KR101419052B1 - Method for regenerating catalyst for the production of methacrylic acid and process for preparing methacrylic acid - Google Patents

Method for regenerating catalyst for the production of methacrylic acid and process for preparing methacrylic acid Download PDF

Info

Publication number
KR101419052B1
KR101419052B1 KR1020070096701A KR20070096701A KR101419052B1 KR 101419052 B1 KR101419052 B1 KR 101419052B1 KR 1020070096701 A KR1020070096701 A KR 1020070096701A KR 20070096701 A KR20070096701 A KR 20070096701A KR 101419052 B1 KR101419052 B1 KR 101419052B1
Authority
KR
South Korea
Prior art keywords
catalyst
methacrylic acid
mixture
acid
methacrolein
Prior art date
Application number
KR1020070096701A
Other languages
Korean (ko)
Other versions
KR20080028808A (en
Inventor
준야 요시자와
요시히코 오히시
에이이치 시라이시
Original Assignee
스미또모 가가꾸 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스미또모 가가꾸 가부시끼가이샤 filed Critical 스미또모 가가꾸 가부시끼가이샤
Publication of KR20080028808A publication Critical patent/KR20080028808A/en
Application granted granted Critical
Publication of KR101419052B1 publication Critical patent/KR101419052B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/28Regeneration or reactivation
    • B01J27/285Regeneration or reactivation of catalysts comprising compounds of phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/64Liquid treating or treating in liquid phase, e.g. dissolved or suspended using alkaline material; using salts
    • B01J38/66Liquid treating or treating in liquid phase, e.g. dissolved or suspended using alkaline material; using salts using ammonia or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/215Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of saturated hydrocarbyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • B01J35/613
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Abstract

인 및 몰리브덴을 함유하는 헤테로폴리산 화합물을 포함하는 메타크릴산 제조용 촉매는 100 ℃ 이상의 온도에서 비활성 촉매, 암모늄 이온, 니트레이트 이온 및 물을 함유하는 혼합물을 열처리하는 단계; 및 그 다음 혼합물을 건조 및 소성시키는 단계를 포함하는 방법으로 재생된다. 재생된 촉매는 메타크릴산을 제조하기 위한 메타크롤레인, 이소부틸알데히드, 이소부탄 또는 이소부티르산의 기상 촉매 산화 반응에서 신규 촉매와 동일한 촉매 활성을 갖는다.A catalyst for the production of methacrylic acid comprising a heteropolyacid compound containing phosphorus and molybdenum comprises a step of heat-treating a mixture containing an inactive catalyst, ammonium ion, nitrate ion and water at a temperature of 100 ° C or higher; And then drying and calcining the mixture. The regenerated catalyst has the same catalytic activity as the novel catalyst in the gas-phase catalytic oxidation of methacrolein, isobutylaldehyde, isobutane or isobutyric acid to produce methacrylic acid.

메타크롤레인, 메타크릴산 Methacrolein, methacrylic acid

Description

메타크릴산 제조용 촉매의 재생 방법 및 메타크릴산의 제조 방법 {METHOD FOR REGENERATING CATALYST FOR THE PRODUCTION OF METHACRYLIC ACID AND PROCESS FOR PREPARING METHACRYLIC ACID}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating a catalyst for the production of methacrylic acid and a method for producing methacrylic acid,

본 발명은 메타크릴산 제조용 촉매의 재생 방법에 관한 것이다. 또한 본 발명은 상기 재생 방법으로 재생된 촉매를 이용한 메타크릴산의 제조 방법에 관한 것이다.The present invention relates to a method for regenerating a catalyst for producing methacrylic acid. The present invention also relates to a process for producing methacrylic acid using the catalyst regenerated by the regeneration method.

인 및 몰리브덴을 함유하는 헤테로폴리산을 포함하는 메타크릴산 제조용 촉매는, 열 부하 등으로 인해 촉매 활성이 감소되기 때문에, 원료로서 메타크롤레인 등을 이용하는 기상 촉매 산화 반응에서 촉매를 장기간 사용하는 경우 열화되는 것이 공지되어 있다.The catalyst for the production of methacrylic acid containing phosphorus and molybdenum-containing heteropolyacid is deteriorated when the catalyst is used for a long time in a gas-phase catalytic oxidation reaction using methacrolein as a raw material since the catalytic activity is reduced due to heat load or the like Are known.

비활성 촉매의 재생 방법으로서, JP-A-61-283352 에는 비활성 촉매를 물에 용해 또는 현탁시켜 암모늄 이온 및 니트레이트 이온을 함유하는 혼합물을 제조하는 단계, 및 그 다음 혼합물의 건조 및 소성 단계를 포함하는 방법이 개시되어 있다.JP-A-61-283352 discloses a method for regenerating an inert catalyst comprising dissolving or suspending an inert catalyst in water to prepare a mixture containing ammonium ions and nitrate ions, and then drying and calcining the mixture Is disclosed.

JP-A-63-130144 에는 비활성 촉매에 물의 첨가 단계, 그 다음 여기에 수성 암모니아의 첨가 단계, 40 내지 60 ℃ 온도에서 혼합물의 처리 후 건조 단계, 물에 생성 건조 생성물의 분산 단계, 여기에 질소 함유 헤테로고리성 화합물, 아민 또는 암모늄 카르보네이트의 첨가 단계, 40 내지 90 ℃ 온도에서 혼합물의 처리 단계, 및 혼합물의 건조 및 소성 단계를 포함하는 방법이 개시되어 있다.JP-A-63-130144 discloses a process for the production of a catalyst, which comprises the steps of adding water to an inert catalyst, followed by addition of aqueous ammonia, drying of the mixture at a temperature of 40 to 60 占 폚, Containing heterocyclic compound, an amine or ammonium carbonate, a treatment step of the mixture at a temperature of 40 to 90 DEG C, and a drying and calcination step of the mixture.

JP-A-60-232247 에는 물에 비활성 촉매의 분산 단계, 여기에 질소 함유 헤테로고리성 화합물 및 질산의 첨가 단계, 이들의 혼합 단계, 및 이후 혼합물의 건조 및 소성 단계를 포함하는 방법이 개시되어 있다.JP-A-60-232247 discloses a method comprising a step of dispersing an inactive catalyst in water, a step of adding nitrogen-containing heterocyclic compound and nitric acid thereto, a step of mixing them, and a step of drying and calcining the mixture thereafter have.

JP-A-2001-286762 에는 물에 비활성 촉매의 분산 단계, 그 다음 여기에 질소 함유 헤테로고리성 화합물 및 질산의 첨가 단계, 촉매로부터 사라진 구성 원소를 함유하는 화합물의 추가 첨가 단계, 이들의 혼합 단계, 및 이후 혼합물의 건조 및 소성 단계를 포함하는 방법이 개시되어 있다.JP-A-2001-286762 discloses a method comprising the steps of dispersing an inert catalyst in water, then adding a nitrogen-containing heterocyclic compound and nitric acid thereto, further adding a compound containing a constituent element disappeared from the catalyst, , And then drying and calcining the mixture.

JP-A-2001-286763 에는 물에 비활성 촉매의 분산 단계, 그 다음 여기에 질소 함유 헤테로고리성 화합물, 암모늄 니트레이트 및 질산의 첨가 단계, 이들의 혼합 단계, 및 이후 혼합물의 건조 및 소성 단계를 포함하는 방법이 개시되어 있다.JP-A-2001-286763 discloses the steps of dispersing an inactive catalyst in water, followed by the addition of a nitrogen-containing heterocyclic compound, ammonium nitrate and nitric acid, a mixing step thereof, and a subsequent drying and calcination step Are disclosed.

그러나, 종래 기술에 개시된 재생 방법의 촉매 활성 - 회복 효과는 항상 충분하지는 않고, 재생 촉매의 촉매 활성 및 촉매 활성의 내구성은 항상 만족스럽지는 않다.However, the catalytic activity-recovery effect of the regeneration process disclosed in the prior art is not always sufficient, and the catalytic activity of the regenerated catalyst and the durability of the catalytic activity are not always satisfactory.

본 발명의 목적은, 비활성 촉매의 촉매 활성을 효과적으로 회복하고 촉매에 우수한 내구성을 부여할 수 있는, 메타크릴산 제조용 촉매의 재생 방법을 제공하는 것이다.An object of the present invention is to provide a regeneration method of a catalyst for the production of methacrylic acid, which can effectively recover the catalytic activity of an inactive catalyst and impart excellent durability to the catalyst.

본 발명의 또다른 목적은 상기 재생 방법으로 재생된 촉매를 이용하여 메타크릴산을 높은 전환율 및 우수한 선택율로 제조하는 방법을 제공하는 것이다.It is still another object of the present invention to provide a method for producing methacrylic acid with a high conversion and an excellent selectivity using a catalyst regenerated by the regeneration method.

본 발명자들은 예의 연구 결과, 비활성 촉매, 암모늄 이온, 니트레이트 이온 및 물을 함유하는 혼합물을 소정 온도 이상에서 열처리시키고, 그 다음 혼합물을 건조 및 소성시킴으로써 상기 목적을 달성할 수 있음을 알아냈고, 본 발명을 완성하였다.As a result of intensive studies, the present inventors have found that the above object can be achieved by heat-treating a mixture containing an inactive catalyst, an ammonium ion, a nitrate ion and water at a predetermined temperature or higher and then drying and firing the mixture, Thereby completing the invention.

따라서, 본 발명은 인 및 몰리브덴을 함유하는 헤테로폴리산 화합물을 포함하는 메타크릴산 제조용 촉매의 재생 방법으로서, 100 ℃ 이상의 온도에서 비활성 촉매, 암모늄 이온, 니트레이트 이온 및 물을 함유하는 혼합물을 열처리하는 단계 및 그 다음 혼합물을 건조 및 소성시키는 단계를 포함하는 방법을 제공한다.Accordingly, the present invention relates to a method for regenerating a catalyst for the production of methacrylic acid comprising a heteropoly acid compound containing phosphorus and molybdenum, comprising the step of heat-treating a mixture containing an inactive catalyst, ammonium ion, nitrate ion and water at a temperature of 100 캜 or higher And then drying and calcining the mixture.

또한, 본 발명은 본 발명에 따른 재생 방법에 의해 메타크릴산 제조용 촉매를 재생시키는 단계 및 그 다음 재생 촉매의 존재하에서, 메타크롤레인, 이소부틸알데히드, 이소부탄 및 이소부티르산으로 이루어진 군으로부터 선택된 화합물을 기상 촉매 산화 반응시키는 단계를 포함하는 메타크릴산의 제조 방법을 제공한다.The present invention also relates to a process for producing methacrylic acid by regenerating a catalyst for the production of methacrylic acid by the regeneration method according to the present invention, and then, in the presence of a regenerated catalyst, a compound selected from the group consisting of methacrolein, isobutylaldehyde, isobutane and isobutyric acid To a vapor-phase catalytic oxidation reaction of the methacrylic acid.

본 발명에 따르면, 메타크릴산 제조용 비활성 촉매의 활성을 효과적으로 회복시킬 수 있고, 촉매 활성의 양호한 내구성도 회복시킬 수 있다. 또한, 상기 수득된 재생 촉매를 사용하여 메타크릴산을 높은 전환율 및 우수한 선택율로 제조할 수 있다.According to the present invention, the activity of the inactive catalyst for methacrylic acid production can be effectively restored, and the durability with good catalytic activity can be restored. Further, methacrylic acid can be produced at a high conversion ratio and a good selectivity using the obtained recycled catalyst.

본 발명의 방법으로 재생되는, 메타크릴산 제조용 촉매는 인 및 몰리브덴을 함유하는 헤테로폴리산 화합물을 필수 원소로서 포함하고, 유리 헤테로폴리산 또는 헤테로폴리산의 염을 포함할 수 있다. 특히, 상기 촉매는 바람직하게는 헤테로폴리산의 산 염 (즉 부분적으로 중화된 염), 더욱 바람직하게는 케긴(Keggin)형 헤테로폴리산의 산 염을 포함한다.The catalyst for the production of methacrylic acid, which is regenerated by the process of the present invention, contains a heteropoly acid compound containing phosphorus and molybdenum as essential elements and may contain a free heteropoly acid or a salt of heteropoly acid. In particular, the catalyst preferably comprises an acid salt of a heteropoly acid (i.e., a partially neutralized salt), more preferably an acid salt of a Keggin-type heteropoly acid.

인 및 몰리브덴 이외에, 상기 촉매는 바람직하게는 바나듐을 부가 원소로서, 또는 칼륨, 루비듐, 세슘 및 탈륨으로 이루어진 군으로부터 선택되는 하나 이상의 원소 (이후 때때로 원소 X 로 언급됨), 또는 구리, 비소, 안티몬, 붕소, 은, 비스무트, 철, 코발트, 란탄 및 세륨으로 이루어진 군으로부터 선택되는 하나 이상의 원소 (이후 때때로 원소 Y 로 언급됨) 를 함유한다. 바람직하게는, 촉매는, 몰리브덴 12 원자 당, 인, 바나듐, 원소 X 및 원소 Y 각각을 3 원자 이하 함유한다.In addition to phosphorus and molybdenum, the catalyst preferably comprises vanadium as an additional element or at least one element (hereinafter sometimes referred to as element X) selected from the group consisting of potassium, rubidium, cesium and thallium, or copper, arsenic, (Hereinafter sometimes referred to as element Y) selected from the group consisting of boron, silver, bismuth, iron, cobalt, lanthanum and cerium. Preferably, the catalyst contains three or less atoms of each of 12 elements of molybdenum, phosphorus, vanadium, element X and element Y, respectively.

상기 메타크릴산 제조용 촉매가 메타크릴산 제조에 사용되거나, 또는 열 이력을 직면하는 경우, 촉매의 활성 부위가 분해될 수 있거나, 또는 촉매의 비표면적이 감소될 수 있다. 결국, 촉매 활성이 감소된다. 본 발명에서, 촉매 활성이 감소된 비활성 촉매가 재생 처리의 대상이다. 촉매의 분해된 생성물로서 삼산화몰리브덴이 X-선 회절 (XRD) 로 검출되는지 여부를 측정함으로써 활성 부위의 분해를 확인할 수 있고, BET 비표면적을 평가함으로써 촉매의 비표면적을 측정할 수 있다.If the catalyst for methacrylic acid production is used for the production of methacrylic acid or faces a thermal history, the active site of the catalyst may be decomposed or the specific surface area of the catalyst may be reduced. As a result, the catalytic activity is reduced. In the present invention, an inactive catalyst with reduced catalytic activity is subject to regeneration treatment. By measuring whether or not molybdenum trioxide as a decomposed product of the catalyst is detected by X-ray diffraction (XRD), the decomposition of the active site can be confirmed, and the specific surface area of the catalyst can be measured by evaluating the BET specific surface area.

재생 처리에서는, 비활성 촉매, 암모늄 이온, 니트레이트 이온 및 물을 함유하는 혼합물을 먼저 제조한다. 혼합물의 제조 방법은 제한이 없다. 예를 들어, 비활성 촉매를 물에 현탁시킨 후, 암모늄 이온 및 니트레이트 이온의 공급 재료를 첨가할 수 있거나, 또는 비활성 촉매를 암모늄 이온 및 니트레이트 이온을 함유하는 수용액에 현탁시킬 수 있다.In the regeneration process, a mixture containing an inactive catalyst, an ammonium ion, a nitrate ion and water is first prepared. There is no limitation on the method of preparing the mixture. For example, after the inactive catalyst is suspended in water, a feed material of ammonium ions and nitrate ions may be added, or an inert catalyst may be suspended in an aqueous solution containing ammonium ions and nitrate ions.

비활성 촉매가 성형된 촉매인 경우에는, 그대로 현탁시킬 수 있거나, 또는 분쇄시키고 그 다음 현탁시킬 수 있다. 강화 재료로서의 섬유 등이 성형된 촉매에 함유되는 경우, 섬유 등이 절단되거나 파단되면 촉매의 강도가 감소될 수 있다. 그래서, 성형된 촉매는 바람직하게는 섬유 등의 절단 또는 파단 없이 분쇄시킨다.If the inactive catalyst is a shaped catalyst, it can be suspended as it is, or it can be ground and then suspended. When the fiber or the like as the reinforcing material is contained in the shaped catalyst, the strength of the catalyst may be reduced when the fibers are cut or broken. Thus, the shaped catalyst is preferably pulverized without breaking or breaking of the fibers.

암모늄 이온의 공급 재료의 예는 암모니아 및 암모늄 염, 예컨대 질산암모늄, 탄산암모늄, 탄산수소암모늄 및 아세트산암모늄, 바람직하게는 암모니아 및 질산 암모늄을 포함한다. 니트레이트 이온의 공급 재료의 예는 질산 및 니트레이트, 예컨대 질산암모늄, 바람직하게는 질산 및 질산암모늄을 포함한다. 상기 공급 재료의 양은, 혼합물에서 몰리브덴 12 몰 당, 암모늄 이온의 양이 통상 약 0.1 내지 15 몰이고 니트레이트 이온의 양이 통상 약 0.1 내지 15 몰이도록 적절히 선택한다.Examples of the supply material of ammonium ions include ammonia and ammonium salts such as ammonium nitrate, ammonium carbonate, ammonium hydrogencarbonate and ammonium acetate, preferably ammonia and ammonium nitrate. Examples of feed materials for nitrate ions include nitric acid and nitrates, such as ammonium nitrate, preferably nitric acid and ammonium nitrate. The amount of the feed material is appropriately selected such that the amount of ammonium ion is usually about 0.1 to 15 moles and the amount of nitrate ions is usually about 0.1 to 15 moles, per 12 moles of molybdenum in the mixture.

물의 공급원으로서는, 이온 교환수를 통상 사용한다. 물의 사용량은 혼합물에서 몰리브덴 1 중량부 당 통상 1 내지 20 중량부이다.As a supply source of water, ion exchange water is usually used. The amount of water used is usually 1 to 20 parts by weight per 1 part by weight of molybdenum in the mixture.

본 발명에서는, 혼합물을 100 ℃ 이상의 온도에서 열처리로 숙성시킨다. 상기 열처리 단계를 통해, 촉매의 분해된 생성물로서 삼산화몰리브덴을 촉매를 재구성하는 성분으로 전환시키고, 그 다음 촉매 활성 및 이의 내구성을 효과적으로 회복한다.In the present invention, the mixture is aged by heat treatment at a temperature of 100 ° C or higher. Through the heat treatment step, the molybdenum trioxide as the decomposed product of the catalyst is converted to a component for reconstituting the catalyst, and then effectively restores the catalytic activity and its durability.

상기 열처리는 통상 밀폐 용기에서 실시할 수 있다. 열처리를 정상 압력에서, 감압하 또는 가압하에 실시할 수 있다.The heat treatment can be usually carried out in an airtight container. The heat treatment can be carried out at normal pressure, under reduced pressure or under pressure.

열처리 시간은 통상 0.1 시간 이상, 바람직하게는 2 시간 이상, 더욱 바람직하게는 2 내지 10 시간이다. 열처리 시간이 0.1 시간 미만인 경우, 촉매 활성의 회복 효과를 충분하게 달성할 수 없다. 생산성의 관점으로부터, 열처리 시간은 바람직하게는 10 시간 이하이다.The heat treatment time is usually 0.1 hour or more, preferably 2 hours or more, more preferably 2 to 10 hours. If the heat treatment time is less than 0.1 hour, the effect of recovering the catalytic activity can not be sufficiently attained. From the viewpoint of productivity, the heat treatment time is preferably 10 hours or less.

본 발명에서는, 열처리 후, 혼합물을 건조시키고 그 다음 소성시키고, 이에 의해 재생 촉매를 수득할 수 있다.In the present invention, after the heat treatment, the mixture is dried and then calcined, whereby a regenerated catalyst can be obtained.

혼합물의 건조는 본 기술 분야에서 사용되는 임의 종래 방법, 예를 들어, 증발 건조, 분무 건조, 드럼 건조, 플래시 건조 등으로 실시할 수 있다. 필요하면, 성형 보조제를 이용하여, 상기 건조 방법으로 수득된 건조 생성물을 바람직하게는 원통, 구 또는 고리의 형태로 성형할 수 있다.Drying of the mixture can be carried out by any conventional method used in the art, for example, evaporation drying, spray drying, drum drying, flash drying and the like. If necessary, the dry product obtained by the above-mentioned drying method can be preferably molded into the form of a cylinder, a sphere or a ring using a molding aid.

이후, 건조된 또는 성형된 생성물을 소성시켜 재생 촉매를 수득할 수 있다. 상기 소성은 산화 기체 예컨대 산소의 분위기에서, 또는 비(非)산화 기체, 예컨대 질소의 분위기에서 실시할 수 있고, 바람직하게는 300 ℃ 이상의 온도에서 실시한다. 상기 소성 전, 생성물을 산화 기체 또는 비산화 기체중에서 약 180 내지 300 ℃ 의 온도에서 유지시킴으로써 열처리 (예비 소성)을 실시하는 것이 바람직하다.The regenerated catalyst can then be obtained by calcining the dried or molded product. The firing can be carried out in an atmosphere of an oxidizing gas such as oxygen, or in an atmosphere of a non-oxidizing gas such as nitrogen, preferably at a temperature of 300 ° C or higher. It is preferable that the heat treatment (preliminary firing) is carried out by holding the product at a temperature of about 180 to 300 DEG C in an oxidizing gas or a non-oxidizing gas before the firing.

상기 수득된 재생 촉매는 헤테로폴리산 화합물을 포함하고, 유리 헤테로폴리산 또는 헤테로폴리산의 염을 포함할 수 있다. 특히, 재생 촉매는 바람직하게는 헤테로폴리산의 산 염, 더욱 바람직하게는 케긴형 헤테로폴리산의 산 염을 포함한다. 더욱 바람직하게는, 케긴형 헤테로폴리산 염의 구조는 열처리 (예비 소성) 시 형성된다.The obtained regenerated catalyst includes a heteropoly acid compound and may include a free heteropoly acid or a salt of heteropoly acid. In particular, the regenerated catalyst preferably comprises an acid salt of heteropoly acid, more preferably an acid salt of keto-type heteropoly acid. More preferably, the structure of the ketene-type heteropoly acid salt is formed at the time of heat treatment (pre-baking).

상기 재생 촉매는 신규 촉매의 것과 실질적으로 동일한 촉매 활성 및 내구성을 갖는다. 재생 촉매의 존재하에서, 원료 예컨대 메타크롤레인을 기상 촉매 산화 반응시킴으로써, 메타크릴산을 높은 전환율 및 우수한 선택율로 제조할 수 있다.The regenerated catalyst has substantially the same catalytic activity and durability as that of the fresh catalyst. In the presence of a regenerated catalyst, methacrylic acid can be produced with a high conversion ratio and a good selectivity by subjecting the raw material, for example, methacrolein, to a gas phase catalytic oxidation reaction.

메타크릴산은 통상적으로 상기 촉매를 고정층 다중관상 반응기에 충전하고, 메타크롤레인, 이소부틸알데히드, 이소부탄 및 이소부티르산으로 이루어진 군으로부터 선택되는 원료 및 산소를 함유하는 출발 기체 혼합물을 공급함으로써 제조하지만, 유동층 또는 이동층과 같은 반응계도 사용할 수 있다. 산소 공급원으로서는, 공기를 통상 사용한다. 산소 및 상기 원료 이외에, 출발 기체 혼합물은 질소, 이산화탄소, 일산화탄소, 수증기 등을 함유할 수 있다.Methacrylic acid is typically prepared by charging the catalyst into a fixed-bed multitubular reactor and feeding a starting gas mixture containing oxygen and oxygen selected from the group consisting of methacrolein, isobutyl aldehyde, isobutane, and isobutyric acid, Reaction systems such as fluidized beds or mobile beds may also be used. As the oxygen source, air is usually used. In addition to oxygen and the feedstock, the starting gas mixture may contain nitrogen, carbon dioxide, carbon monoxide, water vapor, and the like.

예를 들어, 메타크롤레인을 원료로서 사용하는 경우, 반응은 통상적으로 출발 기체중 메타크롤레인의 농도가 1 내지 10 부피% 이고, 산소 대 메타크롤레인의 몰비가 1 내지 5 이고, 공간 속도가 500 내지 5000 h-1 (정상 상태 기준) 이고, 반응 온도가 250 내지 350 ℃ 이고, 반응 압력이 0.1 내지 0.3 MPa 인 조건하에서 실시한다. 사용되는 출발 메타크롤레인은 반드시 고순도의 정제 생성물일 필요는 없고, 예를 들어, 이소부틸렌 또는 tert-부틸 알콜의 기상 촉매 산화 반응으로 수득되는, 메타크롤레인 함유 반응 생성물 기체일 수 있다.For example, when methacrolein is used as a feedstock, the reaction is typically carried out at a concentration of 1 to 10% by volume of methacrolein in the starting gas, a molar ratio of oxygen to methacrolein of 1 to 5, 500 to 5000 h -1 (on a steady state basis), the reaction temperature is 250 to 350 ° C, and the reaction pressure is 0.1 to 0.3 MPa. The starting methacrolein used does not necessarily have to be a purified product of high purity but can be a methacrolein-containing reaction product gas obtained, for example, by gas-phase catalytic oxidation of isobutylene or tert-butyl alcohol.

이소부탄을 원료로서 사용하는 경우, 반응은 통상적으로 출발 기체중 이소부탄의 농도가 1 내지 85 부피% 이고, 수증기 농도가 3 내지 30 부피% 이고, 산소 대 이소부탄의 몰비가 0.05 내지 4 이고, 공간 속도가 400 내지 5000 h-1 (정상 상태 기준) 이고, 반응 온도가 250 내지 400 ℃ 이고, 반응 압력이 0.1 내지 1 MPa 인 조건하에서 실시한다. 이소부티르산 또는 이소부틸알데히드를 원료로서 사용하는 경우에는, 메타크롤레인을 원료로서 사용하는 경우에 사용된 것과 실질적으로 동일한 반응 조건을 채택한다.When isobutane is used as the raw material, the reaction is usually carried out in such a manner that the concentration of isobutane in the starting gas is 1 to 85% by volume, the concentration of water vapor is 3 to 30% by volume, the molar ratio of oxygen to isobutane is 0.05 to 4, The reaction is carried out at a space velocity of 400 to 5000 h -1 (on a steady state basis), at a reaction temperature of 250 to 400 ° C, and at a reaction pressure of 0.1 to 1 MPa. When isobutyric acid or isobutylaldehyde is used as a raw material, substantially the same reaction conditions as those used when methacrolein is used as a raw material are adopted.

실시예Example

이후, 실시예를 참조하여 본 발명을 더욱 자세히 설명하지만, 이들 실시예가 본 발명의 범위를 어떠한 방식으로도 제한하지는 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples, but these Examples do not limit the scope of the present invention in any way.

실시예에서 사용되는 공기는 물 2 부피% (대기의 수분 함량에 해당) 를 함유하고, 실시예에서 사용된 질소는 실질적으로 무수이다.The air used in the examples contained 2% by volume of water (corresponding to the water content of the atmosphere) and the nitrogen used in the examples was substantially anhydrous.

전환율 및 선택율은 하기와 같이 정의된다:The conversion and selectivity are defined as follows:

전환율 (%) = Conversion rate (%) =

[(반응된 메타크롤레인의 몰수)/(공급된 메타크롤레인의 몰수)]×100[(Moles of the reacted methacrolein) / (moles of the supplied methacrolein)] x 100

선택율 (%) = Selectivity (%) =

[(생성된 메타크릴산의 몰수)/(반응된 메타크롤레인의 몰수)]×100[(Number of moles of produced methacrylic acid) / (number of moles of methacrolein reacted)] x 100

참조예 1 : 신규 촉매의 제조 및 신규 촉매의 평가Reference Example 1: Preparation of new catalyst and evaluation of new catalyst

40 ℃ 로 가열된 224 kg 의 이온교환수에, 38.2 kg 의 질산세슘 [CsNO3], 27.4 kg 의 75 wt% 오르토인산, 및 25.2 kg 의 70 wt% 의 질산을 용해시켜 용액 A 를 제조하였다. 별도로, 297 kg 의 몰리브덴산암모늄 4수화물 [(NH4)6Mo7O24·4H2O] 을 40 ℃ 로 가열된 330 kg 의 이온교환수에 용해시킨 후, 8.19 kg 의 암모늄 메타바나데이트 [NH4VO3] 를 현탁시켜 용액 B 를 제조하였다. 용액 A 및 B 를 40 ℃ 로 조정하였다. 용액 A 를 교반하면서 용액 B 에 적가한 후, 혼합물을 밀폐 용기중에서 5.8 시간 동안 120 ℃ 에서 추가로 교반시키고, 그 다음 23 kg 의 탈이온수중 10.2 kg 의 삼산화안티몬 [Sb2O3] 및 10.2 kg 의 질산구리 3수화물 [Cu(NO3)2·3H2O] 의 현탁액을 첨가하였다. 그 다음, 혼합물을 밀폐 용기중에서 5 시간 동안 120 ℃ 에서 교반시켰다. 상기 수득된 혼합물을 분무 건조기로 건조시켰다. 100 중량부의 생성 건조 분말에, 4 중량부의 세라믹 섬유, 13 중량부의 질산암모늄 및 9.7 중량부의 이온교환수를 첨가하고, 생성 혼합물을 혼련하 고, 각각 직경 5 mm 및 높이 6 mm 의 원통으로 압출 성형시켰다. 성형된 생성물을 90 ℃ 온도 및 30 % 상대 습도에서 3 시간 동안 건조시키고, 그 다음 공기 스트림중에서 22 시간 동안 220 ℃ 에서 및 그 다음 공기 스트림중에서 1 시간 동안 250 ℃ 에서 열처리 (예비 소성) 시키고, 이후, 질소 스트림중에서 435 ℃ 로 가열시키고, 동일 온도에서 3 시간 동안 유지시켰다. 그 다음, 생성물을 질소 스트림중에서 300 ℃ 로 냉각시켰다. 질소 스트림을 공기 스트림으로 교체한 후, 생성물을 공기 스트림중에서 390 ℃ 로 가열시키고, 동일 온도에서 3 시간 동안 유지시켰다. 이후, 생성물을 공기 스트림중에서 70 ℃ 로 냉각시키고, 촉매를 회복하였다.Solution A was prepared by dissolving 38.2 kg of cesium nitrate [CsNO 3 ], 27.4 kg of 75 wt% orthophosphoric acid, and 25.2 kg of 70 wt% nitric acid in 224 kg of ion-exchanged water heated to 40 ° C. Separately, 297 kg of ammonium molybdate tetrahydrate [(NH 4 ) 6 Mo 7 O 24 .4H 2 O] was dissolved in 330 kg of ion-exchanged water heated to 40 ° C, and then 8.19 kg of ammonium metavanadate [ NH 4 VO 3 ] was suspended to prepare solution B. The solutions A and B were adjusted to 40 캜. Solution A was added dropwise to solution B with stirring, then the mixture was further stirred in a sealed vessel at 120 캜 for 5.8 hours and then 10.2 kg of antimony trioxide [Sb 2 O 3 ] and 10.2 kg Of copper nitrate trihydrate [Cu (NO 3 ) 2 .3H 2 O]. The mixture was then stirred at 120 < 0 > C for 5 hours in a closed vessel. The resulting mixture was dried with a spray drier. 4 parts by weight of ceramic fiber, 13 parts by weight of ammonium nitrate and 9.7 parts by weight of ion-exchanged water were added to 100 parts by weight of the resulting dry powder, and the resulting mixture was kneaded and extruded into a cylinder having a diameter of 5 mm and a height of 6 mm . The molded product was dried at 90 DEG C and 30% relative humidity for 3 hours and then heat treated (pre-calcined) at 220 DEG C for 22 hours in the air stream and then 250 DEG C for 1 hour in the air stream, , Heated to 435 DEG C in a nitrogen stream, and maintained at the same temperature for 3 hours. The product was then cooled to 300 DEG C in a nitrogen stream. After replacing the nitrogen stream with an air stream, the product was heated to 390 占 폚 in the air stream and held at the same temperature for 3 hours. The product was then cooled to 70 DEG C in an air stream and the catalyst was recovered.

상기 촉매는 각각 1.5, 12, 0.5, 0.5, 0.3 및 1.4 의 원자비로 인, 몰리브덴, 바나듐, 안티몬, 구리 및 세슘을 함유하는 케긴형 헤테로폴리산의 산 염을 함유하였다.The catalyst contained an acid salt of ketene type heteropoly acid containing phosphorus, molybdenum, vanadium, antimony, copper and cesium at an atomic ratio of 1.5, 12, 0.5, 0.5, 0.3 and 1.4, respectively.

[XRD 평가에 의한 삼산화몰리브덴의 검출][Detection of molybdenum trioxide by XRD evaluation]

상기 수득된 촉매를 분말 방법에 의해 XRD 로 분석하여, 주요 성분으로서 케긴형 헤테로폴리산의 산 염에 해당하는 XRD 중 3.38 내지 3.41 의 d-값에서의 피크 강도에 대한 삼산화몰리브덴 (MoO3) 에 해당하는 XRD 중 3.24 내지 3.26 의 d-값에서의 피크 강도의 강도비 (%) 를 산출하였다. 결과를 표 1 에 나타낸다.The obtained catalyst was analyzed by XRD by the powder method to determine the amount of molybdenum trioxide (MoO 3 ) corresponding to the peak strength at the d-value of 3.38 to 3.41 in the XRD corresponding to the acid salt of ketene type heteropoly acid as the main component The intensity ratio (%) of the peak intensity at the d-value of 3.24 to 3.26 in XRD was calculated. The results are shown in Table 1.

[BET 비표면적의 평가][Evaluation of BET specific surface area]

약 1 g 의 상기 수득된 촉매를 진공하에서 탈기시키고, 그 다음 120 ℃ 에서 탈수시키고, BET 비표면적을 평가하였다. 결과를 표 1 에 나타낸다.About 1 g of the obtained catalyst was degassed under vacuum, then dehydrated at 120 占 폚 and the BET specific surface area was evaluated. The results are shown in Table 1.

[촉매의 활성 시험][Activity test of catalyst]

9 g 의 상기 수득된 촉매를 내부 직경 15 mm 의 유리 미세반응기에 충전하고, 메타크롤레인, 공기, 스팀 및 질소를 혼합하여 제조한, 4 부피% 의 메타크롤레인, 12 부피% 의 분자 산소, 17 부피% 의 수증기, 및 67 부피% 의 질소로 구성된 출발 기체를 670 h- 1 의 공간 속도로 공급하고, 280 ℃ 의 노 (furnace) 온도 (미세반응기 가열용 노 온도) 에서 반응시키고, 반응 개시로부터 1 시간 후에 전환율 및 선택율을 측정하였다.9 g of the obtained catalyst were charged in a glass micro-reactor having an inner diameter of 15 mm and mixed with 4 volume% methacrolein, 12 volume% molecular oxygen, A starting gas composed of 17 vol.% Water vapor and 67 vol.% Nitrogen was supplied at a space velocity of 670 h - 1 and reacted at a furnace temperature of 280 DEG C (furnace temperature for microreactor heating) The conversion and the selectivity were measured.

그 다음, 촉매 활성의 내구성을 평가하기 위해, 상기 언급된 것과 동일한 조성을 갖는 출발 기체를 상기 언급된 것과 동일한 공간 속도로 공급하고, 355 ℃ 의 노 온도에서 반응시킴으로써, 촉매를 강제로 열화시켰다. 이후, 상기 언급된 것과 동일한 조성을 갖는 출발 기체를 상기 언급된 것과 동일한 공간 속도로 공급하고, 280 ℃ 의 노 온도에서 반응시키고, 반응 개시로부터 1 시간 후에 전환율 및 선택율을 측정하였다. 강제된 열화 전후의 전환율 및 선택율을 표 1 에 나타낸다.Next, to evaluate the durability of the catalytic activity, the catalyst was forced to deteriorate by feeding the starting gas having the same composition as mentioned above at the same space velocity as the above-mentioned and reacting at a temperature of 355 DEG C at the furnace temperature. Thereafter, the starting gas having the same composition as mentioned above was supplied at the same space velocity as the above-mentioned one, reacted at a furnace temperature of 280 DEG C, and the conversion and the selectivity were measured one hour after the initiation of the reaction. Table 1 shows conversion ratios and selectivities before and after the forced deterioration.

참조예 2 : 비활성 촉매의 회복 및 평가Reference Example 2: Recovery and evaluation of inactive catalyst

참조예 1 에서 제조된 신규 촉매를 공기 스트림중에서 5 시간 동안 450 ℃ 에서 처리하여 비활성 촉매를 제조하였다. 비활성 촉매에 대해, 참조예 1 에서와 동일한 방식으로 XRD 평가, BET 비표면적 평가 및 활성 시험을 실시하였다. 결과를 또한 표 1 에 나타낸다.The novel catalyst prepared in Reference Example 1 was treated in an air stream at 450 캜 for 5 hours to prepare an inactive catalyst. For the inactive catalyst, XRD evaluation, BET specific surface area evaluation and activity test were carried out in the same manner as in Reference Example 1. The results are also shown in Table 1.

실시예 1 : 촉매의 재생 및 재생 촉매의 평가Example 1: Evaluation of catalyst regeneration and regeneration catalyst

참조예 2 에서 수득된 200 g 의 비활성 촉매를 80 ℃ 로 가열된 400 g 의 이온교환수에 현탁시키고, 그 다음 1 시간 동안 유지시켰다. 상기 현탁액을 실온으로 냉각시키고, 그 다음 60.2 g 의 질산암모늄 [NH4NO3] 을 첨가하고, 혼합물을 70 ℃ 로 가열시키고, 동일 온도에서 1 시간 동안 유지시켰다. 이후, 17.9 g 의 25 wt% 수성 암모니아를 첨가하였다. 70 ℃ 에서 1 시간 동안 유지시킨 후, 혼합물을 교반하면서 밀폐 용기중에서 5 시간 동안 120 ℃ 에서 열처리시켰다. 이후, 혼합물을 110 ℃ 에서 건조시키고, 100 중량부의 생성 건조 생성물에 6 중량부의 이온교환수를 첨가하고, 혼합물을 혼련시키고, 각각 직경 5 mm 및 높이 6 mm 의 원통 속에 압출 성형시켰다. 상기 성형된 생성물을 공기 스트림중에서 22 시간 동안 220 ℃ 의 온도에서, 그 다음 공기 스트림중에서 1 시간 동안 250 ℃ 에서 열처리 (예비 소성) 시키고, 이후, 질소 스트림중에서 435 ℃ 로 가열시키고, 동일 온도에서 3 시간 동안 유지시켰다. 추가로, 생성물을 질소 스트림에서 300 ℃ 로 냉각시켰다. 질소 스트림을 공기 스트림으로 교체한 후, 생성물을 공기 스트림중에서 390 ℃ 로 가열시키고 동일 온도에서 3 시간 동안 유지시켰다. 이후, 반응 혼합물을 공기 스트림중에서 70 ℃ 로 냉각시키고, 촉매를 회복하였다. 생성 재생 촉매에 대해, 참조예 1 에서와 동일한 방식으로 XRD 평가, BET 비표면적 평가 및 활성 시험을 실시하였다. 결과를 표 1 에 나타낸다.200 g of the inert catalyst obtained in Reference Example 2 was suspended in 400 g of ion-exchanged water heated to 80 DEG C and then kept for 1 hour. The suspension was cooled to room temperature and then 60.2 g of ammonium nitrate [NH 4 NO 3 ] was added and the mixture was heated to 70 ° C and held at the same temperature for 1 hour. Thereafter, 17.9 g of 25 wt% aqueous ammonia was added. After holding at 70 DEG C for 1 hour, the mixture was heat-treated at 120 DEG C for 5 hours in a closed vessel with stirring. Thereafter, the mixture was dried at 110 DEG C, and 6 parts by weight of ion exchange water was added to 100 parts by weight of the resulting dry product, and the mixture was kneaded and extruded into a cylinder having a diameter of 5 mm and a height of 6 mm. The molded product is heat treated (pre-calcined) at 250 DEG C for one hour in a stream of air at a temperature of 220 DEG C for 22 hours in an air stream, then at 435 DEG C in a nitrogen stream, Hour. In addition, the product was cooled to 300 DEG C in a nitrogen stream. After replacing the nitrogen stream with the air stream, the product was heated to 390 占 폚 in the air stream and held at the same temperature for 3 hours. The reaction mixture was then cooled to 70 DEG C in an air stream and the catalyst was recovered. An XRD evaluation, a BET specific surface area evaluation and an activity test were conducted on the produced regenerated catalyst in the same manner as in Reference Example 1. The results are shown in Table 1.

비교예 1Comparative Example 1

혼합물을 밀폐 용기중에서 5 시간 동안 120 ℃ 에서 열처리시키지 않는 것을 제외하고 실시예 1 에서와 동일한 공정을 반복하였다. 생성물에 대해, XRD 평가, BET 비표면적 평가 및 활성 시험을 실시하였다. 결과를 표 1 에 나타낸다.The same procedure as in Example 1 was repeated except that the mixture was not heat-treated at 120 < 0 > C for 5 hours in a closed vessel. The product was subjected to XRD evaluation, BET specific surface area evaluation and activity test. The results are shown in Table 1.

참조예 1Reference Example 1 참조예 2Reference Example 2 실시예 1Example 1 비교예 1Comparative Example 1 촉매catalyst 신규
촉매
new
catalyst
열화된
촉매
Deteriorated
catalyst
재생촉매
(열처리함)
Regenerated catalyst
(Heat treated)
재생촉매
(열처리하지 않음)
Regenerated catalyst
(Not heat treated)
삼산화몰리브덴
강도비(%)
Molybdenum trioxide
Strength ratio (%)
00 5252 00 1414
BET 비표면적(m2/g)BET specific surface area (m 2 / g) 1313 77 1111 1010
활성
시험

activation
exam
강제된
열화전
Forced
Before deterioration
전환율
(%)
Conversion Rate
(%)
9999 3030 9595 9191
선택율
(%)
Selectivity
(%)
7070 8181 7474 7575
강제된
열화후
Forced
After deterioration
전환율
(%)
Conversion Rate
(%)
8787 44 8383 6464
선택율
(%)
Selectivity
(%)
8484 3636 8383 8383

참조예 1 에서의 신규 촉매와는 반대로, 참조예 2 에서의 비활성 촉매는 촉매의 분해 생성물인 삼산화몰리브덴의 증가, 비표면적의 감소, 및 전환율의 상당한 감소를 나타냈다. 상기 비활성 촉매를 재생 처리시킴으로써 수득되는, 실시예 1 에서의 재생 촉매는 참조예 1 에서의 신규 촉매의 것과 동일한 수준의, 삼산화몰리브덴 강도비, 비표면적, 및 전환율의 회복을 나타냈다. 한편, 상기 혼합물을 120 ℃ 에서 5 시간 동안 열처리시키지 않은 비교예 1 에서는, 삼산화몰리브덴이 잔류하고, 강제된 열화 후의 전환율이 낮으며, 촉매 활성의 내구성이 충분히 회복되지 못했다.In contrast to the fresh catalyst in Reference Example 1, the inactive catalyst in Reference Example 2 exhibited an increase in molybdenum trioxide, a decrease in specific surface area, and a significant reduction in the conversion rate, which is the decomposition product of the catalyst. The regenerated catalyst in Example 1, obtained by regenerating the inactive catalyst, showed a recovery of the same level of molybdenum trioxide intensity ratio, specific surface area, and conversion as that in Reference Example 1. On the other hand, in Comparative Example 1 in which the mixture was not heat-treated at 120 ° C for 5 hours, molybdenum trioxide remained, the conversion after forced deterioration was low, and the durability of the catalytic activity was not sufficiently recovered.

Claims (4)

인 및 몰리브덴을 함유하는 헤테로폴리산 화합물을 포함하는 메타크릴산 제조용 촉매의 재생 방법으로서, 하기 단계를 포함하는 방법:A method for regenerating a catalyst for producing methacrylic acid comprising a heteropoly acid compound containing phosphorus and molybdenum, comprising the steps of: 100 ℃ 이상의 온도에서 비활성 촉매, 암모늄 이온, 니트레이트 이온 및 물을 함유하는 혼합물을 열처리하는 단계; 및 그 다음 Heat treating the mixture containing the inactive catalyst, ammonium ion, nitrate ion and water at a temperature of 100 占 폚 or higher; And then 혼합물을 건조 및 소성하는 단계.Drying and calcining the mixture. 제 1 항에 있어서, 열처리가 2 시간 이상 동안 실시되는 방법.The method according to claim 1, wherein the heat treatment is carried out for at least 2 hours. 제 1 항 또는 제 2 항에 있어서, 헤테로폴리산 화합물이 추가로 바나듐; 칼륨, 루비듐, 세슘 및 탈륨으로 이루어진 군으로부터 선택되는 하나 이상의 원소; 및 구리, 비소, 안티몬, 붕소, 은, 비스무트, 철, 코발트, 란탄 및 세륨으로 이루어진 군으로부터 선택되는 하나 이상의 원소를 포함하는 방법.3. The process according to claim 1 or 2, wherein the heteropoly acid compound further comprises vanadium; At least one element selected from the group consisting of potassium, rubidium, cesium and thallium; And at least one element selected from the group consisting of copper, arsenic, antimony, boron, silver, bismuth, iron, cobalt, lanthanum and cerium. 하기 단계를 포함하는 메타크릴산의 제조 방법:A process for producing methacrylic acid comprising the steps of: 제 1 항 또는 제 2 항에 따른 방법에 의해 메타크릴산 제조용 촉매를 재생시키는 단계; 및 그 다음 Regenerating the catalyst for producing methacrylic acid by the method according to claim 1 or 2; And then 상기 재생 촉매의 존재하에서, 메타크롤레인, 이소부틸알데히드, 이소부탄 및 이소부티르산으로 이루어진 군으로부터 선택된 하나 이상의 화합물을 기상 촉매 산화 반응시키는 단계.Catalytic oxidation of at least one compound selected from the group consisting of methacrolein, isobutyl aldehyde, isobutane, and isobutyric acid in the presence of the regenerated catalyst.
KR1020070096701A 2006-09-27 2007-09-21 Method for regenerating catalyst for the production of methacrylic acid and process for preparing methacrylic acid KR101419052B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2006-00262137 2006-09-27
JP2006262137A JP4715699B2 (en) 2006-09-27 2006-09-27 Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid

Publications (2)

Publication Number Publication Date
KR20080028808A KR20080028808A (en) 2008-04-01
KR101419052B1 true KR101419052B1 (en) 2014-07-11

Family

ID=39277829

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070096701A KR101419052B1 (en) 2006-09-27 2007-09-21 Method for regenerating catalyst for the production of methacrylic acid and process for preparing methacrylic acid

Country Status (3)

Country Link
JP (1) JP4715699B2 (en)
KR (1) KR101419052B1 (en)
DE (1) DE102007045282A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4957627B2 (en) * 2008-04-09 2012-06-20 住友化学株式会社 Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP5335490B2 (en) * 2009-03-09 2013-11-06 住友化学株式会社 Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
DE102010010587A1 (en) 2009-03-09 2010-11-18 Sumitomo Chemical Co. Ltd. Reproduction of catalyst for methacrylic acid production consists of heteropolyacid compound involves preparing aqueous slurry, drying to obtain solid heteropolyacid compound, preparing another aqueous slurry, drying and baking
JP5214499B2 (en) * 2009-03-09 2013-06-19 住友化学株式会社 Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4996735B2 (en) * 2010-01-19 2012-08-08 住友化学株式会社 Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP2013000734A (en) 2011-06-22 2013-01-07 Sumitomo Chemical Co Ltd Method for regenerating catalyst for producing methacrylic acid and method for producing methacrylic acid
CN114797982A (en) * 2022-05-26 2022-07-29 中国科学技术大学 Catalyst for preparing methacrylic acid by isobutane one-step method, and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS542293A (en) * 1977-06-08 1979-01-09 Japan Synthetic Rubber Co Ltd Regenerating method for metacrylic acid production catalyst
JPS61283352A (en) * 1985-06-05 1986-12-13 Mitsubishi Rayon Co Ltd Preparation of oxidizing catalyst
JPS63130144A (en) * 1986-11-20 1988-06-02 Mitsubishi Rayon Co Ltd Regeneration of oxidizing catalyst
JP2001286763A (en) 2000-04-06 2001-10-16 Nippon Shokubai Co Ltd Regeneration method of heteropoly acid based catalyst and production method of methacrylic acid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS542293A (en) * 1977-06-08 1979-01-09 Japan Synthetic Rubber Co Ltd Regenerating method for metacrylic acid production catalyst
JPS61283352A (en) * 1985-06-05 1986-12-13 Mitsubishi Rayon Co Ltd Preparation of oxidizing catalyst
JPS63130144A (en) * 1986-11-20 1988-06-02 Mitsubishi Rayon Co Ltd Regeneration of oxidizing catalyst
JP2001286763A (en) 2000-04-06 2001-10-16 Nippon Shokubai Co Ltd Regeneration method of heteropoly acid based catalyst and production method of methacrylic acid

Also Published As

Publication number Publication date
JP4715699B2 (en) 2011-07-06
DE102007045282A1 (en) 2008-05-15
KR20080028808A (en) 2008-04-01
JP2008080232A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
US7667074B2 (en) Method for regenerating catalyst for the production of methacrylic acid and process for preparing methacrylic acid
US20090259071A1 (en) Method for regenerating catalyst for the production of methacrylic acid and process for preparing methacrylic acid
US8586499B2 (en) Method for producing catalyst for preparation of methacrylic acid and method for preparing methacrylic acid
KR101419052B1 (en) Method for regenerating catalyst for the production of methacrylic acid and process for preparing methacrylic acid
JP4957627B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
KR101640255B1 (en) Method for regenerating catalyst for the production of methacrylic acid and process for preparing methacrylic acid
JP3465350B2 (en) Method for producing catalyst for methacrylic acid production
JP4715707B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP5214500B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4595769B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4200744B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3316881B2 (en) Method for producing catalyst for producing methacrylic acid
JP4352856B2 (en) A method for producing a catalyst for producing methacrylic acid, a catalyst for producing methacrylic acid obtained thereby, and a method for producing methacrylic acid.
JP4207531B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3797146B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2008284508A (en) Production method of catalyst for methacrylic-acid production and production method of methacrylic acid
JP2012196608A (en) Method for regenerating methacrylic acid producing catalyst and method for producing methacrylic acid
JP4900532B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
KR20090107944A (en) Method for regenerating catalyst for the production of methacrylic acid and process for preparing methacrylic acid
JP5214499B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP2010155197A (en) Method for regenerating catalyst for producing methacrylic acid and method for producing the methacrylic acid
KR20090107943A (en) Method for regenerating catalyst for the production of methacrylic acid and process for preparing methacrylic acid
KR20100101539A (en) Method for producing or regenerating catalyst for the production of methacrylic acid and process for preparing methacrylic acid

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170616

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180618

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190618

Year of fee payment: 6