핀의 응고성분과 동일하다(제2 응고성분).The solidification component of the CNT is the same as the solidification component of the graphene (second solidification component).

상기 제2 응고성분인 나노탄소튜브, 그래핀의 응고욕으로는 다양한 문헌에 공지되어 있다. Vigolo 등은 계면활성제(1.0wt% 도데실설폰산나트륨(SDS))를 이용하여 0.35wt% SWNT 분산액을 만든 다음, 5wt% 폴리비닐알코올(PVA)/증류수 응고욕에 방사시켜 탄소나노튜브 섬유를 최초로 제조하였다(Vigolo, B. et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290, 1331-1334 (2000)).The coagulation bath of the nano carbon tube, graphene, which is the second solidification component, is known in various literatures. Vigolo et al. Prepared a 0.35 wt% SWNT dispersion using a surfactant (1.0 wt% sodium dodecylsulfonate (SDS)) and then spinning it in a 5 wt% polyvinyl alcohol (PVA) / distilled water coagulating bath to first produce carbon nanotube fibers (Vigolo, B. et al., Macroscopic fibers and ribbons of oriented carbon nanotubes, Science 290, 1331-1334 (2000)).

Munoz 등은 세틸트리메틸암모늄 브로마이드(CTAB), 도데실벤젠설폰산나트륨(SDBS), 도데실설폰산리튬(LDS)의 계면활성제를 이용하여 SWNT 분산액을 만든 다음, 폴리에틸렌이민(PEI)/증류수 응고욕에 방사시켜 SWNT/PEI 섬유를 제조하였다(Adv. Mater. 2005, 17, No.8, April 18). 제조된 SWNT/PEI 섬유는 SWNT/PVA 복합섬유에 비해 전기전도성이 100배 증가되는 것이 확인되었다.Munoz et al. Prepared SWNT dispersions using cetyltrimethylammonium bromide (CTAB), sodium dodecylbenzenesulfonate (SDBS), and lithium dodecylsulfonate (LDS) surfactants and then dissolved in a polyethyleneimine (PEI) / distilled water coagulation bath (SWNT / PEI) fibers were prepared by spinning ( Adv. Mater . 2005, 17, No. 8, April 18). It was confirmed that the prepared SWNT / PEI fiber had a 100 times increase in electrical conductivity compared to the SWNT / PVA composite fiber.

Winey 등은 폴리메틸메타크릴레이트(PMMA)을 응고매로 하는 CNT 복합필름 제조 방법을 개시하였다(Winey et al., Macromolecules, 2004, 37, 9048).Winey et al. (Winey et al., Macromolecules , 2004, 37, 9048) disclose a method for producing a CNT composite film using polymethyl methacrylate (PMMA) as a coagulating agent.

Smalley 등은 PVA/PVP을 응고매로 하는 CNT 복합필름 제조 방법을 개시하였다.Smalley et al. Disclosed a method for producing a CNT composite film using PVA / PVP as a coagulating agent.

CNT의 농도는 방사용액 대비 1 ~ 30 mg/mL(0.1 ~ 3wt%)이 것이 바람직하난 이에 한정되지는 않는다. CNT 농도는 더욱 바람직하게는 3 ~ 20 mg/mL(0.1 ~ 2 wt%)이고, 가장 바람직하게는 5 ~ 10 mg/mL(0.5 ~ 1.0wt%)이다.The concentration of CNT is preferably from 1 to 30 mg / mL (0.1 to 3 wt%) based on the flushing solution, but not limited thereto. The CNT concentration is more preferably 3 to 20 mg / mL (0.1 to 2 wt%), and most preferably 5 to 10 mg / mL (0.5 to 1.0 wt%).

상기 CNT 분산액을 방사구금(방사노즐)을 통해 제2 응고성분을 포함하는 응고욕에 방사시키면 제2 응고성분이 방사용액에 서서히 침투, 용매 치환을 일으켜 방사용액이 부풀면서 섬유화(젤화)가 일어나면서 말랑말랑한 탄소나노튜브(CNT) 젤 섬유(본 발명에서 제2 젤 섬유)가 형성된다.When the CNT dispersion is spun through a spinneret (spinning nozzle) to a coagulation bath containing a second coagulation component, the second coagulation component slowly permeates into the spinning solution and causes solvent substitution, resulting in swelling of the spinning solution, (CNT) gel fibers (second gel fibers in the present invention) are formed.

탄소나노튜브/그래핀 혼합용액의 습식 방사Wet emissivity of carbon nanotube / graphene mixed solution

본 발명에 있어서, 탄소나노튜브, 그래핀은 상술한 바와 같이 단독으로 습식 방사가 가능하나, 그래핀/탄소나노튜브의 혼합물을 방사용액으로 하여 습식 방사할 수 있다. 이때 혼합 방사액의 전체 농도는 0.1 ~ 2 wt%인 것이 바람직하다.In the present invention, the carbon nanotubes and graphenes can be wet-radiated alone as described above, but the mixture of graphene / carbon nanotubes can be wet-spinned using a spinning solution. At this time, the total concentration of the mixed spinning solution is preferably 0.1 to 2 wt%.

본 발명에 따른 그래핀/탄소나노튜브 혼합 방사액은 그래핀과 탄소나노튜브,계면활성제를 물 또는 물/유기용매에 넣고 동시에 분산, 초음파 처리하여 제조될 수 있으나, 그래핀 분산액, 탄소나노튜브 분산액을 각각 제조한 후, 서로 혼합하는 것으로 제조될 수도 있다.The mixed spinning solution of graphene / carbon nanotube according to the present invention can be prepared by mixing graphene, carbon nanotube, and surfactant in water or water / organic solvent and simultaneously dispersing and ultrasonically treating the graphene, carbon nanotube, A dispersion liquid may be prepared and then mixed with each other.

상기 분산액은 방사용액으로 사용된다. 상기 방사용액의 농도는 분산액을 적절히 희석하는 것으로 제조될 수도 있다.The dispersion is used as a spinning solution. The concentration of the spinning solution may be made by appropriately diluting the dispersion.

상기 그래핀/탄소나노튜브 혼합 분산액에서 그래핀:탄소나노튜브의 성분비는 4:1 ~ 1:4, 바람직하게는 3:2 ~ 2:3, 더욱 바람하게는 1:1이다.The ratio of graphene to carbon nanotubes in the graphene / carbon nanotube mixed dispersion is 4: 1 to 1: 4, preferably 3: 2 to 2: 3, more preferably 1: 1.

본 발명에서 탄소나노튜브/그래핀 혼합 분산액의 응고성분은 상기 제2 응고성분과 동일하다.In the present invention, the solidification component of the carbon nanotube / graphene mixed dispersion is the same as the second solidification component.

상기 제2 응고성분은 수용성을 띠며, 본 발명의 응고욕은 상기, 제1 응고성분 및 제2 응고성분을 증류수에 용해시켜 제조될 수 있다. 또한, 응고욕의 용매로는 디메틸포름아미드, 메탄올, 에탄올, 에틸렌글리콜, n-부탄올, tert-부틸알코올, 이소프로필알코올, n-프로판올, 에틸아세테이트, 디메틸설폭사이드, 테트라하이드로퓨란 등의 유기 용매가 이용될 수 있다. 본 발명에서 응고용 용매로는 증류수가 바람직하나 이에 제한되지는 않는다.The second solidifying component is water-soluble, and the solidifying bath of the present invention can be produced by dissolving the first solidifying component and the second solidifying component in distilled water. Examples of the solvent for the coagulating bath include organic solvents such as dimethylformamide, methanol, ethanol, ethylene glycol, n-butanol, tert-butyl alcohol, isopropyl alcohol, n-propanol, ethyl acetate, dimethyl sulfoxide and tetrahydrofuran Can be used. In the present invention, distilled water is preferably used as an emulsifying solvent, but the present invention is not limited thereto.

제1 젤 섬유와 제2 젤 섬유의 접합Bonding of first and second gel fibers

상기 습식방사에 따라 제조된 제1 젤 섬유(그래핀산화물 젤 섬유), 제2 젤 섬유(그래핀 젤 섬유, 탄노나노튜브 젤 섬유 또는 탄소나노튜브/그래핀 젤 섬유)를 수세, 건조 공정에 앞서 서로 물리적으로 접합시키면, 젤 섬유간의 상호 작용으로 효과적인 접합이 이루어짐이 본 발명에서 확인되었다. 본 발명에 따른 접합 가능성은 현재까지 보고된 바 없다.The first gel fiber (graphene oxide gel fiber), the second gel fiber (graphene gel fiber, tannonanotube gel fiber or carbon nanotube / graphene gel fiber) produced by the wet spinning is washed and dried It has been confirmed in the present invention that, when physically bonded to each other beforehand, effective bonding is achieved by the interaction between the gel fibers. The possibility of bonding according to the present invention has not been reported so far.

상기 제1 젤 섬유와 제2 젤 섬유의 접합은 사이드-바이-사이드(side-by-side) 형태나 쉬쓰-코어(sheath-core) 형태가 모두 가능하다.The joining of the first and second gel fibers may be in the form of a side-by-side or a sheath-core.

사이드-바이-사이드(side-by-side) 형태는 응고욕을 통과한 각 젤 섬유를 하나의 오목한 롤러(roller)에 수렴시켜 이들 섬유가 물리적으로 밀착되도록 하면, 제1 젤 섬유와 제2 젤 섬유의 상호 작용에 의하여 두 섬유는 평행한 형태로 접합된다.The side-by-side configuration allows each of the gel fibers passing through the coagulation bath to converge on a single, concave roller so that the fibers are physically closely adhered, Due to the interaction of the fibers, the two fibers are joined in a parallel fashion.

상기 사이드-바이-사이드(side-by-side) 형태의 변형예로는 제1 젤 섬유와 제2 젤 섬유가 꼬인 형태로 접합될 수도 있다. 이는 응고욕을 통과한 각 젤 섬유를 권취 방향에서 회전을 시키는 것으로 섬유를 서로 꼰 다음 롤러에 수렴시켜 접합시킨다.As a side-by-side modification, the first and second gel fibers may be joined together in a twisted manner. This means that each of the gel fibers that have passed through the coagulation bath is rotated in the winding direction to cause the fibers to be twisted to each other and then to be converged on the rollers.

상기 쉬쓰-코어(sheath-core) 형태는 코어쉘(core-shell) 이종 접합구조로서, 동축(coaxial) 케이블과 유사한 형태를 의미한다. 코어 물질은 상대적으로 구경이 작은 방사노즐을 사용하여 방사하고, 쉬쓰 물질은 납작한 형태의 노즐을 사용하여 리본 형태로 방사를 한 다음, 롤러 상에 수렴시키면 쉬쓰 섬유(리본 형태)이 코어 섬유를 감싸면서 접합됨으로서 이루어진다.The sheath-core type is a core-shell heterogeneous bonding structure, which means a form similar to a coaxial cable. The core material is spun using a spinneret having a relatively small diameter, and the sheath material is spun in the form of a ribbon using a flat type nozzle and then converged on the rollers to wrap the core fiber in a sheath fiber .

상술한 바와 같이 제1 젤 섬유와 제2 섬유의 접합이 이루어지면 연신공정, 수세 공정, 건조 공정을 거침으로써 본 발명에 따른 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/그래핀/탄소나노튜브 복합섬유가 효과적으로 제조된다.When the first and second fibers are bonded together as described above, they are subjected to a drawing process, a washing process, and a drying process to form the graphene oxide / carbon nanotube composite fiber according to the present invention, the graphene oxide / Or graphene oxide / graphene / carbon nanotube composite fibers are effectively produced.

본 발명에 따른 복합섬유는 별도의 그래핀산화물의 환원공정 없이 전기전도 특성을 가진다. 따라서, 핵산, DNA, RNA, 압타머 등의 기능성 물질이 도입된 그래핀산화물을 사용하는 경우 이들 기능성 물질이 화학적, 열적 환원공정에 의해 파괴, 또는 분해되지 않으면서 전기전도의 특성을 가질 수 있게 한다.The composite fiber according to the present invention has electric conduction characteristics without a separate graphene oxide reduction process. Therefore, when a graphene oxide into which a functional material such as nucleic acid, DNA, RNA, or aptamer is introduced is used, these functional materials are not destroyed or decomposed by a chemical or thermal reduction process, do.

다만, 본 발명의 그래핀산화물이 기능성 물질이 없는 경우에는 본 발명의 복합섬유는 공지의 열적 환원 방법 또는 화학적 환원 방법을 통해 추가 환원공정을 거칠 수 있다. 상기 열적 환원 방법은 제한되지는 않으나, 상온에서 200 ~ 1000 ℃로 0.1 ~ 10 ℃/분의 속도로 승온하여 이루어질 수 있다. 상기 화학적 환원 방법은 히드라진(hydrazine), 요오드화수소산(Hydroiodic acid), 브롬화수소산(hydrobromic acid), 수소화붕소나트륨(sodiumborohyride), 수소화리튬알루미늄(lithium aluminum hydride) 그리고 황산(surfuric acid) 등 공지의 환원제를 이용하여 이루어질 수 있다.However, when the graphene oxide of the present invention does not contain a functional material, the composite fiber of the present invention may undergo a further reduction process through a known thermal or chemical reduction method. The thermal reduction method is not limited, but may be performed at a temperature of 200 to 1000 ° C at a room temperature and at a rate of 0.1 to 10 ° C / minute. The chemical reduction method may be carried out by using a known reducing agent such as hydrazine, hydroiodic acid, hydrobromic acid, sodium borohydride, lithium aluminum hydride and sulfuric acid. .

이하 실시예를 통하여 본 발명에 따른 이종 접합구조를 가지는 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/그래핀/탄소나노튜브 복합섬유 제조 방법을 상세히 설명한다.Hereinafter, the method of manufacturing a graft-bonded oxide / carbon nanotube composite fiber according to the present invention, a graphene oxide / graphene composite fiber or a graphene oxide / graphene / carbon nanotube composite fiber will be described in detail do.

재료 준비Material preparation

그래핀산화물(GO) 분산액 제조Preparation of graphene oxide (GO) dispersion

흑연 플레이크 2.4 g을 과황산포타슘 2.0g, 오산화인 2.0g이 용해된 황산 10mL에 넣은 후 80℃에서 72시간 동안 반응시켰다. 상기 흑연을 희석시킨 후 진공 여과를 통해 수득한 후, 24시간동안 진공에서 상온 건조시킴으로써 팽창 흑연(expanded graphite)를 수득하였다. 수득된 팽창 흑연을 92mL의 황산에 분산시킨 후, 과망간산포타슘 12.0g을 녹여 35℃에서 2시간 30분동안 반응시킨 다음 증류수 1.0L를 전체 분산액의 온도가 45℃를 넘지 않도록 30분간 첨가한 후, 30% 과산화수소수 20mL를 첨가함으로써 반응을 종결시켰다. 상기 반응 혼합물을 10,000rpm의 속도로 10분간 원심분리시킨 후 1.0M 염산 수용액을 첨가하여 원심분리하는 과정을 3회 이상 반복하고, 물을 첨가하여 13,000rpm의 속도로 40분간 원심분리하는 과정을 5회 이상 반복하고, 건조하여 그래핀산화물을 수득하였다. 상기 수득된 그래핀산화물 1g을 증류수 200 mL에 넣고 용해하여 0.5wt% GO 수분산액을 수득하였다.2.4 g of graphite flake was placed in 10 mL of sulfuric acid dissolved in 2.0 g of potassium persulfate and 2.0 g of phosphorus pentoxide and reacted at 80 DEG C for 72 hours. The graphite was diluted and then obtained by vacuum filtration, and then expanded at room temperature in vacuum for 24 hours to obtain expanded graphite. The obtained expanded graphite was dispersed in 92 mL of sulfuric acid. Then, 12.0 g of potassium permanganate was dissolved and reacted at 35 DEG C for 2 hours and 30 minutes. Then, 1.0 L of distilled water was added for 30 minutes so that the temperature of the total dispersion did not exceed 45 DEG C, The reaction was terminated by adding 20 mL of 30% aqueous hydrogen peroxide. The reaction mixture was centrifuged at a speed of 10,000 rpm for 10 minutes and then centrifuged at a rate of 13,000 rpm for 40 minutes. Times, and dried to obtain a graphene oxide. 1 g of the obtained graphene oxide was dissolved in 200 mL of distilled water and dissolved to obtain a 0.5 wt% GO water dispersion.

그래핀(rGO) 분산액 제조Preparation of graphene (rGO) dispersions

상기와 같이 방법으로 그래핀산화물 수분산액을 준비한 다음, 여기에 과량의 하이드라진을 넣고 80℃에서 2시간 동안 환원시켜 응집된 그래핀을 수득하였다. 상기 응집된 그래핀에 진한 황산을 첨가하여 180℃에서 12시간 동안 반응시켜 환원시키고, 수세, 건조 과정을 거쳐 환원된 그래핀산화물(rGO)를 얻었다. 증류수 100 mL에 상기 수득된 rGO 0.5g 및 도데실벤젠설폰산나트륨(SDBS) 0.25g을 넣고 30분간 초음파 처리를 하여 0.5wt% rGO 수분산액을 제조하였다.The graphene oxide aqueous dispersion was prepared as described above, and an excessive amount of hydrazine was added thereto, followed by reduction at 80 DEG C for 2 hours to obtain agglomerated graphene. Concentrated sulfuric acid was added to the coagulated graphene, which was reacted at 180 ° C for 12 hours to reduce, washed, and dried to obtain reduced graphene oxide (rGO). 0.5 g of the obtained rGO and 0.25 g of sodium dodecylbenzenesulfonate (SDBS) were added to 100 mL of distilled water and ultrasonicated for 30 minutes to prepare a 0.5 wt% rGO aqueous dispersion.

탄소나노튜브(SWNT) 분산액 제조Manufacture of carbon nanotube (SWNT) dispersion

증류수 100mL에 SWNT 0.5g 및 계면활성제 SDBS 0.25g을 넣고, 30분간 초음파 처리하여 0.5wt% SWNT 수분산액을 제조하였다.0.5 g of SWNT and 0.25 g of surfactant SDBS were added to 100 ml of distilled water and ultrasonicated for 30 minutes to prepare a 0.5 wt% SWNT water dispersion.

응고액 제조Coagulation preparation

증류수 2L에 CTAB 1g을 넣고 용해시켜 0.05wt% CTAB(제1 응고성분) 응고액을 제조하였다.1 g of CTAB was added to 2 L of distilled water and dissolved to prepare 0.05 wt% CTAB (first solidification component) coagulation solution.

증류수 2L에 PVA 111g을 넣고 용해시켜 5wt% PVA(제2 응고성분) 응고액을 제조하였다.111 g of PVA was dissolved in 2 L of distilled water and dissolved to prepare a 5 wt% PVA (second coagulation component) coagulation solution.

실시예 1 : 그래핀산화물/탄소나노튜브 이종 접합구조의 복합섬유 제조Example 1: Fabrication of conjugated fiber of graphene oxide / carbon nanotube heterostructure

2개의 응고조를 준비하고, 한 곳에는 상기 제조된 0.05wt% CTAB 응고액을, 다른 한 곳에는 5wt% PVA 응고액을 넣어 2개의 응고욕을 만들고, 각 응고조에 내경 0.3 mm 방사노즐과 시린지를 위치시켰다.Two coagulation baths were prepared. Two coagulating baths were prepared by adding the 0.05 wt% CTAB coagulating solution prepared in one place and the 5 wt% PVA coagulating solution in the other place. In each coagulation bath, a 0.3 mm diameter spinning nozzle and a syringe .

0.05wt% CTAB 응고욕의 시린지에는 상기 제조된 GO 수분산액을, 5wt% PVA 응고욕의 시린지에는 탄소나노튜브 수분산액을 넣고, 각각 1 mL/min 이하의 방사 속도를 유지하면서 각 응고욕에 회전 또는 선형으로 방사용액을 주입하여 그래핀산화물 젤 섬유(제1 젤 섬유)와 탄소나노튜브 젤 섬유(제2 젤 섬유)를 각각 동시에 제조하였다. 방사용액 주입 30분 후에 각각 제조된 도 3에 보이는 바와 같이 제1 젤 섬유와 제2 젤 섬유를 증류수 내에서 서로 꼬이도록 하면서 roll-to-roll 방식으로 그래핀산화물 섬유와 탄소나노튜브 섬유가 상호 접합된 젤 섬유를 제조하였다.To the syringe of 0.05 wt% CTAB coagulation bath, the prepared GO water dispersion was added, and the carbon nanotube aqueous dispersion was added to the syringe of 5 wt% PVA coagulation bath. While rotating at a rate of 1 mL / min or less, (First gel fiber) and carbon nanotube gel fiber (second gel fiber) were simultaneously prepared by injecting spinning solution in a linear or linear manner. As shown in FIG. 3, 30 minutes after the spinning solution injection, the first gel fiber and the second gel fiber were twisted in distilled water while the graphene oxide fibers and the carbon nanotube fibers were mutually twisted in a roll-to- The bonded gel fibers were prepared.

도 4는 상기 방법으로 제조된 그래핀산화물/탄소나노튜브 젤 섬유의 광학현미경 사진으로, 사이드-바이-사이드 형태로 양 섬유가 견고히 접합된 것을 확인할 수 있다.FIG. 4 is an optical microscope image of the graphene oxide / carbon nanotube gel fiber produced by the above method, and it can be confirmed that both fibers are firmly bonded in a side-by-side manner.

이후 연신 공정을 거친후 증류수 상에서 수세하고, 상온에서 24시간 건조시켜 그래핀산화물/탄소나노튜브가 접합된 복합섬유를 제조하였다.After the stretching process, it was washed with distilled water and dried at room temperature for 24 hours to prepare a composite fiber having graphene oxide / carbon nanotubes bonded thereto.

도 5 및 6은 상기 실시예 1에 따라 제조된 이종 접합구조를 가지는 그래핀산화물/탄소나노튜브 복합섬유의 전자현미경 사진으로 도 5는 측면 사진, 도 6은 단면 사진이다.FIGS. 5 and 6 are electron micrographs of a graphene oxide / carbon nanotube composite fiber having a heterojunction structure according to Example 1, wherein FIG. 5 is a side view and FIG. 6 is a cross-sectional photograph.

도 5 및 도 6에 보이는 바와 같이, 그래핀산화물과 탄소나노튜브 섬유는 매우 견고하게 접합되었음을 확인할 수 있다.As shown in FIGS. 5 and 6, it can be confirmed that the graphene oxide and the carbon nanotube fibers are bonded very firmly.

실시예 2 : 그래핀산화물/그래핀 이종 접합구조의 복합섬유 제조Example 2: Fabrication of conjugated fiber of graphene oxide / graphene heterojunction structure

상기 실시예 1에서 탄소나노튜브 대신 그래핀 수분산액을 이용하여 동일한 방법으로 실시하여 그래핀산화물/그래핀 이종 접합구조의 복합섬유를 제조하였다.In Example 1, a graphene aqueous dispersion instead of the carbon nanotubes was used in the same manner to prepare a composite fiber having a graphene oxide / graphene heterojunction structure.

그래핀은 0.5wt% 환원된 그래핀(rGO) 수분산액을 방사용액으로 하였으며, 응고성분은 탄소나노튜브와 동일하게 5wt% PVA(제2 응고성분)를 이용하였다.Graphene was prepared by dissolving 0.5wt% reduced graphene (rGO) water dispersion in 5wt% PVA (second coagulation component) in the same manner as carbon nanotubes.

실시예 3 : 그래핀산화물/(탄소나노튜브+그래핀) 이종 접합구조의 복합섬유 제조Example 3: Fabrication of conjugated fibers of grafting oxide / (carbon nanotube + graphene) heterojunction structure

상기 제조된 탄소나노튜브 수분산액과 그래핀 수분산액을 혼합하여 탄소나노튜브/그래핀 수분산액을 만들고, 이를 방사용액으로 이용하여, 상기 실시예 1과 동일한 방법으로 그래핀산화물/(탄소나노튜브+그래핀) 이종 접합구조의 복합섬유를 제조하였다.The carbon nanotube aqueous dispersion and the graphene dispersion were mixed to prepare a carbon nanotube / graphene dispersion, and as a spinning solution, graphene oxide / (carbon nanotube + Graphene) heterogeneous bonding structure.

Claims (9)

a) 그래핀산화물 분산액을 제1 응고성분을 포함하는 응고욕에 방사시켜 제1 젤 섬유를 제조하는 공정; 및
b) 탄소나노튜브 분산액 또는 그래핀 분산액 또는 이의 혼합 분산액을 제2 응고성분을 포함하는 응고욕에 방사시켜 제2 젤 섬유를 제조하는 공정이 동시에 이루어지고,
c) 상기 동시 제조된 제1 젤 섬유와 제2 젤 섬유를 서로 접합하고, 수세, 건조하는 것을 특징으로 하는,
이종 접합구조를 가지는 그래핀산화물 복합섬유의 제조 방법.
a) spinning a graphene oxide dispersion into a coagulation bath comprising a first coagulation component to produce a first gel fiber; And
b) spinning the carbon nanotube dispersion or graphene dispersion or a mixed dispersion thereof into a coagulation bath containing a second coagulation component to produce a second gel fiber,
c) The first gel fiber and the second gel fiber produced at the same time are bonded to each other, followed by washing with water and drying.
Wherein the graphen oxide composite fiber has a heterogeneous bonding structure.
제1항에 있어서,
상기 제1 응고성분은 CTAB, 키토산, CaCl2, NaOH, KOH 으로 구성된 군에서 선택되는 1종 이상인 것인,
이종 접합구조를 가지는 그래핀산화물 복합섬유의 제조 방법.
The method according to claim 1,
Wherein the first solidified component is at least one member selected from the group consisting of: CTAB, chitosan, CaCl 2, NaOH, KOH,
Wherein the graphen oxide composite fiber has a heterogeneous bonding structure.
제1항에 있어서,
상기 제2 응고성분은 폴리비닐알코올(PVA), 폴리메틸메타아크릴레이트(PMMA), 폴리에틸렌이민(PEI), 폴리비닐필로리돈(PVP), 폴리에틸렌옥사이드(PEO)으로 이루어진 군에서 선택되는 1종 이상인 것인,
이종 접합구조를 가지는 그래핀산화물 복합섬유의 제조 방법.
The method according to claim 1,
Wherein the second coagulation component is selected from the group consisting of polyvinyl alcohol (PVA), polymethylmethacrylate (PMMA), polyethyleneimine (PEI), polyvinylpyrrolidone (PVP), polyethylene oxide Or more,
Wherein the graphen oxide composite fiber has a heterogeneous bonding structure.
제1항에 있어서,
제1 젤 섬유와 제2 젤 섬유이 접합된 형태는 사이드-바이-사이드(side-by-side)형인 것을 특징으로 하는,
이종 접합구조를 가지는 그래핀산화물 복합섬유의 제조 방법.
The method according to claim 1,
Characterized in that the form in which the first and second gel fibers are joined is a side-by-side type.
Wherein the graphen oxide composite fiber has a heterogeneous bonding structure.
제1항에 있어서,
제1 젤 섬유와 제2 젤 섬유이 접합된 형태는 사이드-바이-사이드(side-by-side)형으로 꼬임을 가지는 것을 특징으로 하는,
이종 접합구조를 가지는 그래핀산화물 복합섬유의 제조 방법.
The method according to claim 1,
Characterized in that the first gel fiber and the second gel fiber have a twist in a side-by-side manner.
Wherein the graphen oxide composite fiber has a heterogeneous bonding structure.
제1항에 있어서,
제1 젤 섬유와 제2 젤 섬유이 접합된 형태는 쉬쓰-코어(sheath-core)형인 것을 특징으로 하는,
이종 접합구조를 가지는 그래핀산화물 복합섬유의 제조 방법.
The method according to claim 1,
Characterized in that the first gel fiber and the second gel fiber are joined in a sheath-core type.
Wherein the graphen oxide composite fiber has a heterogeneous bonding structure.
제1항에 있어서,
상기 그래핀산화물은 타겟물질 검출능을 가지는 기능성 물질이 도입된 그래핀산화물인 것을 특징으로 하는,
이종 접합구조를 가지는 그래핀산화물 복합섬유의 제조 방법.
The method according to claim 1,
Wherein the graphene oxide is a graphene oxide into which a functional material capable of detecting a target substance is introduced.
Wherein the graphen oxide composite fiber has a heterogeneous bonding structure.
제7항에 있어서,
상기 기능성 물질은 핵산, DNA, RNA, 압타머, 펩티드, 단백질, 항체, 성장인자, 효소, 형광물질, 소광물질인 것을 특징으로 하는,
이종 접합구조를 가지는 그래핀산화물 복합섬유의 제조 방법.
8. The method of claim 7,
Wherein the functional material is a nucleic acid, a DNA, an RNA, an extramamer, a peptide, a protein, an antibody, a growth factor, an enzyme, a fluorescent substance,
Wherein the graphen oxide composite fiber has a heterogeneous bonding structure.
제1항에 있어서,
상기 건조된 복합섬유를 화학적 또는 열적 환원시키는 단계를 더 포함하는 것을 특징으로 하는,
이종 접합구조를 가지는 그래핀산화물 복합섬유의 제조 방법.
The method according to claim 1,
Further comprising the step of chemically or thermally reducing the dried composite fiber.
Wherein the graphen oxide composite fiber has a heterogeneous bonding structure.
KR1020160079885A 2016-06-27 2016-06-27 Method for preparing GO-CNT composite fibers, GO-Graphene composite fibers, GO-Graphene-CNT composite fibers KR101812534B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160079885A KR101812534B1 (en) 2016-06-27 2016-06-27 Method for preparing GO-CNT composite fibers, GO-Graphene composite fibers, GO-Graphene-CNT composite fibers
PCT/KR2017/001239 WO2018004099A1 (en) 2016-06-27 2017-02-04 Graphene oxide/carbon nanotube composite fiber having heterojunction structure, and method for manufacturing graphene oxide/graphene composite fiber or graphene oxide/graphene/carbon nanotube composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160079885A KR101812534B1 (en) 2016-06-27 2016-06-27 Method for preparing GO-CNT composite fibers, GO-Graphene composite fibers, GO-Graphene-CNT composite fibers

Publications (1)

Publication Number Publication Date
KR101812534B1 true KR101812534B1 (en) 2017-12-29

Family

ID=60787418

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160079885A KR101812534B1 (en) 2016-06-27 2016-06-27 Method for preparing GO-CNT composite fibers, GO-Graphene composite fibers, GO-Graphene-CNT composite fibers

Country Status (2)

Country Link
KR (1) KR101812534B1 (en)
WO (1) WO2018004099A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182331A1 (en) * 2018-03-19 2019-09-26 한양대학교 산학협력단 Graphene composite fiber and manufacturing method therefor
CN110578178A (en) * 2019-10-11 2019-12-17 振德医疗用品股份有限公司 device and method for washing polyvinyl alcohol fibers at low temperature
CN112652741A (en) * 2019-10-10 2021-04-13 中国科学技术大学 Preparation method of graphene-based composite micron rod loaded with positive active material
CN113862830A (en) * 2021-10-18 2021-12-31 扬州日兴生物科技股份有限公司 Method for preparing chitosan/polyvinylpyrrolidone composite fiber
KR20220046151A (en) * 2020-10-07 2022-04-14 단국대학교 산학협력단 Graphene/CNT composite fiber and fabrication method for the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108892134A (en) * 2018-08-02 2018-11-27 青岛在宇工贸有限公司 A kind of preparation method of composite graphite alkene Electric radiant Heating Film
CN109355723B (en) * 2018-08-23 2021-06-01 浙江理工大学 Preparation method of temperature-sensitive variable-resistance conductive fiber
CN109402787B (en) * 2018-09-26 2022-06-07 嘉兴学院 Preparation process of graphene fiber with skin-core structure
CN110368532B (en) * 2019-06-21 2021-08-17 淮阴工学院 Preparation method of conductive polymer-based graphene composite porous scaffold
CN112030269B (en) * 2020-09-04 2023-02-03 安徽德和织造有限公司 Special lasting electric heating self-heating composite functional fiber material for military police and preparation method and application thereof
CN112322693A (en) * 2020-11-24 2021-02-05 上海健康医学院 Marking method of helicobacter pylori in macrophage
CN112852021A (en) * 2021-02-01 2021-05-28 深圳烯湾科技有限公司 Composite conductive agent, preparation method thereof and conductive plastic
CN113322531A (en) * 2021-05-26 2021-08-31 齐鲁工业大学 Preparation and application of flexible sensing material
CN114291812B (en) * 2021-07-01 2023-05-26 北京化工大学 Graphene oxide dispersion liquid, graphene oxide fiber, reduced graphene oxide fiber and preparation method thereof
CN113802215B (en) * 2021-10-22 2023-05-26 方大炭素新材料科技股份有限公司 Bacterial cellulose composite fiber and preparation method thereof
CN115634718B (en) * 2022-08-17 2024-02-06 湖北工程学院 Preparation method and application of graphene oxide/chitosan/polyvinyl alcohol composite microsphere immobilized copper catalyst
CN115748010A (en) * 2022-11-18 2023-03-07 北京航空航天大学 Preparation method of hollow fiber with low thermal conductivity and low emissivity and hollow fiber fabric

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177363A (en) 2005-12-27 2007-07-12 Nissan Motor Co Ltd Fiber structure comprising electroconductive polymer and method for producing the same, and three-dimensional knit-type actuator and component for vehicle using the fiber structure
KR101182380B1 (en) 2011-03-15 2012-09-12 한양대학교 산학협력단 Hybrid polymer composite fibers comprising graphene and carbon nanotubes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101818177B1 (en) * 2011-08-10 2018-01-12 한국과학기술원 A kit for assaying Endonuclease or Methyltrasnferase activities based on graphene oxide
KR101573877B1 (en) * 2014-04-24 2015-12-11 서울대학교 산학협력단 Method for manufacturing grphene based nanocarbon fiber using self assembly of layers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177363A (en) 2005-12-27 2007-07-12 Nissan Motor Co Ltd Fiber structure comprising electroconductive polymer and method for producing the same, and three-dimensional knit-type actuator and component for vehicle using the fiber structure
KR101182380B1 (en) 2011-03-15 2012-09-12 한양대학교 산학협력단 Hybrid polymer composite fibers comprising graphene and carbon nanotubes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182331A1 (en) * 2018-03-19 2019-09-26 한양대학교 산학협력단 Graphene composite fiber and manufacturing method therefor
CN112652741A (en) * 2019-10-10 2021-04-13 中国科学技术大学 Preparation method of graphene-based composite micron rod loaded with positive active material
CN112652741B (en) * 2019-10-10 2022-09-06 中国科学技术大学 Preparation method of graphene-based composite micron rod loaded with positive active material
CN110578178A (en) * 2019-10-11 2019-12-17 振德医疗用品股份有限公司 device and method for washing polyvinyl alcohol fibers at low temperature
KR20220046151A (en) * 2020-10-07 2022-04-14 단국대학교 산학협력단 Graphene/CNT composite fiber and fabrication method for the same
KR102440348B1 (en) 2020-10-07 2022-09-05 한양대학교 산학협력단 Graphene/CNT composite fiber and fabrication method for the same
CN113862830A (en) * 2021-10-18 2021-12-31 扬州日兴生物科技股份有限公司 Method for preparing chitosan/polyvinylpyrrolidone composite fiber

Also Published As

Publication number Publication date
WO2018004099A1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
KR101812534B1 (en) Method for preparing GO-CNT composite fibers, GO-Graphene composite fibers, GO-Graphene-CNT composite fibers
KR101812536B1 (en) Wet spinningMethod for preparing GO-CNT composite fibers, GO-Graphene composite fibers, GO-Grephene-CNT composite fibers
KR20170121504A (en) Method for preparing graphene oxide fibers, graphene fibers or their composite fibers by using wet spinning induced by electric field
EP2698457B1 (en) Hybrid polymer composite fiber including graphene and carbon nanotube, and method for manufacturing same
Xu et al. In situ polymerization approach to graphene-reinforced nylon-6 composites
US10106420B2 (en) Method for manufacturing graphene fiber
KR101928911B1 (en) Method for preparing graphene oxide fibers, graphene fibers or their composite fibers by using wet spinning induced by electric field
CA2747728C (en) Exfoliated carbon nanotubes, methods for production thereof and products obtained therefrom
CN109576822B (en) Method for preparing single-walled carbon nanotube fiber and composite fiber thereof
Tang et al. Graphene/polymer composite materials: processing, properties and applications
Zou et al. A general strategy to disperse and functionalize carbon nanotubes using conjugated block copolymers
JP2016169149A (en) Carbon nanotube compositions
Moridi et al. A detailed review of recent progress in carbon nanotube/chitosan nanocomposites
CN102321398B (en) Method for preparing thermal conducting filler of carbon black coated carbon nano tube
Wang et al. Ultra-robust and high-toughness graphene oxide papers via synergistic strengthening by addition of carbon-nanotubes and copper ions
Lay et al. Combined effect of carbon nanotubes and polypyrrole on the electrical properties of cellulose-nanopaper
US20210179880A1 (en) Dispersions comprising high surface area nanotubes and discrete carbon nanotubes
US20210047185A1 (en) Lithium ion battery using high surface area nanotubes
US8709676B2 (en) Chemically bonded carbon nanotube-polymer hybrid and nanocomposite thereof
CN115746352A (en) Composite heat-conducting film and preparation method and application thereof
Yin et al. Enhancing the reinforcing efficiency in CNT nanocomposites via the development of pyrene-based active dispersants
Luo et al. Templating assembly of NIR light-actuated TPU/SCNT-C60 flexible structures with high conductivity and controllable recovery behavior
KR101398294B1 (en) Method for manufacturing carbon nanotube fiber by electrospinning and method for manufacturing organic solar cell using the same
Zhang et al. Properties of graphene/polymer nanocomposite fibers
Oh et al. The functionalization and preparation methods of carbon nanotube-polymer composites: A review

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant