JP2013132636A - Manufacturing method for phosphorus adsorbent and phosphorus adsorbent - Google Patents

Manufacturing method for phosphorus adsorbent and phosphorus adsorbent Download PDF

Info

Publication number
JP2013132636A
JP2013132636A JP2011286699A JP2011286699A JP2013132636A JP 2013132636 A JP2013132636 A JP 2013132636A JP 2011286699 A JP2011286699 A JP 2011286699A JP 2011286699 A JP2011286699 A JP 2011286699A JP 2013132636 A JP2013132636 A JP 2013132636A
Authority
JP
Japan
Prior art keywords
hydroxide
iron
phosphorus
phosphorus adsorbent
divalent metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011286699A
Other languages
Japanese (ja)
Inventor
Hiroshi Masuda
洋 増田
Yuto Kura
勇人 藏
Tetsuya Ezaki
哲哉 江崎
Atsushi Itakura
篤志 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Kyocera Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Chemical Corp filed Critical Kyocera Chemical Corp
Priority to JP2011286699A priority Critical patent/JP2013132636A/en
Publication of JP2013132636A publication Critical patent/JP2013132636A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for a high density and high productive phosphorus adsorbent (a metal hydrate including a hydrotalcite-like compound), which efficiently removes phosphate ions in waste water, and to provide a phosphorus adsorbent.SOLUTION: The manufacturing method for a phosphorus adsorbent, which is composed of a hydrate of a metal/iron-based hydroxide obtained by adding ferrous sulfate aqueous solution to a water dispersion of divalent metal oxide or hydroxide for maturing, includes (A) a step for adding ferrous sulfate aqueous solution to a water dispersion of the divalent metal oxide or hydroxide and extracting a ferrous hydroxide on the surface of the water dispersion, and (B) a step for maturing the ferrous hydroxide, wherein the molar ratio of the divalent metal to iron in the hydrate of the metal/iron-based hydroxide is 2:1 to 11:2. The phosphorus absorbent manufactured by the method is provided.

Description

本発明は、リン吸着剤(リン酸イオン吸着用無機粒子)の製造方法及びリン吸着剤に関する。さらに詳しくは、金属−鉄系水酸化物の水和物からなるリン吸着剤の製造方法及びリン吸着剤に関する。   The present invention relates to a method for producing a phosphorus adsorbent (inorganic particles for phosphate ion adsorption) and a phosphorus adsorbent. More specifically, the present invention relates to a method for producing a phosphorus adsorbent comprising a hydrate of a metal-iron hydroxide and a phosphorus adsorbent.

近年、公共用水域の水質改善が進んでおらず、従来のレベル以上の高度な廃水処理技術が求められている。高度処理では、有機汚濁物質の低減はもとより、富栄養化の原因となる窒素とリンの除去が課題となっている。窒素については、自然界での窒素サイクルが存在し、生物学的方法によって窒素ガスに変換可能であるが、リンについては、リン酸イオンとして安定に存在するため、自然界での循環サイクルが存在しない。また、将来において、リン資源の枯渇も懸念されている。   In recent years, water quality improvement in public water bodies has not progressed, and advanced wastewater treatment technology that exceeds the conventional level is required. In advanced treatment, not only the reduction of organic pollutants, but also the removal of nitrogen and phosphorus, which cause eutrophication, is an issue. Nitrogen has a natural nitrogen cycle and can be converted to nitrogen gas by a biological method. However, since phosphorus exists stably as a phosphate ion, there is no natural circulation cycle. In addition, there are concerns about the depletion of phosphorus resources in the future.

リン酸イオンの除去は、従来、生物学的脱リン法、凝集沈殿法、鉄電解法等で行われてきたが、低濃度域での安定な除去が難しいうえ、汚泥、スラッジが大量に発生する、エネルギー消費量が大きくコスト高となる、リン回収後の資源化が困難である、さらに機器の維持管理が難しい等の様々な問題を抱えていた。
近年、上記の諸問題を改善するために、例えば、特許文献1及び特許文献2に示されているように、リン酸イオン吸着(除去)用無機粒子として、ハイドロタルサイト様化合物が提案されている。しかしながら、一般に、結晶化度の高いハイドロタルサイト様化合物を合成する場合、低濃度の原料溶液を用いて、核発生が少なくなるように合成し、ハイドロタルサイト様化合物の粒子径が大きくなるようにするが、特許文献1及び特許文献2に示されるハイドロタルサイト様化合物の合成においては、金属イオンの混合系から合成を開始するので、核発生が多くなり、ハイドロタルサイト様化合物の粒子径は小さくなってしまい、仕込み量に対し、ハイドロタルサイト様化合物の収量が低くなるという問題があった。また、量産化を考えた場合には、高濃度での合成が必須になり、熟成反応を長時間行えば、結晶化度の高いLDH(Layered Double Hydroxide)が得られるが、生産性の観点から問題となっている。
さらに、粒子径を大きくする手法が、例えば、特許文献3に示されているが、粒子径の大きいハイドロタルサイトを得るためには、100℃以上で水熱反応を行う必要があり、製造工程が煩雑となってしまう問題があった(ただし、特許文献3には、リン吸着剤用途に関しての記載はない)。
Phosphate ions have been removed by biological dephosphorization, coagulation and precipitation, iron electrolysis, etc., but stable removal at low concentrations is difficult, and a large amount of sludge and sludge are generated. However, it has various problems such as high energy consumption, high cost, difficulty in recycling after phosphorus recovery, and difficult maintenance of equipment.
In recent years, hydrotalcite-like compounds have been proposed as inorganic particles for phosphate ion adsorption (removal), as shown in Patent Document 1 and Patent Document 2, for example, in order to improve the above problems. Yes. However, in general, when synthesizing a hydrotalcite-like compound with a high degree of crystallinity, a low-concentration raw material solution is used to synthesize so as to reduce nucleation, so that the particle size of the hydrotalcite-like compound is increased. However, in the synthesis of hydrotalcite-like compounds shown in Patent Document 1 and Patent Document 2, since the synthesis starts from a mixed system of metal ions, nucleation increases, and the particle size of the hydrotalcite-like compound increases. There was a problem that the yield of the hydrotalcite-like compound was low with respect to the charged amount. In addition, when mass production is considered, synthesis at a high concentration is indispensable. If the aging reaction is performed for a long time, LDH (Layered Double Hydroxide) with high crystallinity can be obtained, but from the viewpoint of productivity. It is a problem.
Furthermore, although the method of enlarging the particle size is disclosed in, for example, Patent Document 3, in order to obtain hydrotalcite having a large particle size, it is necessary to perform a hydrothermal reaction at 100 ° C. or higher, and the manufacturing process. (However, Patent Document 3 does not describe the use of a phosphorus adsorbent).

特開2007−38203号公報JP 2007-38203 A 特開2009−178682号公報JP 2009-178682 A 特開2009−120458号公報JP 2009-120458 A

本発明は、このような状況下になされたものであって、廃水中などのリン酸イオンを効率よく除去する、高濃度かつ生産性の高いリン吸着剤(ハイドロタルサイト様化合物を含む金属水和物)の製造方法及びリン吸着剤を提供する。   The present invention has been made under such circumstances, and is a highly concentrated and highly productive phosphorus adsorbent (metal water containing a hydrotalcite-like compound) that efficiently removes phosphate ions such as wastewater. A production method of a Japanese product and a phosphorus adsorbent are provided.

本発明者らは、前記目的を達成するために、鋭意検討を進めた結果、2価の金属(以下Mとする場合がある)の酸化物又は水酸化物に、鉄イオンとして硫酸鉄(III)を用い、生成化合物である金属−鉄系水酸化物の水和物中の2価の金属と鉄のモル比が、M:Fe=2:1〜11:2となるよう、硫酸鉄(III)を添加し、加温下にて熟成反応させ、金属−鉄系水酸化物の水和物を製造することにより、上記問題が解消できることを見出し、本発明を完成した。   As a result of diligent studies to achieve the above object, the present inventors have added iron sulfate (III) as an iron ion to an oxide or hydroxide of a divalent metal (hereinafter sometimes referred to as M). ), And the molar ratio of the divalent metal and iron in the hydrate of the metal-iron hydroxide that is the product compound is M: Fe = 2: 1 to 11: 2 It was found that the above problem could be solved by adding III) and aging reaction under heating to produce a hydrate of metal-iron hydroxide, thereby completing the present invention.

すなわち、本発明は、以下のリン吸着剤の製造方法及びリン吸着剤を提供するものである。
(1)2価の金属酸化物又は水酸化物の水分散体に硫酸鉄水溶液を添加し、熟成して得られる金属−鉄系水酸化物の水和物からなるリン吸着剤の製造方法であって、次の(A)及び(B)の工程を含みかつ金属−鉄系水酸化物の水和物中の2価の金属と鉄のモル比が、2:1〜11:2であることを特徴とするリン吸着剤の製造方法、
(A)前記2価の金属酸化物又は水酸化物の水分散体に硫酸鉄水溶液を添加し、該水分散体表面に水酸化鉄を析出させる工程、
(B)前記水酸化鉄を熟成する工程。
(2)前記2価の金属酸化物が、酸化マグネシウム、又は前記金属水酸化物が、水酸化マグネシウムである上記(1)に記載のリン吸着剤の製造方法、及び
(3)前記(B)工程における熟成温度が、40〜90℃である上記(1)又は(2)に記載のリン吸着剤の製造方法。
(4)上記(1)〜(3)のいずれかに記載の製造方法により得られるリン吸着剤。
That is, this invention provides the manufacturing method and phosphorus adsorption agent of the following phosphorus adsorption agents.
(1) A method for producing a phosphorus adsorbent comprising a metal-iron hydroxide hydrate obtained by adding an aqueous iron sulfate solution to an aqueous dispersion of a divalent metal oxide or hydroxide and aging. The process includes the following steps (A) and (B), and the molar ratio of divalent metal to iron in the hydrate of metal-iron hydroxide is 2: 1 to 11: 2. A method for producing a phosphorus adsorbent,
(A) adding an aqueous iron sulfate solution to the aqueous dispersion of the divalent metal oxide or hydroxide, and precipitating iron hydroxide on the surface of the aqueous dispersion;
(B) A step of aging the iron hydroxide.
(2) The method for producing a phosphorus adsorbent according to (1), wherein the divalent metal oxide is magnesium oxide, or the metal hydroxide is magnesium hydroxide, and (3) the (B) The manufacturing method of the phosphorus adsorption agent as described in said (1) or (2) whose aging temperature in a process is 40-90 degreeC.
(4) A phosphorus adsorbent obtained by the production method according to any one of (1) to (3) above.

本発明の製造方法によれば、特殊な合成条件を用いず、また煩雑な工程を経ずとも、高い吸着能を有するリン吸着用無機粒子を容易に製造することができる。   According to the production method of the present invention, it is possible to easily produce phosphorus-adsorbing inorganic particles having high adsorption ability without using special synthesis conditions and without complicated steps.

まず、本発明のリン吸着剤の製造方法について説明する。
[リン吸着剤の製造方法]
本発明のリン吸着剤の製造方法は、2価の金属の酸化物又は水酸化物の水分散体に、硫酸鉄水溶液を添加し、該水分散体表面に水酸化鉄を析出させる工程及びそれらを熟成する工程を含む。以下、本発明に含まれる工程について、順次説明する。
First, the manufacturing method of the phosphorus adsorption agent of this invention is demonstrated.
[Method for producing phosphorus adsorbent]
The method for producing a phosphorus adsorbent of the present invention includes a step of adding an aqueous iron sulfate solution to an aqueous dispersion of a divalent metal oxide or hydroxide, and precipitating iron hydroxide on the surface of the aqueous dispersion. The process of aging is included. Hereinafter, the steps included in the present invention will be sequentially described.

(分散工程)
分散工程では、2価の金属の酸化物又は水酸化物を攪拌により水に分散させ、水分散層を得る。分散方法としては、均一に分散できれば、特に制限されないが、超音波等を併用してもよく、公知の方法で行う。
(Dispersion process)
In the dispersion step, a divalent metal oxide or hydroxide is dispersed in water by stirring to obtain an aqueous dispersion layer. The dispersion method is not particularly limited as long as it can be uniformly dispersed, but an ultrasonic wave or the like may be used in combination, and a known method is used.

(反応工程)
この工程では、前記分散工程で調製された前記水分散層に、予め調製した硫酸鉄(III)水溶液を添加し、鉄イオンを水酸化物表面に水酸化鉄として析出させる。なお、硫酸鉄(III)の添加量は、最終生成化合物となる金属−鉄系水酸化物の水和物中の2価の金属と鉄のモル比がM:Fe=2:1〜11:2となるように制御する。
(Reaction process)
In this step, an iron (III) sulfate aqueous solution prepared in advance is added to the water dispersion layer prepared in the dispersion step, and iron ions are precipitated as iron hydroxide on the hydroxide surface. The amount of iron (III) sulfate added is such that the molar ratio of divalent metal to iron in the metal-iron hydroxide hydrate as the final product compound is M: Fe = 2: 1 to 11: Control to be 2.

酸化金属又は水酸化金属の水分散層への、硫酸鉄(III)水溶液の添加方法としては、一括添加方法、滴下方法のいずれも用いることができる。
前記滴下方法における滴下速度は、特に制限はなく、系の反応に影響を及ぼすことがない範囲で、適宜調整する。
また、硫酸鉄(III)水溶液を添加した後の、系のpHは8から10が好ましい。系のpHが8以上であると、必要量の鉄イオンが、後述するリン吸着剤となる混合水酸化物層(基本層)上に析出し、リン吸着剤の吸着容量が向上するため好ましい。また、系のpHが10以下であると、マグネシウム上に必要量の水酸化鉄が析出し、リン吸着剤としての性能が向上し収量が増えるため好ましい。2価の金属の酸化物又は水酸化物の分散液は、もともとpHが10から11であるので、鉄イオンの析出時に、系のpH調整を原則必要としないが、pH調整を行う場合は、系の反応に影響を及ぼすことがない範囲で、水酸化ナトリウム等のアルカリを使用することができる。
As a method for adding the aqueous iron (III) sulfate solution to the aqueous dispersion layer of metal oxide or metal hydroxide, either a batch addition method or a dropping method can be used.
The dropping speed in the dropping method is not particularly limited, and is appropriately adjusted within a range that does not affect the reaction of the system.
Further, the pH of the system after addition of the iron (III) sulfate aqueous solution is preferably 8 to 10. It is preferable that the pH of the system is 8 or more because a necessary amount of iron ions is deposited on a mixed hydroxide layer (basic layer) serving as a phosphorus adsorbent described later and the adsorption capacity of the phosphorus adsorbent is improved. Further, it is preferable that the pH of the system is 10 or less because a necessary amount of iron hydroxide is deposited on magnesium, the performance as a phosphorus adsorbent is improved, and the yield is increased. Since the divalent metal oxide or hydroxide dispersion originally has a pH of 10 to 11, no pH adjustment of the system is required in principle at the time of precipitation of iron ions. An alkali such as sodium hydroxide can be used as long as the reaction of the system is not affected.

(熟成工程)
この工程では、反応工程で得られた析出物の熟成を行ない、最終的な金属−鉄系水酸化物の水和物を得る。熟成温度は、好ましくは、40〜90℃であり、より好ましくは、60〜80℃である。熟成温度が40℃以上であると、吸着剤としての収量が良好となるため好ましい。また、90℃以下であると、従来法(100℃以上での水熱処理)のような煩雑な操作を要せずかつタクトタイムの短縮に繋がるため好ましい。熟成時間に関しては、特に制限はないが、生産性の観点から、反応工程から熟成工程までの総処理時間が、好ましくは、24時間以内であり、より好ましくは、22時間以内である。
(Aging process)
In this step, the precipitate obtained in the reaction step is aged to obtain a final metal-iron hydroxide hydrate. The aging temperature is preferably 40 to 90 ° C, more preferably 60 to 80 ° C. An aging temperature of 40 ° C. or higher is preferable because the yield as an adsorbent is improved. Moreover, it is preferable that it is 90 degrees C or less, since complicated operation like the conventional method (hydrothermal treatment at 100 degrees C or more) is not required, and it leads to shortening of tact time. The aging time is not particularly limited, but from the viewpoint of productivity, the total treatment time from the reaction step to the aging step is preferably within 24 hours, and more preferably within 22 hours.

(後処理工程)
前記熟成工程で得られた沈殿物は、例えば、ろ過、洗浄、乾燥及び粉砕等の工程を経ることにより、リン吸着剤(無機粒子形状)を得ることができる。乾燥は水分が除去できればよく、特に制限されないが、生産性及び安定した性能を有するリン吸着剤を製造する観点から、60〜100℃の範囲の所定の温度下で行うことが好ましい。
本発明のリン吸着剤は、造粒などの操作を行い成形体として、カラムなどに充填し使用してもよい。
(Post-processing process)
The precipitate obtained in the aging step can be subjected to, for example, steps such as filtration, washing, drying, and pulverization to obtain a phosphorus adsorbent (inorganic particle shape). The drying is not particularly limited as long as moisture can be removed, but it is preferably performed at a predetermined temperature in the range of 60 to 100 ° C. from the viewpoint of producing a phosphorus adsorbent having productivity and stable performance.
The phosphorus adsorbent of the present invention may be used by filling a column or the like as a molded body by performing operations such as granulation.

次に、本発明の製造方法で得られるリン吸着剤である無機粒子を使用した、リンの吸着除去方法について説明する。
[リンの吸着除去方法]
本発明におけるリン酸、リン酸解離物等の吸着除去方法は、前述のようにして製造したリン吸着剤を廃水に浸漬させることによって行うことができる。すなわち、前記無機粒子中に取り込まれている硫酸イオンとの置換、及び金属イオンと前記廃水中の吸着対象イオンとが、相互作用することによって吸着され、回収できる。
また、廃水と接触させる他の方法として、例えば、前述したように、造粒により成形体としたものをカラムに充填し、カラム中に廃水を流し、吸着対象イオンを接触させ、吸着させる方法がある。
Next, a method for adsorbing and removing phosphorus using inorganic particles that are phosphorus adsorbents obtained by the production method of the present invention will be described.
[Phosphorus adsorption removal method]
The method for adsorbing and removing phosphoric acid, phosphoric acid dissociation products and the like in the present invention can be performed by immersing the phosphorus adsorbent produced as described above in waste water. That is, substitution with sulfate ions incorporated in the inorganic particles, and metal ions and ions to be adsorbed in the wastewater are adsorbed and can be collected by interaction.
In addition, as another method of bringing into contact with waste water, for example, as described above, there is a method of filling a column with a molded body by granulation, flowing waste water into the column, bringing ions to be adsorbed into contact, and adsorbing them. is there.

上述したように、本発明の製造方法によれば、オートクレーブ等の設備を要さず、また別途、水酸化ナトリウム等のアルカリ水溶液を使用せずとも、簡便にリン吸着剤を得ることができる。   As described above, according to the production method of the present invention, it is possible to easily obtain a phosphorus adsorbent without using an equipment such as an autoclave and separately using an aqueous alkali solution such as sodium hydroxide.

次に、本発明の製造方法で得られるリン吸着剤について説明する。
[リン吸着剤]
本発明の製造方法で得られる金属−鉄系水酸化物の水和物からなるリン吸着剤は、例えば、下記の一般式(1)で表される。
2+ x Fe3+ 2 (OH)2x+6-2y・(SO4y nH2O (1)
(式中、Mは2価の金属を表し、xは4≦x≦11、すなわち、2価の金属と鉄のモル比が、2:1〜11:2であり、yは0.6<y<2であり、nは0<n<8である。)
2価の金属と鉄のモル比が、2:1より小さな値又は11:2より大きな値であると、2価の金属又は鉄のいずれかが過多となり、吸着能を下げるため好ましくない。
ここで、(1)の結晶は、正に帯電したM2+とFe3+の混合水酸化物層(基本層)の間に、該混合水酸化物層の正電荷を中和するために、SO4 2-がH2Oとともに中間層を形成し、基本層間に入る構造をとっている。
Next, the phosphorus adsorbent obtained by the production method of the present invention will be described.
[Phosphorus adsorbent]
The phosphorus adsorbent comprising a hydrate of metal-iron hydroxide obtained by the production method of the present invention is represented by the following general formula (1), for example.
M 2+ x Fe 3+ 2 (OH) 2x + 6-2y · (SO 4 ) y nH 2 O (1)
(In the formula, M represents a divalent metal, x is 4 ≦ x ≦ 11, that is, the molar ratio of the divalent metal to iron is 2: 1 to 11: 2, and y is 0.6 < y <2 and n is 0 <n <8.)
If the molar ratio of the divalent metal to iron is less than 2: 1 or greater than 11: 2, either the divalent metal or iron is excessive, which is not preferable.
Here, the crystal of (1) is used to neutralize the positive charge of the mixed hydroxide layer between the positively charged mixed hydroxide layer (basic layer) of M 2+ and Fe 3+. , SO 4 2- forms an intermediate layer together with H 2 O and enters the basic layer.

Mは2価の金属であり、マグネシウム、亜鉛及びカルシウムなどが挙げられる。より好ましくは、マグネシウムである。
マグネシウムと鉄のモル比が上記比率の範囲内であれば、リンの吸着速度と吸着容量のバランスが崩れることなく、良好な収量が得られる。
ここで,「バランス」とは、吸着速度(吸着容量の1時間値/吸着容量の24時間値)が0.65〜1.0であり、かつリン吸着容量(24時間振とう後)が21mg−P/g以上であることを意味し、吸着速度及び吸着容量が上記の範囲にあると、リンの除去が、短時間でかつ高容量吸着できるため好ましい。
M is a divalent metal, and examples thereof include magnesium, zinc, and calcium. More preferably, it is magnesium.
If the molar ratio of magnesium and iron is within the above range, a good yield can be obtained without breaking the balance between the adsorption rate of phosphorus and the adsorption capacity.
Here, “balance” means that the adsorption rate (1 hour value of adsorption capacity / 24 hour value of adsorption capacity) is 0.65 to 1.0 and the phosphorus adsorption capacity (after shaking for 24 hours) is 21 mg. It means -P / g or more, and when the adsorption rate and adsorption capacity are in the above ranges, removal of phosphorus is preferable because high capacity adsorption can be performed in a short time.

本発明において、吸着されるリン(SO4 2-との置換)としては、リン酸ないしリン酸解離物が望ましい。具体的には、リン酸イオンとしては、リン酸イオン(PO4 3-)、リン酸水素イオン(HPO4 2-)、リン酸二水素イオン(H2PO4-)、二リン酸(P27 4-)及び三リン酸(P310 5-)などが挙げられる。
また、リンの吸着対象としては、工場、家庭及び下水などから排出される、リン含有廃水などが挙げられるが、特に限定されるものではない。
In the present invention, phosphoric acid or a phosphoric acid dissociation product is desirable as the adsorbed phosphorus (substitution with SO 4 2- ). Specifically, the phosphate ions include phosphate ion (PO 4 3− ), hydrogen phosphate ion (HPO 4 2− ), dihydrogen phosphate ion (H 2 PO 4− ), diphosphate (P 2 O 7 4- ) and triphosphoric acid (P 3 O 10 5- ).
Examples of phosphorus adsorption targets include phosphorus-containing wastewater discharged from factories, households, sewage, and the like, but are not particularly limited.

以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれらの実施例
に限定されるものではない。なお、使用した薬品は、特に断りのない限り、和光純薬工業社製である。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these Examples. The chemicals used are manufactured by Wako Pure Chemical Industries unless otherwise specified.

リン吸着容量は以下に示す方法によって求めた。
[リン吸着容量、吸着速度の測定]
後述する実施例及び比較例で得られた粒子0.1gを、リン酸イオン濃度が100ppm−Pに調製されたリン酸イオン水溶液に浸漬させ、1時間浸漬後(室温25℃)のリン酸イオン水溶液中のリン酸イオン濃度を、ICP発光法(セイコー電子社製、装置型番:SPA1200A)により測定し、初期濃度との差から、リン酸イオン吸着容量を算出した。
また、吸着速度は、上記測定で得られた1時間振とう後の吸着容量を、24時間振とう後の吸着容量で除した値として定義し、算出した。
The phosphorus adsorption capacity was determined by the following method.
[Measurement of phosphorus adsorption capacity and adsorption speed]
0.1 g of particles obtained in Examples and Comparative Examples described later are immersed in a phosphate ion aqueous solution prepared at a phosphate ion concentration of 100 ppm-P, and phosphate ions after 1 hour immersion (room temperature 25 ° C.) The phosphate ion concentration in the aqueous solution was measured by an ICP emission method (manufactured by Seiko Denshi, apparatus model number: SPA1200A), and the phosphate ion adsorption capacity was calculated from the difference from the initial concentration.
Further, the adsorption rate was calculated by defining the adsorption capacity after shaking for 1 hour obtained by the above measurement as the value divided by the adsorption capacity after shaking for 24 hours.

[実施例1]
500mLのガラスフラスコに、35%水酸化マグネシウムスラリー(宇部マテリアルズ株式会社製、商品名:UD−650)83.3gを投入し、攪拌下で、系の温度を80℃へ昇温し、保持した。昇温前の系のpHは11.0であった。次に、最終生成化合物となるマグネシウム−鉄系水酸化物の水和物中のマグネシウムと鉄のモル比が、Mg:Fe=4:1となるように、0.75mol/L硫酸鉄水溶液83.3mLに純水100mLを加えた溶液を準備し、80℃に保持した35%水酸化マグネシウム分散体上へ、10ml/minの速度で滴下を行い、水酸化鉄を析出させた。滴下終了後、同温度下で6時間攪拌を続けた。攪拌終了後は80℃で15時間静置した。放冷後、減圧濾過、水洗を行い、80℃に保持したオーブンに投入し、24時間加熱乾燥した後、反応生成物であるリン吸着物質を乳鉢で粉砕し、粒子状のリン吸着剤を得た。
[Example 1]
Into a 500 mL glass flask, 83.3 g of 35% magnesium hydroxide slurry (trade name: UD-650, manufactured by Ube Materials Co., Ltd.) is added, and the temperature of the system is raised to 80 ° C. and maintained under stirring. did. The pH of the system before the temperature increase was 11.0. Next, a 0.75 mol / L iron sulfate aqueous solution 83 so that the molar ratio of magnesium and iron in the magnesium-iron hydroxide hydrate as the final product compound is Mg: Fe = 4: 1. A solution in which 100 mL of pure water was added to 3 mL was prepared, and this was dropped on a 35% magnesium hydroxide dispersion maintained at 80 ° C. at a rate of 10 mL / min to precipitate iron hydroxide. After completion of the dropwise addition, stirring was continued for 6 hours at the same temperature. After stirring, the mixture was allowed to stand at 80 ° C. for 15 hours. After standing to cool, filtered under reduced pressure and washed with water, put in an oven maintained at 80 ° C., and heated and dried for 24 hours, and then pulverized the reaction product phosphorus adsorbent in a mortar to obtain a particulate phosphorus adsorbent. It was.

[実施例2]
500mLのガラスフラスコに、酸化マグネシウム(赤穂化成株式会社製、商品名:AM−2)20.0g、水100.0mLを投入し、攪拌を行い、酸化マグネシウムを分散させた。この分散系のpHは10.5であった。次に、最終生成化合物となるマグネシウム−鉄系水酸化物の水和物中のマグネシウムと鉄のモル比が、Mg:Fe=4:1となるように、0.75mol/L硫酸鉄水溶液83.3mLに純水80mLを加えた溶液をフラスコ内に一括投入し、水酸化鉄を析出させた。添加終了後、温度を80℃へ昇温し、80℃で21時間静置した。放冷後、減圧濾過、水洗を行い、80℃に保持したオーブンに投入し、24時間加熱乾燥した後、反応生成物であるリン吸着用物質を乳鉢で粉砕し、粒子状のリン吸着剤を得た。
[Example 2]
In a 500 mL glass flask, 20.0 g of magnesium oxide (manufactured by Ako Kasei Co., Ltd., trade name: AM-2) and 100.0 mL of water were added and stirred to disperse the magnesium oxide. The pH of this dispersion was 10.5. Next, a 0.75 mol / L iron sulfate aqueous solution 83 so that the molar ratio of magnesium and iron in the magnesium-iron hydroxide hydrate as the final product compound is Mg: Fe = 4: 1. A solution obtained by adding 80 mL of pure water to 3 mL was poured all at once into the flask to precipitate iron hydroxide. After completion of the addition, the temperature was raised to 80 ° C. and left at 80 ° C. for 21 hours. After standing to cool, filtered under reduced pressure and washed with water, put into an oven maintained at 80 ° C., and heated and dried for 24 hours, and then pulverized the phosphorus adsorption substance as a reaction product in a mortar to obtain a particulate phosphorus adsorbent. Obtained.

[比較例1]
0.596mol/L硫酸マグネシウム水溶液200mlと、0.75mol/L硫酸鉄水溶液200mLとをフラスコに移した。系の温度を80℃へ昇温、保持し、その後、1mol/L水酸化ナトリウム水溶液300mLを10mL/minの速度で攪拌しながら滴下し、6時間攪拌を続けた。攪拌終了後は、80℃で15時間静置した。放冷後は、実施例1、2と同様の操作を行い、リン吸着剤を得た。
[Comparative Example 1]
200 ml of 0.596 mol / L magnesium sulfate aqueous solution and 200 mL of 0.75 mol / L iron sulfate aqueous solution were transferred to the flask. The temperature of the system was raised to 80 ° C. and maintained, and then 300 mL of a 1 mol / L aqueous sodium hydroxide solution was added dropwise with stirring at a rate of 10 mL / min, and stirring was continued for 6 hours. After stirring, the mixture was allowed to stand at 80 ° C. for 15 hours. After standing to cool, the same operation as in Examples 1 and 2 was performed to obtain a phosphorus adsorbent.

[実施例3〜5]
実施例3では、Mg/Feのモル比を2/1とした以外、実施例2と同様にしてリン吸着剤を得た。また、実施例4では、Mg/Feの比を3.2/1とし、かつ1mol/Lの水酸化ナトリウムによるpH調整をした以外、実施例3と同様にしてリン吸着剤を得た。また、実施例5では、Mg/Feの比を5/1とし、さらに硫酸鉄水溶液を室温での一括添加から80℃での滴下、反応を6時間、熟成を15時間に変えた以外、実施例4と同様にして、リン吸着剤を得た。
[Examples 3 to 5]
In Example 3, a phosphorus adsorbent was obtained in the same manner as in Example 2 except that the molar ratio of Mg / Fe was 2/1. In Example 4, a phosphorus adsorbent was obtained in the same manner as in Example 3 except that the Mg / Fe ratio was 3.2 / 1 and the pH was adjusted with 1 mol / L sodium hydroxide. Further, in Example 5, the ratio of Mg / Fe was 5/1, and the iron sulfate aqueous solution was added dropwise at 80 ° C. from the batch addition at room temperature, the reaction was changed to 6 hours, and the aging was changed to 15 hours. In the same manner as in Example 4, a phosphorus adsorbent was obtained.

[実施例6〜8]
実施例6、7では、Mg/Feの比をそれぞれ3/1、5.5/1にした以外は、実施例1と同様にしてリン吸着剤を得た。また、実施例8では、硫酸鉄水溶液を室温での一括添加、反応時間を0、熟成を21時間に変えた以外、実施例1と同様にして、リン吸着剤を得た。
[Examples 6 to 8]
In Examples 6 and 7, phosphorus adsorbents were obtained in the same manner as in Example 1 except that the ratio of Mg / Fe was 3/1 and 5.5 / 1, respectively. Further, in Example 8, a phosphorus adsorbent was obtained in the same manner as in Example 1 except that the aqueous iron sulfate solution was added at room temperature, the reaction time was changed to 0, and the aging was changed to 21 hours.

[比較例2]
比較例2では、実施例1において、硫酸鉄水溶液の代わりに水酸化鉄を使用し、直に熟成工程に移し、リン吸着剤を得た。
[Comparative Example 2]
In Comparative Example 2, iron hydroxide was used in place of the aqueous iron sulfate solution in Example 1, and the process was directly transferred to the aging step to obtain a phosphorus adsorbent.

[比較例3、6]
比較例3、6では、Mg/Feの比をそれぞれ6/1、3/2にした以外は、実施例1と同様にしてリン吸着剤を得た。
[Comparative Examples 3 and 6]
In Comparative Examples 3 and 6, phosphorus adsorbents were obtained in the same manner as in Example 1 except that the ratio of Mg / Fe was 6/1 and 3/2, respectively.

[比較例4]
比較例4では、室温での滴下とし、かつその後の操作を室温で行う以外、実施例2と同様にして、リン吸着剤を得た。
[Comparative Example 4]
In Comparative Example 4, a phosphorus adsorbent was obtained in the same manner as in Example 2 except that the dropping was performed at room temperature and the subsequent operation was performed at room temperature.

[比較例5]
比較例5では、硫酸鉄水溶液を塩化鉄水溶液にした以外は、実施例1と同様にしてリン吸着剤を得た。
[Comparative Example 5]
In Comparative Example 5, a phosphorus adsorbent was obtained in the same manner as in Example 1 except that the aqueous iron sulfate solution was changed to an aqueous iron chloride solution.

実施例1〜8、比較例1〜5で得られたリン吸着剤である、無機粒子からなる粉末0.1gに、リンとして100ppmの濃度のリン酸水素二ナトリウム水溶液50mLを加え、リン濃度の経時変化(減少)を測定することにより、リンの吸着容量、吸着速度を算出した。実施例、比較例の組成、及びそれらの各操作条件等と共に算出結果を表1に示す。 50 mL of 100 ppm concentration disodium hydrogenphosphate aqueous solution was added to 0.1 g of the powder composed of inorganic particles, which is the phosphorus adsorbent obtained in Examples 1 to 8 and Comparative Examples 1 to 5, and the phosphorus concentration By measuring the change (decrease) with time, the adsorption capacity and adsorption rate of phosphorus were calculated. The calculation results are shown in Table 1 together with the compositions of Examples and Comparative Examples, and their respective operating conditions.

Figure 2013132636
Figure 2013132636

表1から明らかなように、マグネシウム分散液−硫酸鉄系を使用した実施例では、いずれもリンの吸着速度と吸着容量のバランスが良好であった。これに対し、マグネシウム水溶液を用いた比較例1やマグネシウムのみならず鉄分散液も使用した比較例2、鉄イオンとして塩化鉄を使用した比較例5、水酸化物の水和物中のマグネシウムと鉄の比が2:1〜11:2の範囲外となる比較例3、6、また、一連の工程が全て25℃下で行われたものは、いずれも吸着速度、吸着容量ともに実施例に比べ低い値を示し、バランスが悪くなった。   As is apparent from Table 1, in the examples using the magnesium dispersion-iron sulfate system, the balance between the adsorption rate of phosphorus and the adsorption capacity was good. In contrast, Comparative Example 1 using an aqueous magnesium solution, Comparative Example 2 using not only magnesium but also an iron dispersion, Comparative Example 5 using iron chloride as an iron ion, and magnesium in a hydroxide hydrate Comparative Examples 3 and 6 in which the iron ratio is outside the range of 2: 1 to 11: 2, and those in which the series of steps were all performed at 25 ° C., both the adsorption rate and the adsorption capacity are examples. Compared to a low value, the balance was poor.

本発明によれば、煩雑な工程を経ずとも、容易にマグネシウム−鉄化合物からなるリン吸着剤が得られ、富栄養化の原因となるリン酸イオンを効率的よく除去できるため,廃水処理を必要とする種々の産業分野に幅広く有用に利用されることが期待される。   According to the present invention, a phosphorus adsorbent comprising a magnesium-iron compound can be easily obtained without going through complicated steps, and phosphate ions that cause eutrophication can be efficiently removed. It is expected to be used widely and usefully in various industrial fields.

Claims (4)

2価の金属酸化物又は水酸化物の水分散体に硫酸鉄水溶液を添加し、熟成して得られる金属−鉄系水酸化物の水和物からなるリン吸着剤の製造方法であって、次の(A)及び(B)の工程を含みかつ金属−鉄系水酸化物の水和物中の2価の金属と鉄のモル比が、2:1〜11:2であることを特徴とするリン吸着剤の製造方法。
(A)前記2価の金属酸化物又は水酸化物の水分散体に硫酸鉄水溶液を添加し、該水分散体表面に水酸化鉄を析出させる工程、
(B)前記水酸化鉄を熟成する工程。
A method for producing a phosphorus adsorbent comprising a hydrate of a metal-iron hydroxide obtained by adding an aqueous iron sulfate solution to an aqueous dispersion of a divalent metal oxide or hydroxide and aging, It includes the following steps (A) and (B), and the molar ratio of divalent metal to iron in the hydrate of metal-iron hydroxide is 2: 1 to 11: 2. A method for producing a phosphorus adsorbent.
(A) adding an aqueous iron sulfate solution to the aqueous dispersion of the divalent metal oxide or hydroxide, and precipitating iron hydroxide on the surface of the aqueous dispersion;
(B) A step of aging the iron hydroxide.
前記2価の金属酸化物が、酸化マグネシウム、又は前記金属水酸化物が、水酸化マグネシウムである請求項1に記載のリン吸着剤の製造方法。   The method for producing a phosphorus adsorbent according to claim 1, wherein the divalent metal oxide is magnesium oxide, or the metal hydroxide is magnesium hydroxide. 前記(B)工程における熟成温度が、40〜90℃である請求項1又は2に記載のリン吸着剤の製造方法。   The method for producing a phosphorus adsorbent according to claim 1 or 2, wherein the aging temperature in the step (B) is 40 to 90 ° C. 請求項1〜3のいずれかに記載の製造方法により得られるリン吸着剤。   The phosphorus adsorption agent obtained by the manufacturing method in any one of Claims 1-3.
JP2011286699A 2011-12-27 2011-12-27 Manufacturing method for phosphorus adsorbent and phosphorus adsorbent Pending JP2013132636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011286699A JP2013132636A (en) 2011-12-27 2011-12-27 Manufacturing method for phosphorus adsorbent and phosphorus adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011286699A JP2013132636A (en) 2011-12-27 2011-12-27 Manufacturing method for phosphorus adsorbent and phosphorus adsorbent

Publications (1)

Publication Number Publication Date
JP2013132636A true JP2013132636A (en) 2013-07-08

Family

ID=48909717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011286699A Pending JP2013132636A (en) 2011-12-27 2011-12-27 Manufacturing method for phosphorus adsorbent and phosphorus adsorbent

Country Status (1)

Country Link
JP (1) JP2013132636A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109529772A (en) * 2019-01-17 2019-03-29 美丽国土(北京)生态环境工程技术研究院有限公司 Phosphorus adsorbent and its preparation method and application
CN110252304A (en) * 2018-03-12 2019-09-20 中国石油化工股份有限公司 Fe-series catalyst and its preparation method and application and carbon nanotube and preparation method thereof
CN113083216A (en) * 2021-04-23 2021-07-09 江苏大学 Two-dimensional nickel-based composite metal oxide adsorbent, preparation method and application for removing phosphate radical
CN115999518A (en) * 2022-12-27 2023-04-25 昆明理工大学 Preparation and application methods of adsorbent for removing phosphate
WO2023216729A1 (en) * 2022-05-12 2023-11-16 重庆文理学院 Method for recovering phosphite ions in wastewater

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110252304A (en) * 2018-03-12 2019-09-20 中国石油化工股份有限公司 Fe-series catalyst and its preparation method and application and carbon nanotube and preparation method thereof
CN110252304B (en) * 2018-03-12 2021-12-17 中国石油化工股份有限公司 Iron-based catalyst, preparation method and application thereof, carbon nano tube and preparation method thereof
CN109529772A (en) * 2019-01-17 2019-03-29 美丽国土(北京)生态环境工程技术研究院有限公司 Phosphorus adsorbent and its preparation method and application
CN113083216A (en) * 2021-04-23 2021-07-09 江苏大学 Two-dimensional nickel-based composite metal oxide adsorbent, preparation method and application for removing phosphate radical
CN113083216B (en) * 2021-04-23 2023-11-10 江苏大学 Two-dimensional nickel-based composite metal oxide adsorbent, preparation method and application of adsorbent in removing phosphate radical
WO2023216729A1 (en) * 2022-05-12 2023-11-16 重庆文理学院 Method for recovering phosphite ions in wastewater
CN115999518A (en) * 2022-12-27 2023-04-25 昆明理工大学 Preparation and application methods of adsorbent for removing phosphate

Similar Documents

Publication Publication Date Title
CN103212364B (en) Ferro-manganese composite oxide as well as preparation method and application thereof in removing arsenic in water
JP4829610B2 (en) Production method of adsorbent mainly composed of hydroxyapatite crystals
JP2013132636A (en) Manufacturing method for phosphorus adsorbent and phosphorus adsorbent
CN105854811A (en) Preparation of sodium alginate intercalated hydrotalcite adsorbent and application thereof
JP5352853B1 (en) Method of treating radioactive Cs contaminated water
Hu et al. Efficient and selective recovery of iron phosphate from the leachate of incinerated sewage sludge ash by thermally induced precipitation
Lian et al. A comprehensive study of phosphorus removal and recovery with a Fe-loaded sulfoaluminate cement (FSC) adsorbent
JP6263233B2 (en) Inorganic material for removing harmful substances in wastewater, method for producing the same, and wastewater treatment method
Zhang et al. Facile fabrication of La/Ca bimetal-organic frameworks for economical and efficient remove phosphorus from water
Zheng et al. Sludge-derived biopolymers for in-situ synthesis of magnetic ALE-Fe-Zr composites for phosphate removal
JP6644805B2 (en) Anion adsorption method
JP2014173924A (en) METHOD FOR TREATING RADIOACTIVE Cs-CONTAMINATED WATER, AND RADIOACTIVE Cs ABSORBENT AND METHOD FOR PRODUCING THE SAME
JP2005193167A (en) Drainage purification method and purification method
JP4576560B2 (en) Phosphorous adsorbent
JP2006256891A (en) Aluminum silicate and its production method
Xiong et al. Low-grade sepiolite with low loading of Na/La salts for simultaneous removal of ammonia and phosphate from wastewater
KR101317796B1 (en) Water purification material, water purification method, raw material composition of phosphate fertilizer, and method for manufacturing a raw material composition of phosphate fertilizer
JP2013188726A (en) Recovery agent for ammoniacal nitrogen and phosphorus and method for producing the same
Yuan et al. Facile synthesis and characterization of ZnS polymorphs/Halloysite composite for efficiently selective adsorption of Al (III) from acidic rare earth ions solution
KR101737944B1 (en) A method of recovering indium or tin from indium or tin-containing solution or mixture with adsorption and further desorption procedure
CN115155516B (en) Heavy metal wastewater adsorbent and preparation method thereof
KR101281145B1 (en) A method for aluminium chloride from filtration plant sludge
CN113292101B (en) Preparation method and application of high-purity birnessite material
CN110482513B (en) Method for recovering granular ferric orthophosphate from chemical nickel plating waste liquid
CN108671881B (en) Wastewater treatment method for removing ammonia nitrogen by inorganic salt combined MAP chemical precipitation adsorption method