JP5252224B2 - Damping structure of tower structure - Google Patents

Damping structure of tower structure Download PDF

Info

Publication number
JP5252224B2
JP5252224B2 JP2009160884A JP2009160884A JP5252224B2 JP 5252224 B2 JP5252224 B2 JP 5252224B2 JP 2009160884 A JP2009160884 A JP 2009160884A JP 2009160884 A JP2009160884 A JP 2009160884A JP 5252224 B2 JP5252224 B2 JP 5252224B2
Authority
JP
Japan
Prior art keywords
tower
damping
damper
vibration
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009160884A
Other languages
Japanese (ja)
Other versions
JP2011017140A (en
Inventor
和彦 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2009160884A priority Critical patent/JP5252224B2/en
Publication of JP2011017140A publication Critical patent/JP2011017140A/en
Application granted granted Critical
Publication of JP5252224B2 publication Critical patent/JP5252224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は通信塔や展望タワー等の塔状構造物を対象とする制振構造に関する。   The present invention relates to a vibration control structure for tower-like structures such as a communication tower and an observation tower.

通信塔や展望タワー等の塔状構造物の多くは曲げ変形が卓越し構造体の減衰も小さいことから地震や風に対する応答が大きく、特に固有振動数に近い外乱が入力されると共振現象により大きな揺れが長時間継続するという問題がある。
塔状構造物を対象とする制振構造としては、頂部にTMD(動吸振機構)を設置して応答を低減するものが最も一般的であるが、錘の重量が構造物への負荷となるため、せいぜい風荷重に対する居住性の改善程度にしか適用できなかった。
また、地震時の応答低減を図るために各所に制振ダンパーを組み込む方法もあるが、曲げ変形が卓越することからダンパーに生じる相対変位が小さく、大きな制振効果を得ることができなかった。
Many tower-like structures such as communication towers and observation towers have excellent bending deformation and small attenuation of the structure, so response to earthquakes and winds is large, especially when disturbances close to the natural frequency are input due to resonance phenomena. There is a problem that large shaking continues for a long time.
The most common damping structure for tower structures is to reduce the response by installing a TMD (dynamic vibration damping mechanism) at the top, but the weight of the weight becomes a load on the structure. Therefore, it was applicable only to the extent of improvement of habitability against wind load.
In addition, there is a method of incorporating damping dampers at various locations to reduce the response during an earthquake, but since the bending deformation is outstanding, the relative displacement generated in the damper is small, and a large damping effect cannot be obtained.

さらに、たとえば特許文献1〜3に示されるように、塔状構造物の全体をコア部とその周囲の本体部とに構造的に分離(特許文献1では内塔と外塔、特許文献2では中央コア体と外殻塔体、特許文献3ではコア部と塔本体に分離)して、それらの間に各種のダンパーを介装することにより、双方の振動性状(固有振動数や固有モード)の違いによる相対振動を利用してダンパーを作動させて応答低減を図るという制振構造も提案されている。   Further, for example, as shown in Patent Literatures 1 to 3, the entire tower-like structure is structurally separated into a core portion and a surrounding main body portion (in Patent Literature 1, an inner tower and an outer tower, in Patent Literature 2). By separating the central core body and the outer shell tower body, and in Patent Document 3, the core section and the tower body) and interposing various dampers between them, both vibration properties (natural frequency and natural mode) A damping structure has also been proposed in which the damper is operated using relative vibration due to the difference between the two to reduce the response.

特開2000−136651号公報JP 2000-136651 A 特開2001−234645号公報JP 2001-234645 A 特開2008−240331号公報JP 2008-240331 A

特許文献1〜3に示される制振構造は、通常のTMDのように大きな付加質量を必要とせずに風のみならず地震時にも有効であると考えられるものの、塔状構造物の全体を二重構造として双方を大規模なダンパーにより連結するという特殊かつ複雑な構造形式であるので計画的にも施工的にも様々な制約を受けることから、各種の塔状構造全般に広く適用し得る制振手法とはなり得ていない。   Although the vibration damping structures disclosed in Patent Documents 1 to 3 do not require a large additional mass as in normal TMD and are considered to be effective not only in wind but also in earthquakes, As a heavy structure, both are connected by a large-scale damper, and this is a special and complex structure, so it is subject to various restrictions in terms of planning and construction. It cannot be a shaking method.

上記事情に鑑み、本発明は塔状構造物の応答を効果的に抑制し得ることはもとより、構造全体が過度に複雑化することなく広く一般に適用可能である有効適切な制振構造を提供することを目的とする。   In view of the above circumstances, the present invention can effectively suppress the response of a tower-like structure, and provides an effective and appropriate damping structure that can be widely applied to the entire structure without being excessively complicated. For the purpose.

本発明は基壇部の頂部から塔状部を立設した塔状構造物の制振構造であって、基壇部の水平剛性を塔状部の水平剛性よりも大きく設定するとともに、基壇部の水平剛性と並列に慣性質量ダンパーと減衰要素とを設置して、該基壇部の水平剛性と前記慣性質量ダンパーによる慣性質量により定まる振動数を前記塔状部の固有振動数に同調させることを特徴とする。   The present invention is a vibration control structure of a tower-like structure in which a tower-like part is erected from the top of the base part, and the horizontal rigidity of the base part is set larger than the horizontal rigidity of the tower-like part, and the horizontal of the base part is An inertia mass damper and a damping element are installed in parallel with the rigidity, and the frequency determined by the horizontal rigidity of the platform and the inertia mass by the inertia mass damper is synchronized with the natural frequency of the tower-shaped portion. To do.

本発明においては、塔状部の水平剛性k1、基壇部の水平剛性k2、塔状部の有効質量m1であるとき、慣性質量ダンパーによる慣性質量ψを ψ≒(k2/k1)m1 として設定すれば良い。 In the present invention, the horizontal rigidity k 1 of the tower-shaped portion, the horizontal stiffness k 2 of the foundation portion, when an effective mass m 1 of the tower-shaped portion, the inertial mass [psi due to the inertia mass dampers [psi ≒ (k 2 / k 1 ) m 1 should be set.

本発明の制振構造は、塔状部を支持する基壇部に慣性質量ダンパーと減衰要素を付加するのみで塔状部と基壇部とに跨るTMD機構が構成され、塔状部の固有振動数近傍での共振特性を大幅に改善することができて塔状部全体の減衰性能が大幅に向上し、地震や風に対する応答が低減でき、外乱がおさまった後の後揺れについても大幅に抑制できる。
また、基壇部の質量は同調に殆ど寄与しないので、基壇部の用途や基材等の積載荷重が変化しても同調特性が変動せず、安定して応答低減効果を発揮することができる。
さらに、従来一般のTMD機構のように塔状部の頂部近傍に付加質量を設置する必要がなく基壇部だけにダンパーを設置するので、高所に大きな重量を設置する必要がなく塔状部への荷重負荷も小さい。また、慣性質量ダンパーは実際の錘重量の数百倍〜数千倍の慣性質量効果を実現できるので、軽量なダンパーでも大きな錘と同様のTMD効果を発揮できる。
In the vibration damping structure of the present invention, a TMD mechanism straddling the tower part and the base part is configured only by adding an inertia mass damper and a damping element to the base part that supports the tower part, and the natural frequency of the tower part is formed. The resonance characteristics in the vicinity can be greatly improved, the damping performance of the entire tower can be greatly improved, the response to earthquakes and winds can be reduced, and the after shake after the disturbance has subsided can also be greatly suppressed. .
Further, since the mass of the base portion hardly contributes to the tuning, the tuning characteristics do not fluctuate even if the use of the base portion or the loading load of the base material changes, and the response reduction effect can be exhibited stably.
Furthermore, unlike the conventional TMD mechanism, it is not necessary to install an additional mass near the top of the tower, and a damper is installed only on the base, so there is no need to install a large weight at a high place. The load load is small. Further, since the inertial mass damper can realize an inertial mass effect that is several hundred to several thousand times the actual weight of the weight, even a lightweight damper can exhibit the same TMD effect as a large weight.

本発明の制振構造の実施形態を説明するための全体の概要図および振動モデル図である。It is the whole schematic diagram and vibration model figure for explaining an embodiment of a damping structure of the present invention. 本発明の制振構造の効果を説明するための図である。It is a figure for demonstrating the effect of the damping structure of this invention. 比較例である従来型制振の性能を示す図である。It is a figure which shows the performance of the conventional vibration suppression which is a comparative example. 比較例である従来型制振の性能を示す図である。It is a figure which shows the performance of the conventional vibration suppression which is a comparative example. 本発明の制振構造の効果を説明するための図である。It is a figure for demonstrating the effect of the damping structure of this invention. 振動解析に用いる入力波形を示す図である。It is a figure which shows the input waveform used for a vibration analysis. 本発明の制振構造についての解析結果を比較例とともに示す図である。It is a figure which shows the analysis result about the damping structure of this invention with a comparative example. 本発明の制振構造についての解析結果を比較例とともに示す図である。It is a figure which shows the analysis result about the damping structure of this invention with a comparative example. 比較例である従来型制振についての解析結果を示す図である。It is a figure which shows the analysis result about the conventional vibration suppression which is a comparative example. 本発明の制振構造についての解析結果を示す図である。It is a figure which shows the analysis result about the damping structure of this invention.

図1に本発明の制振構造の実施形態を示す。(a)は全体概要図、(b)はその振動モデル図である。
本実施形態の制振構造は、減衰の小さい塔状部1が基壇部2の頂部から立設された形態の塔状構造物を対象として、基壇部2に慣性質量ダンパー3とオイルダンパー4等の減衰要素を付加することによって塔状部1の応答を効果的に抑制するものである。
FIG. 1 shows an embodiment of the vibration damping structure of the present invention. (A) is an overall schematic diagram, and (b) is a vibration model diagram thereof.
The vibration damping structure of the present embodiment is directed to a tower-like structure in which the tower-like part 1 having a small attenuation is erected from the top of the platform part 2, and an inertia mass damper 3 and an oil damper 4 are provided on the platform part 2. The response of the tower-like portion 1 is effectively suppressed by adding the damping element.

図1(b)に示すように塔状部1の質量m1、等価な水平剛性k1、減衰係数c1とする。
なお、塔状部1の固有振動数f1とすると、水平剛性k1

Figure 0005252224
である。 As shown in FIG. 1B, it is assumed that the mass m 1 of the tower portion 1 is equivalent to the horizontal stiffness k 1 and the damping coefficient c 1 .
If the natural frequency f 1 of the tower 1 is assumed, the horizontal stiffness k 1 is
Figure 0005252224
It is.

基壇部2の質量m2、水平剛性k2、減衰係数c2とする。基壇部2の水平剛性k2は塔状部1の水平剛性k1よりも充分に大きくする(k2≫k1)。
基壇部2の水平剛性k2と並列に慣性質量ψをもつ慣性質量ダンパー3と、減衰係数cをもつオイルダンパー4を設置する。すなわち、(a)に示すように慣性質量ダンパー3とオイルダンパー4の一端を基壇部2の底部に対して(ないし基礎を介して地盤に対して)接続するとともに、それらの他端をブレース状の連結部材5を介して基壇部2の上部に対して接続し、基端部2の底部と上部との間で水平方向に層間変形が生じた際にそれら慣性質量ダンパー3とオイルダンパー4が作動するようにする。
なお、本発明においては、減衰要素としてオイルダンパー4の他、履歴系の鋼材ダンパーや摩擦ダンパー、粘弾性ダンパー、粘性ダンパー等も好適に採用可能であり、それらを適宜組み合わせて併用することでも良いが、いずれにしても減衰要素の減衰係数cは基壇部2の構造減衰(減衰係数c2)に比べて充分に大きくする(c≫c2)。
Mass m 2 of foundation portion 2, the horizontal rigidity k 2, and the damping coefficient c 2. Horizontal stiffness k 2 of the foundation portion 2 is sufficiently larger than the horizontal stiffness k 1 of Tojo section 1 (k 2 »k 1).
Horizontal stiffness k 2 of the foundation portion 2 and the inertial mass damper 3 with inertial mass ψ in parallel, installing the oil damper 4 with a damping coefficient c. That is, as shown in (a), one end of the inertia mass damper 3 and the oil damper 4 is connected to the bottom of the base 2 (or to the ground via the foundation), and the other end thereof is brace-shaped. When the interlayer deformation occurs in the horizontal direction between the bottom and top of the base end 2, the inertia mass damper 3 and the oil damper 4 are Make it work.
In the present invention, in addition to the oil damper 4, a hysteresis steel damper, a friction damper, a viscoelastic damper, a viscous damper, or the like can be suitably employed as the damping element, and these may be used in appropriate combination. In any case, however, the attenuation coefficient c of the attenuation element is sufficiently larger than the structural attenuation (attenuation coefficient c 2 ) of the platform 2 (c >> c 2 ).

そして、基壇部2の水平剛性k2と慣性質量ψから定まる振動数f2を、塔状部1の固有振動数f1に同調させるように各諸元を設定する。
具体的には、塔状部の固有振動数f1と、上記の振動数f2はそれぞれ

Figure 0005252224
であるから、f1≒f2 とするために、慣性質量ダンパー3のもつ慣性質量ψを
Figure 0005252224
とすれば良い。 Then, various specifications are set so that the frequency f 2 determined from the horizontal rigidity k 2 of the platform 2 and the inertial mass ψ is synchronized with the natural frequency f 1 of the tower 1.
Specifically, the natural frequency f 1 of the tower portion and the above-mentioned frequency f 2 are respectively
Figure 0005252224
Therefore, in order to make f 1 ≈f 2 , the inertia mass ψ of the inertia mass damper 3 is
Figure 0005252224
What should I do?

なお、オイルダンパー4の減衰係数cは

Figure 0005252224
とすれば良い。 The damping coefficient c of the oil damper 4 is
Figure 0005252224
What should I do?

本発明の制振構造を塔状部1の高さが160mの展望タワーに適用した場合の効果について具体的に検討する。
図1(b)に示すように等価1質点振動系にモデル化し、基壇部2の下から地震入力を与えた場合において、塔状部1の水平変位x1、基壇部2の水平変位x2(いずれも地表を原点とする)とすると、振動方程式は

Figure 0005252224
となる。 The effect when the vibration damping structure of the present invention is applied to an observation tower having a tower-shaped portion 1 having a height of 160 m will be specifically examined.
As shown in Fig. 1 (b), when an equivalent one-mass vibration system is modeled and an earthquake input is given from the bottom of the platform 2, the horizontal displacement x 1 of the tower 1 and the horizontal displacement x 2 of the platform 2 (Both are based on the ground), the vibration equation is
Figure 0005252224
It becomes.

塔状部1の質量m1=1000ton、等価水平剛性k1=10kN/mm、固有振動数f1=0.5Hz(固有周期2秒)とする。
基壇部2の質量m2=1000ton、等価水平剛性k2=200kN/mm(塔状部の20倍)、慣性質量ダンパー3の慣性質量ψ=20000ton、オイルダンパー4の減衰係数c=17000kN=170kN/kineとする。構造減衰はh=0.01とした。
The mass m 1 of the tower 1 is 1000 tons, the equivalent horizontal rigidity k 1 is 10 kN / mm, and the natural frequency f 1 is 0.5 Hz (natural period 2 seconds).
Foundation portion 2 of mass m 2 = 1000ton, (20 times the column-like portion) equivalent horizontal stiffness k 2 = 200kN / mm, the inertial mass damper 3 of the inertial mass ψ = 20000ton, attenuation coefficient of the oil damper 4 c = 17000kN = 170kN / kine. The structure damping was h = 0.01.

以上の条件で、加速度と層間変位の応答倍率を図2に示す。(a)は塔状部頂部と基壇部頂部における加速度応答倍率、(b)は同じく変位応答倍率(上下端の相対変位)を示す。横軸の加振振動数比ξは塔状部の固有角振動数ω0に対する加振角振動数ωの比であり、縦軸の応答倍率は加振振幅に対する応答振幅の比である。
比較のために、慣性質量ダンパーを省略してオイルダンパーのみを設置した場合(ψ=0、c=170kN/kineの場合)の応答を図3に示す。
図2および図3から、オイルダンパーを設置するのみで慣性質量ダンパーがない比較例の場合には共振点近傍(ξ≒1)での塔状部頂部の応答倍率は50倍にもなるのに対し、慣性質量ダンパーとオイルダンパーを設置する本発明の制振システムではわずか5倍程度にまで低減できることがわかる。
また、基壇部の応答は塔状部の応答に比べて極めて小さく、基壇部の剛性が高いために共振点近傍を除き地盤からの入力とほぼ同じ(加速度応答倍率がほぼ1、変位応答倍率がはぼ0)となっている。
FIG. 2 shows the response magnification of acceleration and interlayer displacement under the above conditions. (A) shows the acceleration response magnification at the top of the tower-like portion and the top of the platform, and (b) shows the displacement response magnification (relative displacement of the upper and lower ends). The vibration frequency ratio ξ on the horizontal axis is the ratio of the vibration angular frequency ω to the natural angular frequency ω 0 of the tower, and the response magnification on the vertical axis is the ratio of the response amplitude to the vibration amplitude.
For comparison, FIG. 3 shows the response when the inertia mass damper is omitted and only the oil damper is installed (when ψ = 0, c = 170 kN / kine).
2 and 3, in the case of the comparative example in which only the oil damper is installed and there is no inertia mass damper, the response magnification at the top of the tower portion near the resonance point (ξ≈1) is 50 times. On the other hand, it can be seen that the vibration damping system of the present invention in which an inertial mass damper and an oil damper are installed can be reduced to about 5 times.
In addition, the response of the platform is very small compared to the response of the tower, and the platform is so rigid that it is almost the same as the input from the ground except for the vicinity of the resonance point (acceleration response magnification is almost 1, displacement response magnification is Habo 0).

なお、図3に示した比較例は慣性質量ダンパーを省略しただけでオイルダンパーについては図2の場合と同等にしたもの(c=170kN/kine)であるが、慣性質量ダンパーを省略した場合において応答倍率のピークを最小化するようにオイルダンパーを最適化してc=660kN/kineとした場合を図4に示す。
図4に示されるように、オイルダンパーを最適化しても図3に示される結果に比べて応答倍率が若干改善される程度に過ぎず(最適減衰より大きな減衰を付与しても応答はさらに増加して逆効果になる)、このことから基壇部に単にオイルダンパーを加えるだけの通常の制振手法では自ずと限界があって本発明に匹敵し得るような効果が得られないことがわかる。
In the comparative example shown in FIG. 3, the oil mass damper is the same as that in FIG. 2 (c = 170 kN / kine) just by omitting the inertia mass damper. However, in the case where the inertia mass damper is omitted, FIG. 4 shows a case where the oil damper is optimized so as to minimize the response magnification peak and c = 660 kN / kine.
As shown in FIG. 4, even if the oil damper is optimized, the response magnification is only slightly improved compared to the result shown in FIG. 3 (the response is further increased even if the damping is larger than the optimum damping). From this, it can be seen that the ordinary vibration control method in which an oil damper is simply added to the base has its own limits and an effect comparable to the present invention cannot be obtained.

以上の検討は基壇部の質量m2=1000tonの場合であるが、基壇部の質量を1/10にした場合、すなわちm2=100tonとした場合について同様に検討した結果を図5に示す。
この場合も図2に示した結果と殆ど変わらず、このことから本発明の制振システムは基壇部の質量が大きく変動しても塔状部に対する制振効果(応答倍率)は変動しないことがわかる。
The above examination is for the case where the mass m 2 of the platform is 1000 tons. FIG. 5 shows the result of the same examination for the case where the mass of the platform is 1/10, that is, m 2 = 100 tons.
In this case as well, the result shown in FIG. 2 is almost the same. From this, the damping system of the present invention does not change the damping effect (response magnification) on the tower-like part even if the mass of the base is greatly changed. Recognize.

次に、上記の条件での制振効果を時刻歴応答解析により検討する。
入力地震動は 図6に示す EL CENTRO(NS) 50kine(512gal)とし、基壇部の下から基礎固定として入力する。地震動の波形は40秒だが、後揺れを見るために解析時間は120秒間とする。
Next, the vibration control effect under the above conditions is examined by time history response analysis.
The input ground motion is EL CENTRO (NS) 50kine (512gal) as shown in Fig. 6, and is input as the foundation fixed from the bottom of the platform. The seismic motion waveform is 40 seconds, but the analysis time is 120 seconds in order to see the shaking.

図7は塔状部頂部での応答加速度を示すものであり、図8は塔状部の応答変位を示すものである。いずれも(a)は図3に示した従来型制振の場合、(b)は図2に示した本発明の制振構造の場合である。
この解析結果から、従来型のオイルダンパーのみで慣性質量なしの場合は塔状部の振動が長時間継続するが、慣性質量を付与した本発明の制振構造では最大応答値が2割低減するとともに大きな応答が継続せず、応答振幅が急峻に低減していき、このことから地震の後揺れに効果的であることがわかる。
FIG. 7 shows the response acceleration at the top of the tower, and FIG. 8 shows the response displacement of the tower. In both cases, (a) is the case of the conventional vibration damping structure shown in FIG. 3, and (b) is the case of the vibration damping structure of the present invention shown in FIG.
From this analysis result, the vibration of the tower-like portion continues for a long time when only the conventional oil damper has no inertia mass, but the maximum response value is reduced by 20% in the vibration damping structure of the present invention to which the inertia mass is applied. At the same time, a large response does not continue and the response amplitude decreases sharply, which indicates that it is effective for shaking after an earthquake.

図9は、オイルダンパーのみによる従来型制振においてオイルダンパーを最適化した場合(慣性質量なし、c=660kN/kine の場合)を示す。この従来型制振においてオイルダンパーを最適化することにより応答加速度および応答変位は若干改善されるが、本発明と比べれば効果の差は明白である。   FIG. 9 shows a case where the oil damper is optimized in the conventional vibration suppression using only the oil damper (no inertial mass, c = 660 kN / kine). The response acceleration and the response displacement are slightly improved by optimizing the oil damper in this conventional vibration suppression, but the difference in the effect is obvious as compared with the present invention.

図10は、本発明の制振構造において基壇部の質量を1/10(すなわちm2=100ton)とした場合を示す。基壇部の質量が大きく変動しても応答低減効果は殆ど変わらず、このことから基壇部の質量は同調条件に寄与しないことがわかる。 FIG. 10 shows a case where the mass of the base is 1/10 (that is, m 2 = 100 tons) in the vibration damping structure of the present invention. Even if the mass of the platform portion varies greatly, the response reduction effect is hardly changed, and it can be seen from this that the mass of the platform portion does not contribute to the tuning condition.

本発明の効果を以下に列挙する。
(1)塔状部を支持する基壇部に慣性質量ダンパーと減衰要素を付加するのみで、塔状部全体の減衰性能が大幅に向上し、地震や風に対する応答が低減できる。また、外乱がおさまった後の後揺れについても大幅に抑制できる。そのため、本発明はたとえば展望タワー、通信塔(デジタル通信用のパラボラアンテナなど)、煙突や排気筒、屋上テレビカメラ設置塔といった塔状構造物全般に適用するものとして好適である。
(2)微小振幅から大振幅まで有効なパッシブ型の制振構造であり、外部エネルギーを必要としない。電気やコンピュータ制御が不要であり、単純な機構なので信頼性が高く、ローコストである。
(3)基壇部の剛性は塔状部よりも桁違いに大きくできるので、基壇部の変形は小さく、基壇部を設けたことによる塔状部への悪影響はない。
(4)単にオイルダンパー等の減衰要素を付加するだけの従来型制振構造では、基壇部の剛性が大きく層間変形が小さいために減衰要素の効きが悪く大きな応答低減効果は期待できないが、本発明では慣性質量ダンパーと減衰要素とを塔状部と直列配置することで塔状部と基壇部とに跨るTMD機構が構成され、塔状部の固有振動数近傍での共振特性を大幅に改善することができる。
The effects of the present invention are listed below.
(1) By simply adding an inertia mass damper and damping element to the platform that supports the tower, the overall damping performance of the tower can be greatly improved and the response to earthquakes and winds can be reduced. In addition, it is possible to greatly suppress the post-swing after the disturbance has subsided. Therefore, the present invention is suitable for application to all tower-like structures such as observation towers, communication towers (such as parabolic antennas for digital communication), chimneys, exhaust stacks, and rooftop TV camera installation towers.
(2) It is a passive vibration control structure that is effective from minute amplitude to large amplitude, and does not require external energy. Electricity and computer control are not required, and the simple mechanism is highly reliable and low cost.
(3) Since the rigidity of the platform can be increased by orders of magnitude greater than that of the tower, the deformation of the platform is small and there is no adverse effect on the tower due to the provision of the platform.
(4) In the conventional vibration control structure that simply adds damping elements such as oil dampers, the base plate has high rigidity and small inter-layer deformation, so the damping elements are not effective and a large response reduction effect cannot be expected. In the invention, an inertial mass damper and a damping element are arranged in series with the tower portion, so that a TMD mechanism spanning the tower portion and the platform portion is configured, and the resonance characteristics in the vicinity of the natural frequency of the tower portion are greatly improved. can do.

(5)基壇部の質量は同調に殆ど寄与しない。そのため、基壇部の用途や基材等の積載荷重が変化しても同調特性が変動せず、安定して応答低減効果を発揮することができる。
(6)本発明の制振構造は塔状構造物を新設する場合に適用するのみならず、既存の塔状構造物に対する制振補強対策としても適用し得る。その場合、既存の基壇部があればそこに慣性質量ダンパーと減衰要素を付加すれば良く、基壇部がなければ基壇部を増設してそこに慣性質量ダンパーと減衰要素を設置すれば良く、既存の塔状部を使用しながら制振補強を行うことも可能である。
(7)従来一般のTMDは塔状部の頂部近傍に設置する必要があり、その重量が塔状部への負荷となるが、本発明では基壇部だけに慣性質量ダンパーと減衰要素を設置するだけなので高所に大きな重量を設置する必要がなく、塔状構造物全体への荷重負荷が小さい。
(8)慣性質量ダンパーは実際の錘重量の数百倍〜数千倍の慣性質量効果を実現できるので、軽量なダンパーでも大きな錘と同様のTMD効果を発揮できる。また、構造物の質量に対する錘(慣性質量)の質量比を大きくとれるのでロバスト性の高い制振機構となる。そのため、同調精度を高めなくても済み、構造物の重量や剛性が変動しても広帯域に制振効果を発揮するので、同調作業を頻繁に行う必要がない。
(5) The mass of the platform hardly contributes to tuning. Therefore, the tuning characteristics do not change even if the application of the platform part or the load on the base material changes, and the response reduction effect can be exhibited stably.
(6) The vibration damping structure of the present invention can be applied not only when newly installing a tower-like structure, but also as a vibration-damping reinforcement measure for an existing tower-like structure. In that case, if there is an existing platform part, an inertial mass damper and a damping element may be added to it, and if there is no platform part, the platform part may be added and an inertial mass damper and a damping element installed there. It is also possible to reinforce the vibration while using the tower-shaped part.
(7) Conventionally general TMD needs to be installed near the top of the tower, and its weight is a load on the tower. In the present invention, an inertia mass damper and a damping element are installed only on the platform. Therefore, it is not necessary to install a large weight at a high place and the load on the entire tower structure is small.
(8) Since the inertial mass damper can realize an inertial mass effect that is several hundred to several thousand times the actual weight of the weight, even a lightweight damper can exhibit the same TMD effect as a large weight. Further, since the mass ratio of the weight (inertial mass) to the mass of the structure can be increased, a vibration control mechanism with high robustness can be obtained. Therefore, it is not necessary to increase the tuning accuracy, and even if the weight or rigidity of the structure changes, the vibration damping effect is exerted in a wide band, so that it is not necessary to frequently perform the tuning work.

(9)なお、「慣性質量ダンパーと付加バネを直列して層間に設置したTMD機構」は既に開発されているが、そのような機構は「慣性質量と付加バネ剛性からなる振動系を主系(本体構造)に同調させる」ものである。それに対し,本発明は「慣性質量ダンパーと減衰要素を構造バネと並列して層間に設置した構造」であり、「慣性質量と構造バネ剛性からなる振動系を主系(本体構造)に同調させる」ものであり、慣性質量ダンパーを組み込んだ層の上に本体構造をもつ2層以上の振動系を対象としたものであるので、上記のような直列型の制振機構とは全く異なる原理によるものである。
本発明において利用する構造バネは付加バネのように任意の調整ができず値も大きいので、必要とされる慣性質量は付加バネを利用する直列型制振機構より大きくなるが、本発明では付加バネが不要であるのでより簡単な設置方法で大きな応答低減効果を発揮できる点で有利である。
また、慣性質量を構造バネと並列する振動遮断機構も提案されているが、これは減衰が小さいほど効果を発揮するものであり、本発明のように最適減衰を与えて応答低減するものとは異なる。
(9) Although the “TMD mechanism in which an inertia mass damper and an additional spring are placed in series between layers” has already been developed, such a mechanism is based on a vibration system consisting of an inertia mass and additional spring rigidity. (Synchronize with (main body structure)). The present invention, on the other hand, is “a structure in which an inertial mass damper and a damping element are installed between layers in parallel with a structural spring”, and “a vibration system composed of inertial mass and structural spring rigidity is synchronized with the main system (main body structure). It is intended for a vibration system of two or more layers having a main body structure on a layer incorporating an inertial mass damper, and is based on a completely different principle from the series-type vibration suppression mechanism as described above. Is.
Since the structural spring used in the present invention cannot be adjusted arbitrarily and has a large value like the additional spring, the required inertial mass is larger than the series type damping mechanism using the additional spring. Since a spring is unnecessary, it is advantageous in that a large response reduction effect can be exhibited with a simpler installation method.
Also, a vibration isolation mechanism that parallels the inertial mass with the structural spring has been proposed, but this is more effective as the damping is smaller, and what is the one that reduces the response by giving the optimum damping as in the present invention? Different.

1 塔状部
2 基壇部
3 慣性質量ダンパー
4 オイルダンパー(減衰要素)
5 連結部材
DESCRIPTION OF SYMBOLS 1 Tower-like part 2 Base part 3 Inertial mass damper 4 Oil damper (damping element)
5 connecting members

Claims (2)

基壇部の頂部から塔状部を立設した塔状構造物の制振構造であって、
基壇部の水平剛性を塔状部の水平剛性よりも大きく設定するとともに、基壇部の水平剛性と並列に慣性質量ダンパーと減衰要素とを設置して、該基壇部の水平剛性と前記慣性質量ダンパーによる慣性質量により定まる振動数を前記塔状部の固有振動数に同調させることを特徴とする塔状構造物の制振構造。
It is a vibration control structure of a tower-like structure in which a tower-like part is erected from the top of the base part,
The horizontal rigidity of the base is set to be larger than the horizontal rigidity of the tower, and an inertia mass damper and a damping element are installed in parallel with the horizontal rigidity of the base, and the horizontal rigidity of the base and the inertia mass damper are set. A vibration damping structure for a tower-like structure, wherein a frequency determined by an inertial mass due to the above is tuned to a natural frequency of the tower-like portion.
請求項1記載の塔状構造物の制振構造であって、
塔状部の水平剛性k1、基壇部の水平剛性k2、塔状部の有効質量m1であるとき、慣性質量ダンパーによる慣性質量ψを ψ≒(k2/k1)m1 として設定することを特徴とする塔状構造物の制振構造。
A damping structure for a tower-like structure according to claim 1,
Horizontal stiffness k 1 of the tower-shaped portion, the horizontal stiffness k 2 of the foundation portion, when an effective mass m 1 of the tower-shaped portion, setting the inertial mass [psi due to the inertia mass damper as ψ ≒ (k 2 / k 1 ) m 1 A damping structure for a tower-like structure characterized by
JP2009160884A 2009-07-07 2009-07-07 Damping structure of tower structure Active JP5252224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009160884A JP5252224B2 (en) 2009-07-07 2009-07-07 Damping structure of tower structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009160884A JP5252224B2 (en) 2009-07-07 2009-07-07 Damping structure of tower structure

Publications (2)

Publication Number Publication Date
JP2011017140A JP2011017140A (en) 2011-01-27
JP5252224B2 true JP5252224B2 (en) 2013-07-31

Family

ID=43595109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009160884A Active JP5252224B2 (en) 2009-07-07 2009-07-07 Damping structure of tower structure

Country Status (1)

Country Link
JP (1) JP5252224B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6108370B2 (en) * 2016-01-05 2017-04-05 清水建設株式会社 Optimal design method of low-rise centralized control system using viscous damping

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167558U (en) * 1987-04-21 1988-11-01
JP2003221807A (en) * 2002-01-30 2003-08-08 Jfe Engineering Kk Vibration control device for tower-like structure
JP4931491B2 (en) * 2006-06-22 2012-05-16 辰治 石丸 A method for determining a natural period of a structure, a method for designing a structure, and a structure.
JP4968682B2 (en) * 2006-10-23 2012-07-04 清水建設株式会社 Vibration reduction mechanism and specification method thereof
JP4743439B2 (en) * 2007-01-11 2011-08-10 清水建設株式会社 Vibration reduction mechanism and specification method thereof

Also Published As

Publication number Publication date
JP2011017140A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
De Domenico et al. Improving the dynamic performance of base‐isolated structures via tuned mass damper and inerter devices: A comparative study
De Angelis et al. Dynamic response and optimal design of structures with large mass ratio TMD
JP4968682B2 (en) Vibration reduction mechanism and specification method thereof
Elias Effect of SSI on vibration control of structures with tuned vibration absorbers
Liu et al. Investigation and optimization of a pre‐stressed tuned mass damper for wind turbine tower
JP5234432B2 (en) Vibration control structure
JP2008240331A (en) Vibration damping structure of tower structure and method of setting specifications of vibration damping structure
JP5252224B2 (en) Damping structure of tower structure
JP4491533B1 (en) Swing-isolated building
JP5870454B2 (en) Optimal design method of low-rise concentrated control system using inertial mass damper
JP4743439B2 (en) Vibration reduction mechanism and specification method thereof
JP5316849B2 (en) Damping structure
JP6636383B2 (en) Seismic isolation structure and method of designing seismic isolation structure
JP6338563B2 (en) Tower structure
JP5495013B2 (en) Vibration control mechanism
JP2009155801A (en) Vibration control structure
JP2007085023A (en) Tower-like structure
WO2019020991A1 (en) Building, integrated damping unit, and method of damping
JP5458374B2 (en) Vibration control system
Filiatrault et al. Generation of floor accelerations for seismic testing of operational and functional building components
JP5316854B2 (en) String string structure
Matinrad et al. Seismic performance evaluation of a tall building with dual lateral system consisting of moment frames and tuned mass dampers
JPH0483070A (en) Support struction of roof installation
JP6108370B2 (en) Optimal design method of low-rise centralized control system using viscous damping
JP5721333B2 (en) Sliding foundation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130403

R150 Certificate of patent or registration of utility model

Ref document number: 5252224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3