KR101484304B1 - Graphene coated with aluminum oxide, preparative method threrefor and nano-composite containing the same - Google Patents

Graphene coated with aluminum oxide, preparative method threrefor and nano-composite containing the same Download PDF

Info

Publication number
KR101484304B1
KR101484304B1 KR20130113961A KR20130113961A KR101484304B1 KR 101484304 B1 KR101484304 B1 KR 101484304B1 KR 20130113961 A KR20130113961 A KR 20130113961A KR 20130113961 A KR20130113961 A KR 20130113961A KR 101484304 B1 KR101484304 B1 KR 101484304B1
Authority
KR
South Korea
Prior art keywords
graphene
aluminum oxide
coated
aluminum
thermal conductivity
Prior art date
Application number
KR20130113961A
Other languages
Korean (ko)
Inventor
유홍섭
김찬수
곽승국
정한모
다오트렁덩
Original Assignee
울산대학교 산학협력단
주식회사 용진유화
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산대학교 산학협력단, 주식회사 용진유화 filed Critical 울산대학교 산학협력단
Priority to KR20130113961A priority Critical patent/KR101484304B1/en
Application granted granted Critical
Publication of KR101484304B1 publication Critical patent/KR101484304B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/008Nanostructures not provided for in groups B82B1/001 - B82B1/007
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/28Solid content in solvents

Abstract

The present invention relates to a graphene coated with aluminum oxide as a nanosheet having high thermal conductivity and low electrical conductivity, to a method for manufacturing the same, and a nanocomposite material including the same. Provided are graphene coated with aluminum oxide having electrical conductivity of 10^(-2)~10 S/cm and thermal conductivity of 10-500 W/m·K at the pressed density of 0.6-0.9 g/cm3, a method for manufacturing the same, and a nanocomposite material including the same. According to the present invention, a nanosheet which maintains a dispersed state and has reduced electrical conductivity while having the excellent thermal conductivity by having aluminum oxide coated on the surface of graphene can be manufactured, and a nanocomposite material with excellent heat radiation properties can be manufactured by using the same.

Description

산화알루미늄이 코팅된 그라펜, 이의 제조방법과 이를 포함하는 나노복합재료{Graphene coated with aluminum oxide, preparative method threrefor and nano-composite containing the same}TECHNICAL FIELD The present invention relates to a graphene coated with aluminum oxide, a method for producing the same, and a nanocomposite containing the same,

본 발명은 열전도성이 높으면서 전기전도성은 낮은 나노시트로서 산화알루미늄이 코팅된 그라펜, 이의 제조방법과 이를 포함하는 나노복합재료에 관한 것이다.The present invention relates to graphene coated with aluminum oxide as a nanosheet having high thermal conductivity and low electrical conductivity, a method for producing the same, and a nanocomposite material containing the same.

전자기기가 슬림화됨에 따라 부품들이 고집적화되면서 전자기기로 부터의 효율적인 방열기술이 요구되고 있다. 방열재료는 열전도성이 높은 입자상의 재료를 고분자, 올리고머, 혹은 저분자물질의 메트릭스에 분산시킨 복합재료가 대부분이다. 이들 필러의 사용량이 많은 경우 복합재료의 기계적 물성이 크게 감소하므로, 적은 양의 필러를 사용하여 열전도성을 효과적으로 향상시킬 필요가 있다. 종횡비(aspect ratio)가 큰 판상 혹은 침상의 필러를 사용하는 경우 열전도 네트워크가 효과적으로 형성되므로 적은 양의 필러로 열전도성을 효과적으로 향상시킬 수 있다. 또 방열재료에 의한 합선, 누설전류 등의 전기적 문제점의 발생을 최소화하기 위하여 필러의 절연성이 요구되는 경우가 많다. As electronic devices become slimmer, components become highly integrated, and efficient heat dissipation technology from electronic devices is required. Most of the heat dissipation materials are composite materials in which particulate materials with high thermal conductivity are dispersed in polymers, oligomers, or matrixes of low molecular substances. If the amount of these fillers used is large, the mechanical properties of the composite material are greatly reduced. Therefore, it is necessary to effectively improve thermal conductivity using a small amount of filler. When a plate or needle-shaped filler having a large aspect ratio is used, a heat conduction network is effectively formed, so that the thermal conductivity can be effectively improved with a small amount of filler. In addition, in order to minimize the occurrence of electrical problems such as short circuit and leakage current caused by the heat radiation material, the insulation property of the filler is often required.

그라펜은 우수한 물성을 갖는 새로운 나노 소재로 최근 여러 분야에서 응용을 위한 연구가 진행되고 있다. 즉, 그라펜은 원자 하나 두께의 판상 시트로 종회비가 수천에 이르며, 2600 m2/g의 넓은 표면적, 5000 W/mㆍK의 열전도도, 1 TPa의 모듈러스, 106 S/cm의 전기전도도 등 뛰어난 물성들은 가져 다양한 분야에서 응용될 수 있으며, 방열재료로도 효과적으로 활용될 수 있다. 그러나 그라펜은 전기전도도가 높아 절연성을 요구하는 용도에서는 그대로 사용할 수 없는 문제점이 있다.Graphene is a new nanomaterial with excellent physical properties and has been under study for application in various fields in recent years. In other words, graphen is a sheet of one thickness of an atom and has a number of semicircle ratios, and has a large surface area of 2600 m 2 / g, a thermal conductivity of 5000 W / m · K, a modulus of 1 TPa, an electrical conductivity of 10 6 S / cm Can be applied in various fields and can be effectively used as a heat dissipation material. However, graphen has a high electrical conductivity and can not be used in applications requiring insulation.

그라펜의 절연성을 증가시키기 위해서는 절연성 물질을 표면에 피복시키는 것이 강구될 수 있으나 이러한 절연성 물질은 또한 열전도성을 저감시키는 역할도 하는 문제가 있고 무기재료를 코팅하는 경우에는 응집이 일어나 나노 소재로서의 장점을 저해시키는 문제가 있다.In order to increase the insulating property of the graphene, it is possible to coat the surface with an insulating material. However, such an insulating material also has a problem of reducing the thermal conductivity, and when coating an inorganic material, coagulation occurs, There is a problem that it inhibits.

본 발명은 열전도성은 좋으나 전기전도성이 낮게 개질된 그라펜 나노시트 및 이의 제조방법을 제공하기 위한 것이다. The present invention provides a graphene nanosheet modified to have low thermal conductivity and good electrical conductivity, and a method for producing the graphene nanosheet.

또한, 본 발명은 열전도성과 기계적 물성이 우수하면서 전기전도성은 낮은 개질 그라펜 나노시트와 매트릭스와의 나노 복합재료를 제공하기 위한 것이다. The present invention also provides a nanocomposite material having improved thermal conductivity and mechanical properties and low electrical conductivity, and a modified graphene nanosheet and a matrix.

본 발명에 의하여, 그라펜의 표면에 산화알루미늄을 코팅하여 우수한 열전도성를 가지면서 전기전도성이 낮은 개질된 그라펜이 제공된다.According to the present invention, a surface of graphene is coated with aluminum oxide to provide a modified graphene which has excellent thermal conductivity and low electrical conductivity.

또한, 본 발명에 의하여, 1) 그라펜을 용매에 분산시키는 단계; 2) 상기 용매에 산화알루미늄 전구체인 알콕시드의 탄소수가 1 내지 6인 알루미늄 알콕시드를 투입하여 혼합하는 단계; 3) 상온에서 숙성시키는 단계; 4) 형성된 콜로이드 용액을 여과시키는 단계; 5) 여과물을 건조시키는 단계; 및 6) 건조된 여과물을 400 내지 1300℃으로 가열된 전기로에 투입하고 유지시키는 단계로 이루어진 산화알루미늄이 코팅된 그라펜의 제조방법이 제공된다. 상기 용매는 바람직하게는 N,N-디메틸포름아미드(DMF), N,N-디메틸아세트아미드(DMAc), N-메틸피롤리돈(NMP), 테트라메틸우레아(TMU), 디메틸술폭사이드(DMSO) 또는 이들의 혼합물이다. 상기 알루미늄 알콕시드는 바람직하게는 알미늄에톡시드, 알미늄프로폭시드, 알미늄이소프로폭시드 또는 알미늄부톡시드이다. Further, according to the present invention, there is provided a process for preparing a graphene dispersion comprising: 1) dispersing graphene in a solvent; 2) adding the aluminum alkoxide having the carbon number of 1 to 6 of the alkoxide, which is the aluminum oxide precursor, to the solvent and mixing the mixture; 3) aging at room temperature; 4) filtering the formed colloidal solution; 5) drying the filtrate; And 6) charging and drying the dried filtrate into an electric furnace heated to 400 to 1300 캜, thereby providing an aluminum oxide-coated graphen. The solvent is preferably selected from the group consisting of N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), tetramethylurea (TMU), dimethylsulfoxide ) Or a mixture thereof. The aluminum alkoxide is preferably aluminum ethoxide, aluminum propoxide, aluminum isopropoxide or aluminum butoxide.

또한, 본 발명에 의하여, 상기의 방법으로 제조된 산화알루미늄이 코팅된 그라펜은 높은 열전도도와 낮은 전기전도도, 바람직하게는 10-2~10 S/cm의 전기전도도와 10~500 W/mㆍK의 열전도도(측정방법 Laser Flash법 또는 ASTM D5470)를 갖는다. 열전도도와 전기전도도는 분말 상태의 산화알루미늄가 코팅된 그라펜을 상온에서 0.6~0.9 g/cm3의 압착밀도가 유지될 때를 기준으로 한 것이다. According to the present invention, the aluminum oxide coated graphene produced by the above method has high thermal conductivity and low electric conductivity, preferably 10-2 to 10 S / cm and 10-500 W / m < 2 > K thermal conductivity (Laser Flash method or ASTM D5470). The thermal conductivity and electrical conductivity are based on when aluminum oxide coated graphenes are maintained at a compression density of 0.6 to 0.9 g / cm 3 at room temperature.

또한, 본 발명에 의하여, 매트릭스 물질 100 중량부와 산화알루미늄이 코팅된 그라펜 분말 0.1 내지 40 중량부를 포함하는 열전도성 나노복합재료가 제공된다. 산화알루미늄이 코팅된 그라펜 분말의 혼입량은 바람직하게는 1 내지 10 중량 부이다. 산화알루미늄이 코팅된 그라펜의 혼입량이 적으면 방열 효율이 효과적으로 발현되지 않으며, 과다한 경우는 재료의 기계적 강도가 약해지는 문제점이 있다. 복합재료는 메트릭스 물질을 용융한 후 산화알루미늄이 코팅된 그라펜 나노시트를 섞거나, 메트릭스 물질을 용매에 녹인 후 나노시트를 섞고 용매를 제거하는 등 다양한 방식으로 제조할 수 있다. 상기 산화알루미늄이 코팅된 그라펜 분말은 바람직하게는 상기 방법으로 제조된다. 상기 매트릭스 물질은 고분자로서, 예를 들면, 에폭시 수지, 폴리에스테르, 폴리아미드, 폴리스티렌, 폴리아크릴로니트릴, 폴리에틸렌, 폴리프로필렌과 이들의 혼합물, 또는 스티렌부타디엔고무(SBR), 폴리클로로프렌고무(CR), 니트릴고무NBR), 부틸고무(IIR), 부타디엔고무(BR), 이소프렌고무(IR), 우레탄 수지, 아크릴계 고분자, 실리콘계 고분자 물질이 있고 올리고머로서는, 예를 들면, 폴리에틸렌글리콜, 저분자 물질로는 지방산, 왁스 등이 있다. Further, according to the present invention, there is provided a thermally conductive nanocomposite material comprising 100 parts by weight of a matrix material and 0.1 to 40 parts by weight of graphene powder coated with aluminum oxide. The incorporation amount of the graphene powder coated with aluminum oxide is preferably 1 to 10 parts by weight. If the amount of the graphene coated with aluminum oxide is small, the heat dissipation efficiency is not effectively exhibited, and if it is excessive, the mechanical strength of the material becomes weak. The composite material may be prepared by various methods such as melting the matrix material, mixing the graphene nanosheet coated with the aluminum oxide, dissolving the matrix material in the solvent, mixing the nanosheet, and removing the solvent. The aluminum oxide coated graphene powder is preferably prepared by the above-mentioned method. The matrix material may be a polymer such as an epoxy resin, a polyester, a polyamide, a polystyrene, a polyacrylonitrile, a polyethylene, a polypropylene and a mixture thereof, or a styrene butadiene rubber (SBR), a polychloroprene rubber (CR) , Nitrile rubber NBR), butyl rubber (IIR), butadiene rubber (BR), isoprene rubber (IR), urethane resin, acrylic polymer and silicone polymer material. Examples of the oligomer include polyethylene glycol, , And wax.

상기 나노복합재료 조성물에서 조성 성분비는 고형물 기준이며 조성물 제조 시 사용되는 용매 및 분산액은 최종 나노복합재료에서 전부 증발 제거(건조)되는 것으로 간주한다.The composition ratio in the nanocomposite composition is based on solids, and the solvent and dispersion used in the preparation of the composition are considered to be completely evaporated (dried) in the final nanocomposite.

개질에 사용하는 그라펜은 산화흑연을 환원시켜 제조한 모든 그라펜을 포함한다. 산화흑연으로부터 제조한 대부분의 그라펜에는 산소를 포함하는 관능기들이 잔류하고 있어 산화알루미늄 전구체와의 물리, 화학적 결합이 용이하기 때문이다. 산화흑연을 환원시키는 데는 다양한 방법들이 활용될 수 있다. 예를 들면, 산화흑연을 순간적으로 고온으로 가열하여 산화흑연을 구성하는 층들을 팽윤 박리시켜 제조하는 열환원법, 산화흑연을 액체 매질에 분산시킨 후 하이드라진 등의 환원제를 사용하여 환원시키는 화학적 환원법 등이 있다. 열환원법에서는 산화 흑연을 순간적으로 300℃ 이상의 고온으로 가열하면 산화에 의해 생성된 표면의 관능기들이 환원 분해되어 생성되는 이산화탄소와 같은 기체생성물들이 순간적으로 기화하면서 산화흑연의 각 층들이 박리되어 그라펜이 만들어진다. 박리에 사용된 산화흑연의 산화 정도에 따라 박리되는 정도가 달라지며, 추가의 초음파 처리로 박리 정도를 향상시킬 수도 있다. 산화흑연에 부착되었던 관능기들이 분해 이탈되면서 이산화탄소를 발생하고도 일부 산소를 포함하는 관능기로 존재한다. 이들 잔존 관능기는 산화알루미늄 전구체와 물리적 혹은 화학적으로 결합하여 산화알루미늄이 그라펜 표면에 효과적으로 코팅되게 한다.      The graphenes used for the reforming include all graphenes produced by reducing oxidized graphite. Most of the graphenes prepared from graphite oxide have functional groups containing oxygen, which makes it easy to physically and chemically bond with the aluminum oxide precursor. Various methods can be utilized to reduce oxidized graphite. For example, a thermal reduction method in which graphite oxide is heated at a high temperature instantaneously to swell and peel off the layers constituting the graphite oxide, a chemical reduction method in which graphite oxide is dispersed in a liquid medium and then reduced using a reducing agent such as hydrazine have. In the thermal reduction method, when the graphite oxide is instantaneously heated to a temperature higher than 300 ° C., gaseous products such as carbon dioxide, which is generated by reduction and decomposition of functional groups on the surface generated by oxidation, instantaneously vaporize and each layer of graphite oxide is peeled off, Is made. The degree of peeling depends on the degree of oxidation of the graphite oxide used for peeling, and the degree of peeling can be improved by further ultrasonic treatment. The functional groups attached to the graphite oxide are decomposed and released to generate carbon dioxide, which is present as a functional group containing some oxygen. These residual functional groups are physically or chemically bonded to the aluminum oxide precursor to enable aluminum oxide to be effectively coated on the graphene surface.

상기 산화흑연은 흑연 분말을 질산, NaClO3, KClO3, KMnO4, 혹은 기타 산화제들을 단독 혹은 조합하여 사용하여 산화하여 제조하며, 전기화학적 방법으로 산화시켜 제조할 수도 있다. 산화흑연 분말 중 탄소/산소의 수의 비는 1~20/1 범위이나 산화정도에 따라 이보다 작거나 큰 값을 가질 수도 있다. 산화흑연 분말은 보통 층간 거리가 7Å 전후이므로 광각 X-선 회절 분석에서 2θ=13° 주위에서 피크를 나타내나, 산화정도와 수분의 흡수 정도에 따라 그 값들은 달라질 수 있다.The graphite oxide may be produced by oxidizing graphite powder with nitric acid, NaClO 3 , KClO 3 , KMnO 4 , or other oxidizing agents either singly or in combination, and oxidizing it by an electrochemical method. The ratio of the number of carbon / oxygen in the graphite powder ranges from 1 to 20/1, but it may be smaller or larger depending on the degree of oxidation. Since the graphite oxide powder usually has a thickness of about 7 Å, it shows a peak around 2θ = 13 ° in the wide-angle X-ray diffraction analysis, but the values may vary depending on the degree of oxidation and the degree of absorption of moisture.

개질 반응은 도 1에 나타낸 바와 같이 산화흑연을 환원하여 제조한 그라펜을 용매에 분산시킨 후, 산화알루미늄 전구체인 aluminum-tri-sec-butoxide를 투입하고 혼합하여 그라펜 표면에 산화알루미늄 전구체가 흡착되게 한다. 이를 물로 가수분해한 후 건조하여 표면에 수산화알루미늄이 코팅된 그라펜을 제조하고, 이를 고온의 로에 투입하여 탈수하여 산화알루미늄이 코팅된 그라펜을 제조한다. 산화알루미늄 전구체의 사용량은 생성될 산화알루미늄의 이론적 양이 그라펜 100 중량부 대비 5 내지 200 중량부 되도록 조절하며, 적절하게는 20 내지 100 중량부가 좋다. 전구체의 사용량이 적은 경우는 전기전도도의 감소가 효과적으로 이루어지지 못하며, 과다한 경우는 코팅되지 않은 여분의 산화알루미늄 분말의 생성이 많아지게 된다. 수산화알루미늄이 코팅된 그라펜으로부터 산화알루미늄이 코팅된 그라펜을 제조할 때, 서서히 가열하면 산화알루미늄이 코팅된 그라펜이 응집된 상태로 얻어지므로, 고온의 로에 순식간에 투입하여 순간적으로 발생하는 수증기의 압력에 의해 코팅된 그라펜 각각이 박리된 상태로 얻어지도록 하여야 한다. The reforming reaction is carried out by dispersing graphene produced by reducing oxidized graphite in a solvent as shown in Fig. 1, adding aluminum oxide trioxide-aluminum oxide precursor, aluminum tr- sec- butoxide, . This is hydrolyzed with water and then dried to prepare graphene coated with aluminum hydroxide on the surface thereof. The graphene is dewatered into a high-temperature furnace to prepare graphene coated with aluminum oxide. The amount of the aluminum oxide precursor to be used is adjusted so that the theoretical amount of aluminum oxide to be produced is 5 to 200 parts by weight, preferably 20 to 100 parts by weight, based on 100 parts by weight of the graphene. If the amount of the precursor used is small, the reduction of the electric conductivity is not effectively performed, and in the case of excessive use, the excess aluminum oxide powder not formed is increased. In the case of producing graphene coated with aluminum hydroxide from aluminum hydroxide-coated graphene, graphene coated with aluminum oxide is obtained in a coagulated state when heated slowly, so that water vapor which is instantaneously introduced into a high- So that each of the coated graphenes is obtained in a peeled state.

산화알루미늄으로 코팅한 그라펜은 표면에 극성을 가진 산소가 다량 존재하므로 여러 가지 고분자, 올리고머, 저분자 물질과의 혼화성이 좋아 복합재료를 효과적으로 제조할 수 있다. 그러므로 아크릴계 고분자, 실리콘계 고분자 등의 각종 고분자류와 섞어 열전도도가 좋은 고분자 복합재료를 제조할 수 있다. 또, 결정성이면서 녹음열이 큰 폴리에틸렌글리콜 등 올리고머 류, 지방산, 왁스 등 저분자 물질과 섞어 열전도도와 열저장성이 높은 고성능 열저장 방열 나노복합재료를 제조할 수 있다.Since graphen coated with aluminum oxide has a large amount of oxygen having a polarity on its surface, it has good compatibility with various polymers, oligomers, and low molecular materials, and thus a composite material can be effectively produced. Therefore, a polymer composite material having good thermal conductivity can be prepared by mixing with various kinds of polymers such as an acrylic polymer and a silicone polymer. In addition, a high-performance heat-storage heat-dissipating nanocomposite material having high thermal conductivity and heat storage property can be produced by mixing with a low-molecular material such as oligomers, fatty acids and waxes, such as polyethylene glycol, which is crystalline and has large recording heat.

본 발명에 의하여, 분산 상태를 유지하면서도 그라펜 표면에 산화알루미늄 코팅되어 열전도성이 좋으면서 전기전도성은 낮은 나노시트를 제조할 수 있으며, 이를 활용하여 방열성이 우수한 나노복합재료를 제조할 수 있다.According to the present invention, it is possible to produce a nanocomposite which is coated with aluminum oxide on the surface of graphene while maintaining a dispersed state and has good thermal conductivity and low electrical conductivity, and can produce a nanocomposite material excellent in heat dissipation.

도 1은 산화알루미늄이 코팅된 그라펜 시트의 제조 방법을 나타낸 모식도.
도2는 산화알루미늄이 코팅된 그라펜 시트의 형상: (a) 실시예 1, (b) 비교예 1.
도3은 산화알루미늄이 코팅된 그라펜 (실시예 1)의 표면 형상 ((a)와 (b))과 원소 맵핑 결과 (a-1: 탄소, a-2: 산소, a-3: 알루미늄)
도4는 광학현미경으로 관찰한 아크릴 고무 내에 그라펜이 분산된 형상: (a) 비교예 3, (b) 실시예 2.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a method for producing a graphene sheet coated with aluminum oxide. FIG.
2 shows the shape of the aluminum oxide coated graphene sheet: (a) Example 1, (b) Comparative Example 1.
Fig. 3 shows the results of surface mapping (a-1: carbon, a-2: oxygen, a-3: aluminum) of the surface shapes (a) and (b) of the aluminum oxide coated graphene (Example 1)
Fig. 4 shows the shape of the graphenes dispersed in the acrylic rubber observed with an optical microscope: (a) Comparative Example 3, (b) Example 2.

하기의 실시예에 의하여 본 발명을 예시하여 상세히 설명한다. 다만, 본 발명의 범위가 이러한 실시예에 한정되는 것으로 해석되어서는 아니된다.
The following examples illustrate the present invention in detail. However, the scope of the present invention should not be construed as being limited to these embodiments.

제조예Manufacturing example

그라펜의Graphene 제조 Produce

교반기, 온도계 등이 부착된 500 mL 반응조에 흑연분말 (팽창흑연, 평균입자크기 280 m) 10 g과 발연질산 200 mL를 투입하여 0℃를 유지하면서 교반하여 섞고, 이어서 염소산칼륨 85 g을 2 시간에 걸쳐 천천히 투입한 뒤, 상온에서 24 시간 동안 교반하면서 흑연을 산화시켰다. 산화된 흑연은 여과하여 거르고, pH가 6 정도 될 때까지 증류수로 세척하였다. 여과된 산화 흑연은 100℃ 진공에서 2일간 건조하였다. 원소분석결과 원자 조성은 C10O3 .45H1 . 58 이었다.10 g of graphite powder (expanded graphite, average particle size 280 m) and 200 mL of fuming nitric acid were added to a 500 mL reaction vessel equipped with a stirrer, a thermometer, and the like, followed by stirring and stirring at 0 ° C., followed by 85 g of potassium chlorate And then graphite was oxidized with stirring at room temperature for 24 hours. The oxidized graphite was filtered and filtered and washed with distilled water until the pH reached about 6. The filtered graphite oxide was dried in a vacuum of 100 캜 for 2 days. As a result of elemental analysis, the atomic composition was C 10 O 3 .45 H 1 . 58 .

상기 방법으로 제조된 건조한 산화흑연을 석영관에 넣고 질소 가스를 흘린 후 1100℃의 전기로에 1 분간 투입하여, 흑연의 각 층이 얇은 박판 형태의 대부분 박리된 그라펜을 얻었다. 그라펜의 원자 조성은 C10O0 .78H0 . 38 이었으며, 입자 평균 크기는 8.3 ㎛이었다. BET 법으로 질소흡착 거동으로부터 측정한 표면적은 428 m2/g 이었다.
The dried graphite oxide prepared in the above manner was put into a quartz tube, purged with nitrogen gas, and charged into an electric furnace at 1100 ° C for 1 minute to obtain most of the peeled graphene in the form of a thin sheet of graphite. The atomic composition of the graphene is C 10 O 0 .78 H 0 . 38 , and the average particle size was 8.3 탆. The surface area measured from the nitrogen adsorption behavior by the BET method was 428 m 2 / g.

실시예Example 1: 산화알루미늄이 코팅된  1: Aluminum oxide coated 그라펜Graphene (( AGAG ) 제조: 급속 가열법) Manufacturing: Rapid heating method

열환원법으로 제조한 그라펜(PG) 1.0g을 200mL 디메틸포름아미드 (DMF)에 분산시키고 1시간동안 초음파를 부가하여 분산을 증대시킨 후, aluminum-tri-sec-butoxide (ASB) 1.45g을 넣고 상온에서 1시간 충분히 교반하여 ASB가 그라펜 표면에 흡착되게 하였다. 이어서 물 0.32g을 투입하고 상온에서 1 시간 가량 교반하면서 ASB를 가수분해하여 수산화알루미늄이 형성되게 하고, 이 콜로이드 용액을 상온에서 1 시간 숙성한 후, 1 ㎛ 구멍 크기의 여과지로 거르고 아세톤으로 세척한 후, 걸러진 분말을 80℃ 진공에서 하루 동안 건조하였다. 상기 방법으로 제조된 수산화알루미늄이 코팅된 그라펜 분말을 석영관에 넣고 질소 가스를 흘린 후, 1100℃로 예열된 전기로에 순식간에 투입하고, 질소 분위기에서 25분간 유지하여, 수분이 발생하면서 수산화알루미늄이 산화알루미늄으로 변화하고 발생한 수분의 압력에 의해 각각의 그라펜이 응집되지 않고 박리되도록 하여 산화알루미늄이 코팅된 그라펜(AG)을 제조하였다.
1.0 g of graphene (PG) prepared by the thermal reduction method was dispersed in 200 mL of dimethylformamide (DMF) and ultrasonic wave was added for 1 hour to increase the dispersion. Then, 1.45 g of aluminum-tri- sec- butoxide (ASB) The mixture was sufficiently stirred at room temperature for 1 hour to cause ASB to be adsorbed on the graphene surface. Subsequently, 0.32 g of water was added, and ASB was hydrolyzed at room temperature for about 1 hour to allow aluminum hydroxide to form. The colloid solution was aged at room temperature for 1 hour, filtered through a filter having a pore size of 1 mu m, washed with acetone After filtering, the filtered powder was dried at 80 캜 under vacuum for one day. The graphene powder coated with aluminum hydroxide prepared by the above method was placed in a quartz tube and nitrogen gas was poured thereinto. The mixture was immediately put into an electric furnace preheated at 1100 ° C and kept in a nitrogen atmosphere for 25 minutes to produce aluminum hydroxide The graphene (AG) coated with aluminum oxide was prepared by changing the graphenes to aluminum oxide and peeling the graphenes without aggregation by the generated water pressure.

비교예Comparative Example 1: 산화알루미늄이 코팅된  1: Aluminum oxide coated 그라펜Graphene (( AGAG ) 제조: ) Produce: 완속Moderate 가열법 Heating method

실시예 1와 동일한 방법으로 산화알루미늄이 코팅된 그라펜을 제조하였다. 단 80℃ 진공에서 하루 동안 건조한 수산화알루미늄이 코팅된 분말을 석영관에 넣고 질소 가스를 흘린 후, 상온에서 20℃/min 가열속도로 1100℃까지 서서히 가열하여 산화알루미늄이 코팅된 그라펜을 제조하였다.
Graphene coated with aluminum oxide was prepared in the same manner as in Example 1. The powder coated with aluminum hydroxide dried in a vacuum of 80 캜 for one day was placed in a quartz tube and nitrogen gas was poured thereinto and then slowly heated at a rate of 20 캜 / min at a rate of 20 캜 / min to a temperature of 1100 캜 to produce aluminum oxide-coated graphene .

비교예Comparative Example 2: 아크릴 고무 시트의 제조 2: Production of acrylic rubber sheet

에폭시 가교점을 갖는 아크릴 고무 (TOA Acron AR-740) 100중량부와 가교제인 hexamethylenediamine carbamate 1.3중량부를 Plasti-Corder (PL2100)에 연결된 30 mL 용량의 Brabender mixer (W30)에 넣고 50℃에서 50rpm으로 10분간 섞었다. 이 혼합물을 170℃에서 5MPa의 압력으로 20분간 압축성형하고, 다시 추가로 170℃ 오븐에서 4시간 동안 가열 가교시켜 아크릴 고무 시트를 제조하였다.
100 parts by weight of an acrylic rubber (TOA Acron AR-740) having an epoxy cross-linking point and 1.3 parts by weight of hexamethylenediamine carbamate as a crosslinking agent were placed in a 30 mL capacity Brabender mixer (W30) connected to a Plasti-Corder (PL2100) Minute. The mixture was compression molded at 170 DEG C under a pressure of 5 MPa for 20 minutes, and further heat-crosslinked in an oven at 170 DEG C for 4 hours to prepare an acrylic rubber sheet.

비교예Comparative Example 3, 4, 5:  3, 4, 5: PGPG /아크릴 고무 복합재료 시트의 제조/ Manufacture of Acrylic Rubber Composite Sheet

비교예 2와 동일한 방법으로 제조하되, 아크릴 고무 100 중량부당 PG를 2중량부 (비교예 3), 3중량부 (비교예 4), 5중량부 (비교예 5) 혼입하여 PG/아크릴 고무 복합재료 시트를 제조하였다.
(Comparative Example 3), 3 parts by weight (Comparative Example 4) and 5 parts by weight (Comparative Example 5) per 100 parts by weight of acrylic rubber to prepare a PG / acrylic rubber composite A material sheet was prepared.

실시예Example 2, 3, 4:  2, 3, 4: AGAG /아크릴 고무 복합재료 시트의 제조/ Manufacture of Acrylic Rubber Composite Sheet

비교예 2와 동일한 방법으로 제조하되, 아크릴 고무 100 부당 AG를 각각 2중량부 (실시예 2), 3중량부 (실시예 3), 5중량부 (실시예 4) 혼입하여 AG/아크릴 고무 복합재료 시트를 제조하였다.
(AG) / acrylic rubber compound (A) was prepared by mixing 2 parts by weight (Example 2), 3 parts by weight (Example 3) and 5 parts by weight (Example 4) of AG per 100 parts of acrylic rubber, A material sheet was prepared.

평가분석Evaluation analysis

1) 그라펜의 형상과 전도도 분석1) Analysis of shape and conductivity of graphene

도 2에 실시예 1 (도 2(a))과 비교예 1 (도 2(b))에서 제조한 산화알루미늄이 코팅된 그라펜 (AG)의 형상을 주사전자현미경 (SEM)으로 관찰하여 나타내었는데, 수산화알루미늄이 코팅된 그라펜을 급속히 가열한 경우 (실시예 1)는 AG가 미세한 분말 형태로 얻어지나, 서서히 가열한 경우(비교예 1)는 응집되어 있음을 볼 수 있다.     FIG. 2 shows the shape of graphene (AG) coated with aluminum oxide prepared in Example 1 (FIG. 2A) and Comparative Example 1 (FIG. 2B) by scanning electron microscope (SEM) However, when graphene coated with aluminum hydroxide was rapidly heated (Example 1), AG was obtained in the form of fine powder, whereas when it was heated slowly (Comparative Example 1), it was found that the grains were agglomerated.

도 3에 AG를 SEM으로 관찰한 형상과 표면의 원소분포를 맵핑한 결과를 나타내었다. 도 3(a)와 (b)에서 판상의 그라펜에 산화알루미늄이 코팅된 형상과 일부 여분의 산화알루미늄이 작은 입자로 존재하는 모양을 볼 수 있다. 도 3(a-1)에서 탄소가, 도 3(a-2)에서 산소가, 그리고 도 3(a-3)에서 알루미늄이 각각 하얀 점으로 골고루 분포함을 볼 수 있다. 이 결과는 산화알루미늄이 그라펜 표면에 얇게 골고루 코팅되어 있음을 보여준다.     Fig. 3 shows the mapping results of the shape of the AG observed by SEM and the element distribution of the surface. In FIGS. 3 (a) and 3 (b), a shape in which plate-shaped graphenes are coated with aluminum oxide and a shape in which some extra aluminum oxide is present as small particles can be seen. It can be seen that carbon in FIG. 3 (a-1), oxygen in FIG. 3 (a-2) and aluminum in FIG. 3 (a-3) This result shows that aluminum oxide is thinly and uniformly coated on the surface of the graphene.

개질하기 전의 그라펜(PG)을 상온에서 압착하여 밀도 0.7 g/cm3의 시료를 만들어 전도도를 측정한 결과 33.6 S/cm의 전도도를 가졌으나 AG는 2.5 S/cm의 전도도를 가졌다. 이 결과는 산화알루미늄의 코팅에 의해 그라펜의 전도도가 크게 감소하였음을 보여준다.
The conductivity of graphene (PG) before compression was measured at room temperature to make a density of 0.7 g / cm 3. The conductivity was measured to be 33.6 S / cm, while the conductivity was 2.5 S / cm. The results show that the conductivity of the graphene is greatly reduced by the coating of aluminum oxide.

2) 그라펜/아크릴 고무 복합재료의 분석 2) Analysis of graphene / acrylic rubber composites

도 4(a)에 비교예 3에서 제조한, 그리고 도 4(b)에는 실시예 2에서 제조한 그라펜/아크릴 고무 복합재료를 광학현미경으로 관찰한 형상을 나타내었는데, 실시예 2 (도 4(b)) 시료에서의 그라펜의 분산 (검은 색)이 비교예 3 (도 4(a)) 시료에서의 분산보다 양호함을 볼 수 있다. 이 결과는 그라펜 표면에 산화알루미늄이 코팅된 경우 극성을 가진 산소 원자가 아크릴 고무와의 물리적 상호작용을 증대시켜 아크릴 고무 내에서의 그라펜 분산이 향상됨을 보여준다.      4 (a) and 4 (b) show the graphene / acrylic rubber composite material prepared in Example 2 with an optical microscope. In Example 2 (Fig. 4 (b)), the dispersion of graphene in the sample (black) is better than that in Comparative Example 3 (Fig. 4 (a)). These results show that when aluminum oxide is coated on the surface of graphene, the oxygen atom having polarity increases the physical interaction with the acrylic rubber, thereby improving the dispersion of graphene in the acrylic rubber.

표 1에 그라펜/아크릴 고무 복합재료의 인장물성을 나타내었는데, 아크릴 고무 자체(비교예 2)에 비해 그라펜의 충진량이 증가함에 따라 모듈러스가 크게 증가함을 볼 수 있으며, 이러한 증가는 PG를 첨가한 경우(비교예 3~5) 보다 AG를 첨가한 경우 (실시예 2~4)가 더 뚜렷함을 볼 수 있다. 이는 앞의 광학현미경으로 관찰한 형상에서 보는 바와 같이 AG가 아크릴 고무 내에서 PG보다 잘 분산되어 보강효과를 효과적으로 발현하기 때문이다.      Table 1 shows the tensile properties of the graphene / acrylic rubber composite material. Compared with the acrylic rubber itself (Comparative Example 2), the modulus increases markedly as the amount of graphene filling increases. (Examples 2 to 4) was more pronounced in the case of adding AG (Comparative Examples 3 to 5). This is because AG is dispersed better than PG in acrylic rubber, as seen from the shape observed with the above optical microscope, effectively exhibiting the reinforcing effect.

또 표 1에서 그라펜의 충진량이 증가함에 따라 열전도도가 증가함을 볼 수 있으며, 이러한 증가는 PG를 첨가한 경우(비교예 3~5) 보다 AG를 첨가한 경우 (실시예 2~4)가 더 뚜렷함을 볼 수 있다. 이는 앞의 광학현미경으로 관찰한 형상에서 보는 바와 같이 AG가 아크릴 고무 내에서 PG보다 잘 분산되어 열전달 향상효과를 효과적으로 발현하기 때문이다.      In Table 1, it can be seen that the thermal conductivity increases as the filling amount of graphene increases. This increase is more remarkable when the AG is added (Examples 2 to 4) than when PG is added (Comparative Examples 3 to 5) Can be seen more clearly. This is because, as seen from the shape observed with the above optical microscope, the AG is more dispersed in the acrylic rubber than the PG, effectively exhibiting the heat transfer enhancement effect.

표 1의 비교예 5에서 아크릴 고무 100 중량부 당 PG를 5 중량부 투입한 경우 비교예 2의 아크릴 고무 자체보다 전기전도도가 약 100 배 증가하는데 비해, 실시예 4에서 아크릴 고무 100부 당 AG를 5 중량부 투입한 경우는 전기전도도 증가가 거의 없음을 볼 수 있다. 이 결과는 산화알루미늄을 코팅한 그라펜 나노시트를 사용하는 경우 전기전도도의 큰 증가 없이 열전도도를 효과적으로 향상시킬 수 있음을 보여준다.
In Comparative Example 5 of Table 1, when the PG of 5 parts by weight was added per 100 parts by weight of the acrylic rubber, the electric conductivity of the acrylic rubber of Comparative Example 2 was about 100 times higher than that of the acrylic rubber of Comparative Example 2, When 5 parts by weight is added, the electrical conductivity is not substantially increased. These results show that the use of graphene nanosheets coated with aluminum oxide can effectively improve thermal conductivity without a significant increase in electrical conductivity.

그라펜/아크릴 고무 복합재료의 물성들Properties of graphene / acrylic rubber composites 실시예Example 100%신도에서의 모듈러스
(MPa)
Modulus at 100% elongation
(MPa)
열전도도(S/cm)Thermal conductivity (S / cm) 전기전도도(W/mㆍk)Electric conductivity (W / m · k)
비교예 2Comparative Example 2 1.02±0.071.02 + 0.07 0.1730.173 1.13×10-11 1.13 × 10 -11 비교예 3Comparative Example 3 1.50±0.081.50 0.08 0.1870.187 1.43×10-11 1.43 × 10 -11 비교예 4Comparative Example 4 2.58±0.062.58 ± 0.06 0.2030.203 1.60×10-11 1.60 × 10 -11 비교예 5Comparative Example 5 2.65±0.062.65 ± 0.06 0.2470.247 1.82×10-9 1.82 × 10 -9 실시예 2Example 2 2.10±0.092.10 ± 0.09 0.2110.211 9.72×10-12 9.72 × 10 -12 실시예 3Example 3 2.77±0.082.77 ± 0.08 0.2350.235 9.84×10-12 9.84 × 10 -12 실시예 4Example 4 5.82±0.095.82 ± 0.09 0.2680.268 1.32×10-11 1.32 × 10 -11

Claims (9)

1) 그라펜을 용매에 분산시키는 단계; 2) 상기 용매에 산화알루미늄 전구체인 알콕시드의 탄소수 1 내지 6인 알루미늄 알콕시드를 투입하여 혼합하는 단계; 3) 상온에서 숙성시키는 단계; 4) 형성된 콜로이드 용액을 여과시키는 단계; 5) 여과물을 건조시키는 단계; 및 6) 건조된 여과물을 400 내지 1300℃으로 가열된 전기로에 투입하고 유지시키는 단계로 이루어진 산화알루미늄이 코팅된 그라펜의 제조방법 1) dispersing graphene in a solvent; 2) adding the aluminum alkoxide having 1 to 6 carbon atoms of the alkoxide, which is an aluminum oxide precursor, to the solvent and mixing the mixture; 3) aging at room temperature; 4) filtering the formed colloidal solution; 5) drying the filtrate; And 6) feeding the dried filtrate into an electric furnace heated to 400 to 1300 캜 and holding the aluminum filter-coated graphene 제1항에 있어서, 상기 그라펜은 산화흑연을 열환원법에 의하여 제조하는 산화알루미늄이 코팅된 그라펜의 제조방법The graphene according to claim 1, wherein the graphene is produced by a method of producing aluminum oxide-coated graphene, which is produced by a thermal reduction method 제1항에 있어서, 상기 용매가 N,N-디메틸포름아미드(DMF)이고 상기 알루미늄 알콕시드가 알미늄-tri-sec-부톡시드인 산화알루미늄이 코팅된 그라펜의 제조방법The process for producing graphene according to claim 1, wherein the solvent is N, N-dimethylformamide (DMF) and the aluminum alkoxide is aluminum-tri-sec-butoxide 0.6~0.9 g/cm3의 압착밀도에서 10-2~10 S/cm의 전기전도도와 10~500 W/mㆍK의 열전도도를 갖는 산화알루미늄이 코팅된 그라펜Coated graphene having an electrical conductivity of 10-2 to 10 S / cm and a thermal conductivity of 10 to 500 W / m 占 에서 at a compression density of 0.6 to 0.9 g / 삭제delete 매트릭스 물질 100 중량부와 산화알루미늄이 코팅된 그라펜 분말 0.1 내지 40중량부를 포함하는 열전도성 나노복합재료에 있어서, 상기 산화알루미늄이 코팅된 그라펜 분말이 0.6~0.9 g/cm3의 압착밀도에서 10-2~10 S/cm의 전기전도도와 10~500 W/mㆍK의 열전도도를 갖는 열전도성 나노복합재료A thermoconductive nanocomposite material comprising 100 parts by weight of a matrix material and 0.1 to 40 parts by weight of an aluminum oxide coated graphene powder, wherein the aluminum oxide coated graphene powder has a density of 10 to 10 g / cm < 3 & Thermoconductive nanocomposites with an electrical conductivity of -2 to 10 S / cm and a thermal conductivity of 10 to 500 W / m · K 제6항에 있어서, 상기 매트릭스 물질이 우레탄계 고분자, 아크릴계 고분자, 또는 실리콘계 고분자인 열전도성 나노복합재료7. The method of claim 6, wherein the matrix material is a urethane polymer, an acrylic polymer, or a thermally conductive nanocomposite material 제6항에 있어서, 상기 매트릭스 물질이 폴리에틸렌글리콜인 나노복합재료The method of claim 6, wherein the matrix material is polyethylene glycol nanocomposite material 제6항에 있어서, 상기 매트릭스 물질이 지방산 또는 왁스인 나노복합재료
7. The method of claim 6, wherein the matrix material is a fatty acid or a wax nanocomposite material
KR20130113961A 2013-09-25 2013-09-25 Graphene coated with aluminum oxide, preparative method threrefor and nano-composite containing the same KR101484304B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20130113961A KR101484304B1 (en) 2013-09-25 2013-09-25 Graphene coated with aluminum oxide, preparative method threrefor and nano-composite containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130113961A KR101484304B1 (en) 2013-09-25 2013-09-25 Graphene coated with aluminum oxide, preparative method threrefor and nano-composite containing the same

Publications (1)

Publication Number Publication Date
KR101484304B1 true KR101484304B1 (en) 2015-01-20

Family

ID=52590955

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130113961A KR101484304B1 (en) 2013-09-25 2013-09-25 Graphene coated with aluminum oxide, preparative method threrefor and nano-composite containing the same

Country Status (1)

Country Link
KR (1) KR101484304B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160116711A (en) * 2015-03-31 2016-10-10 한양대학교 산학협력단 Graphene oxide coated with metal oxide nanoparticles/polymer composite and preparation method thereof
CN109761584A (en) * 2018-12-29 2019-05-17 江南大学 A kind of graphene oxide hydridization aluminium oxide Preparing Anti-corrosion Ceramic Coating and preparation method
CN110819018A (en) * 2019-10-10 2020-02-21 山东鲁泰控股集团有限公司石墨烯高分子复合材料研发中心 Preparation method of high-thermal-conductivity filler for thermal-conductivity polymer material
CN113629350A (en) * 2021-08-06 2021-11-09 东莞塔菲尔新能源科技有限公司 Power battery heat-conducting coating diaphragm and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110016287A (en) * 2009-08-11 2011-02-17 고양미 Coating method with colloidal graphine oxides
KR20130040541A (en) * 2011-10-14 2013-04-24 한국기초과학지원연구원 Composite of graphene and metal oxide for negative active material of rechargeable lithium battery and preparing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110016287A (en) * 2009-08-11 2011-02-17 고양미 Coating method with colloidal graphine oxides
KR20130040541A (en) * 2011-10-14 2013-04-24 한국기초과학지원연구원 Composite of graphene and metal oxide for negative active material of rechargeable lithium battery and preparing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160116711A (en) * 2015-03-31 2016-10-10 한양대학교 산학협력단 Graphene oxide coated with metal oxide nanoparticles/polymer composite and preparation method thereof
KR101701238B1 (en) * 2015-03-31 2017-02-01 한양대학교 산학협력단 Graphene oxide coated with metal oxide nanoparticles/polymer composite and preparation method thereof
CN109761584A (en) * 2018-12-29 2019-05-17 江南大学 A kind of graphene oxide hydridization aluminium oxide Preparing Anti-corrosion Ceramic Coating and preparation method
CN109761584B (en) * 2018-12-29 2022-01-07 江南大学 Graphene oxide hybrid aluminum oxide corrosion-resistant ceramic coating and preparation method thereof
CN110819018A (en) * 2019-10-10 2020-02-21 山东鲁泰控股集团有限公司石墨烯高分子复合材料研发中心 Preparation method of high-thermal-conductivity filler for thermal-conductivity polymer material
CN113629350A (en) * 2021-08-06 2021-11-09 东莞塔菲尔新能源科技有限公司 Power battery heat-conducting coating diaphragm and preparation method thereof

Similar Documents

Publication Publication Date Title
US10131752B2 (en) Polymer nanocomposites
KR101114414B1 (en) Method for forming graphene nano sheet
Ye et al. Enhanced dielectric property and energy density in poly (vinylidene fluoride-chlorotrifluoroethylene) nanocomposite incorporated with graphene functionalized with hyperbranched polyethylene-graft-poly (trifluoroethyl methacrylate) copolymer
Shen et al. Anisotropic electrical conductivity in polymer derived ceramics induced by graphene aerogels
JP2003112915A (en) Graphitized carbon powder and heat conductive composite material composition
KR101484304B1 (en) Graphene coated with aluminum oxide, preparative method threrefor and nano-composite containing the same
JP5092341B2 (en) Insulated ultrafine powder and high dielectric constant resin composite material
CN108997754B (en) Polyimide high-temperature dielectric composite film and preparation method thereof
KR101252224B1 (en) modified graphene and nano- composite material containing the same
KR101931227B1 (en) Sulfur doped Reduced Graphene Oxide preparing method and the electromagnetic wave shielding material using the same and preparing method thereof
Wu et al. Layer‐by‐Layer Assembly of Multifunctional NR/MXene/CNTs Composite Films with Exceptional Electromagnetic Interference Shielding Performances and Excellent Mechanical Properties
JP2019001701A (en) Carbon-modified boron nitride, production method thereof and high thermal conducting resin composition
Fang et al. NH 2-functionalized carbon-coated Fe 3 O 4 core–shell nanoparticles for in situ preparation of robust polyimide composite films with high dielectric constant, low dielectric loss, and high breakdown strength
WO2015156396A1 (en) Clay-graphite composite and method for producing same
JP2013136658A (en) Thermally conductive filler
Liu et al. Crystalline properties, dielectric response and thermal stability of in-situ reduced graphene oxide/poly (vinylidene fluoride) nanocomposites
WO2018230638A1 (en) Carbon-modified boron nitride, method for producing same, and highly heat-conductive resin composition
KR101473432B1 (en) Method for fabricating graphite
CN110964219B (en) Nano cellulose membrane with high thermal conductivity and preparation method thereof
KR100532032B1 (en) Process for the preparation of nano-composite material
JP6592766B2 (en) Graphene-coated aluminum nitride filler, production method thereof, electronic material, resin composite, and hydrophobic treatment method
KR101471397B1 (en) Method for fabricating graphite
JP6426582B2 (en) Porous carbon
Li et al. Fabrication and properties of PVDF/expanded graphite nanocomposites
KR101527164B1 (en) Thermal conductive hybrid composite and preparation methods thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180111

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181226

Year of fee payment: 5