KR101658490B1 - Vibration control device - Google Patents

Vibration control device Download PDF

Info

Publication number
KR101658490B1
KR101658490B1 KR1020160063387A KR20160063387A KR101658490B1 KR 101658490 B1 KR101658490 B1 KR 101658490B1 KR 1020160063387 A KR1020160063387 A KR 1020160063387A KR 20160063387 A KR20160063387 A KR 20160063387A KR 101658490 B1 KR101658490 B1 KR 101658490B1
Authority
KR
South Korea
Prior art keywords
vibration
spring
vibration control
tower
damping
Prior art date
Application number
KR1020160063387A
Other languages
Korean (ko)
Inventor
히로시 구라바야시
조성국
Original Assignee
이노스기술 주식회사
히로시 구라바야시
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이노스기술 주식회사, 히로시 구라바야시 filed Critical 이노스기술 주식회사
Priority to JP2016562021A priority Critical patent/JP2018529034A/en
Priority to KR1020160063387A priority patent/KR101658490B1/en
Priority to PCT/KR2016/005486 priority patent/WO2017204371A1/en
Application granted granted Critical
Publication of KR101658490B1 publication Critical patent/KR101658490B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/022Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using dampers and springs in combination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F3/00Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/02Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Abstract

The present invention relates to a vibration control device having less damping and a lower unique vibration frequency and applied to an architectural structure, a civil engineering structure, a mechanical structure such as a wind power generator, a steel tower, an antenna tower, a main tower of a bridge or the like, a control tower, a tour tower, a material handling facility or the like in a place, such as a marine wind power generator, seriously swung by wave power or the like depending on the installation position when resonance including a beginning cycle ground motion due to an earthquake, strong wind of a typhoon, vortex vibration or the like occurs. The vibration control device is remarkably displaced in a horizontal direction and has less damping and a relatively low unique vibration frequency. When a vibration input such as an earthquake, a typhoon or the like is applied from the outside to a corresponding structure, a single system or multiple systems are installed between an upper part and a lower part as a hardpan of the seriously swung structure, thereby reducing relative displacement or absolute acceleration of the structure.

Description

감쇠가 작은 구조물용 진동제어장치{VIBRATION CONTROL DEVICE}[0001] VIBRATION CONTROL DEVICE [0002]

주로, 초장주기 지진동을 포함하는 지진, 태풍 등의 강풍, 와류진동 등으로 인하여 구조물이 공진을 하거나 혹은 설치장소에 따라서는 파력 등에 의해 크게 흔들릴 수 있는 해상풍력발전기와 같은 구조물을 비롯하여 낮은 감쇠와 낮은 고유진동수 특성을 갖는 풍력발전기 타워, 철탑, 안테나 타워, 교량 등의 주탑, 관제탑, 관광 타워, 자재 처리(material handling) 설비 등과 같이 건축, 토목, 기계구조물에 적용되는 진동제어장치에 관한 것이다. It is mainly composed of structures such as offshore wind power generators that can resonate due to earthquakes including earthquake ground motions, strong winds such as typhoons, eddy currents, etc., The present invention relates to a vibration control device applied to construction, civil engineering, and mechanical structures such as wind power generator towers having natural frequency characteristics, pylons such as steel towers, antenna towers, bridges, control towers, sightseeing towers, material handling facilities and the like.

종래, 태풍, 지진, 교통진동 혹은 파력 등과 같은 진동원으로 인해 야기되는 구조물의 강제 진동이나 공진 현상에 대하여, 감쇠가 작고 또한 비교적 저 진동수를 탁월진동수(혹은 지배진동수)로 갖는 진동(변위/가속도)에 대해서는 면진(免振)장치, 제진(制振)장치(TMD 혹은 AMD), 제진브레이스, 탄소섬유 등으로 구조물의 본체를 보강함으로써 대처하고 있는데, 이 방법은 장치가 복잡해지며, 신뢰성 혹은 유지관리, 시공성, 가격 등의 측면에서 여러 가지 문제가 발생하고 있다. 또한, 장주기 구조물에 대응하는 장치로서 비교적 낮은 고유주기를 갖는 면진장치 또는 제진장치는 장치의 형상 치수, 안정성, 내구성, 내하중성, 제조방법의 한계 등과 관련하여 해결해야 할 과제도 있다.Conventionally, vibrations (displacement / acceleration) having small damping and comparatively low frequency as excellent frequency (or dominant frequency) for forced vibrations or resonance phenomena caused by vibration sources such as typhoon, earthquake, traffic vibration, (TMD or AMD), vibration-damping braces, carbon fiber, etc., are used to reinforce the body of the structure. This method complicates the apparatus, There are various problems in terms of maintenance, construction, and price. In addition, there is also a problem to be solved in relation to the shape dimensions, stability, durability, load-bearing property, and manufacturing method limitations of the isolation device or vibration isolation device having a relatively low natural period as the device corresponding to the long-term structure.

KR10-2014-0081035(2014.07.01 공개)KR10-2014-0081035 (Released July 1, 2014)

이와 같이, 종래기술로는 대처할 수 없는 문제점을 해결하기 위한 발명이며, 구체적으로는 이하와 같다.Thus, it is an invention for solving the problem that can not be coped with in the prior art, and is specifically as follows.

즉, 감쇠가 작은 대형 구조물에 대해, 대상입력운동으로서 강풍, 지진, 교통진동, 초장주기 지진동, 와류진동을 대상으로 할 때, 구조물은 큰 변형을 일으켜 안전성이나 사용성에 문제가 발생한다. 또한, 감쇠가 작고 낮은 탁월진동수(또는 기본고유진동수)를 갖는 구조물은 기본적으로는 가로 치수에 대한 세로 치수의 형상비 즉, 종횡비가 크고, 변형 시에 휨전단변형이 발생된다.That is, for a large structure with a small attenuation, when the target input motion is a strong wind, an earthquake, a traffic vibration, a super long period earthquake, or a vortex vibration, a large deformation is caused in the structure, and safety and usability problems arise. In addition, a structure having a low attenuation and a low transonic oscillation frequency (or a fundamental frequency) basically has a large aspect ratio with respect to the transverse dimension, that is, an aspect ratio, and a flexural shear deformation occurs at the time of deformation.

이와 같은 사실로 인해, 종래기술에 대해 다음과 같은 문제를 제기한다.Due to this fact, the following problems are raised with respect to the prior art.

면진장치 : 구조물 하부에 설치하는 면진장치는 지진에 대해서는 충분한 효과를 발휘하는데, 예를 들면 풍력발전기나 안테나 탑, 관광 타워 등과 같이 형상의 종횡비가 큰 구조물로서 낮은 고유진동수를 갖는 구조물에는 트리거 효과가 없으면 구조물은 불안정하게 되며, 또한 효과면에서 문제가 있고, 시공도 어렵다. 또한, 상기와 같은 면진구조물은 바람에는 더 쉽게 흔들리게 됨으로 새로운 문제가 발생한다.Seismic isolation device: The seismic isolation device installed at the bottom of the structure is sufficient for earthquake. For example, a structure with a high aspect ratio such as wind power generator, antenna tower, sightseeing tower, etc., Otherwise, the structure becomes unstable, and there is a problem in terms of effect, and construction is also difficult. In addition, the above-mentioned seismic structure is more susceptible to wind, which causes new problems.

제진장치 : AMD(능동형질량댐퍼)는 구동장치의 힘(power)에 여유가 있으면, 구조물의 높이 방향으로 비교적 높은 장소에 설치하는 것에 대해서 제약은 적지만, 형상의 종횡비가 큰 구조물에서는 고차모드 진동도 발생하므로 설치수량이 증가되어 비용이 증가하고, 유지보수의 어려움(특히 해상풍차, 고층구조물 등), 부품교환의 어려움이 증가하는 문제가 있다.Vibration Isolation Devices: AMD (Active Mass Damper) is not restricted to installation in a relatively high place in the height direction of a structure if the power of the driving device has a margin, but in a structure having a large aspect ratio of a shape, There is a problem that the installation quantity increases, the cost increases, the maintenance difficulty (in particular, an offshore windmill, a high-rise structure, etc.) and the difficulty of parts replacement increase.

비교적 많이 검토되고 있는 TMD(수동형질량댐퍼)는 통상 1차 모드에 대해 설계하여 장착하므로, 구조물의 상부에 설치하는 것이 성능을 발휘하기 위해서는 중요한데, 예를 들면 풍력발전기 등의 경우 프레임 구조에 따라서는 강도 면에서 상부에 설치하는 것이 불가능하고, 또한 나셀(발전기) 하부에 설치하는 경우에도, 풍차 제작사에 따라서는 풍차 하부에 전력선 등이 수십 미터 늘어져 있는 일이 있으므로, TMD의 구조를 상기에 간섭하지 않도록 배려해야 하는 등의 검토 과제가 많이 있다. 또한, 지진시에는 TMD의 응답 변위가 커지므로, 감쇠장치나 복원장치는 변형에 대한 대응 측면이나 응력의 문제, 공장의 제작상 제약으로 인해 설치가 불가능하게 되는 일이 있을 수 있다. 예를 들면, 1차 고유진동수가 0.3Hz인 구조물의 경우, TMD의 스프링 장치는 약 2260mm의 정적 변형(static deflection)을 갖는 장치를 필요로 한다. 이와 같은 스프링 장치는 재료의 길이나 응력, 좌굴의 문제로 인해 실현 불가능한 경우가 있기 때문에, 종래 링크기구(연결부재)나 재료비를 이용하여 약 절반 정도 이하의 정적 변형이 발생되도록 조치하는 것도 필요하고, 비용 상승을 억제해야 하는 문제로 연결된다.Since the TMD (passive mass damper) which is being studied relatively is usually designed and installed for the primary mode, it is important to install it on the top of the structure in order to exert its performance. For example, It is impossible to install the wind turbine at the upper part of the wind turbine, and even if it is installed at the lower part of the nacelle (generator), the power line or the like may be lengthened by several tens of meters under the windmill depending on the windmill producer. There are a lot of issues to be considered. In addition, since the response displacement of TMD becomes large at the time of earthquake, the damping device and the restoration device may be impossible to install due to the deformation response, the stress problem, and the factory manufacturing constraints. For example, for structures with a primary frequency of 0.3 Hz, the spring device of the TMD requires a device with a static deflection of about 2260 mm. Such a spring device may not be feasible due to a problem of material length, stress, and buckling. Therefore, it is also necessary to take measures to cause static deformation of about half or less by using a conventional link mechanism (connecting member) or material cost , Which leads to a problem of suppressing an increase in cost.

본체 보강 : 교량 교각의 내진보강 등에 실적이 있는 방법으로서 탄소섬유를 구조물 본체에 감아 붙이는 방법인데, 예를 들면 풍력발전기의 경우 풍차 설치후의 보강공사는 곤란하며, 공장제작단계에서의 보강의 경우, 수송 관계로 몇 개의 블록으로 분할할 필요가 있으므로, 효과는 반감한다.Reinforcing the body: As a method that has proven to be effective in seismic reinforcement of bridge piers, carbon fiber is wound around the structure body. For example, in the case of wind power generators, it is difficult to reinforce the wind turbine after installing the windmill. Since it is necessary to divide into several blocks in transportation relation, the effect is halved.

제진 브레이스 : 초고층 건물의 지진대책으로 많은 시공실적이 있지만, 큰 지진 입력에 대해서는 충분한 효과를 발휘하는데, 작은 지진입력이나 교통진동 또는 가속도가 작은 장주기 지진동에 대해서는 구조물의 변위 억제와 관련해서 그다지 효과가 없어, 대책이 요망되고 있다. 또한, 구조물 내부에 댐퍼 반력을 수용할 수 있는 부재의 설치를 필요로 한다. 또한, 본 발명이 대상으로 하는 구조물은 휨변형이 발생하므로 제진 브레이스로는 내진보강 효과를 거의 기대할 수 없다. Zhenjin Brace: It has a lot of construction results as an earthquake countermeasure for a skyscraper, but it has a sufficient effect for a large earthquake input. For a long earthquake ground motion with small earthquake input, traffic vibration or acceleration, No, measures are demanded. In addition, it is necessary to install a member capable of receiving a damper reaction force inside the structure. In addition, since the structure to which the present invention is applied is subjected to warping, the effect of the seismic strengthening with the vibration-damping brace can hardly be expected.

본 발명은 상기와 같은 문제점을 해결하기 위해 고안한 것으로, 간결한 구조로써 상대변위를 억제하고, 장치 고유주기의 조정을 다양화할 수 있는 것 등이 특징이다. 즉, 구조물의 상부와 하부를 하중전달장치로 일체화시킴으로써 진동을 제어하는 것이며, 프리스트레스힘조정장치에 의해 구조물의 상대변위를 억제하고, 가속도에 대해서는 탄소성댐퍼를 활용한 감쇠장치에 의해 진동에너지를 흡수한다. 또한, 작은 외부 입력에도 효과를 발휘할 수 있도록 하기 위해 변위증폭기구도 병용할 수 있는 것이다.The present invention has been devised to overcome the above-described problems, and it is a feature of the present invention that the relative displacement can be suppressed with a simple structure and the adjustment of the device proper period can be diversified. That is, the vibration is controlled by integrating the upper part and the lower part of the structure with the load transmitting device. The relative displacement of the structure is suppressed by the prestress force adjusting device, and the vibration energy is controlled by the damping device using the elasto-plastic damper Absorbed. In addition, a displacement amplifier can be used in combination to enable a small external input to be effective.

본 발명은 수평방향으로 크게 변형이 발생하면서, 감쇠가 작고 비교적 낮은 고유진동수를 갖는 구조물용 진동제어장치이며, 해당 구조물에 외부로부터 지진이나 태풍 등과 같은 진동에 인한 입력운동이 가해졌을 때에, 크게 흔들리는 구조물 상부와 저반(底盤)인 하부 사이에 단독으로 혹은 복수의 시스템을 설치하여 구조물의 상대변위와 절대가속도를 저감시키는 것을 특징으로 한다. An object of the present invention is to provide a vibration control apparatus for a structure having a relatively low natural frequency and a relatively low natural frequency while being greatly deformed in the horizontal direction and being greatly shaken when an input motion due to vibrations such as earthquake, The system is characterized in that relative displacement and absolute acceleration of the structure are reduced by providing a single system or a plurality of systems between the upper part of the structure and the lower part of the bottom plate.

여기서, 본 시스템은 기본적으로는 하중전달장치(기구), 프리스트레스힘 조정장치(기구), 감쇠장치(기구), 변위증폭장치(기구) 및 이들 장치를 구조물에 고정하기 위한 지지부재로 구성될 수 있다. Here, the system can basically consist of a load transfer device (mechanism), a prestress force adjusting device (mechanism), a damping device (mechanism), a displacement amplifying device (mechanism) and a supporting member for fixing these devices to the structure have.

그리고, 상부와 하부의 하중전달장치는 와이어 방식, 케이블 방식, 또는 강봉 방식 등 힘 전달이 가능한 부재이면 특정하지 아니하며, 양단은 고정 혹은 회전 가능하게 지지되며, 이 부재의 상부나 하부 혹은 중간부에, 프리스트레스힘 조정장치 및 복원기능을 겸비할 수 있는 탄소성(彈塑性) 댐퍼장치, 나아가 대상구조물에 따라서는 변위증폭기구도 구비할 수 있다. The upper and lower load transmission devices are not specified if they are members capable of transmitting forces such as a wire type, a cable type, or a steel rod type. Both ends are supported so as to be fixed or rotatable. , A plasticity damper device capable of having a prestress force adjusting device and a restoring function, and a displacement amplifier device depending on the target structure.

또한, 프리스트레스힘 조정장치는 단독으로 혹은 복수개로 사용하며, 예를 들면, 턴버클(turn buckle)과 같은 것이 좋으며, 구조물 자체의 강성 등에 따라 제어 효과를 감안하면서, 프리스트레스힘을 임의로 조정할 수 있는 기구를 가질 수 있다. The prestress force adjusting device may be used alone or in a plurality of units. For example, it is preferable to use a turn buckle or the like, and a mechanism capable of arbitrarily adjusting the prestress force while taking into consideration the control effect depending on the rigidity of the structure itself Lt; / RTI >

또한, 복원기능을 겸비할 수 있는 탄소성댐퍼 장치의 복원용 스프링 장치로서는 금속 스프링(판 스프링, 코일 스프링, 접시 스프링 등), 유압 스프링, 공기 스프링 및 점탄성체를 단독으로 혹은 조합하여 사용한 것이 좋으며, 탄소성(彈塑性) 부재는 금속 재료를 코일 형상으로 하고, 복원용 스프링 장치와 단일화(unit)할 수도 있는 구조로, 단독으로 혹은 복수개로 사용하며, 대변위에도 적용 가능하고 진동제어능력이 클 수 있다. As the spring device for restoring the elasto-elastic damper device capable of having a restoration function, a metal spring (plate spring, coil spring, disc spring, etc.), a hydraulic spring, an air spring and a viscoelastic body may be used alone or in combination , The plasticity member is a structure in which a metal material is formed into a coil shape and can be unitized with a restoring spring device. It can be used singly or in plural, and can be applied on a large side, .

또한, 증폭기구는 예를 들면 링크(link) 기구나 타원형상 판스프링 장치 등을 활용한 것으로, 상기 제 2,3,4,5항의 부재와 단독으로 혹은 복수개로 병용함으로써 진동제어력을 향상시킬 수 있다. The amplifier may be a link mechanism or an elliptical upper plate spring device. The vibration control force may be improved by using the member of the second, third, fourth, and fifth aspects alone or in combination .

또한, 본 발명의 감쇠장치는 탄소성댐퍼로 하였는데, 감쇠기구도 스프링 장치와 마찬가지로 유압(예를 들면 오일 댐퍼), 공기압(예를 들면 에어 실린더), 마찰, 점탄성 등을 단독으로 혹은 조합하여 사용할 수 있다. The damping device of the present invention is a carbonaceous damper. The damping device can be used alone or in combination with an oil pressure (for example, an air cylinder), friction, viscoelasticity, have.

또한, 상부 및 하부의 하중전달부재는 회전 방지, 처짐 방지 등을 위해 1점 이상의 중간 지지점을 가지며, 구름베어링, 미끄럼베어링 혹은 슬라이딩베어링 이나 가이드 롤러 혹은 직동(直動) 레일 등의 부재로 구성될 수 있다. The upper and lower load transmission members have one or more intermediate support points for prevention of rotation and sagging and may be constituted by members such as rolling bearings, sliding bearings, sliding bearings, guide rollers, or direct-acting rails .

본 발명은 초장주기 지진동을 포함하는 지진 시, 태풍 등의 강풍 시, 와류진동 등에 의한 공진 시 및 해상풍력발전기와 같이 설치장소에 따라서는 파력 등에 의해 크게 흔들리는 곳의, 감쇠가 작고 낮은 고유진동수를 갖는 풍력발전기 타워, 철탑, 안테나 타워, 교량 등의 주탑, 관제탑, 관광 타워, 자재처리(material handling) 설비 등 건축, 토목, 기계구조물의 진동을 제어할 수 있다. The present invention relates to a vibration damping system for a vibration damping system, which has a low attenuation and a low natural frequency at a place where vibration occurs due to vibration such as earthquake including super long period earthquake vibration, strong wind such as typhoon, resonance due to vortex vibration, And can control the vibrations of architectural, civil engineering, and mechanical structures such as tower towers, tower towers, tower towers, antenna towers, bridges, control towers, sightseeing towers, and material handling facilities.

도 1a는 본 발명의 바람직한 실시 예에 따른 진동제어장치의 설치 상태도를 나타낸다.
도 1b는 본 발명의 다른 실시 예에 따른 진동제어장치의 설치 상태도를 나타낸다.
도 1c는 본 발명의 또 다른 실시예에 따른 진동제어장치의 설치 상태도를 나타낸다.
도 2a는 본 발명의 바람직한 일 실시예에 따른 감쇠장치를 나타낸다.
도 2b는 본 발명의 다른 실시예에 따른 감쇠장치를 나타낸다.
도 2c는 본 발명의 또 다른 실시예에 따른 감쇠장치를 나타낸다.
도 2d는 본 발명의 또 다른 실시예에 따른 감쇠장치를 나타낸다.
도 3은 본 발명의 또 다른 실시예에 따른 감쇠장치를 나타낸다.
도 4는 본 발명의 또 다른 실시예에 따른 감쇠장치를 나타낸다.
도 5a는 본 발명의 또 다른 실시예에 따른 진동제어장치의 설치 상태도를 나타낸다.
도 5b는 구조물 상부가 수평으로 변형되었을 때 감쇠장치의 증폭비율을 설명하기 위한 도면이다.
도 5c는 구조물 상부가 수평으로 변형되었을 때 감쇠장치의 증폭비율을 설명하기 위한 도면이다.
도 6은 종래 기술에 따른 TMD 장치의 설치 상태도를 나타낸다.
도 7은 본 발명의 또 다른 실시예에 따른 진동제어장치의 설치 상태도를 나타낸다.
FIG. 1A shows an installation state of a vibration control apparatus according to a preferred embodiment of the present invention.
FIG. 1B shows an installation state of a vibration control apparatus according to another embodiment of the present invention.
1C is a view showing an installation state of a vibration control apparatus according to another embodiment of the present invention.
2A shows a damping device according to a preferred embodiment of the present invention.
2B shows a damping device according to another embodiment of the present invention.
2C shows a damping device according to another embodiment of the present invention.
2d shows a damping device according to another embodiment of the present invention.
3 shows a damping device according to another embodiment of the present invention.
4 shows a damping device according to another embodiment of the present invention.
5A is a view showing an installation state of a vibration control apparatus according to another embodiment of the present invention.
5B is a view for explaining the amplification ratio of the damping device when the upper part of the structure is deformed horizontally.
5C is a view for explaining the amplification factor of the damping device when the upper part of the structure is horizontally deformed.
6 is a view showing an installation state of the TMD device according to the prior art.
7 is a view showing an installation state of a vibration control apparatus according to another embodiment of the present invention.

본 발명에 따른 장치의 기본 시스템은 도 1a에 대표적으로 나타낸 감쇠장치(기구)(10), 프리스트레스힘 조정장치(기구)(20), 하중전달장치(기구)(30)로 구성되는 진동제어장치이며, 예를 들면 풍력발전기의 경우에는 탑체 내부의 유지관리 관계로, 비교적 하부에 본 시스템을 단독으로 혹은 복수 설치하는 것으로, 기본적으로는 나셀 하부에 고정단(40)(고정, 혹은 회전가능)을 마련하고, 고정으로부터 하부에 직각으로 와이어 로프나 강봉, 강판 등으로 힘 혹은 변형을 하부로 전달하며, 하부에 설치되는 감쇠장치(10)와 연결한다. 그 중간에는 프리스트레스힘 조정장치(20)를 배치함으로써 안정적인 성능을 기대할 수 있다. 당연하지만, 장치 하부는 저반(底盤)에 고정된다. 이와 같이 함으로써 구조물의 상부가 휨변형 혹은 전단변형되었을 때에 하중전달장치(30)에 의해 하부의 감쇠장치(10)로 진동제어할 수 있게 된다. 여기서, 감쇠장치(10)는 도 2a~2d에 나타낸 바와 같이, 도면과 같이 코일형상 탄소성 댐퍼(13)를 기본으로, 진동의 종류나 크기, 대상구조물의 구조 등에 따라, 설계 및 제작하여, 단독으로 혹은 다른 부재와 조합하여 사용한다. 도 2a는 코일형상 탄소성 댐퍼 단독체, 도 2b는 복원력을 부여하기 위해 코일 스프링(13a)을 병용한 것이다. 도 2c는 점탄성 댐퍼(13b)와의 병용이며, 도 2-4는 오일 댐퍼(13c)와의 병용이다. 감쇠장치(10)의 어느 타입을 사용할 지는 구조물의 구조, 사양에 따라 선택될 수 있게 된다. 도 3, 도 4는 확대기구의 예이며, 풍력발전기에서는 높이 약 75m의 풍차인 경우 나셀 부분의 진동진폭은 진폭 약 1m 정도가 되는데(강풍의 경우) 그 경사각은 아주 작은 수치가 되며, 결과적으로는 커다란 효과를 기대할 수 없다. 따라서, 도 3의 복원력을 가진 판스프링(15)을 사용한 확대기구로, 축방향의 변형에 대해 중앙부에 설치되는 댐퍼 장치(13)는 3배 정도의 변위 증폭을 기대할 수 있다. 도 3의 판스프링(15)은 겹판스프링이어도 좋으며, 중첩함으로써 마찰감쇠를 얻을 수도 있다. 또한, 중첩 매수는 대상구조물에 대해 임의로 설정할 수 있다. 또한, 도 3의 중앙부의 댐퍼 고정부에 집중질량을 부가하는 것도 가능하며, 축방향의 변형에 대해 댐퍼 변경방향에 대해 관성력을 부가할 수 있다. 도 4는 동일한 증폭기구를 갖는 구조인데, 와이어(16)에 의해 구축되어 있어, 증폭비율은 도 3과 거의 마찬가지로 확보될 수 있다. 이 기구는 비교적 간단히 장착될 수 있는데, 이 경우에는 복원기능을 병용하는 것이 바람직하다. 판스프링(15) 및 와이어(16)는 증폭기구로 통칭될 수 있다. The basic system of the apparatus according to the present invention is composed of a vibration control apparatus 20 including a damping apparatus (mechanism) 10, a prestress force adjusting apparatus (mechanism) 20 and a load transmitting apparatus (mechanism) In the case of a wind turbine generator, for example, a single or a plurality of wind turbine generators may be installed at a relatively lower portion of the tower for maintenance of the inside of a tower. Basically, a fixed stage 40 (fixed or rotatable) And a force or a deformation is transmitted to the lower portion from a wire rope, a steel bar, a steel plate or the like at a right angle to the lower portion from the fixed portion, and is connected to the damping device 10 provided at the lower portion. A stable performance can be expected by arranging the prestress force adjusting device 20 in the middle thereof. Naturally, the lower part of the device is fixed to the bottom plate. In this way, when the upper portion of the structure is flexed or sheared, the load transmission device 30 can control the vibration of the lower damping device 10. Here, as shown in Figs. 2A to 2D, the damping device 10 is designed and manufactured according to the type and size of the vibration, the structure of the target structure, and the like based on the coil-shaped carbonaceous damper 13 as shown in the drawing, Used alone or in combination with other members. FIG. 2A shows a coil-shaped carbonaceous damper alone, and FIG. 2B shows a combination of a coil spring 13a and a restoring force. Fig. 2C is used in combination with the viscoelastic damper 13b, and Fig. 2-4 is used in combination with the oil damper 13c. Which type of damping device 10 is used can be selected according to the structure and specifications of the structure. Figs. 3 and 4 show an example of the magnifying mechanism. In a wind turbine having a height of about 75 m, the vibration amplitude of the nacelle portion is about 1 m in amplitude (in the case of strong wind) Can not expect a great effect. Therefore, with the enlarging mechanism using the plate spring 15 having the restoring force shown in Fig. 3, the damper device 13 provided at the center with respect to the deformation in the axial direction can expect a displacement amplification of about three times. The plate spring 15 of Fig. 3 may be a leaf spring, and friction damping may be obtained by overlapping. Further, the number of overlaps can be arbitrarily set for the target structure. It is also possible to add a concentrated mass to the damper fixing portion in the central portion of Fig. 3, and to apply the inertial force to the damper changing direction with respect to the axial deformation. Fig. 4 shows a structure having the same amplification mechanism, which is constructed by the wire 16, and the amplification ratio can be secured almost in the same manner as in Fig. This mechanism can be mounted relatively simply, in which case it is desirable to use a restoration function in combination. The leaf spring 15 and the wire 16 may be referred to as an amplifier.

도 1b는 하부 고정단(40)을 변화시킨 것으로, 기본적 성능은 도 1a과 동일하다. 도 1c는 감쇠장치(10)부분에 링크기구를 병용한 것으로, 링크기구는 증폭기능을 갖고 있으므로, 보다 많은 진동제어효과를 얻는 것이 가능하게 된다. 도 5a는 토글기구를 구성하고 있다. 통상의 초고층용 토글기구는 강재(鋼材)의 조립에 의한 링크기구로 되어 있는 것에 비해, 본 발명에서는 코일형상 탄소성 댐퍼(13)와 와이어 로프 등으로 구성하므로 간단하고 자유도가 크다. 또한, 중간에는 상기에 기재한 프리스트레스힘 조정장치(20)를 부여하므로, 예를 들면 턴버클 등을 1개 혹은 복수개 장치하여 하중을 조정한다. FIG. 1B shows a variation of the lower fixed end 40, and the basic performance is the same as in FIG. 1A. Fig. 1C shows a link mechanism used in combination with the damping device 10, and since the link mechanism has an amplification function, more vibration control effect can be obtained. Fig. 5A constitutes a toggle mechanism. The conventional toggle mechanism for an ultra-high layer is formed by a link mechanism by the assembly of a steel material. In contrast, the present invention comprises a coil-shaped carbonaceous damper 13 and a wire rope. In addition, since the prestress force adjusting device 20 described above is provided in the middle, the load is adjusted by providing one or a plurality of turnbuckles or the like, for example.

이 토글기구는 변형 증폭기능을 가지고 있기 때문에, 대상구조물의 작은 진동변형으로부터 커다란 진동변형까지, 보다 커다란 효과를 기대할 수 있다. 도 5b, 도 5c는 구조물 상부가 수평으로 변형되었을 때의 감쇠장치(10)의 증폭비율을 모식도화한 것으로, δ2/δ1은 증폭율이다. Since this toggle mechanism has a deformation amplification function, a larger effect can be expected from a small vibration deformation to a large vibration deformation of the target structure. 5B and 5C are graphs showing the amplification ratios of the attenuation device 10 when the upper part of the structure is horizontally deformed, and? 2 /? 1 is the amplification factor.

또한, 도 5b는 상부로부터 직각으로 하중전달장치(30)를 배치한 것이며, 도 5c는 경사지게 배치한 것이다. 이 경우에는 수평변형의 좌우값이 다르므로 주의가 필요하다. FIG. 5B shows a load transfer device 30 disposed at a right angle from the upper portion, and FIG. 5C shows an inclined arrangement. In this case, note that the left and right values of the horizontal deformation are different.

또한, 토글기구의 감쇠장치(10) 부분에 타원형상 판스프링(15) 장치나 링크기구 등 증폭기구를 부여하는 것도 가능하며, 토글기구의 진동증폭 뿐만 아니라 보다 성능을 향상시킬 수 있으므로 커다란 진동제어효과를 기대할 수 있다. 도 6은 종래 적용하고 있는 TMD장치(60)인데, 풍력발전기 등과 같이 휨변형이 큰 구조물의 경우에는 주의가 필요하다. 또한, 도 7은 자동창고 등에 설치되는 랙(통상 자재처리(material handling)시설)에 설치한 예이며, 커다란 자동창고의 경우에서는 폭 1.5m에 대해 높이는 20m 정도가 되므로, 동일본지진시에는 대책이 없는 기계는 커다란 손상을 받았다. 현재로는 각 사마다 다양한 대응을 진행하고 있는데 기존 설비에 대해서는 주로, 제진 브레이스/TMD 등에 의해 대처되고 있다. 본 시스템은 이들을 대체할 수 있는 새로운 기술로서 제안될 수 있다고 생각한다.Further, it is also possible to provide an amplifying mechanism such as an elliptical plate spring 15 device or a link mechanism to the damping device 10 of the toggle mechanism, and it is possible to improve not only the vibration amplification of the toggle mechanism but also the performance, Effect can be expected. FIG. 6 shows a TMD device 60 which has been conventionally applied. However, attention should be paid to a structure having a large bending deformation such as a wind power generator. 7 is an example of a rack installed in an automatic warehouse or the like (material handling facility). In the case of a large automatic warehouse, the height is about 20 m for a width of 1.5 m. Therefore, The missing machine was badly damaged. Currently, various companies are responding in various ways, and the existing facilities are mainly dealt with by Zhenjin Brace / TMD. We think this system can be proposed as a new technology to replace them.

10 : 감쇠장치(기구)
11 : 상부부재
11a : 상부고정부재
12 : 하부부재
12a : 하부고정부재
13 : 코일형상 탄소성 댐퍼
13a : 코일 스프링
13b : 점탄성 댐퍼
13c : 오일 댐퍼
14 : 매입금구
15 : 판스프링
16 : 와이어
20 : 프리스트레스힘조정장치(기구)
30 : 하중전달장치(기구)
40 : 고정단(반력부재)
50 : 회전중심
60 : 제진장치(TMD장치)
100 : 날개
200 : 발전기
300 : 본체타워
400 : 고정부재
10: Damping device (instrument)
11: upper member
11a: upper fixing member
12:
12a: Lower fixing member
13: coil-shaped carbonaceous damper
13a: coil spring
13b: Viscoelastic damper
13c: Oil damper
14: bracket
15: leaf spring
16: wire
20: Prestress force adjustment device (instrument)
30: Load transfer device (mechanism)
40: fixed end (reaction member)
50: center of rotation
60: Vibration isolation device (TMD device)
100: wings
200: generator
300: Body tower
400: Fixing member

Claims (8)

수평방향으로 크게 변위하는, 감쇠가 작고 비교적 낮은 고유진동수를 갖는 구조물용 진동제어장치이며, 해당 구조물에 외부로부터 지진이나 태풍 등 진동입력이 가해졌을 때에, 크게 흔들리는 구조물 상부와 저반(底盤)인 하부 사이에 단독으로 혹은 복수의 시스템을 설치하여 구조물의 상대 변위 및 절대 가속도를 저감시키는 것을 특징으로 하며,
상기 시스템은 기본적으로는 하중전달장치, 프리스트레스힘 조정장치, 감쇠장치, 변형(변위) 증폭기구 및 이들 장치를 구조물에 고정하기 위한 고정부재로 구성되는 진동제어장치.
A vibration control device for a structure having a relatively small natural frequency and a relatively low natural frequency displaced in a horizontal direction, characterized in that when a vibration input such as an earthquake or a typhoon is applied to the structure from outside, And the relative displacement and the absolute acceleration of the structure are reduced by providing a plurality of systems,
The system basically comprises a load transfer device, a prestress force adjustment device, a damping device, a deformation (displacement) amplifying device, and a fixing member for fixing these devices to the structure.
삭제delete 제 1 항에 있어서,
구조물의 상부와 하부를 일체화시키는 상기 하중전달장치는 힘 전달이 가능한 부재이며, 양단은 고정 혹은 회전 가능하게 지지되며, 이 부재의 상부나 하부 혹은 중간부에, 프리스트레스힘조정장치, 및 복원기능과 감쇠기능을 동시에 발휘할 수 있는 탄소성(彈塑性) 댐퍼장치, 나아가 변위 증폭기구를 더 포함하는 진동제어장치.
The method according to claim 1,
The load transfer device for integrating the upper part and the lower part of the structure is a member capable of transmitting a force, both ends of which are fixed or rotatably supported, and a prestress force adjusting device and restoring function A vibration damper device capable of simultaneously exhibiting a damping function, and further comprising a displacement amplifying mechanism.
제 1 항에 있어서,
상기 프리스트레스힘 조정장치는 단독으로 혹은 복수개 사용하여 턴 버클과 같은 장치에 의해 프리스트레스힘을 임의로 조정할 수 있는 기구를 갖는 진동제어장치.
The method according to claim 1,
Wherein the prestress force adjusting device has a mechanism capable of arbitrarily adjusting a prestress force by a device such as a turn buckle using a single or a plurality of prestress force adjusting devices.
제 3 항에 있어서,
상기 복원기능과 감쇠기능을 동시에 발휘할 수 있는 탄소성댐퍼 장치의 복원용 스프링 장치로서는 금속 스프링(판 스프링, 코일 스프링, 접시 스프링 등), 유압 스프링, 공기 스프링 및 점탄성체를 단독으로 혹은 조합하여 사용되며, 탄소성(彈塑性) 부재는 금속 재료를 코일 형상으로 하고, 복원용 스프링 장치와 유닛화할 수도 있는 구조로, 단독으로 혹은 복수개 사용하며, 대변위에도 추종가능하고 진동제어능력이 큰 진동제어장치.
The method of claim 3,
As a spring device for restoring the elastic damper device capable of simultaneously exhibiting the restoration function and the damping function, a metal spring (plate spring, coil spring, disc spring, etc.), a hydraulic spring, an air spring and a viscoelastic body may be used alone or in combination And the plasticity member is a structure in which a metal material is formed into a coil shape and can be unitized with a restoring spring device. The plasticity member is used singly or in plurality, and a vibration control device .
제 1 항에 있어서,
상기 증폭기구는 링크 기구나 타원형상 판스프링 장치 등을 사용하여 진동제어력을 향상시킬 수 있는 진동제어장치.
The method according to claim 1,
Wherein the amplifier is capable of improving the vibration control force by using a link mechanism, an elliptical upper plate spring device, or the like.
제 1 항에 있어서,
상기 감쇠장치는 탄소성 댐퍼이며, 감쇠기구도 유압, 공기압, 마찰, 점탄성 등을 단독으로 혹은 조합하여 사용하는 진동제어장치.
The method according to claim 1,
Wherein the damping device is a carbonaceous damper, and the damper device uses hydraulic pressure, air pressure, friction, viscoelasticity, or the like, alone or in combination.
제 3 항에 있어서,
상기 힘 전달이 가능한 부재는 회전 방지, 처짐 방지 등을 위해 1점 이상의 중간지지점을 가지며, 구름 베어링, 스러스트 베어링(thrust bearing)이나 가이드 롤러 혹은 직동(直動) 레일 등의 부재로 구성되는 진동제어장치.



The method of claim 3,
The force-transmittable member has at least one intermediate support point for preventing rotation and preventing sagging, and a vibration control member composed of a member such as a rolling bearing, a thrust bearing, a guide roller, or a linear motion rail Device.



KR1020160063387A 2016-05-24 2016-05-24 Vibration control device KR101658490B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016562021A JP2018529034A (en) 2016-05-24 2016-05-24 Vibration control device for structures with low damping
KR1020160063387A KR101658490B1 (en) 2016-05-24 2016-05-24 Vibration control device
PCT/KR2016/005486 WO2017204371A1 (en) 2016-05-24 2016-05-24 Vibration control apparatus for structure with low attenuation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160063387A KR101658490B1 (en) 2016-05-24 2016-05-24 Vibration control device

Publications (1)

Publication Number Publication Date
KR101658490B1 true KR101658490B1 (en) 2016-09-22

Family

ID=57102459

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160063387A KR101658490B1 (en) 2016-05-24 2016-05-24 Vibration control device

Country Status (3)

Country Link
JP (1) JP2018529034A (en)
KR (1) KR101658490B1 (en)
WO (1) WO2017204371A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106895108A (en) * 2017-03-28 2017-06-27 北京金风科创风电设备有限公司 Dynamic vibration absorption device, tower and wind generating set

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022008020A1 (en) * 2020-07-09 2022-01-13 Vestas Wind Systems A/S Mass damper module for wind turbine installation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914347A (en) * 1995-06-30 1997-01-14 Masayoshi Takeno Base isolation device
JPH10169244A (en) * 1996-12-06 1998-06-23 Tatsuji Ishimaru Vibration control device having toggle mechanism
JP2007016538A (en) * 2005-07-11 2007-01-25 Mokken Giken Kk Vibration damper built in building
KR20130126075A (en) * 2012-05-10 2013-11-20 삼성중공업 주식회사 Tower for wind generator and wind generator
KR20140081035A (en) 2012-12-21 2014-07-01 현대건설주식회사 Tuned Mass Damper for Structures

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2823953C2 (en) * 1978-06-01 1985-01-24 Tünkers Maschinenbau GmbH, 4030 Ratingen Suspension device for vibrating bears on a load suspension device
JPS63114772A (en) * 1986-10-31 1988-05-19 鹿島建設株式会社 Axial tension damper
JPH01137038A (en) * 1987-11-20 1989-05-30 Hitachi Ltd Earthquakeproof device
JPH041753U (en) * 1990-04-17 1992-01-08
JP2705379B2 (en) * 1991-07-09 1998-01-28 株式会社大林組 Damping device
JPH07208524A (en) * 1994-01-12 1995-08-11 Ishikawajima Harima Heavy Ind Co Ltd Vibrationproof stay device
JP2970476B2 (en) * 1995-07-13 1999-11-02 株式会社大林組 Damping device and damping method
JPH11294532A (en) * 1998-04-03 1999-10-29 Kayaba Ind Co Ltd Damping device
JP2000110884A (en) * 1998-10-02 2000-04-18 Mitsubishi Heavy Ind Ltd Tower-form structure and vibration controller
JP3851542B2 (en) * 2001-10-30 2006-11-29 学校法人日本大学 Structure damping device
JP5399060B2 (en) * 2008-12-25 2014-01-29 浩 倉林 Vibration control device
KR100962575B1 (en) * 2009-10-05 2010-06-11 (주)대우건설 Pendulum type vibration damping device for cable-stayed bridge of main tower
JP6029318B2 (en) * 2012-05-16 2016-11-24 公益財団法人鉄道総合技術研究所 Seismic control structure of utility pole

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914347A (en) * 1995-06-30 1997-01-14 Masayoshi Takeno Base isolation device
JPH10169244A (en) * 1996-12-06 1998-06-23 Tatsuji Ishimaru Vibration control device having toggle mechanism
JP2007016538A (en) * 2005-07-11 2007-01-25 Mokken Giken Kk Vibration damper built in building
KR20130126075A (en) * 2012-05-10 2013-11-20 삼성중공업 주식회사 Tower for wind generator and wind generator
KR20140081035A (en) 2012-12-21 2014-07-01 현대건설주식회사 Tuned Mass Damper for Structures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106895108A (en) * 2017-03-28 2017-06-27 北京金风科创风电设备有限公司 Dynamic vibration absorption device, tower and wind generating set

Also Published As

Publication number Publication date
JP2018529034A (en) 2018-10-04
WO2017204371A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
KR20120088684A (en) Method and structure for damping movement in buildings
CN109898691B (en) Damping grounding type fabricated reinforced concrete tuned mass damping wall
CN102505772A (en) Buckling restrained energy-consumption supporting device of building frame structure
KR101658490B1 (en) Vibration control device
US20200392752A1 (en) Multidirectional adaptive re-centering torsion isolator
JP2016118008A (en) Structural vibration control device, method for removing residual displacement of superstructure using the same and bridge reinforcement method
CN111827098B (en) Trigger type limited negative stiffness high-strength spring damping support
CN114775405A (en) Girder corner control type bridge damping vibration damper
CN109695200B (en) Generalized acceleration mass damper system for transverse bridge direction and torsional vibration reduction of suspension bridge
JP2008240331A (en) Vibration damping structure of tower structure and method of setting specifications of vibration damping structure
Haskell et al. Fluid viscous damping as an alternative to base isolation
Nikam et al. Seismic energy dissipation of a building using friction damper
JP5316854B2 (en) String string structure
CN111962569A (en) Lower shock isolation support for tunnel shock isolation
Jackson et al. Increasing efficiency in tall buildings by damping
JP2005188022A (en) Earthquake-proof bridge
US11739810B2 (en) Bidirectional collapse-proof damper with macroscopic NPR structure and bridge structure having same
Makarov et al. Analysis of strengthening conical reinforced concrete posts by external reinforcement with polymer composite materials
CN113338465B (en) Perforated mild steel damper with lateral support
JP3892720B2 (en) Seismic isolation device
JP5252224B2 (en) Damping structure of tower structure
Ou et al. Recent Advances of Structural Vibration Control in Mainland China
RU109178U1 (en) SEISMIC RESISTANT BUILDING
Gangopadhyay et al. Seismic retrofitting of an existing steel railway bridge by fluid viscous dampers
Shih et al. Vibration control and shock absorption techniques for Hi‐Tech manufacturing plants

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190821

Year of fee payment: 4