KR101582588B1 - Manufacturing method of carbon layer formation from carbide and controll the carbon crystallinity in the carbon layer - Google Patents

Manufacturing method of carbon layer formation from carbide and controll the carbon crystallinity in the carbon layer Download PDF

Info

Publication number
KR101582588B1
KR101582588B1 KR1020090049946A KR20090049946A KR101582588B1 KR 101582588 B1 KR101582588 B1 KR 101582588B1 KR 1020090049946 A KR1020090049946 A KR 1020090049946A KR 20090049946 A KR20090049946 A KR 20090049946A KR 101582588 B1 KR101582588 B1 KR 101582588B1
Authority
KR
South Korea
Prior art keywords
carbon
carbon film
carbide
coating
carbon layer
Prior art date
Application number
KR1020090049946A
Other languages
Korean (ko)
Other versions
KR20100131178A (en
Inventor
임대순
배흥택
정지훈
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020090049946A priority Critical patent/KR101582588B1/en
Publication of KR20100131178A publication Critical patent/KR20100131178A/en
Application granted granted Critical
Publication of KR101582588B1 publication Critical patent/KR101582588B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation

Abstract

본 발명은 저 마찰 및 고 내마모 특성을 요구하는 기계부품에 관한 것으로, 고강도 세라믹 재료의 표면을 고온에서 할로겐가스로 개질 하여 저 마찰 고 내마모 특성을 향상시키는 방법을 제공한다.The present invention relates to a machine component requiring low friction and high wear resistance characteristics, and a method for improving the low friction high wear resistance property by modifying the surface of a high strength ceramic material with a halogen gas at a high temperature.

Description

탄화물로부터 탄소결정이 제어된 표면 탄소층 형성 방법{Manufacturing method of carbon layer formation from carbide, and controll the carbon crystallinity in the carbon layer}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a carbonaceous surface layer on a substrate,

본 발명은 저 마찰 및 고 내마모 특성을 요구하는 기계부품에 관한 것으로, 고강도 세라믹 재료의 표면을 고온에서 할로겐가스로 개질 하여 저 마찰 고 내마모 특성을 향상시키는 방법에 관한 것이다.The present invention relates to a machine component requiring low friction and high wear resistance characteristics, and a method for improving the low friction high wear resistance property by modifying the surface of a high strength ceramic material with a halogen gas at a high temperature.

산업의 발달과 더불어 동력의 사용이 증가함에 따라 접촉하는 부위에서 마모 및 마찰의 중요성이 부각 되고 있다. 본 발명은 탄화물을 고온에서 염소가스와 반응시켜 탄소막을 코팅하는 방법에 관한 것으로서, 더욱 상세하게는 아르곤 가스를 이송가스로 하고 염소가스를 반응가스로 하여 튜브로에서 CVD (chemical vapor deposition) 방법을 이용하여 탄화물에 탄소막을 코팅하는 방법에 관한 것이다. 이러한 탄소막의 코팅은 저마찰/내마모특성을 향상시키는 것을 목적으로 하고 있다. 고온에서 탄화물을 염소가스에 반응시켜 탄소막을 형성시키는 방법을 CDC (carbide derived coating) 방법이라 한다. As the use of power increases with the development of industry, the importance of abrasion and friction in the contact area is emphasized. The present invention relates to a method of coating a carbon film by reacting a carbide with chlorine gas at a high temperature, and more particularly, to a method of coating a carbon film by using a CVD (chemical vapor deposition) method in a tube furnace using argon gas as a transfer gas and chlorine gas as a reaction gas To a method of coating a carbon film on a carbide. The coating of the carbon film is intended to improve low friction / wear resistance characteristics. A method of forming a carbon film by reacting carbide with chlorine gas at a high temperature is referred to as a CDC (carbide derived coating) method.

CDC코팅 방법의 장점으로는 반응 시간의 증가에 따라 탄소막의 두께를 수mm~ 수백mm까지 조절이 가능하다. DLC (diamond like carbon)코팅 방법에 의한 탄소막을 증착한 경우 기판과 탄소막 사이에 높은 잔류응력이 발생함으로 2~3mm이상의 DLC막을 성장시킬 때 탄소막의 박리로 인해 성장 두께에 제한을 가지게 된다. 그러나 CDC코팅방법에 의해 생성된 탄소막은 할로겐가스에 의해 선택적으로 금속성분만을 추출하여 표면에 탄소성분만을 잔류시키는 원자단위의 반응으로 탄소막을 생성시키기 때문에 기판과 탄소막 사이에 잔류응력이 존재하지 않는 장점을 가지고 있다. 또한 기판 위에 탄소막을 증착하는 방법이 아니라 기판표면을 개질하여 탄소막을 생성시키기 때문에 탄소막 생성 이후 부피의 변화가 없는 장점을 가지고 있다. The advantages of the CDC coating method are that the thickness of the carbon film can be adjusted from several millimeters to several hundreds of millimeters as the reaction time increases. When a carbon film is deposited by a DLC (diamond like carbon) coating method, a high residual stress is generated between the substrate and the carbon film. Therefore, when the DLC film having a thickness of 2 to 3 mm or more is grown, the growth thickness is limited due to peeling of the carbon film. However, since the carbon film formed by the CDC coating method selectively extracts the metallic powder by the halogen gas to generate the carbon film by the atomic reaction in which only the carbon component is left on the surface, there is no residual stress between the substrate and the carbon film Lt; / RTI > Also, since the carbon film is formed by modifying the surface of the substrate instead of depositing the carbon film on the substrate, the carbon film is advantageous in that the volume is not changed after the carbon film is formed.

그러나, CDC코팅에 의해 생성된 비정질 탄소막은 고온에서 할로겐 가스에 의한 금속원자의 선택적인 추출 방법에 의해 생성되므로 탄소막 내부에 nano-pore가 존재 하고, 이러한 nano-pore에의해 DLC코팅막에 비해 경도가 낮은 단점을 가지고 있다. 세라믹 소결체의 물성 향상을 위해 CNT를 첨가하여 소결한 재료의 물성 향상은 많이 보고되고 있다. 이러한 선행연구에 기반을 두어 비정질 탄소막에 CNT의 성장을 촉진 시킴으로써 탄소막의 인성 향상을 이끌고 있다. 또한 탄화물에 CNT촉매가 첨가된 경우 CNT의 생성 촉진과 함께 OLC (onion like carbon)결정상의 생성도 촉진된다. 이전의 연구들에서 저 마찰 재료로 널리 알려진 OLC결정상의 생성은 비정질 CDC코팅막의 저 마찰 특성 향상에도 기여한다.However, since the amorphous carbon film produced by the CDC coating is produced by selective extraction of metal atoms by halogen gas at high temperature, nano-pores are present in the carbon film, and the hardness of the nano-pore is lower than that of the DLC coating film It has low disadvantages. In order to improve the physical properties of sintered ceramics, the properties of sintered CNTs have been improved. Based on these previous researches, the growth of CNTs on amorphous carbon films is promoted, leading to improvement of carbon film toughness. In addition, when CNT catalyst is added to the carbide, generation of CNT is accelerated and formation of an onion-like carbon (OLC) crystal phase is promoted. In previous studies, the formation of OLC crystal phase, which is widely known as low friction material, also contributes to the improvement of low friction characteristics of amorphous CDC coating film.

일반적인 CDC코팅 방법은 탄화물을 고온에서 염소가스에 노출 시키는 방법으로 생성된 탄소막은 대부분이 비정질 탄소상을 가지게 된다. CDC코팅방법에 의해 제조된 비정질 탄소막의 특징은 낮은 마찰계수 특성을 가지나 연질의 막을 가짐으로 고 하중 마찰에서 내 마모특성이 저하되는 문제점을 내포하고 있다. 이러한 특성을 보완하기 위해 비정질 탄소막 내에 CNT와 같은 탄소 결정상을 생성 시켜 탄소막의 인성을 증진시키는데 목적이 있다.In a typical CDC coating method, a carbon film formed by exposing a carbide to chlorine gas at a high temperature has mostly an amorphous carbon phase. The characteristic of the amorphous carbon film produced by the CDC coating method is that it has a low coefficient of friction characteristic but has a soft film and thus has a problem that the wear resistance characteristic is deteriorated under high load friction. In order to compensate for these characteristics, the aim is to increase the toughness of the carbon film by forming a carbon crystal phase such as CNT in the amorphous carbon film.

본 발명의 목적은 CDC코팅방법에 의해 생성된 탄소막에 CNT와 같은 탄소 결정상의 생성을 촉진 시켜 비정질 탄소막의 인성을 증가시키는데 있다. 상기의 목적을 달성하기 위한 본 발명의 CDC코팅막의 인성증가 방법은 CNT촉매가 들어간 탄화물을 CDC코팅에 적용하였다.It is an object of the present invention to increase the toughness of the amorphous carbon film by promoting the formation of a carbon crystal phase such as CNT on the carbon film formed by the CDC coating method. In order to accomplish the above object, the present invention provides a method of increasing the toughness of a CDC coating film by applying a carbide containing CNT catalyst to a CDC coating.

상술한 바와 같이 탄화물에 CNT촉매를 첨가하여 CDC코팅공정으로 탄소막을 생성 시켰을 때 비정질 탄소막 내에 CNT, OLC와 같은 탄소 결정상이 생성되어 탄소막의 인성 및 저마찰 특성을 향상 시킬 수 있다. 따라서 본 공정을 통해 제조된 CDC코팅막의 고 내마모/ 저마찰 특성향상을 기대할 수 있다.As described above, when a CNT catalyst is added to a carbide to produce a carbon film by a CDC coating process, a carbon crystal phase such as CNT or OLC is formed in the amorphous carbon film, thereby improving toughness and low friction characteristics of the carbon film. Therefore, it is expected that the high abrasion / low friction characteristics of the CDC coating film produced through the present process can be improved.

본 발명은 탄화물을 고온에서 염소가스와 반응 시켜 표면에 탄소막을 제조 하는 것이다. 탄소막 제조시 Fe2O3와 같은 탄소나노튜브 형성에 도움을 주는 촉매를 탄화물 세라믹스에 첨가하여 탄소나노튜브와 같은 결정상을 갖는 탄소막을 제조하는 방법에 관한 것이다. 탄소막 생성에 의해 저마찰특성을 향상 시킬 수 있고, 내부 결정상 제어에 의해 고 내마모특성을 향상시킬 수 있다.The present invention relates to a process for producing a carbon film on a surface by reacting a carbide with chlorine gas at a high temperature. The present invention relates to a method for producing a carbon film having a crystal phase such as carbon nanotubes by adding a catalyst that helps carbon nanotubes such as Fe 2 O 3 to carbide ceramics. The low-friction characteristics can be improved by the formation of the carbon film, and the high wear resistance characteristics can be improved by controlling the internal crystal phase.

본 발명의 탄화물에 탄소막을 생성 시키고 탄소막내의 결정상을 조절하는 방법은 기존의 탄소막 코팅방법에 의해 생성된 탄소막보다 뛰어난 내구성을 가지므로, 석유정재 산업에 응용되는 메커니컬씰과 같은 저마찰 고내마모 특성을 요구하는 상대적으로 접촉하는 회전부분의 수명을 향상시킬 수 있다.The method of forming the carbon film on the carbide of the present invention and controlling the crystal phase in the carbon film has superior durability to that of the carbon film produced by the conventional carbon film coating method and thus has a low friction high wear characteristic such as a mechanical seal applied in the petroleum industry It is possible to improve the service life of the relatively contacting rotating portion which requires the contact portion.

도 1a는 본 발명의 일 실시예에 따라 탄화물입자에 CNT촉매입자를 첨가하여 소결 시킨 시편의 개략 구조를 나타낸다. 1A shows a schematic structure of a specimen obtained by adding CNT catalyst particles to carbide particles according to an embodiment of the present invention.

도 1b는 본 발명의 일 실시예에 따라 CNT촉매입자가 들어간 탄화물 소결체를 고온에서 할로겐 가스와 반반 시켰을 때 나타나는 CDC코팅막의 구조를 나타낸다. FIG. 1B shows the structure of the CDC coating film when the sintered carbide containing CNT catalyst particles are mixed with a halogen gas at a high temperature according to an embodiment of the present invention.

도 2a는 본 발명의 일 실시예에 따라 제조된 CNT촉매입자가 첨가된 탄화물 소결체를 고온에서 할로겐 가스와 반응 시켜 생성된 CDC코팅막의 TEM분석 결과 그림이다. 2A is a TEM analysis result of a CDC coating film formed by reacting a carbonized sintered body with CNT catalyst particles prepared according to an embodiment of the present invention with a halogen gas at a high temperature.

도 2b는 CNT촉매 입자가 첨가되지 않은 탄화물 소결체를 고온에서 할로겐 가스와 반응시켜 생성된 CDC코팅막의 TEM분석 결과 그림이다. 2B is a TEM analysis result of a CDC coating film formed by reacting a sintered carbide without CNT catalyst particles with a halogen gas at a high temperature.

도 3은 본 발명의 일 실시예에 따라 제조된 도 2a의 CDC코팅막과, 도 2b의 CDC코팅막의 내마모 특성 측정결과를 나타낸 그래프이다.3 is a graph showing the results of measurement of wear resistance characteristics of the CDC coating film of FIG. 2A and the CDC coating film of FIG. 2B manufactured according to an embodiment of the present invention.

Claims (5)

탄화물의 표면에 탄소막을 코팅시키는 방법으로,As a method of coating the carbon film on the surface of the carbide, 상기 코팅방법은 탄화물에 Fe2O3를 투입하고 염소가스 분위기하에서 소결시키는 것을 특징으로 하며,The coating method is characterized in that Fe 2 O 3 is added to a carbide and sintered in a chlorine gas atmosphere, 상기 탄소막은 결정상을 가지는 탄소나노튜브를 포함하는 것을 특징으로 하는 탄화물에 탄소막을 코팅시키는 방법.Wherein the carbon film comprises a carbon nanotube having a crystalline phase. 삭제delete 삭제delete 제1항에 있어서, The method according to claim 1, 상기 탄소막은 고내마모성 및 저마찰 특성을 가지는 것을 특징으로 하는 탄화물에 탄소막을 코팅시키는 방법.Wherein the carbon film has high abrasion resistance and low friction characteristics. 제1항 또는 제4항에 따라 표면에 탄소막이 코팅된 탄화물.A carbide coated with a carbon film on a surface thereof according to claim 1 or claim 4.
KR1020090049946A 2009-06-05 2009-06-05 Manufacturing method of carbon layer formation from carbide and controll the carbon crystallinity in the carbon layer KR101582588B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090049946A KR101582588B1 (en) 2009-06-05 2009-06-05 Manufacturing method of carbon layer formation from carbide and controll the carbon crystallinity in the carbon layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090049946A KR101582588B1 (en) 2009-06-05 2009-06-05 Manufacturing method of carbon layer formation from carbide and controll the carbon crystallinity in the carbon layer

Publications (2)

Publication Number Publication Date
KR20100131178A KR20100131178A (en) 2010-12-15
KR101582588B1 true KR101582588B1 (en) 2016-01-05

Family

ID=43507273

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090049946A KR101582588B1 (en) 2009-06-05 2009-06-05 Manufacturing method of carbon layer formation from carbide and controll the carbon crystallinity in the carbon layer

Country Status (1)

Country Link
KR (1) KR101582588B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060165988A1 (en) 2002-04-09 2006-07-27 Yet-Ming Chiang Carbon nanoparticles and composite particles and process of manufacture
JP2007531678A (en) 2003-07-03 2007-11-08 ドレクセル ユニバーシティー Nanoporous carbide-derived carbon with variable pore size
KR100829759B1 (en) * 2007-04-04 2008-05-15 삼성에스디아이 주식회사 Carbon nanotube hybrid systems using carbide derived carbon, electron emitter comprising the same and electron emission device comprising the electron emitter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060165988A1 (en) 2002-04-09 2006-07-27 Yet-Ming Chiang Carbon nanoparticles and composite particles and process of manufacture
JP2007531678A (en) 2003-07-03 2007-11-08 ドレクセル ユニバーシティー Nanoporous carbide-derived carbon with variable pore size
KR100829759B1 (en) * 2007-04-04 2008-05-15 삼성에스디아이 주식회사 Carbon nanotube hybrid systems using carbide derived carbon, electron emitter comprising the same and electron emission device comprising the electron emitter

Also Published As

Publication number Publication date
KR20100131178A (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JP5703017B2 (en) Method for producing tantalum carbide-coated carbon material
JP7050337B2 (en) High Adhesion Boron Dope Inclined Diamond Layer in WC-Co Cutting Tools
JP3779314B1 (en) Tantalum carbide-coated carbon material and method for producing the same
Cui et al. Influence of amorphous ceramic interlayers on tribological properties of CVD diamond films
JP2006348388A (en) Carbon composite material
TWI526585B (en) Graphite crucible for single crystal pulling device and method for manufacturing the same
JP2012522887A (en) Object coated with SiC layer and method of manufacturing the same
KR102567519B1 (en) Process for manufacturing silicon carbide coated bodies
KR101582588B1 (en) Manufacturing method of carbon layer formation from carbide and controll the carbon crystallinity in the carbon layer
Kinoshita et al. Synthesis and mechanical properties of carbon nanotube/diamond-like carbon composite films
Piazza et al. Carbon nanotubes coated with diamond nanocrystals and silicon carbide by hot-filament chemical vapor deposition below 200 C substrate temperature
Maruyama et al. Low-temperature synthesis of single-walled carbon nanotubes by alcohol gas source growth in high vacuum
Sui et al. Preparation and characterization of a dual-layer carbon film on 6H-SiC wafer using carbide-derived carbon process with subsequent chemical vapor deposition
KR101884062B1 (en) Method for manufacturing carbon layer comprising dimple pattern and carbon layer manufactured by the method
JP2013224485A (en) Coated member and method for manufacturing the same
JPH07232978A (en) Diamond-like carbon film-coated material and its formation
Sung et al. SiC conversion coating prepared from silica-graphite reaction
CN111850498B (en) Carbon nanofiber reinforced nickel-based composite coating and preparation method thereof
Tzeng et al. Graphene induced diamond nucleation on tungsten
CN111620340B (en) Method for in-situ growth of TiC nanotube
TWI551717B (en) Method for manufacturing diamond-like carbon film
JP2009137805A (en) Method for producing carbon nanotube, and substrate on which carbon nanotube has been grown
Kulyk et al. A short review on carbon-based nanomaterials and their hybrids
Yang et al. Formation of β-SiC nanowires by annealing SiC films in hydrogen atmosphere
Prabhakaran et al. Synthesis and characterisation of nanocrystalline, microcrystalline and functionally graded diamond coatings on reaction bonded SiC

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181025

Year of fee payment: 4