KR101389453B1 - Preparation method of basicity increasing agent for poly aluminum chloride based coagulant and basicity increasing agent prepared by the same - Google Patents

Preparation method of basicity increasing agent for poly aluminum chloride based coagulant and basicity increasing agent prepared by the same Download PDF

Info

Publication number
KR101389453B1
KR101389453B1 KR1020130130103A KR20130130103A KR101389453B1 KR 101389453 B1 KR101389453 B1 KR 101389453B1 KR 1020130130103 A KR1020130130103 A KR 1020130130103A KR 20130130103 A KR20130130103 A KR 20130130103A KR 101389453 B1 KR101389453 B1 KR 101389453B1
Authority
KR
South Korea
Prior art keywords
basicity
sodium
aluminum
increasing agent
high base
Prior art date
Application number
KR1020130130103A
Other languages
Korean (ko)
Inventor
이동석
Original Assignee
미주엔비켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미주엔비켐 주식회사 filed Critical 미주엔비켐 주식회사
Priority to KR1020130130103A priority Critical patent/KR101389453B1/en
Application granted granted Critical
Publication of KR101389453B1 publication Critical patent/KR101389453B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron

Abstract

The present invention relates to a production method of a basicity increasing agent capable of stably producing a poly aluminum chloride based coagulant, and the basicity increasing agent prepared by the same, and more specifically, to: a production method of an aluminum sodium silicate based basicity increasing agent by making sodium hydroxide, aluminum hydroxide, and polyaluminosilicate react with water; and the basicity increasing agent prepared by the same. The aluminum sodium silicate based basicity increasing agent produced by the present invention effectively increases the basicity of a low basicity polyaluminium chloride based coagulant while securing the stability of a high basicity polyaluminium chloride based coagulant at the same time, and has excellent storage stability.

Description

폴리염화알루미늄계 응집제용 고염기화제의 제조 방법 및 이에 따라 제조되는 고염기화제{Preparation method of basicity increasing agent for poly aluminum chloride based coagulant and basicity increasing agent prepared by the same}Preparation method of basicity increasing agent for poly aluminum chloride based coagulant and basicity increasing agent prepared by the same}

본 발명은 고염기도 폴리염화알루미늄계 응집제를 안정적으로 제조할 수 있는 고염기화제의 제조 방법 및 그에 따라 제조되는 고염기화제에 관한 것으로서, 저염기도 폴리염화알루미늄계 응집제의 염기도를 효과적으로 높일 수 있는 동시에 생성되는 고염기도의 폴리염화알루미늄계 응집제의 안정성을 확보할 수 있으면서, 제품 자체의 저장 안정성도 우수한 수처리용 폴리염화알루미늄계 응집제용 고염기화제의 제조 방법 및 그에 의해 제조되는 고염기화제에 관한 것이다.
The present invention relates to a method for producing a high base agent capable of stably producing a polyaluminum chloride-based coagulant, and a high base agent prepared according to the present invention. The present invention relates to a method for producing a high base agent for polyaluminum chloride-based flocculant for water treatment, which can ensure the stability of the resulting polyaluminum chloride-based flocculant, and also has excellent storage stability, and a high base agent produced by the same. .

수처리용 알루미늄계 응집제(coagulant)로는 황산알루미늄(Allum), 폴리염화알루미늄(Poly Aluminum Chloride: PAC), 폴리염화규산알루미늄(Poly Aluminum Chloride Silicate: PACS), 폴리황산알루미늄실리케이트(Poly Aluminum Sulfate Silicate: PASS) 등이 주로 사용되어 왔다. 상기 황산알루미늄은 단분자 응집제로서 가격이 저렴하다는 장점은 있으나, 고분자 응집제에 비해 응집 효과가 낮고 처리후 처리수의 알칼리도와 pH 저하가 크다는 단점이 있다. 이러한 단점을 개선하기 위해 개발된 것이 고분자 형태인 PAC, PACS, PASS 등의 무기 고분자 응집제인데 이들은 양이온의 전하량이 +7가로서 +3가에 불과한 황산알루미늄 단분자에 비해 응집력이 상당히 크다는 장점이 있다. 이들은 대개 염기도가 40% 이상으로 큰 것이 특징이다. Coagulants for water treatment include aluminum sulfate (Allum), poly aluminum chloride (PAC), poly aluminum chloride silicate (PACS), and poly aluminum sulfate silicate (PASS). ) Has been mainly used. The aluminum sulfate has the advantage of being inexpensive as a monomolecular flocculant, but has a disadvantage in that the agglomeration effect is lower than that of the polymer flocculant and the alkalinity and pH decrease of the treated water are large after treatment. Inorganic polymer coagulants such as PAC, PACS, PASS, etc., which are developed to improve these disadvantages, have the advantage that the cohesive force is considerably greater than that of the aluminum sulfate single molecule, where the charge amount of cations is +7 and only +3. . These are usually characterized by a high basicity of 40% or more.

그 중 가장 일반적으로 사용되는 폴리염화알루미늄(PAC)은 수산화알루미늄과 염산을 반응시켜 제조되는 다염기성 폴리염화알루미늄으로서 일반식 [Al2(OH)nCl6-n]m (0<n<6, m≤10)으로 표시되며, 수용액에서는 아코착이온([Al(H2O)6])을 가지는 배위화합물이기 때문에 수산기를 가교로 해서 다핵착체가 되고 핵은 증가해서 거대화한 무기 고분자 화합물을 형성한다. Among them, the most commonly used polyaluminum chloride (PAC) is a polybasic polyaluminum chloride prepared by reacting aluminum hydroxide with hydrochloric acid, and has the general formula [Al 2 (OH) n Cl 6-n ] m (0 <n <6 , m≤10), and in the aqueous solution, it is a coordination compound having an azo complex ([Al (H 2 O) 6 ]). Form.

폴리염화알루미늄은 종래부터 수처리용 응집제로 주로 사용되어 왔다. 특히, 정수 처리시의 거대한 분자를 응집하기 위한 응집제로 주로 사용되었으며, 이에 따라 염기도를 45% 이상으로 확보하기 위한 여러 기술이 제안된 바 있다. Polyaluminum chloride has conventionally been mainly used as a flocculant for water treatment. In particular, it was mainly used as a flocculant for agglomerating large molecules in water treatment, and accordingly, various techniques for securing a basicity of 45% or more have been proposed.

염기도란 응집제 단위 분자에 존재하는 Al 금속의 수에 대한 OH의 수의 비율로서 하기 식으로 표시된다. Basicity is a ratio of the number of OH to the number of Al metals present in the coagulant unit molecule is represented by the following formula.

염기도(%) = (단위 분자당 OH의 수/3× 단위 분자당 Al금속의 수)× 100Basicity (%) = (number of OHs per unit molecule / 3 × number of Al metals per unit molecule) × 100

일반적으로 염기도가 증가할수록 응집 성분의 분자량이 커지기 때문에 침전 성능이 향상되고 정수 처리후 소석회 사용량을 줄일 수 있는 장점이 있는 반면, 자체적으로 침전을 일으켜 안정성이 떨어지기 때문에 염기도를 증가시키는 것은 한계가 있었다. In general, as the basicity increases, the molecular weight of the coagulation component increases, so that the precipitation performance is improved and the amount of calcined lime after purification is reduced, whereas the basicity is limited because the precipitation is lowered and the stability is lowered. .

대한민국 공개특허 제1999-0049511호, 대한민국 등록특허 제0858633호 등에서는 수산화알루미늄에 염산을 반응시켜 중간화합물을 생성하고 염산으로 인해 낮아진 염기도를 높이기 위하여 탄산나트륨, 중탄산나트륨, 중탄산칼슘 등의 저알칼리염을 고염기화제로 사용하여 염기도를 증가시키는 기술을 제안하고 있다. 이 기술에서는 염기도를 80%까지 증가시킬 수 있는 기술을 제안하고 있으나, 지나치게 가혹한 반응 조건을 이용하여 염기도를 강제로 높이는 기술이므로, 생성되는 제품의 안정성이 낮고 시간이 지남에 따라 안정성이 깨지기 쉬워 석출물이 생성되는 등 장기 저장성이 열악한 문제를 나타내었으며 알칼리 소비량이 많아 제조 비용이 증가하는 문제가 있었다. In Korean Patent Laid-Open Publication No. 1999-0049511 and Korean Patent Registration No. 0858633, low alkali salts such as sodium carbonate, sodium bicarbonate and calcium bicarbonate are used to produce intermediate compounds by reacting hydrochloric acid with aluminum hydroxide and to increase the basicity lowered by hydrochloric acid. It is proposed a technique to increase the basicity by using as a high base agent. This technique proposes a technique that can increase the basicity to 80%, but it is a technique of forcibly increasing the basicity by using excessively harsh reaction conditions, so that the stability of the produced product is low and the stability is fragile over time. Such a long-term storage was poor, such as the generation of a problem, and there is a problem that the manufacturing cost increases due to the high alkali consumption.

또한, 대한민국 등록특허 제0733286호에서는 6개월 이상의 장기 저장 안정성을 확보하기 위한 기술로서 수산화알루미늄과 염산을 반응시켜 제조된 저염기도의 폴리염화알루미늄(PAC)에 수산화알루미늄과 가성소다를 반응시켜 제조된 알민산나트륨(NaAl(OH)4 또는 Na2Al2O4)을 고염기화제로 사용하여 60% 이상의 고염기도를 갖는 폴리염화알루미늄계 무기 응집제를 제조하는 방법을 제안하고 있다. 이 기술은 저염기도의 응집제와 알민산나트륨의 반응성을 높이기 위하여 알민산나트륨의 농도를 희석하여 균질화 반응기에서 반응시킴으로써 산 알칼리 반응에 의한 침전물 형성을 방지하며, 고분자 응집제의 안정화를 위해 일정 온도에서 일정 교반 속도로 일정시간 안정화 반응시킴에 의해 6개월 이상 보관하여도 침전의 형성이 없는 60% 이상의 고염기도를 갖는 무기 응집제를 제조할 수 있는 기술을 제안하고 있다. 그러나, 상기 기술에서 사용되는 고염기화제인 알민산나트륨은 장기 보관시 경화되거나 분해되는 등 제품 자체의 보관 안정성이 떨어지는 문제점이 있다.
In addition, the Republic of Korea Patent No. 0733286 is a technology for securing long-term storage stability of 6 months or more prepared by reacting aluminum hydroxide and caustic soda in a low-basic polyaluminum chloride (PAC) prepared by reacting aluminum hydroxide with hydrochloric acid A method for preparing a polyaluminum chloride-based inorganic coagulant having a high basic group of 60% or more using sodium almate (NaAl (OH) 4 or Na 2 Al 2 O 4 ) as a high base agent is proposed. This technique prevents the formation of precipitates by acid alkali reaction by diluting the concentration of sodium alginate in the homogenization reactor in order to increase the reactivity of the low-basicity coagulant and sodium aldehyde. By stabilizing the reaction at a constant rate for a certain time, a technique for preparing an inorganic flocculant having a high base group of 60% or more without formation of precipitates even when stored for 6 months or more is proposed. However, there is a problem in that the storage stability of the product itself is poor, such as sodium almate which is a high base agent used in the above technology is cured or decomposed during long-term storage.

본 발명은 상기와 같은 종래 기술의 상황을 고려하여 새로이 개발된 것으로서, 저염기도의 폴리염화알루미늄계 응집제와의 반응을 통하여 고염기도의 폴리염화알루미늄계 응집제를 제조함에 있어, 제조되는 고염기도의 폴리염화알루미늄이 상온, 상압 조건에서 장기 보관하더라도 석출물이 석출되지 않는 등 생성물의 안정성이 확보될 수 있는 동시에 제조 과정도 비교적 간단하고 고염기화제 제품 자체의 저장 안정성도 우수한 폴리염화알루미늄계 응집제용 고염기화제를 제조하는 방법을 제공하고자 한다. The present invention has been newly developed in consideration of the situation of the prior art as described above, and in the production of a polybasic aluminum chloride coagulant having a high basic degree through the reaction with a polybasic aluminum chloride-based coagulant having a low base, Even if aluminum chloride is stored for a long period of time at room temperature and atmospheric pressure, precipitates do not precipitate, and the stability of the product can be secured, and the manufacturing process is relatively simple, and the high base for polyaluminum-based coagulant has excellent storage stability. It is intended to provide a method for preparing a topic.

또한, 본 발명은 상기 제조 방법에 의해 제조되는 폴리염화알루미늄계 응집제용 고염기화제를 제공하고자 한다.
In addition, the present invention is to provide a high base agent for polyaluminum chloride-based flocculant prepared by the above production method.

상기 과제를 달성하기 위하여 본 발명은,According to an aspect of the present invention,

수산화나트륨(NaOH) 40~65 중량%, 수산화알루미늄(Al(OH)3) 15~50 중량%, 폴리알루미노실리케이트 0.01~10 중량% 및 잔량의 물을 혼합하여 80~160℃의 온도 하에서 0.5~10 시간 동안 반응시키는 것을 포함하는 폴리염화알루미늄계 응집제용 고염기화제의 제조 방법을 제공한다.40 to 65% by weight of sodium hydroxide (NaOH), 15 to 50% by weight of aluminum hydroxide (Al (OH) 3 ), 0.01 to 10% by weight of polyaluminosilicate and the balance of water at a temperature of 80 to 160 ° C. It provides a method for producing a high base agent for polyaluminum chloride-based flocculant comprising the reaction for ˜10 hours.

또한, 본 발명은 상기 제조 방법에 의하여 제조되며, NaxAly(SiO2)z (1≤x≤4, 1≤y≤4, 1≤z≤4)의 화학식을 갖는 폴리염화알루미늄계 응집제용 고염기화제를 제공하고자 한다.
In addition, the present invention is prepared by the above production method, a polyaluminum chloride-based coagulant having a chemical formula of Na x Al y (SiO 2 ) z (1≤x≤4, 1≤y≤4, 1≤z≤4) To provide a high base agent for.

본 발명에 따른 폴리염화알루미늄계 응집제용 고염기화제의 제조 방법 및 그에 따라 제조되는 고염기화제의 특징 및 장점을 설명하면 다음과 같다.
Referring to the features and advantages of the method of manufacturing a high base agent for polyaluminum chloride-based flocculant and a high base agent prepared according to the present invention are as follows.

우선, 본 발명에 따른 폴리염화알루미늄계 응집제용 고염기화제는 저염기도 폴리염화알루미늄계 응집제와 용이하게 반응하여 50% 이상, 더 바람직하게는 60% 이상의 고염기도 폴리염화알루미늄을 제조하는데 효과적이다.First, the high base agent for polyaluminum chloride-based coagulants according to the present invention is easily reacted with the polybasic aluminum chloride-based coagulant with a low base so that at least 50%, more preferably at least 60% of the high base is effective for producing polyaluminum chloride.

또한, 본 발명에 따른 고염기화제는 기존의 고염기화제인 알민산나트륨과 달리 실리케이트와 알루미늄을 결합한 구조인 알루미늄규산나트륨 형태로 제조되는데 알민산나트륨과 동등 수준 이상으로 고염기도를 갖는 폴리염화알루미늄계 응집제의 제조가 가능하고 생성되는 고염기도 폴리염화알루미늄계 응집제의 안정성 또한 확보할 수 있다. In addition, the high base agent according to the present invention is manufactured in the form of sodium aluminum silicate, which is a structure in which silicate and aluminum are combined, unlike the existing high base agent sodium almate, polyaluminum chloride having a high basic group at a level equivalent to that of sodium almate. It is possible to produce a flocculant, and the resulting high base can also ensure the stability of the polyaluminum chloride-based flocculant.

또한, 본 발명에 따라 제조되는 알루미늄규산나트륨계 고염기화제는 6개월 이상의 자체 제품 보관 안정성도 우수하므로 기존의 알민산나트륨이 갖던 제품 안정성 열악의 문제를 해결할 수 있다.
In addition, the sodium aluminum silicate-based high base agent prepared in accordance with the present invention can also solve the problem of poor product stability that the existing sodium phosphate has excellent storage stability of more than 6 months.

이하, 본 발명에 관하여 더욱 구체적으로 설명한다.
Hereinafter, the present invention will be described in more detail.

기존의 고염기화제로 사용되던 탄산나트륨, 중탄산나트륨, 중탄산칼슘 등의 저알칼리염은 알칼리 소비량이 많고 제품의 안정성이 떨어진다는 문제가 있었다. 또한, 최근에 사용되고 있는 알민산나트륨은 제품 자체의 안정성이 떨어져 장기 보관시 저장 용기 내에서 경화되거나 분해되어 슬러지화되는 문제가 있었다.Low alkali salts such as sodium carbonate, sodium bicarbonate and calcium bicarbonate, which have been used as conventional high bases, have high alkali consumption and have low product stability. In addition, recently used sodium aluminate has a problem in that the stability of the product itself is hardened or decomposed and sludged in the storage container during long-term storage.

본 발명은 이와 같은 종래의 폴리염화알루미늄계 응집제용 고염기화제가 가지고 있던 문제를 해결하기 위하여 새로이 개발된 것이다.The present invention has been newly developed to solve the problems of the conventional high base agent for polyaluminum chloride-based flocculant.

본 발명에 따른 고염기화제는 수산화나트륨(NaOH)과 수산화알루미늄(Al(OH)3) 및 폴리알루미노실리케이트를 물과 혼합하여 반응시킴에 의해 제조된다. The high base agent according to the present invention is prepared by reacting sodium hydroxide (NaOH) with aluminum hydroxide (Al (OH) 3 ) and polyaluminosilicate by mixing with water.

좀 더 구체적으로, 본 발명에 따른 고염기화제는 수산화나트륨(NaOH) 40~65 중량%, 수산화알루미늄(Al(OH)3) 15~50 중량%, 폴리알루미노실리케이트 0.01~10 중량% 및 잔량의 물을 혼합하여 80~160℃의 온도 하에서 0.5~10 시간 동안 반응시킴에 의해 제조된다. More specifically, the high base agent according to the present invention is sodium hydroxide (NaOH) 40 to 65% by weight, aluminum hydroxide (Al (OH) 3 ) 15 to 50% by weight, polyaluminosilicate 0.01 to 10% by weight and the balance It is prepared by mixing the water of the reaction under a temperature of 80 ~ 160 ℃ 0.5 to 10 hours.

본 발명에서 상기 제조 방법에 의하여 제조되는 고염기화제는 NaxAly(SiO2)z (1≤x≤4, 1≤y≤4, 1≤z≤4)의 화학식을 갖는다. In the present invention, the high base agent prepared by the preparation method has a chemical formula of Na x Al y (SiO 2 ) z (1 ≦ x ≦ 4, 1 ≦ y ≦ 4, 1 ≦ z ≦ 4).

본 발명에서 상기 제조 방법에 사용되는 폴리알루미노실리케이트는 분말 형태로 사용되는 것이 바람직하며, 분말의 크기는 0.01~1.0㎛ 범위에 드는 것을 사용하는 것이 바람직하다. 본 발명에서 상기 폴리알루미노실리케이트는 폴리실리케이트의 실리콘 원자가 일부 알루미늄으로 바뀐 형태로서 분자 출입이 가능한 3~10Å의 크기를 갖는 나노 세공들이 규칙적으로 배열된 제올라이트계 화합물인 것이 바람직하다. 좀 더 구체적으로 상기 폴리알루미늄실리케이트는 제올라이트 A, ZSM-5, 제올라이트-X, 제올라이트-Y 또는 제올라이트-L인 것이 바람직하다. 제올라이트 A는 입자 크기가 교환된 양이온에 따라 3~5Å이며, 내부에 지름 11Å 정도의 수퍼 케이지(supercage)를 포함하고 있는 형태를 하고 있는 물질이다. 또한, 제올라이트-X 및 제올라이트-Y는 실리콘과 알루미늄의 비율(Si/Al)에 따라 X(Si/Al=1~1.5) 및 Y(Si/Al=1.6~3)로 불리며 입구 크기가 7Å 정도이고 내부에는 지름 13Å 정도의 수퍼 케이지를 포함하고 있는 형태를 하고 있는 물질이다. 또한, ZSM-5 및 제올라이트-L은 길이가 한 쪽 방향으로 길게 형성된 채널 형태로 구성된 물질이다. In the present invention, the polyaluminosilicate used in the preparation method is preferably used in powder form, and the size of the powder is preferably in the range of 0.01 to 1.0 μm. In the present invention, it is preferable that the polyaluminosilicate is a zeolite-based compound in which nanopores having a size of 3 to 10 microseconds in which molecular atoms of polysilicate are changed to some aluminum are regularly arranged. More specifically, the polyaluminum silicate is zeolite A, ZSM-5, zeolite-X, zeolite-Y or zeolite-L. Zeolite A is a material having a size of 3 to 5 kPa depending on the cation exchanged in the particle size, and having a supercage having a diameter of about 11 kPa inside. In addition, zeolite-X and zeolite-Y are called X (Si / Al = 1 ~ 1.5) and Y (Si / Al = 1.6 ~ 3) according to the ratio of silicon to aluminum (Si / Al) and the inlet size is about 7Å. It is a material that contains a super cage about 13mm in diameter inside. In addition, ZSM-5 and zeolite-L are materials formed in the form of a channel formed long in one direction.

본 발명에서 수산화나트륨과 수산화알루미늄은 폴리알루미늄실리케이트와의 반응에 의해 NaxAly(SiO2)z (1≤x≤4, 1≤y≤4, 1≤z≤4)의 화학식을 갖는 알루미늄규산나트륨 형태의 화합물을 생성한다. 이러한 알루미늄규산나트륨은 저염기도를 갖는 폴리염화알루미늄계 수처리제와의 반응을 통해 상기 폴리염화알루미늄의 염기도를 향상시킬 수 있는 고염기화제로 사용될 수 있다. In the present invention, sodium hydroxide and aluminum hydroxide are aluminum having a chemical formula of Na x Al y (SiO 2 ) z (1≤x≤4, 1≤y≤4, 1≤z≤4) by reaction with polyaluminum silicate. To produce a compound in the form of sodium silicate. The sodium aluminum silicate can be used as a high base agent that can improve the basicity of the polyaluminum chloride through reaction with a polyaluminum chloride-based water treatment agent having a low base group.

본 발명에서 반응물로 사용되는 상기 수산화나트륨(NaOH)는 산화나트륨(Na2O)의 농도가 30~50%인 것을 사용하는 것이 바람직하다. The sodium hydroxide (NaOH) used as a reactant in the present invention is preferably used that the concentration of sodium oxide (Na 2 O) is 30 to 50%.

또한, 본 발명에서 반응물로 사용되는 상기 수산화알루미늄(Al(OH)3)은 산화알루미늄(Al2O3)의 농도가 50~70%인 것을 사용하는 것이 바람직하다. In addition, the aluminum hydroxide (Al (OH) 3 ) used as a reactant in the present invention is preferably used that the concentration of aluminum oxide (Al 2 O 3 ) 50 to 70%.

또한, 본 발명에서 생성되는 상기 고염기화제는 산화알루미늄(Al2O3)의 농도가 10~28%, 산화나트륨(Na2O)의 농도가 10~25%인 것이 바람직하다. In addition, the high base agent produced in the present invention is preferably 10 to 28% of the concentration of aluminum oxide (Al 2 O 3 ), 10 to 25% of the concentration of sodium oxide (Na 2 O).

본 발명에서 반응물인 수산화나트륨, 수산화알루미늄, 폴리알루미늄실리케이트 및 물을 혼합한 후 적정 온도 조건하에서 일정 시간 숙성시켜 반응시키는데 반응 온도 조건은 80~160℃의 범위가 바람직하고, 더욱 바람직하게는 100~150℃의 범위가 좋다. 또한, 반응 시간은 0.5~10 시간동안 실시하는 것이 바람직하고, 더욱 바람직하게는 1~5 시간이다. After reacting sodium hydroxide, aluminum hydroxide, polyaluminum silicate and water as reactants in the present invention, the mixture is aged for a certain time under an appropriate temperature condition, and the reaction temperature condition is preferably in the range of 80 to 160 ° C, more preferably 100 to The range of 150 degreeC is good. Moreover, it is preferable to perform reaction time for 0.5 to 10 hours, More preferably, it is 1 to 5 hours.

본 발명에 따라 제조되는 상기 고염기화제는 NaxAly(SiO2)z (1≤x≤4, 1≤y≤4, 1≤z≤4)의 화학식을 가지며, 자체 저장 안정성이 우수하여 6개월 이상 장기 보관시에도 경화되거나 분해되지 않는 장점을 갖는다.
The high base agent prepared according to the present invention has a chemical formula of Na x Al y (SiO 2 ) z (1≤x≤4, 1≤y≤4, 1≤z≤4), and has excellent storage stability Long term storage for more than 6 months has the advantage that it does not cure or decompose.

이하에서는 본 발명을 실시예예 의거하여 더욱 상세하게 설명한다. 그러나, 본 발명의 범위가 하기 실시예에 의해 제한되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited by the following examples.

[실시예 1]Example 1

산화나트륨(Na2O)의 농도가 42.6%인 수산화나트륨(NaOH) 55 중량%, 산화알루미늄(Al2O3)의 농도가 60%인 수산화알루미늄(Al(OH)3) 38 중량% 및 입자크기가 0.01~1.0㎛ 범위에 드는 폴리알루미노실리케이트(제올라이트 A) 0.29 중량%를 잔량의 물과 혼합하여 100 중량%로 만든 후 140℃의 온도 조건에서 180분 동안 반응시켰다.55 wt% sodium hydroxide (NaOH) with a concentration of 42.6% sodium oxide (Na 2 O), 38 wt% aluminum hydroxide (Al (OH) 3 ) with 60% concentration of aluminum oxide (Al 2 O 3 ) and particles 0.29% by weight of polyaluminosilicate (zeolite A) having a size in the range of 0.01-1.0 μm was mixed with the remaining amount of water to make 100% by weight and reacted for 180 minutes at a temperature of 140 ° C.

이와 같은 과정을 통해 산화알루미늄(Al2O3)의 농도가 20%, 산화나트륨(Na2O)의 농도가 19.5% 알루미늄규산나트륨(NaxAly(SiO2)z)을 제조하였다.
Through this process, the concentration of aluminum oxide (Al 2 O 3 ) 20%, sodium oxide (Na 2 O) concentration of 19.5% sodium silicate (Na x Al y (SiO 2 ) z ) was prepared.

[실시예 2][Example 2]

산화나트륨(Na2O)의 농도가 41.0%인 수산화나트륨(NaOH) 53 중량%, 산화알루미늄(Al2O3)의 농도가 59.8%인 수산화알루미늄(Al(OH)3) 39 중량% 및 입자크기가 0.01~1.0㎛ 범위에 드는 폴리알루미노실리케이트(ZSM-5) 0.25 중량%를 잔량의 물과 혼합하여 100 중량%로 만든 후 140℃의 온도 조건에서 180분 동안 반응시켰다.53 wt% of sodium hydroxide (NaOH) having a concentration of 41.0% sodium oxide (Na 2 O), 39 wt% of aluminum hydroxide (Al (OH) 3 ) having a concentration of 59.8% aluminum oxide (Al 2 O 3 ), and particles 0.25 wt% of polyaluminosilicate (ZSM-5) having a size ranging from 0.01 to 1.0 μm was mixed with the remaining amount of water to make 100 wt% and reacted for 180 minutes at a temperature of 140 ° C.

이와 같은 과정을 통해 산화알루미늄(Al2O3)의 농도가 18.9%, 산화나트륨(Na2O)의 농도가 20.5% 알루미늄규산나트륨(NaxAly(SiO2)z)을 제조하였다.
Through this process, aluminum oxide (Al 2 O 3 ) concentration of 18.9%, sodium oxide (Na 2 O) concentration of 20.5% sodium aluminum silicate (Na x Al y (SiO 2 ) z ) was prepared.

[실시예 3][Example 3]

산화나트륨(Na2O)의 농도가 41.8%인 수산화나트륨(NaOH) 54 중량%, 산화알루미늄(Al2O3)의 농도가 58%인 수산화알루미늄(Al(OH)3) 40 중량% 및 입자크기가 0.01~1.0㎛ 범위에 드는 폴리알루미노실리케이트(제올라이트-X) 0.50 중량%를 잔량의 물과 혼합하여 100 중량%로 만든 후 40℃의 온도 조건에서 180분 동안 반응시켰다.Sodium in a concentration of sodium (Na 2 O) oxide 41.8% hydroxide (NaOH) 54% by weight, of aluminum oxide (Al 2 O 3) of aluminum hydroxide (Al (OH) 3) the concentration is 58% to 40% by weight and the particle 0.50 wt% of polyaluminosilicate (zeolite-X) having a size in the range of 0.01-1.0 μm was mixed with the remaining amount of water to make 100 wt% and reacted for 180 minutes at a temperature of 40 ° C.

이와 같은 과정을 통해 산화알루미늄(Al2O3)의 농도가 21%, 산화나트륨(Na2O)의 농도가 18.5% 알루미늄규산나트륨(NaxAly(SiO2)z)을 제조하였다.
Through this process, aluminum oxide (Al 2 O 3 ) concentration of 21%, sodium oxide (Na 2 O) concentration of 18.5% sodium silicate (Na x Al y (SiO 2 ) z ) was prepared.

[실시예 4]Example 4

산화나트륨(Na2O)의 농도가 45.7%인 수산화나트륨(NaOH) 59 중량%, 산화알루미늄(Al2O3)의 농도가 65%인 수산화알루미늄(Al(OH)3) 35 중량% 및 입자크기가 0.01~1.0㎛ 범위에 드는 폴리알루미노실리케이트(제올라이트-Y) 0.5 중량%를 잔량의 물과 혼합하여 100 중량%로 만든 후 140℃의 온도 조건에서 180분 동안 반응시켰다.Sodium in a concentration of sodium oxide (Na 2 O) 45.7% hydroxide (NaOH) 59% by weight, of aluminum oxide (Al 2 O 3) of aluminum hydroxide (Al (OH) 3) the concentration is 65% of the 35% by weight and the particle 0.5 wt% of polyaluminosilicate (zeolite-Y) having a size ranging from 0.01 to 1.0 μm was mixed with the remaining amount of water to make 100 wt% and reacted for 180 minutes at a temperature of 140 ° C.

이와 같은 과정을 통해 산화알루미늄(Al2O3)의 농도가 23%, 산화나트륨(Na2O)의 농도가 23.5% 알루미늄규산나트륨(NaxAly(SiO2)z)을 제조하였다.
Through this process, aluminum oxide (Al 2 O 3 ) concentration of 23%, sodium oxide (Na 2 O) concentration of 23.5% sodium aluminum silicate (Na x Al y (SiO 2 ) z ) was prepared.

[실시예 5][Example 5]

산화나트륨(Na2O)의 농도가 45.7%인 수산화나트륨(NaOH) 59 중량%, 산화알루미늄(Al2O3)의 농도가 68.5%인 수산화알루미늄(Al(OH)3) 43 중량% 및 입자크기가 0.01~1.0㎛ 범위에 드는 폴리알루미노실리케이트(제올라이트-L) 1.0 중량%를 잔량의 물과 혼합하여 140℃의 온도 조건에서 180분 동안 반응시켰다.Sodium in a concentration of sodium oxide (Na 2 O) 45.7% hydroxide (NaOH) 59% by weight, of aluminum oxide (Al 2 O 3) of aluminum hydroxide (Al (OH) 3) concentration of 68.5% of 43 weight% and particles 1.0% by weight of polyaluminosilicate (zeolite-L) having a size in the range of 0.01-1.0 μm was mixed with the remaining amount of water and reacted at a temperature of 140 ° C. for 180 minutes.

이와 같은 과정을 통해 산화알루미늄(Al2O3)의 농도가 24%, 산화나트륨(Na2O)의 농도가 24.5% 알루미늄규산나트륨(NaxAly(SiO2)z)을 제조하였다.
Through this process, aluminum oxide (Al 2 O 3 ) concentration of 24%, sodium oxide (Na 2 O) concentration of 24.5% sodium silicate (Na x Al y (SiO 2 ) z ) was prepared.

[비교예 1]Comparative Example 1

종래 고염기화제로 사용되던 탄산나트륨(Na2CO3)을 비교예 1로 사용하였다.
Sodium carbonate (Na 2 CO 3 ), which was conventionally used as a high base agent, was used as Comparative Example 1.

[비교예 2][Comparative Example 2]

종래 고염기화제로 사용되던 알민산나트륨(Na2Al2O4)을 비교예 2로 사용하였다.
Sodium aluminate (Na 2 Al 2 O 4 ), which was conventionally used as a high base agent, was used as Comparative Example 2.

[성능 평가][Performance evaluation]

1. 응집 성능 평가1. Evaluation of Cohesive Performance

상기 실시예 1~5에서 제조된 알루미늄규산나트륨 및 비교예 1~2의 탄산나트륨 및 알민산나트륨을 이용하여 65%의 고염기도 폴리염화알루미늄 응집제를 제조한 후 이를 이용하여 응집 기기(창신과학기계 C-JT Jar Tester)를 사용하여 급속 교반 130rpm 60초, 완속 교반 60rpm 10분, 정치 20분을 거친 후 상등액을 채취하여 탁도계(모델명: HACH 2100N Turbidity meter)를 사용하여 탁도를 측정하였다. 65% of the highly basic polybasic aluminum chloride coagulant was prepared using sodium silicate prepared in Examples 1 to 5 and sodium carbonate and sodium almate of Comparative Examples 1 to 2, and then agglomeration apparatus (Changshin Science Machine C -JT Jar Tester) was subjected to rapid stirring 130rpm 60 seconds, slow stirring 60rpm 10 minutes, stationary 20 minutes, the supernatant was collected and turbidity was measured using a turbidimeter (model name: HACH 2100N Turbidity meter).

그 결과를 표 1에 나타내었다.
The results are shown in Table 1.

원수: 알칼리도 25mg/l, pH=7.45, 탁도= 64 NTURaw water: 25 mg / l alkalinity, pH = 7.45, turbidity = 64 NTU 구분division 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예5Example 5 비교예1Comparative Example 1 비교예2Comparative Example 2 응집제투입량(mg/l)Coagulant Input (mg / l) 4040 4040 4040 4040 4040 4040 4040 처리수 탁도(NTU)Treated Water Turbidity (NTU) 0.700.70 0.740.74 0.760.76 0.700.70 0.740.74 1.131.13 0.930.93 처리수 pHTreated Water pH 7.417.41 7.417.41 7.427.42 7.417.41 7.417.41 7.437.43 7.407.40 처리수 알칼리도(mg/l)Treated water alkalinity (mg / l) 24.524.5 24.524.5 24.524.5 24.524.5 24.524.5 24.524.5 24.524.5 * NTU : 용액 중 현탁 물질의 양(Nephelometric Turbidity Unit)
* 탁도의 측정은 HACH 2100N 측정기 사용
* NTU: amount of suspended substance in solution (Nephelometric Turbidity Unit)
* Measurement of turbidity using HACH 2100N meter

상기 표 1로부터, 본 발명에 의한 실시예 1~5의 경우 기존의 탄산나트륨을 사용하여 제조된 경우(비교예 1) 및 알민산나트륨을 사용하여 제조된 경우(비교예 2)와 동등 수준 이상으로 응집 효율이 우수함을 확인하였다. 이에 따라 본 발명에 따른 고염기화제는 종래의 탄산나트륨과 같은 저알칼리성 고염기화제에 비하여 사용량을 줄일 수 있고 또한 종래의 알민산나트륨과 비교하여 그로부터 제조되는 고염기도 폴리염화알루미늄 응집제의 효율을 높게 유지할 수 있음을 알 수 있다.
From Table 1, in the case of Examples 1 to 5 according to the present invention at a level equivalent to or higher than that prepared using conventional sodium carbonate (Comparative Example 1) and when manufactured using sodium almate (Comparative Example 2) It was confirmed that the aggregation efficiency was excellent. Accordingly, the high base agent according to the present invention can reduce the amount of use compared to the low alkaline high base agent such as conventional sodium carbonate, and also maintain the high efficiency of the polyaluminum chloride flocculant prepared from the high base compared to the conventional sodium almate. It can be seen that.

2. 응집제의 안정성 평가2. Evaluation of stability of flocculant

저온 항온기에서(20℃) 상기 실시예 및 비교예의 고염기화제를 사용하여 제조된 65%의 고염기도 폴리염화알루미늄계 무기 응집제의 안정성 평가를 최대 6개월간 1개월 단위로 육안으로 관찰하여 침전물 발생 여부를 체크하였고, 그 결과를 하기 표 2에 나타내었다.
In the low temperature thermostat (20 ° C), the stability evaluation of 65% of the high basic degree polybasic aluminum chloride-based inorganic coagulant prepared using the high base agent of Examples and Comparative Examples was observed by visual observation on a monthly basis for up to 6 months to determine whether precipitates occurred. Was checked and the results are shown in Table 2 below.

구분division 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예5Example 5 비교예1Comparative Example 1 비교예2Comparative Example 2 1개월 후After 1 month OO OO OO OO OO OO OO 2개월 후Two months later OO OO OO OO OO OO OO 3개월 후3 months later OO OO OO OO OO OO OO 4개월 후4 months later OO OO OO OO OO OO 5개월 후5 months later OO OO OO OO OO XX 6개월 후6 months later OO OO XX XX O: 침전 없음. △: 침전 소량 발생, X:침전 다량 발생O: no precipitation. △: Small amount of precipitation occurs, X: Large amount of precipitation occurs

상기 표 2의 응집제 안정성 평가 결과로부터 본 발명의 고염기화제를 사용하여 제조된 65%의 고염기도 폴리염화알루미늄계 무기 응집제는 안정성이 매우 우수한 반면, 기존의 고염기화제를 사용하여 제조된 비교예 1 및 비교예 2의 경우는 응집제의 안정성이 비교적 열악함을 확인하였다.
65% of the highly basic polyaluminum chloride-based inorganic coagulant prepared using the high base agent of the present invention from the results of the coagulant stability evaluation of Table 2 has excellent stability, but a comparative example prepared using a conventional high base agent. In the case of 1 and Comparative Example 2, it was confirmed that the stability of the flocculant is relatively poor.

3. 고염기화제의 안정성 평가3. Evaluation of stability of high base

실시예 1~5에 의하여 본 발명에 따라 제조된 알루미늄규산나트륨 고염기화제 자체의 저장 안정성과 비교예 1 및 2의 고염기화제의 저장 안정성을 평가하기 위하여 항온기에서(20℃) 안정성 평가를 최대 6개월간 1개월 단위로 육안으로 관찰하여 침전물 발생 여부를 체크하였고, 그 결과를 하기 표 3에 나타내었다.
In order to evaluate the storage stability of the sodium aluminum silicate high base agent itself prepared in accordance with the present invention by Examples 1 to 5 and the storage stability of the high base agent of Comparative Examples 1 and 2, stability evaluation in a thermostat (20 ° C.) was maximum. Observation of the sediment by visual observation was performed for 6 months on a monthly basis, and the results are shown in Table 3 below.

구분division 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예5Example 5 비교예1Comparative Example 1 비교예2Comparative Example 2 1개월 후After 1 month OO OO OO OO OO OO OO 2개월 후Two months later OO OO OO OO OO OO OO 3개월 후3 months later OO OO OO OO OO OO OO 4개월 후4 months later OO OO OO OO OO 5개월 후5 months later OO OO OO OO OO XX XX 6개월 후6 months later OO OO OO XX XX O: 슬러리 발생 없음. △: 슬러리 소량 발생, X: 슬러리 다량 발생O: No slurry was generated. △: small amount of slurry generated, X: large amount of slurry generated

상기 표 3의 안정성 평가 결과로부터 본 발명의 알루미늄규산나트륨 고염기화제는 안정성이 매우 우수한 반면, 종래의 고염기화제인 비교예 1 및 비교예 2의 경우는 고염기화제 자체의 보관 안정성이 열악함을 확인하였다.
From the results of the stability evaluation of Table 3, the sodium aluminum silicate high base agent of the present invention is very excellent in stability, but the storage stability of the high base agent itself is poor in Comparative Example 1 and Comparative Example 2 of the conventional high base agent It was confirmed.

따라서 상기 응집 효율 및 안정성 평가로부터 본 발명에 따른 알루미늄규산나트륨계 고염기화제를 이용하여 고염기도 폴리염화알루미늄계 무기 응집제를 제조할 경우 응집 효율과 응집제의 안정성 모두 매우 우수하여 수처리용으로 사용하기 적합하다는 것을 알 수 있다. 아울러, 본 발명에 따른 알루미늄규산나트륨계 고염기화는 제품 자체의 장기 보관 안정성도 우수함을 확인할 수 있다. Therefore, when the polybasic aluminum chloride-based inorganic flocculant is prepared by using the sodium silicate-based high base agent according to the present invention from the flocculation efficiency and stability evaluation, both the flocculation efficiency and the stability of the flocculant are very excellent and thus suitable for use in water treatment. You can see that. In addition, the sodium silicate-based high base according to the present invention can be confirmed that the long-term storage stability of the product itself is also excellent.

Claims (8)

수산화나트륨(NaOH) 40~65 중량%, 수산화알루미늄(Al(OH)3) 15~50 중량%, 폴리알루미노실리케이트 0.01~10 중량% 및 잔량의 물을 혼합하여 80~160℃의 온도 하에서 0.5~10 시간 동안 반응시키는 것을 포함하는 NaxAly(SiO2)z (1≤x≤4, 1≤y≤4, 1≤z≤4)의 폴리염화알루미늄계 응집제용 고염기화제의 제조 방법.
40 to 65% by weight of sodium hydroxide (NaOH), 15 to 50% by weight of aluminum hydroxide (Al (OH) 3 ), 0.01 to 10% by weight of polyaluminosilicate and the balance of water at a temperature of 80 to 160 ° C. Method for producing a high base agent for polyaluminum chloride-based coagulant of Na x Al y (SiO 2 ) z (1≤x≤4, 1≤y≤4, 1≤z≤4) comprising reacting for ˜10 hours .
삭제delete 청구항 1에서, 상기 폴리알루미노실리케이트는 제올라이트인 것을 특징으로 하는 폴리염화알루미늄계 응집제용 고염기화제의 제조 방법.
The method of claim 1, wherein the polyaluminosilicate is a zeolite.
청구항 3에 있어서, 상기 제올라이트는 제올라이트 A, ZSM-5, 제올라이트-X, 제올라이트-Y 또는 제올라이트-L인 것을 특징으로 하는 폴리염화알루미늄계 응집제용 고염기화제의 제조 방법.
The method of claim 3, wherein the zeolite is zeolite A, ZSM-5, zeolite-X, zeolite-Y or zeolite-L.
청구항 1에서, 상기 수산화나트륨(NaOH)는 산화나트륨(Na2O)의 농도가 30~50%인 것을 특징으로 하는 폴리염화알루미늄계 응집제용 고염기화제의 제조 방법.
The method of claim 1, wherein the sodium hydroxide (NaOH) has a concentration of sodium oxide (Na 2 O) of 30 to 50%.
청구항 1에서, 상기 수산화알루미늄(Al(OH)3)은 산화알루미늄(Al2O3)의 농도가 50~70%인 것을 특징으로 하는 폴리염화알루미늄계 응집제용 고염기화제의 제조 방법.
The method of claim 1, wherein the aluminum hydroxide (Al (OH) 3 ) has a concentration of 50% to 70% of aluminum oxide (Al 2 O 3 ).
청구항 1에 있어서, 상기 고염기화제는 산화알루미늄(Al2O3)의 농도가 10~28%, 산화나트륨(Na2O)의 농도가 10~25%인 것을 특징으로 하는 폴리염화알루미늄계 응집제용 고염기화제의 제조 방법.
The polyaluminum chloride-based flocculant of claim 1, wherein the high base agent has a concentration of 10 to 28% of aluminum oxide (Al 2 O 3 ) and a concentration of 10 to 25% of sodium oxide (Na 2 O). Method for producing a high base agent for.
청구항 1 및 3 내지 7 중 어느 한 항에 따른 방법에 의하여 제조되며, NaxAly(SiO2)z (1≤x≤4, 1≤y≤4, 1≤z≤4)의 화학식을 갖는 것을 특징으로 하는 폴리염화알루미늄계 응집제용 고염기화제.Prepared by the method according to any one of claims 1 and 3 to 7, having a chemical formula of Na x Al y (SiO 2 ) z (1≤x≤4, 1≤y≤4, 1≤z≤4) A high base agent for polyaluminum chloride-based coagulant, characterized in that.
KR1020130130103A 2013-10-30 2013-10-30 Preparation method of basicity increasing agent for poly aluminum chloride based coagulant and basicity increasing agent prepared by the same KR101389453B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130130103A KR101389453B1 (en) 2013-10-30 2013-10-30 Preparation method of basicity increasing agent for poly aluminum chloride based coagulant and basicity increasing agent prepared by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130130103A KR101389453B1 (en) 2013-10-30 2013-10-30 Preparation method of basicity increasing agent for poly aluminum chloride based coagulant and basicity increasing agent prepared by the same

Publications (1)

Publication Number Publication Date
KR101389453B1 true KR101389453B1 (en) 2014-04-25

Family

ID=50658765

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130130103A KR101389453B1 (en) 2013-10-30 2013-10-30 Preparation method of basicity increasing agent for poly aluminum chloride based coagulant and basicity increasing agent prepared by the same

Country Status (1)

Country Link
KR (1) KR101389453B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101813511B1 (en) * 2017-03-10 2018-01-30 삼구화학공업 주식회사 Cohesive agent comprising sodium aluminum silicate for water-treatment
KR101842094B1 (en) * 2017-12-22 2018-03-26 삼구화학공업 주식회사 Cohesive agent and pH adjustment agent comprising sodium aluminum silicate for water-treatment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0163406B1 (en) * 1989-09-29 1998-11-16 앤 제이콥슨 Zeolite aggregates and catalysts
KR20010084089A (en) * 2000-02-23 2001-09-06 김남호 Powdered inorganic composition for industry waste water disposal
KR100858633B1 (en) 2006-11-22 2008-09-17 미주엔비켐 주식회사 Manufacturing method of the poly aluminum chloride of hig bacicity
KR101296324B1 (en) 2013-02-19 2013-08-13 주식회사 효광이앤씨 Natural polymer flocculant and preparation thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0163406B1 (en) * 1989-09-29 1998-11-16 앤 제이콥슨 Zeolite aggregates and catalysts
KR20010084089A (en) * 2000-02-23 2001-09-06 김남호 Powdered inorganic composition for industry waste water disposal
KR100858633B1 (en) 2006-11-22 2008-09-17 미주엔비켐 주식회사 Manufacturing method of the poly aluminum chloride of hig bacicity
KR101296324B1 (en) 2013-02-19 2013-08-13 주식회사 효광이앤씨 Natural polymer flocculant and preparation thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101813511B1 (en) * 2017-03-10 2018-01-30 삼구화학공업 주식회사 Cohesive agent comprising sodium aluminum silicate for water-treatment
KR101842094B1 (en) * 2017-12-22 2018-03-26 삼구화학공업 주식회사 Cohesive agent and pH adjustment agent comprising sodium aluminum silicate for water-treatment

Similar Documents

Publication Publication Date Title
KR101374191B1 (en) Preparing method of poly aluminum chloride inorganic coagulant with high basicity for water treatment
KR101409870B1 (en) Method of Preparation for High basicity polyaluminum chloride coagulant and Treating Method of water/wastewater using the same
AU2014290034B2 (en) Stable salt-free polyaluminum chlorosulfates
KR101252710B1 (en) Poly aluminum calcium chloride inorganic coagulant with high basicity for water-treatment and method of preparing the same
US11053143B2 (en) Stable concentrated polyaluminum chlorosilicate solutions
KR101389453B1 (en) Preparation method of basicity increasing agent for poly aluminum chloride based coagulant and basicity increasing agent prepared by the same
KR101752276B1 (en) Preparing method of poly aluminum chloride inorganic coagulant with low basicity for waste water treatment and purification method of waste water using the inorganic coagulant prepared by the same
KR101752777B1 (en) Preparing method of poly aluminum chloride inorganic coagulant with low basicity for waste water treatment and purification method of waste water using the inorganic coagulant prepared by the same
KR101128864B1 (en) Inorganic cohesive agents for water-treatment and Preparing method thereof
KR102291774B1 (en) Manufacturing method of polyaluminum chloride coagulant with a concentration of 17% aluminum oxide
KR101032478B1 (en) Water-treatment cohesive agents and Preparing method thereof
KR100733286B1 (en) Manufacturing method of high basicity aluminium chloride coagulants
JP2013132636A (en) Manufacturing method for phosphorus adsorbent and phosphorus adsorbent
KR101297435B1 (en) The preparing method of aluminium sulfate from waste water
CN101863492A (en) Synthesis method of 4A-type zeolite
US20100061919A1 (en) Production of polyaluminum chloride from basic aluminum chloride and sodium aluminate via ultrasonic processing
KR101612513B1 (en) Method for preparing polyaliminium chloride-based inorganic coagulants having high basicity
KR101119623B1 (en) Inorganic cohesive agents for water-treatment and Preparing method thereof
KR100622295B1 (en) Preparation method of polyaluminiumchloride
CN113651337A (en) Preparation method of intercalation modified C-S-H gel nano dispersion liquid
US10450209B2 (en) Stable salt-free polyaluminum chlorosulfates
KR100589989B1 (en) Manufacturing Method for Poly Aluminium Chloride Silicate
KR100192872B1 (en) Poly aluminum calcium chloride and process for preparation thereof
CN104098107B (en) Preparation method of the B-Al-ZSM-11 zeolite catalyst and application thereof
KR102149659B1 (en) Polyaluminium chloride having high efficiency of cohesion and the manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170320

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180220

Year of fee payment: 5