JP4595769B2 - Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid - Google Patents

Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid Download PDF

Info

Publication number
JP4595769B2
JP4595769B2 JP2005281348A JP2005281348A JP4595769B2 JP 4595769 B2 JP4595769 B2 JP 4595769B2 JP 2005281348 A JP2005281348 A JP 2005281348A JP 2005281348 A JP2005281348 A JP 2005281348A JP 4595769 B2 JP4595769 B2 JP 4595769B2
Authority
JP
Japan
Prior art keywords
catalyst
producing
methacrylic acid
oxidizing gas
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005281348A
Other languages
Japanese (ja)
Other versions
JP2007090193A (en
Inventor
純也 吉澤
功一 永井
順二 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005281348A priority Critical patent/JP4595769B2/en
Publication of JP2007090193A publication Critical patent/JP2007090193A/en
Application granted granted Critical
Publication of JP4595769B2 publication Critical patent/JP4595769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、メタクリル酸製造用触媒を製造する方法に関するものである。また、本発明は、この方法により得られた触媒を用いて、メタクリル酸を製造する方法にも関係している。   The present invention relates to a method for producing a catalyst for producing methacrylic acid. The present invention also relates to a method for producing methacrylic acid using the catalyst obtained by this method.

従来、メタクロレイン等の気相接触酸化反応によりメタクリル酸を製造する際に用いる触媒としては、リン及びモリブデンを含むヘテロポリ酸やその塩からなるものが有効であることが知られている。この触媒は、通常、触媒原料の水性混合液を乾燥して得られる触媒前駆体を、焼成することにより製造され、この焼成条件に関し、これまでに数多くの報告がなされている(例えば特許文献1〜7参照)。中でも、得られる触媒の活性の持続性、すなわち触媒寿命の点では、空気の如き酸化性ガスの雰囲気下での焼成と窒素の如き非酸化性ガスの雰囲気下での焼成とを組み合わせて、多段階で焼成するのが有利であり、例えば、特許文献6には、非酸化性ガスの雰囲気下に400〜500℃で焼成した後、酸化性ガスの雰囲気下に300〜400℃で焼成することが開示されている。また、特許文献7には、酸化性ガス又は非酸化性ガスの雰囲気下に360〜410℃で焼成した後、非酸化性ガスの雰囲気下に420〜500℃で焼成し、次いで酸化性ガスの雰囲気下に300〜400℃で焼成することが開示されている。   Conventionally, it has been known that a catalyst comprising a heteropolyacid containing phosphorus and molybdenum or a salt thereof is effective as a catalyst used when producing methacrylic acid by a gas phase catalytic oxidation reaction such as methacrolein. This catalyst is usually produced by calcining a catalyst precursor obtained by drying an aqueous mixture of catalyst raw materials, and many reports have been made so far regarding the calcining conditions (for example, Patent Document 1). ~ 7). Among them, in terms of sustaining the activity of the obtained catalyst, that is, the life of the catalyst, there are many combinations of firing in an atmosphere of an oxidizing gas such as air and firing in an atmosphere of a non-oxidizing gas such as nitrogen. For example, in Patent Document 6, after baking at 400 to 500 ° C. in a non-oxidizing gas atmosphere, the baking is performed at 300 to 400 ° C. in an oxidizing gas atmosphere. Is disclosed. Patent Document 7 discloses that after firing at 360 to 410 ° C. in an atmosphere of oxidizing gas or non-oxidizing gas, firing at 420 to 500 ° C. in an atmosphere of non-oxidizing gas, followed by oxidizing gas It is disclosed that baking is performed at 300 to 400 ° C. in an atmosphere.

特開昭57−165040号公報JP 57-165040 A 特開昭58−61833号公報JP 58-61833 A 特開昭59−66349号公報JP 59-66349 A 特開平4−63139号公報JP-A-4-63139 特開平5−279291号公報JP-A-5-279291 特開2004−188231号公報JP 2004-188231 A 特開2005−21727号公報JP 2005-21727 A

本発明の目的は、さらに優れた触媒寿命を有するメタクリル酸製造用触媒を製造しうる方法を提供することにある。そして、この方法により得られた触媒を用いて、長期間にわたり生産性良くメタクリル酸を製造しうる方法を提供することにある。   An object of the present invention is to provide a method capable of producing a catalyst for producing methacrylic acid having a further excellent catalyst life. And it is providing the method which can manufacture methacrylic acid with high productivity over a long period of time using the catalyst obtained by this method.

本発明者等は鋭意研究を行った結果、触媒前駆体を酸化性ガス、次いで非酸化性ガスの雰囲気下にそれぞれ所定の温度で焼成することによる多段焼成を採用し、かつ、この非酸化性ガスの雰囲気下での焼成後は、特許文献6や7の如く高温で酸化性ガスに曝すことなく、非酸化性ガスの雰囲気下のままで所定の温度以下に冷却することにより、上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have adopted multi-stage firing by firing the catalyst precursor at a predetermined temperature in an atmosphere of oxidizing gas and then non-oxidizing gas, and this non-oxidizing property. After firing in a gas atmosphere, as described in Patent Documents 6 and 7, by cooling to a predetermined temperature or less in a non-oxidizing gas atmosphere without being exposed to an oxidizing gas at a high temperature, the above object is achieved. The inventors have found that this can be achieved and have completed the present invention.

すなわち、本発明は、リン及びモリブデンを含むヘテロポリ酸化合物からなるメタクリル酸製造用触媒の製造方法であって、触媒前駆体を酸化性ガスの雰囲気下に300〜400℃で焼成した後、非酸化性ガスの雰囲気下に400〜500℃で焼成し、次いで非酸化性ガスの雰囲気下のままで280℃以下に冷却することを特徴とするメタクリル酸製造用触媒の製造方法を提供するものである。   That is, the present invention relates to a method for producing a catalyst for producing methacrylic acid comprising a heteropolyacid compound containing phosphorus and molybdenum, wherein the catalyst precursor is calcined at 300 to 400 ° C. in an oxidizing gas atmosphere and then non-oxidized. A method for producing a catalyst for methacrylic acid production, characterized in that it is calcined at 400 to 500 ° C. in an atmosphere of an oxidizing gas and then cooled to 280 ° C. or less in an atmosphere of a non-oxidizing gas .

また、本発明によれば、上記方法により触媒を製造し、この触媒の存在下に、メタクロレイン、イソブチルアルデヒド、イソブタン及びイソ酪酸から選ばれる化合物を気相接触酸化反応に付すことにより、メタクリル酸を製造する方法も提供される。   Further, according to the present invention, a catalyst is produced by the above-described method, and in the presence of the catalyst, a compound selected from methacrolein, isobutyraldehyde, isobutane and isobutyric acid is subjected to a gas phase catalytic oxidation reaction. A method of manufacturing is also provided.

本発明によれば、触媒寿命の点で優れるメタクリル酸製造用触媒を製造することができ、こうして得られた触媒を用いることにより、メタクリル酸を長期間にわたり生産性良く製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the catalyst for methacrylic acid manufacture excellent in the point of a catalyst life can be manufactured, and methacrylic acid can be manufactured with high productivity over a long period of time by using the catalyst obtained in this way.

以下、本発明を詳細に説明する。本発明が製造の対象とするメタクリル酸製造用触媒は、リン及びモリブデンを必須とするヘテロポリ酸化合物からなるものであり、遊離のヘテロポリ酸からなるものであってもよいし、ヘテロポリ酸の塩からなるものであってもよい。中でも、ヘテロポリ酸の酸性塩(部分中和塩)からなるものが好ましく、さらに好ましくはケギン型ヘテロポリ酸の酸性塩からなるものである。   Hereinafter, the present invention will be described in detail. The catalyst for methacrylic acid production to be produced by the present invention is composed of a heteropolyacid compound essentially containing phosphorus and molybdenum, and may be composed of a free heteropolyacid or from a salt of a heteropolyacid. It may be. Especially, what consists of an acidic salt (partially neutralized salt) of heteropolyacid is preferable, More preferably, it consists of an acidic salt of Keggin type heteropolyacid.

上記触媒には、リン及びモリブデン以外の元素として、バナジウムが含まれるのが望ましく、また、カリウム、ルビジウム、セシウム及びタリウムから選ばれる少なくとも1種の元素(以下、X元素ということがある)や、銅、ヒ素、アンチモン、ホウ素、銀、ビスマス、鉄、コバルト、ランタン及びセリウムから選ばれる少なくとも1種の元素(以下、Y元素ということがある)が含まれるのが望ましい。通常、モリブデン12原子に対して、リン、バナジウム、X元素及びY元素が、それぞれ3原子以下の割合で含まれる触媒が、好適に用いられる。   The catalyst preferably contains vanadium as an element other than phosphorus and molybdenum, and at least one element selected from potassium, rubidium, cesium and thallium (hereinafter sometimes referred to as X element), It is desirable that at least one element selected from copper, arsenic, antimony, boron, silver, bismuth, iron, cobalt, lanthanum and cerium (hereinafter sometimes referred to as Y element) is included. Usually, a catalyst containing phosphorus, vanadium, X element and Y element at a ratio of 3 atoms or less to 12 atoms of molybdenum is preferably used.

上記触媒の原料としては、通常、上記触媒に含まれる各元素を含む化合物、例えば、各元素のオキソ酸、オキソ酸塩、酸化物、硝酸塩、炭酸塩、水酸化物、ハロゲン化物等が、所望の原子比を満たすような割合で用いられる。例えば、リンを含む化合物としては、リン酸、リン酸塩等が用いられ、モリブデンを含む化合物としては、モリブデン酸、モリブデン酸塩、酸化モリブデン、塩化モリブデン等が用いられ、バナジウムを含む化合物としては、バナジン酸、バナジン酸塩、酸化バナジウム、塩化バナジウム等が用いられる。また、X元素を含む化合物としては、酸化物、硝酸塩、炭酸塩、水酸化物、ハロゲン化物等が用いられ、Y元素を含む化合物としては、オキソ酸、オキソ酸塩、硝酸塩、炭酸塩、水酸化物、ハロゲン化物等が用いられる。   As the raw material of the catalyst, a compound containing each element contained in the catalyst, for example, an oxo acid, an oxo acid salt, an oxide, a nitrate, a carbonate, a hydroxide, a halide, or the like of each element is desired. It is used at a ratio that satisfies the atomic ratio of For example, phosphoric acid, phosphate, etc. are used as the compound containing phosphorus, and molybdic acid, molybdate, molybdenum oxide, molybdenum chloride, etc. are used as the compound containing molybdenum, and as the compound containing vanadium, Vanadic acid, vanadate, vanadium oxide, vanadium chloride and the like are used. In addition, oxides, nitrates, carbonates, hydroxides, halides, etc. are used as the compounds containing the X element, and oxo acids, oxoacid salts, nitrates, carbonates, water, etc. Oxides, halides and the like are used.

本発明の触媒の製造方法は、上記の触媒原料から調製される触媒前駆体を、所定の多段焼成に付すことからなるものである。この触媒前駆体は、通常、触媒原料を水中で混合して水溶液又は水性スラリーを得、次いでこの水性混合液を乾燥することにより調製することができ、例えば、該乾燥物を成形したものであってもよいし、該乾燥物を熱処理(前焼成)した後、成形したものであってもよいし、該乾燥物を成形した後、熱処理したものであってもよい。ここで、水性混合液の乾燥は、スプレードライヤー等を用いた噴霧乾燥により行うのが好ましく、乾燥物の成形は、必要に応じて成形助剤を用いて、円柱状、球状、リング状等にするのが好ましい。また、乾燥物の熱処理は、酸化性ガス又は非酸化性ガスの雰囲気下に、180〜300℃程度の温度で行うのが望ましい。   The method for producing a catalyst of the present invention comprises subjecting a catalyst precursor prepared from the above catalyst raw material to a predetermined multistage calcination. This catalyst precursor can be usually prepared by mixing a catalyst raw material in water to obtain an aqueous solution or aqueous slurry, and then drying the aqueous mixture, for example, the dried product. Alternatively, the dried product may be heat-treated (pre-fired) and then molded, or the dried product may be molded and then heat-treated. Here, drying of the aqueous mixed solution is preferably performed by spray drying using a spray dryer or the like, and molding of the dried product is performed in a cylindrical shape, a spherical shape, a ring shape, or the like using a molding aid as necessary. It is preferable to do this. The heat treatment of the dried product is desirably performed at a temperature of about 180 to 300 ° C. in an oxidizing gas or non-oxidizing gas atmosphere.

触媒前駆体の調製方法としては、触媒原料としてアンモニウム化合物を用いたり、アンモニアやアンモニウム塩を添加したりして、アンモニウム根を含む水性混合液を得、これを乾燥した後、熱処理してから成形するか、成形してから熱処理するのが望ましい。これらの処方によれば、熱処理の際、ケギン型へテロポリ酸塩の構造を形成することができ、こうして得られるケギン型ケテロポリ酸塩からなる触媒前駆体は、本発明による多段焼成に対し、特に好適な対象となる。   As a catalyst precursor preparation method, an ammonium compound is used as a catalyst raw material or ammonia or an ammonium salt is added to obtain an aqueous mixed solution containing ammonium roots. It is desirable to heat-treat after molding. According to these formulations, the structure of the Keggin-type heteropolyacid salt can be formed during the heat treatment, and the thus obtained catalyst precursor comprising the Keggin-type keteropolyacid salt is particularly suitable for the multistage calcination according to the present invention. Suitable target.

以上のようにして得られる触媒前駆体を、酸化性ガスの雰囲気下に、所定の温度で第一段焼成した後、非酸化性ガスの雰囲気下に、所定の温度で第二段焼成する。第一段焼成で用いられる酸化性ガスは、酸化性物質を含むガスであり、典型的には、酸素含有ガスが挙げられ、その酸素濃度は通常1〜30容量%程度である。この酸素源としては、通常、空気や純酸素が用いられ、必要に応じて不活性ガスで希釈される。また、第二段焼成で用いられる非酸化性ガスは、実質的に酸素の如き酸化性物質を含有しないガスであり、例えば、窒素、二酸化炭素、ヘリウム、アルゴン等の不活性ガスが挙げられる。なお、第一段焼成で用いられる酸化性ガス及び第二段焼成で用いられる非酸化性ガスには、必要に応じて水分を存在させてもよいが、その濃度は通常10容量%以下である。   The catalyst precursor obtained as described above is first-stage calcined at a predetermined temperature in an oxidizing gas atmosphere, and then second-stage calcined at a predetermined temperature in a non-oxidizing gas atmosphere. The oxidizing gas used in the first stage firing is a gas containing an oxidizing substance, and typically includes an oxygen-containing gas, and the oxygen concentration is usually about 1 to 30% by volume. As the oxygen source, air or pure oxygen is usually used, and diluted with an inert gas as necessary. Further, the non-oxidizing gas used in the second stage baking is a gas that does not substantially contain an oxidizing substance such as oxygen, and examples thereof include inert gases such as nitrogen, carbon dioxide, helium, and argon. The oxidizing gas used in the first stage baking and the non-oxidizing gas used in the second stage baking may contain moisture as necessary, but the concentration is usually 10% by volume or less. .

各焼成の温度は、第一段焼成が300〜400℃、好ましくは350〜400℃であり、第二段焼成が400〜500℃、好ましくは400〜450℃である。これら各焼成温度が所定値に満たないと、得られる触媒の活性が十分にならなかったり、触媒寿命の向上効果が十分でなかったりすることがあり、一方、所定値を越えると、触媒が分解・焼結しやすいため、得られる触媒の活性が十分にならないことがある。   The firing temperature is 300 to 400 ° C, preferably 350 to 400 ° C for the first stage firing, and 400 to 500 ° C, preferably 400 to 450 ° C for the second stage firing. If each of these calcination temperatures is less than a predetermined value, the activity of the resulting catalyst may not be sufficient, or the effect of improving the catalyst life may not be sufficient.・ Since it is easy to sinter, the resulting catalyst may not have sufficient activity.

なお、各焼成の時間は、それぞれ適宜調整されるが、通常1〜20時間程度である。また、これら各焼成は、雰囲気ガスとして使用されるガスを流通させながら行うのが望ましい。   In addition, although each baking time is each adjusted suitably, it is about 1 to 20 hours normally. Moreover, it is desirable to perform each of these firings while circulating a gas used as an atmospheric gas.

非酸化性ガスの雰囲気下での第二段焼成後は、非酸化性ガスの雰囲気下のままで280℃以下、好ましくは250℃以下に冷却する。このように、高温で酸化性ガスに曝さないようにすることにより、触媒寿命の点で優れるメタクリル酸製造用触媒を得ることができる。なお、この冷却後は、酸化性ガスの雰囲気下に曝してもよく、通常の作業雰囲気である大気中で触媒を取り扱うことができる。   After the second stage baking in the non-oxidizing gas atmosphere, the temperature is kept at 280 ° C. or lower, preferably 250 ° C. or lower in the non-oxidizing gas atmosphere. Thus, the catalyst for methacrylic acid production excellent in terms of catalyst life can be obtained by avoiding exposure to oxidizing gas at high temperatures. In addition, after this cooling, you may expose to the atmosphere of oxidizing gas and can handle a catalyst in air | atmosphere which is a normal working atmosphere.

こうして得られるメタクリル酸製造用触媒は、優れた触媒寿命を有しており、この触媒を用いて、メタクロレイン、イソブチルアルデヒド、イソブタン、イソ酪酸等の原料化合物を気相接触酸化反応させることにより、メタクリル酸を長期間にわたり生産性良く製造することができる。   The methacrylic acid production catalyst thus obtained has an excellent catalyst life, and by using this catalyst, a raw material compound such as methacrolein, isobutyraldehyde, isobutane, isobutyric acid is subjected to a gas phase catalytic oxidation reaction, Methacrylic acid can be produced with good productivity over a long period of time.

メタクリル酸の製造は、通常、固定床多管式反応器に触媒を充填し、これに原料化合物と酸素を含む原料ガスを供給することにより行われるが、流動床や移動床のような反応形式を採用することもできる。酸素源としては、通常、空気が用いられ、また原料ガス中には、原料化合物及び酸素以外の成分として、窒素、二酸化炭素、一酸化炭素、水蒸気等が含まれうる。   The production of methacrylic acid is usually carried out by filling a fixed bed multi-tubular reactor with a catalyst and supplying a raw material gas containing a raw material compound and oxygen to this. It can also be adopted. As the oxygen source, air is usually used, and the raw material gas may contain nitrogen, carbon dioxide, carbon monoxide, water vapor and the like as components other than the raw material compound and oxygen.

例えば、メタクロレインを原料として用いる場合、通常、原料ガス中のメタクロレイン濃度は1〜10容量%、メタクロレインに対する酸素のモル比は1〜5、空間速度は500〜5000h-1(標準状態基準)、反応温度は250〜350℃、反応圧力は0.1〜0.3MPa、の条件下に反応が行われる。なお、原料のメタクロレインは必ずしも高純度の精製品である必要はなく、例えば、イソブチレンやt−ブチルアルコールの気相接触酸化反応により得られたメタクロレインを含む反応生成ガスを用いることもできる。 For example, when methacrolein is used as a raw material, the concentration of methacrolein in the raw material gas is usually 1 to 10% by volume, the molar ratio of oxygen to methacrolein is 1 to 5, and the space velocity is 500 to 5000 h −1 (standard condition reference ), The reaction temperature is 250 to 350 ° C., and the reaction pressure is 0.1 to 0.3 MPa. The raw material methacrolein is not necessarily a high-purity purified product. For example, a reaction product gas containing methacrolein obtained by a gas phase catalytic oxidation reaction of isobutylene or t-butyl alcohol can be used.

また、イソブタンを原料として用いる場合、通常、原料ガス中のイソブタン濃度は1〜85容量%、水蒸気濃度は3〜30容量%、イソブタンに対する酸素のモル比は0.05〜4、空間速度は400〜5000h-1(標準状態基準)、反応温度は250〜400℃、反応圧力は0.1〜1MPa、の条件下に反応が行われる。イソ酪酸やイソブチルアルデヒドを原料として用いる場合には、通常、メタクロレインを原料として用いる場合と、ほぼ同様の反応条件が採用される。 When isobutane is used as a raw material, the isobutane concentration in the raw material gas is usually 1 to 85% by volume, the water vapor concentration is 3 to 30% by volume, the molar ratio of oxygen to isobutane is 0.05 to 4, and the space velocity is 400. The reaction is carried out under conditions of ˜5000 h −1 (standard condition standard), reaction temperature of 250 to 400 ° C., and reaction pressure of 0.1 to 1 MPa. When isobutyric acid or isobutyraldehyde is used as a raw material, generally the same reaction conditions are employed as when methacrolein is used as a raw material.

以下、本発明の実施例を示すが、本発明はこれらによって限定されるものではない。なお、各例で使用した空気は水分2容量%(大気相当)を含むものであり、また、各例で使用した窒素は実質的に水分を含まないものである。   Examples of the present invention will be described below, but the present invention is not limited thereto. The air used in each example contains 2% by volume of moisture (corresponding to the atmosphere), and the nitrogen used in each example substantially does not contain moisture.

実施例1
(a)触媒前駆体の調製
40℃に加熱したイオン交換水224kgに、硝酸セシウム[CsNO3]38.2kg、85重量%オルトリン酸24.2kg、及び70重量%硝酸25.2kgを溶解し、これをA液とした。一方、40℃に加熱したイオン交換水330kgに、モリブデン酸アンモニウム4水和物[(NH4)6Mo724・4H2O]297kgを溶解した後、メタバナジン酸アンモニウム[NH4VO3]8.19kgを懸濁させ、これをB液とした。A液とB液を40℃に調整し、攪拌下、B液にA液を滴下した後、密閉容器中で120℃にて5.8時間攪拌し、次いで、三酸化アンチモン[Sb23]10.2kg及び硝酸銅3水和物[Cu(NO3)2・3H2O]10.2kgを、イオン交換水23kgに懸濁させて添加した後、密封容器中で120℃にて5時間攪拌した。こうして得られたスラリーをスプレードライヤーにて乾燥し、この乾燥粉末100重量部に対して、セラミックファイバー[東芝モノフラックス(株)製、FIBERFRAX RFC400SL]4重量部、硝酸アンモニウム13重量部、及びイオン交換水9.7重量部を加えて混練し、直径5mm、高さ6mmの円柱状に押出成形した。この成形体を、温度90℃、湿度30%RHにて3時間乾燥した後、空気気流中で220℃にて22時間、空気気流中で250℃にて1時間の順に熱処理して、ケギン型ヘテロポリ酸塩からなる触媒前駆体を得た。
Example 1
(A) Preparation of catalyst precursor In 224 kg of ion-exchanged water heated to 40 ° C, 38.2 kg of cesium nitrate [CsNO 3 ], 24.2 kg of 85 wt% orthophosphoric acid, and 25.2 kg of 70 wt% nitric acid were dissolved. This was designated as liquid A. On the other hand, after dissolving 297 kg of ammonium molybdate tetrahydrate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] in 330 kg of ion-exchanged water heated to 40 ° C., ammonium metavanadate [NH 4 VO 3 ] 8.19 kg was suspended and this was used as B liquid. The liquid A and liquid B were adjusted to 40 ° C., and the liquid A was added dropwise to the liquid B with stirring. The liquid was stirred in a sealed container at 120 ° C. for 5.8 hours, and then antimony trioxide [Sb 2 O 3 ] 10.2 kg and 10.2 kg of copper nitrate trihydrate [Cu (NO 3 ) 2 .3H 2 O] were suspended in 23 kg of ion-exchanged water and then added at 120 ° C. in a sealed container. Stir for hours. The slurry thus obtained was dried with a spray dryer, and 4 parts by weight of ceramic fiber [manufactured by Toshiba Monoflux Co., Ltd., FIBERFRAX RFC400SL], 13 parts by weight of ammonium nitrate, and ion-exchanged water with respect to 100 parts by weight of the dry powder. 9.7 parts by weight was added and kneaded and extruded into a cylindrical shape having a diameter of 5 mm and a height of 6 mm. This molded body was dried at a temperature of 90 ° C. and a humidity of 30% RH for 3 hours, and then heat-treated in an air stream at 220 ° C. for 22 hours and in an air stream at 250 ° C. for 1 hour in order. A catalyst precursor comprising a heteropolyacid salt was obtained.

(b)触媒の製造
この前駆体を、空気気流中で390℃に昇温して、同温度で3時間保持し、次いで、空気を窒素に切り換え、窒素気流中で435℃に昇温して、同温度で3時間保持した。その後、窒素気流中で70℃まで冷却してから、触媒を大気中に取り出した。この触媒は、リン、モリブデン、バナジウム、アンチモン、銅及びセシウムをそれぞれ1.5、12、0.5、0.5、0.3及び1.4の原子比で含むケギン型ヘテロポリ酸の酸性塩からなるものであった。
(B) Preparation of catalyst The precursor was heated to 390 ° C in an air stream and held at that temperature for 3 hours, then the air was switched to nitrogen and the temperature was increased to 435 ° C in a nitrogen stream. And kept at the same temperature for 3 hours. Then, after cooling to 70 degreeC in nitrogen stream, the catalyst was taken out in air | atmosphere. This catalyst is an acid salt of a Keggin type heteropolyacid containing phosphorus, molybdenum, vanadium, antimony, copper and cesium in atomic ratios of 1.5, 12, 0.5, 0.5, 0.3 and 1.4, respectively. It consisted of.

(c)触媒の活性試験
上記(b)で得た触媒9gを、内径15mmのガラス製マイクロリアクターに充填し、この中に、メタクロレイン、空気、スチーム及び窒素を混合して調製したメタクロレイン4容量%、分子状酸素12容量%、水蒸気17容量%の組成の原料ガスを、空間速度670h-1で供給して、炉温(マイクロリアクターを加熱するための炉の温度)280℃にて反応を行い、反応開始から1時間経過時のメタクロレイン転化率とメタクリル酸選択率を求めた。次に、上記と同じ組成の原料ガスを、上記と同じ空間速度で供給して、炉温355℃にて反応を行い、触媒を強制劣化させた後、再度、上記と同じ組成の原料ガスを、上記と同じ空間速度で供給して、炉温280℃にて反応を行い、この反応開始から1時間経過時のメタクロレイン転化率とメタクリル酸選択率を求めた。強制劣化前後でのメタクロレイン転化率とメタクリル酸選択率を表1に示す。
(C) Catalyst activity test 9 g of the catalyst obtained in (b) above was charged into a glass microreactor having an inner diameter of 15 mm, and methacrolein 4 prepared by mixing methacrolein, air, steam and nitrogen. A raw material gas having a composition of volume%, molecular oxygen 12 volume%, and water vapor 17 volume% is supplied at a space velocity of 670 h −1 and reacted at a furnace temperature (furnace temperature for heating the microreactor) of 280 ° C. The methacrolein conversion rate and methacrylic acid selectivity after 1 hour from the start of the reaction were determined. Next, a raw material gas having the same composition as above is supplied at the same space velocity as described above, and reacted at a furnace temperature of 355 ° C. to forcibly deteriorate the catalyst. The reaction was carried out at the same space velocity as described above, and the reaction was carried out at a furnace temperature of 280 ° C., and the methacrolein conversion rate and methacrylic acid selectivity after 1 hour from the start of the reaction were determined. Table 1 shows methacrolein conversion and methacrylic acid selectivity before and after forced deterioration.

(d)触媒の寿命試験
上記(b)で得た触媒4.5gを、内径15mmのガラス製マイクロリアクターに充填し、この中に、メタクロレイン、空気、スチーム及び窒素を混合して調製したメタクロレイン4容量%、分子状酸素12容量%、水蒸気17容量%の組成の原料ガスを、空間速度1340h-1で供給して、炉温330℃にて50日以上反応を行い、この間、7〜10日おきにメタクロレイン転化率を求めた。反応時間を横軸、転化率を縦軸としてプロットしたところ、ほぼ直線関係にあったので、最小二乗法により傾きを求め、転化率の低下速度(%/日)を算出した。その値を表1に示す。
(D) Catalyst life test 4.5 g of the catalyst obtained in (b) above was charged into a glass microreactor having an inner diameter of 15 mm, and methacrolein, air, steam and nitrogen were mixed therein. A raw material gas having a composition of 4% by volume of rain, 12% by volume of molecular oxygen, and 17% by volume of water vapor was supplied at a space velocity of 1340h −1 and reacted at a furnace temperature of 330 ° C. for 50 days or more. The methacrolein conversion was determined every 10 days. When the reaction time was plotted on the horizontal axis and the conversion rate was plotted on the vertical axis, it was almost linear, so the slope was determined by the least square method, and the rate of decrease in conversion rate (% / day) was calculated. The values are shown in Table 1.

実施例2、比較例1、2
実施例1(b)において、窒素気流中で70℃まで冷却する代わりに、窒素気流中で表1に示す温度まで冷却し、次いで、窒素を空気に切り換え、空気気流中で70℃まで冷却した以外は、実施例1と同様の操作を行った。活性試験と寿命試験の結果を表1に示す。
Example 2 and Comparative Examples 1 and 2
In Example 1 (b), instead of cooling to 70 ° C. in a nitrogen stream, cooling was performed to the temperature shown in Table 1 in the nitrogen stream, and then the nitrogen was switched to air and cooled to 70 ° C. in the air stream. Except for this, the same operation as in Example 1 was performed. Table 1 shows the results of the activity test and the life test.

Figure 0004595769
Figure 0004595769

強制劣化前後での活性試験の結果からは、実施例1及び2と比較例1及び2との間に優位の差は見られなかったが、寿命試験の結果から、実施例1及び2は比較例1及び2に比べ、転化率の低下速度が低い、すなわち触媒寿命が優れることが分かる。
From the results of the activity test before and after the forced deterioration, no significant difference was found between Examples 1 and 2 and Comparative Examples 1 and 2, but from the results of the life test, Examples 1 and 2 were compared. Compared to Examples 1 and 2, it can be seen that the rate of decrease in the conversion rate is low, that is, the catalyst life is excellent.

Claims (3)

リン及びモリブデンを含むヘテロポリ酸化合物からなるメタクリル酸製造用触媒の製造方法であって、触媒前駆体を酸化性ガスの雰囲気下に300〜400℃で焼成した後、非酸化性ガスの雰囲気下に400〜500℃で焼成し、次いで非酸化性ガスの雰囲気下のままで280℃以下に冷却することを特徴とするメタクリル酸製造用触媒の製造方法。   A method for producing a methacrylic acid production catalyst comprising a heteropolyacid compound containing phosphorus and molybdenum, wherein the catalyst precursor is calcined at 300 to 400 ° C. in an oxidizing gas atmosphere and then in a non-oxidizing gas atmosphere. A method for producing a catalyst for producing methacrylic acid, comprising calcining at 400 to 500 ° C., and then cooling to 280 ° C. or lower in an atmosphere of a non-oxidizing gas. ヘテロポリ酸化合物が、さらにバナジウムと、カリウム、ルビジウム、セシウム及びタリウムから選ばれる元素と、銅、ヒ素、アンチモン、ホウ素、銀、ビスマス、鉄、コバルト、ランタン及びセリウムから選ばれる元素とを含む請求項1に記載の方法。   The heteropolyacid compound further contains vanadium, an element selected from potassium, rubidium, cesium and thallium, and an element selected from copper, arsenic, antimony, boron, silver, bismuth, iron, cobalt, lanthanum and cerium. The method according to 1. 請求項1又は2に記載の方法により触媒を製造し、この触媒の存在下に、メタクロレイン、イソブチルアルデヒド、イソブタン及びイソ酪酸から選ばれる化合物を気相接触酸化反応に付す、メタクリル酸の製造方法。
A method for producing methacrylic acid, comprising producing a catalyst by the method according to claim 1 or 2, and subjecting a compound selected from methacrolein, isobutyraldehyde, isobutane and isobutyric acid to a gas phase catalytic oxidation reaction in the presence of the catalyst. .
JP2005281348A 2005-09-28 2005-09-28 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid Active JP4595769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005281348A JP4595769B2 (en) 2005-09-28 2005-09-28 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005281348A JP4595769B2 (en) 2005-09-28 2005-09-28 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid

Publications (2)

Publication Number Publication Date
JP2007090193A JP2007090193A (en) 2007-04-12
JP4595769B2 true JP4595769B2 (en) 2010-12-08

Family

ID=37976491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005281348A Active JP4595769B2 (en) 2005-09-28 2005-09-28 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid

Country Status (1)

Country Link
JP (1) JP4595769B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4715712B2 (en) 2006-10-13 2011-07-06 住友化学株式会社 A method for regenerating a catalyst for producing methacrylic acid and a method for producing methacrylic acid.
JP2008284508A (en) * 2007-05-21 2008-11-27 Sumitomo Chemical Co Ltd Production method of catalyst for methacrylic-acid production and production method of methacrylic acid
JP2010201401A (en) * 2009-03-06 2010-09-16 Sumitomo Chemical Co Ltd Method for manufacturing extrusion catalyst molding
JP5793345B2 (en) * 2011-05-25 2015-10-14 住友化学株式会社 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165040A (en) * 1981-04-03 1982-10-09 Sumitomo Chem Co Ltd Preparation of catalyst for preparing methacrylic acid
JPH04279548A (en) * 1991-01-17 1992-10-05 Sumitomo Chem Co Ltd Production of methacrylic acid by catalytic oxidation of isobutane
JPH0686933A (en) * 1992-09-09 1994-03-29 Sumitomo Chem Co Ltd Production of catalyst for producing methacrylic acid
JPH081005A (en) * 1994-06-22 1996-01-09 Sumitomo Chem Co Ltd Production of catalyst for production of mathacrylic acid
JPH1157479A (en) * 1997-08-08 1999-03-02 Mitsubishi Chem Corp Gas phase catalytic oxidation reaction catalyst for hydrocarbon and preparation thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165040A (en) * 1981-04-03 1982-10-09 Sumitomo Chem Co Ltd Preparation of catalyst for preparing methacrylic acid
JPH04279548A (en) * 1991-01-17 1992-10-05 Sumitomo Chem Co Ltd Production of methacrylic acid by catalytic oxidation of isobutane
JPH0686933A (en) * 1992-09-09 1994-03-29 Sumitomo Chem Co Ltd Production of catalyst for producing methacrylic acid
JPH081005A (en) * 1994-06-22 1996-01-09 Sumitomo Chem Co Ltd Production of catalyst for production of mathacrylic acid
JPH1157479A (en) * 1997-08-08 1999-03-02 Mitsubishi Chem Corp Gas phase catalytic oxidation reaction catalyst for hydrocarbon and preparation thereof

Also Published As

Publication number Publication date
JP2007090193A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4957628B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4715712B2 (en) A method for regenerating a catalyst for producing methacrylic acid and a method for producing methacrylic acid.
JP4900449B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4957627B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4848813B2 (en) A method for producing a catalyst for producing methacrylic acid and a method for producing methacrylic acid.
JP5335490B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4715699B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4595769B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5214500B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4200744B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3799660B2 (en) Oxidation catalyst, method for producing the same, and method for producing methacrylic acid
JP5793345B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4352856B2 (en) A method for producing a catalyst for producing methacrylic acid, a catalyst for producing methacrylic acid obtained thereby, and a method for producing methacrylic acid.
JP2008229515A (en) Method for manufacturing catalyst for producing methacrylic acid
JP2012245433A (en) Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid
JP2008284508A (en) Production method of catalyst for methacrylic-acid production and production method of methacrylic acid
JP5024183B2 (en) Method for producing shaped catalyst comprising heteropolyacid compound
JP2005021727A (en) Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid
JPH09299802A (en) Manufacture of oxidation catalyst and preparation of methacrylic acid
JP2013086008A (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP4900532B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2013091016A (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP2004141823A (en) Manufacturing method of catalyst for production of methacrylic acid and manufacturing method of methacrylic acid
JP5214499B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP2013180251A (en) Method of producing catalyst for producing methacrylic acid and method of producing methacrylic acid

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R151 Written notification of patent or utility model registration

Ref document number: 4595769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350