KR101349041B1 - Synthesis method of carbon nanofibers thin film and the structure thereof - Google Patents

Synthesis method of carbon nanofibers thin film and the structure thereof Download PDF

Info

Publication number
KR101349041B1
KR101349041B1 KR1020120126188A KR20120126188A KR101349041B1 KR 101349041 B1 KR101349041 B1 KR 101349041B1 KR 1020120126188 A KR1020120126188 A KR 1020120126188A KR 20120126188 A KR20120126188 A KR 20120126188A KR 101349041 B1 KR101349041 B1 KR 101349041B1
Authority
KR
South Korea
Prior art keywords
carbon
thin film
metal support
carbon nano
metal
Prior art date
Application number
KR1020120126188A
Other languages
Korean (ko)
Inventor
정남조
김동국
박종수
황교식
여정구
김태환
김희연
양승철
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020120126188A priority Critical patent/KR101349041B1/en
Application granted granted Critical
Publication of KR101349041B1 publication Critical patent/KR101349041B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation

Abstract

The purpose of the present invention is to directly synthesize a high quality carbon nanothin film consisting of without a separate assembly process crystalline nanomaterials (carbon nanotube or carbon nanofiber) of nanosize. The present invention for accomplishing the purpose forms a carbon nanothin film on a prepared metal plate by using a chemical vapor deposition method and performs heat treatment on the synthesized metal support-carbon nanothin film at high temperatures and high pressures under hydrogen. The present invention is able to coat the surface of metal supports prepared for forming a structure of a hybrid form with metal and metal oxide nanoparticles in advance. The synthesis method of the present invention simplifies a manufacturing process as compared to a thin film manufactured by using carbon nanomaterials (carbon nanotube or carbon nanofiber) synthesized in advance, is able to control the uniform thickness of a film and is able to freely adjust the crystal structure of the carbon nanothin film synthesized through a simple heat treatment process. The structure is able to be applied to materials for various electrodes, catalyst reaction materials, high value reaction/separation film materials and the like.

Description

탄소나노섬유로 구성된 탄소박막 합성방법 및 그 구조체{Synthesis method of carbon nanofibers thin film and the structure thereof}Synthesis method of carbon nanofibers thin film and the structure

본 발명은 나노 크기 수준의 두께를 갖는 탄소나노박막에 관련된 내용으로, 특히 결정성 탄소나노섬유로 구성된 탄소나노박막을 합성하는 방식 및 그 구조체를 제공하는 기술에 관한 것이다.
The present invention relates to a carbon nano thin film having a nano-scale thickness, and more particularly, to a method for synthesizing a carbon nano thin film composed of crystalline carbon nano fibers and a technology for providing a structure thereof.

탄소나노박막은 가스 배리어 (gas barrier), 각종 membrane (membrane), 각종 전극용 소재(electrode materials)등에 사용이 가능하기 때문에 최근 많은 관심이 집중되는 기술 중의 하나이다. 이러한 탄소나노박막의 대표적인 구조가 그라핀이다. 그라핀은 원자 수준의 얇은 층을 이룰 수 있기 때문에 존재하는 탄소박막 중 가장 얇은 것으로 알려졌다. 이러한 그라핀 박막은 촉매를 이용한 화학기상증착 방식에 의해 직접 합성될 수 있으며, 또한 미리 준비된 그라핀 또는 그라핀 산화물을 이용하여 자체 어셈불리(self-assembly) 방식에 의해 준비될 수도 있다.Carbon nano thin film is one of the technologies that attract a lot of attention in recent years because it can be used in a gas barrier (gas barrier), various membranes (membrane), various electrode materials (electrode materials). The typical structure of such a carbon nano thin film is graphene. Graphene is known to be the thinnest carbon thin film present because it can form a thin layer at the atomic level. The graphene thin film may be directly synthesized by chemical vapor deposition using a catalyst, or may be prepared by self-assembly using pre-prepared graphene or graphene oxide.

또 다른 형태의 탄소나노박막은 탄소나노튜브나 탄소나노섬유로 구성된 탄소박막이다. 기존의 기술은 미리 준비된 탄소나노섬유나 탄소나노튜브를 용액에 잘 분산한 후 자체 어셈블이 방식이나 또 다른 기능성 물질(functional additives)을 추가하여 얇은 막을 형성하는 방식이 일반적이다. 그러나 이 방식은 공정이 매우 복잡할 뿐 아니라, 준비된 탄소나노튜브 및 탄소나노섬유가 용액에 잘 분산된 후 어셈블리 과정에서 다시 응집되지 않도록 해야 하기 때문에 생성된 막막의 균일성을 최적화하는데 어려움이 많은 단점을 갖는다.
Another type of carbon nano thin film is a carbon thin film composed of carbon nanotubes or carbon nanofibers. Existing techniques generally disperse well-prepared carbon nanofibers or carbon nanotubes in a solution, and then self-assemble or add other functional additives to form a thin film. However, this method is not only complicated but also has difficulty in optimizing the uniformity of the resulting film because the prepared carbon nanotubes and carbon nanofibers must be well dispersed in the solution and then not reaggregated during the assembly process. Has

본 발명에서는 나노 크기의 탄소나노물질(탄소나노튜브 또는 탄소나노섬유)로 구성된 고품질의 탄소나노박막을 별도의 공정없이 직접 합성하는데 그 목적이 있다.
In the present invention, a high-quality carbon nano thin film composed of nano-size carbon nanomaterials (carbon nanotubes or carbon nanofibers) is directly synthesized without a separate process.

상술한 바와 같은 목적 달성을 위한 본 발명은, 금속 지지체 위에 탄소나노박막을 화학기상증착법을 이용하여 형성하는 단계; 및 탄소나노박막이 증착된 금속 지지체를 수소 분위기에서 열처리하는 단계를 포함하는 탄소나노섬유로 구성된 탄소박막 합성방법이다.The present invention for achieving the above object, the step of forming a carbon nano thin film on the metal support by chemical vapor deposition; And carbon nanofibers comprising the step of heat-treating the carbon support on which the carbon nano thin film is deposited in a hydrogen atmosphere.

또 다른 방법으로, 하이브리드 형태의 구조체를 구성하기 위하여 준비된 금속지지체 표면에 먼저 금속 또는 산화금속 나노입자를 코팅할 수 있다.Alternatively, the metal or metal oxide nanoparticles may be first coated on the surface of the metal support prepared to construct the hybrid type structure.

상기 금속지지체는 다공성 구조를 가질 수 있다. 따라서, 평판 형태 또는 3차원 형태의 폼(foam)으로 금속지지체가 제공될 수 있다.The metal support may have a porous structure. Thus, the metal support can be provided in a flat or three-dimensional form of foam.

상기 화학기상증착은 압력 2~750 Torr, 온도 550~850℃, 시간은 1~60분의 조건에서 이루어질 수 있다.The chemical vapor deposition may be carried out under the conditions of pressure 2 ~ 750 Torr, temperature 550 ~ 850 ℃, time 1 ~ 60 minutes.

또, 상기 화학기상증착에서 합성가스는 아세틸렌, 에틸렌, 프로판과 같은 지방족 탄화수소, 또는 톨루엔과 같은 방향족 탄화수소인 것을 특징으로 한다. 톨루엔은 액체상태이므로 초음파 등의 공지기술을 이용하여 기화시켜서 사용할 수 있다.In the chemical vapor deposition, the synthesis gas may be an aliphatic hydrocarbon such as acetylene, ethylene, propane, or an aromatic hydrocarbon such as toluene. Toluene is in a liquid state and can be used by evaporation using a known technique such as ultrasonic waves.

열처리 온도는 1500~2000℃, 열처리 압력은 0.001~ 100 Torr, 열처리 시간은 2~5시간으로 이루어질 수 있다.The heat treatment temperature is 1500 ~ 2000 ℃, the heat treatment pressure is 0.001 ~ 100 Torr, the heat treatment time may be made of 2 to 5 hours.

상기 코팅되는 나노입자는 탄소나노섬유의 성장을 유도할 수 있는 물질로써, 니켈, 철, 코발트, 주석, 구리 중 어느 하나 또는 이들의 산화물일 수 있다.The coated nanoparticles are materials capable of inducing the growth of carbon nanofibers, and may be any one of nickel, iron, cobalt, tin, and copper or oxides thereof.

상술한 탄소박막 합성방법으로 탄소나노박막와 금속지지체로 이루어지는 구조체, 또는 탄소나노박막, 탄소나노섬유, 및 금속지지체로 이루어지는 구조체의 제작이 가능하다.
By the above-described carbon thin film synthesis method, it is possible to produce a structure made of a carbon nano thin film and a metal support, or a structure made of a carbon nano thin film, carbon nanofiber, and a metal support.

본 합성방식은 미리 합성된 탄소나노물질들 (탄소나노섬유 또는 탄소나노튜브)를 이용하여 제작된 박막에 비해 제조 공정이 매우 간단할 뿐 아니라 매우 균일한 막 두께를 제어할 수 있으며, 간단한 열처리 공정을 통해 합성된 탄소나노박막의 결정 구조를 자유롭게 제어할 수 있는 장점이 있다. 이러한 구조는 각종 전극용 소재, 촉매반응 소재, 고부가가치의 반응/분리막 소재 등에 활용이 가능할 것으로 기대된다.
This synthesis method is not only very simple but also very uniform film thickness control process compared to thin films fabricated using pre-synthesized carbon nanomaterials (carbon nanofibers or carbon nanotubes), simple heat treatment process There is an advantage that can freely control the crystal structure of the synthesized carbon nano thin film through. Such a structure is expected to be applicable to various electrode materials, catalytic reaction materials, high value-added reaction / separator materials.

도 1a는 본 발명의 탄소박막 합성방법에 따라 탄소나노섬유로 구성된 탄소나노박막을 도시한다.
도 1b은 본 발명의 또 다른 탄소박막 합성방법에 따라 탄소나노섬유로 구성된 탄소나노박막을 도시한다.
도 2는본 발명의 탄소박막 합성방법에 따른 금속지지체 표면에 성장한 탄소나노박막에 대한 사진이다.
도 3은 본 발명의 탄소박막 합성방법에 따른 금속지지체 표면에 성장한 탄소나노박막에 대한 SEM (scanning electron microscopy) 이미지이다. 여기서 도 3a는 탄소나노박막의 표면 의 저배율 사진이고, 도 3b는 탄소나노박막의 두께방향으로 촬영한 사진이며, 도 3c는 탄소나노박막 표면의 고배율 사진이다.
도 4는 본 발명의 탄소박막 합성방법에 따른 금속지지체 표면에 성장한 탄소나노박막에 대한 TEM (transmission electron microscopy) 이미지이다.
도 5는 본 발명의 탄소박막 합성방법에 따른 금속지지체 표면에 성장한 탄소나노박막을 열처리한 이후 TEM (transmission electron microscopy) 이미지를 보여주며,
도 6은 본 발명의 또 다른 탄소박막 합성방법에 따른 탄소나노섬유-탄소나노박막으로 구성된 탄소나노박막 구조체에 대한 SEM 이미지를 보여준다. 여기서 도 6a는 하이브리드 박막의 두께방향을 촬영한 사진이고, 도 6b는 탄소나노박막 표면에 성장한 탄소나노섬유의 사진이다..
Figure 1a shows a carbon nano thin film composed of carbon nano fibers according to the carbon thin film synthesis method of the present invention.
Figure 1b shows a carbon nano thin film composed of carbon nano fibers according to another carbon thin film synthesis method of the present invention.
2 is a photograph of a carbon nano thin film grown on the surface of the metal support according to the carbon thin film synthesis method of the present invention.
3 is a scanning electron microscopy (SEM) image of the carbon nano thin film grown on the surface of the metal support according to the carbon thin film synthesis method of the present invention. 3A is a low magnification photograph of the surface of the carbon nano thin film, FIG. 3B is a photograph taken in the thickness direction of the carbon nano thin film, and FIG. 3C is a high magnification photograph of the carbon nano thin film surface.
4 is a transmission electron microscopy (TEM) image of a carbon nano thin film grown on a surface of a metal support according to the method for synthesizing a carbon thin film of the present invention.
Figure 5 shows a transmission electron microscopy (TEM) image after heat-treating the carbon nano thin film grown on the surface of the metal support according to the carbon thin film synthesis method of the present invention,
FIG. 6 shows an SEM image of a carbon nano thin film structure composed of a carbon nano fiber-carbon nano thin film according to another carbon thin film synthesis method of the present invention. 6A is a photograph taken in the thickness direction of the hybrid thin film, and FIG. 6B is a photograph of carbon nanofibers grown on the surface of the carbon nano thin film.

이하에서는, 본 발명의 탄소나노섬유로 구성된 탄소박막 합성방법 및 그 구조체를 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, a carbon thin film synthesis method and its structure composed of carbon nanofibers of the present invention will be described in detail.

본 발명의 탄소나노섬유(16)로 구성된 탄소박막 합성방법은, 금속 지지체 위에 탄소나노박막을 화학기상증착법을 이용하여 형성하는 단계; 및 탄소나노박막이 증착된 금속 지지체를 수소 분위기에서 열처리하는 단계를 포함하는 것을 요지로 한다.A carbon thin film synthesis method composed of carbon nanofibers (16) of the present invention comprises the steps of: forming a carbon nano thin film on a metal support by chemical vapor deposition; And heat treating the metal support on which the carbon nano thin film is deposited in a hydrogen atmosphere.

먼저, 금속지지체(10)를 준비하는데, 그 형상은 2차원 평판형 구조 및 3차원 폼 (foam)과 같은 다공성 구조도 가능하다.First, the metal support 10 is prepared, the shape of which may be a porous structure such as a two-dimensional flat plate structure and a three-dimensional foam (foam).

준비된 금속지지체(10)는 화학기상증착을 위한 반응장치에 넣고, 반응장치는 진공 분위기에서 합성 온도까지 온도가 상승된다. 진공은 2~750 Torr에서 제어되는 것이 바람직하며, 합성온도는 550~850℃ 사이에서 제어되는 것이 바람직하다. 합성 시간은 1~60분으로 제어되는데, 합성 시간이 증착되는 탄소나노박막(12)의 두께를 결정하는 중요한 인자가 된다. The prepared metal support 10 is placed in a reactor for chemical vapor deposition, and the reactor is heated up to a synthesis temperature in a vacuum atmosphere. The vacuum is preferably controlled at 2 ~ 750 Torr, the synthesis temperature is preferably controlled between 550 ~ 850 ℃. Synthesis time is controlled from 1 to 60 minutes, the synthesis time is an important factor in determining the thickness of the carbon nano thin film 12 is deposited.

합성가스는 아세틸렌, 에틸렌, 프로판과 같은 지방족 탄화수소가스와 벤젠, 톨루엔과 같은 고리 구조를 갖는 방향족 탄화수소의 액체 소스가 가능하다. 공급되는 합성가스가 액체일 경우에는 울트라소닉 과 같은 공지의 기화방식을 이용하여 공급하게 된다.Syngas is a liquid source of aliphatic hydrocarbon gases such as acetylene, ethylene, propane and aromatic hydrocarbons having ring structures such as benzene and toluene. When the syngas supplied is a liquid, it is supplied using a known vaporization method such as ultrasonic.

상기와 같이 준비된 금속지지체-탄소나노박막은 고온,저압 반응장치로 옮겨 열처리를 수행한다. 열처리 온도는 1500 -2000℃에서 제어되며, 반응장치의 압력은 0.001~100 Torr에서 제어된다. 열처리 시간은 2-5시간이 바람직하다.The metal support-carbon nano thin film prepared as described above is transferred to a high temperature and low pressure reactor to perform heat treatment. The heat treatment temperature is controlled at 1500 -2000 ℃, the pressure of the reactor is controlled at 0.001 ~ 100 Torr. The heat treatment time is preferably 2-5 hours.

또 다른 탄소박막 합성방법으로, 탄소나노박막(12) 구조를 별도의 탄소나노섬유(16)와 하이브리드화시키는 구조체를 제작할 수 있다. 금속 지지체 위에 금속 또는 산화금속 나노입자(14)를 코팅하는 단계와, 금속 또는 산화금속 나노입자가 코팅된 금속 지지체에 화학기상증착법을 이용하여 탄소나노박막-탄소나노섬유를 형성하는 단계와, 탄소나노박막-탄소나노섬유가 형성된 금속지지체를 수소 분위기에서 열처리하는 단계를 포함하는 것을 요지로 한다.As another carbon thin film synthesis method, a structure for hybridizing the carbon nano thin film 12 structure with the other carbon nanofibers 16 may be manufactured. Coating the metal or metal oxide nanoparticles 14 on the metal support, forming a carbon nano thin film-carbon nanofiber on the metal support coated with the metal or metal oxide nanoparticles by chemical vapor deposition; The present invention is intended to include the step of heat-treating the metal support on which the nano thin film-carbon nanofibers are formed in a hydrogen atmosphere.

먼저, 금속지지체(10)를 준비하는데, 그 형상은 2차원 평판형 구조 및 3차원 폼 (foam)과 같은 다공성 구조도 가능하다.First, the metal support 10 is prepared, the shape of which may be a porous structure such as a two-dimensional flat plate structure and a three-dimensional foam (foam).

준비된 금속지지체의 표면에 금속 또는 산화금속 나노입자를 코팅한다. 코팅은 딥코팅(dip-coating)이나 스프레이방식이 이용될 수 있다. 코팅되는 나노입자는 탄소나노섬유의 성장을 유도할 수 있는 물질이면 된다. 예를 들어 니켈, 철, 코발트, 주석, 구리 및 그 들의 산화물 형태가 모두 가능하다.Metal or metal oxide nanoparticles are coated on the surface of the prepared metal support. Coatings may be dip-coated or sprayed. The nanoparticles to be coated may be any material capable of inducing the growth of carbon nanofibers. For example nickel, iron, cobalt, tin, copper and their oxide forms are all possible.

나노입자가 코팅된 금속지지체는 화학기상증착을 위한 반응장치에 넣고, 반응장치는 진공 분위기에서 합성 온도까지 온도가 상승된다. 진공은 2~750 Torr에서 제어되는 것이 바람직하며, 합성온도는 550~850℃ 사이에서 제어되는 것이 바람직하다. 합성 시간은 1~60분으로 제어되는데, 합성 시간이 증착되는 박막의 두께를 결정하는 중요한 인자가 된다. The metal support coated with the nanoparticles is placed in a reactor for chemical vapor deposition, and the reactor is heated up to the synthesis temperature in a vacuum atmosphere. The vacuum is preferably controlled at 2 ~ 750 Torr, the synthesis temperature is preferably controlled between 550 ~ 850 ℃. The synthesis time is controlled from 1 to 60 minutes, which is an important factor in determining the thickness of the deposited film.

합성가스는 아세틸렌, 에틸렌, 프로판과 같은 지방족 탄화수소가스와 벤젠, 톨루엔과 같은 고리 구조를 갖는 방향족 탄화수소의 액체 소스가 가능하다. 공급되는 합성가스가 액체일 경우에는 울트라소닉 과 같은 공지의 기화방식을 이용하여 공급하게 된다.Syngas is a liquid source of aliphatic hydrocarbon gases such as acetylene, ethylene, propane and aromatic hydrocarbons having ring structures such as benzene and toluene. When the syngas supplied is a liquid, it is supplied using a known vaporization method such as ultrasonic.

상기와 같이 준비된 금속지지체-탄소나노섬유-탄소나노박막은 고온,저압 반응장치로 옮겨 열처리를 수행한다. 열처리 온도는 1500 -2000℃에서 제어되며, 반응장치의 압력은 0.001~100 Torr에서 제어된다. 열처리 시간은 2-5시간이 바람직하다.The metal support-carbon nanofiber-carbon nano thin film prepared as described above is transferred to a high temperature and low pressure reactor to perform heat treatment. The heat treatment temperature is controlled at 1500 -2000 ℃, the pressure of the reactor is controlled at 0.001 ~ 100 Torr. The heat treatment time is preferably 2-5 hours.

합성된 탄소나노박막은 두께가 약 100 - 1000 ㎚ 내에서 제어가 가능하였으며, 대면적 합성이 가능하다. 하이브리드 구조에서 형성된 탄소나노섬유들은 지름이 50 -100 ㎚이고 길이가 1-100㎛로 제어되었다.
The synthesized carbon nano thin film was controllable within a thickness of about 100-1000 nm, and large area synthesis was possible. Carbon nanofibers formed in the hybrid structure were 50-100 nm in diameter and 1-100 μm in length.

이하에서는, 본 발명의 일 실시예에 따른 탄소나노섬유로 구성된 탄소박막 합성방법 및 그 구조체에 대한 일 실시예를 살펴본다. 그러나, 본 발명의 범주가 이하의 바람직한 실시 예에 한정되는 것은 아니며, 당업자라면 본 발명의 권리범위 내에서 본 명세서에 기재된 내용의 여러 가지 변형된 형태를 실시할 수 있다.
Hereinafter, it looks at an embodiment of the carbon thin film synthesis method and its structure composed of carbon nanofibers according to an embodiment of the present invention. However, the scope of the present invention is not limited to the following preferred embodiments, and a person skilled in the art can carry out various modifications of the contents described in the present invention within the scope of the present invention.

[실시예 1] 금속지지체 표면에 성장한 탄소나노박막에 대한 SEM 이미지Example 1 SEM image of carbon nano thin film grown on surface of metal support

도 2는 본 발명에 따른 금속지지체 표면에 성장한 탄소나노박막에 대한 사진을 보여준다. 금속지지체로는 구리를 사용했으며, 실험은 750℃에서 진행되었다. 사진에서와 같이 매우 균일한 탄소박막층이 형성된 것이 확인된다.
Figure 2 shows a photograph of the carbon nano thin film grown on the surface of the metal support according to the present invention. Copper was used as the metal support, and the experiment was conducted at 750 ° C. It is confirmed that a very uniform carbon thin film layer was formed as shown in the photograph.

[실시예 2] 금속지지체 표면에 성장한 탄소나노박막에 대한 SEM 이미지Example 2 SEM image of carbon nano thin film grown on surface of metal support

도 3은 본 발명에 따른 금속지지체 표면에 성장한 탄소나노박막에 대한 SEM 이미지를 보여준다. (a)는 탄소나노박막의 표면 저배율 이미지를 나타낸다. 구리 표면에서 매우 얇은 층이 형성된 것이 확인된다. (b)는 박막의 두께를 보여준다. 고배율 이미지에서 측정된 탄소박막 층의 두께는 약 100 - 200 ㎚인 것이 확인된다. 양쪽 측면에는 어떠한 나노물질의 형성도 관찰되지 않는다. (c)는 탄소나노박막 표면의 고배율 이미지를 보여준다. 약 50 ㎚의 크기의 경계면이 확인된다.
Figure 3 shows an SEM image of the carbon nano thin film grown on the surface of the metal support according to the present invention. (a) shows the surface low magnification image of a carbon nano thin film. It is confirmed that a very thin layer is formed on the copper surface. (b) shows the thickness of the thin film. It is confirmed that the thickness of the carbon thin film layer measured in the high magnification image is about 100-200 nm. No formation of nanomaterials is observed on both sides. (c) shows a high magnification image of the surface of the carbon nano thin film. An interface of size about 50 nm is identified.

[실시예 3] 금속지지체 표면에 성장한 탄소나노박막에 대한 TEM 이미지Example 3 TEM image of carbon nano thin film grown on metal support surface

도 4는 본 발명에 따른 금속지지체 표면에 성장한 탄소나노박막에 대한 TEM (transmission electron microscopy) 이미지를 보여준다. 각각의 나노섬유들이 서로 연결되어 있는 모습이 관찰된다. 생성된 나노섬유의 결정구조는 매우 불연속 적으로 보인다. 그라핀 산화물이나 결점이 많은 탄소구조에서 흔히 관찰되는 구조와 유사하였다.
Figure 4 shows a transmission electron microscopy (TEM) image of the carbon nano thin film grown on the surface of the metal support according to the present invention. Each nanofiber is connected to each other. The crystal structure of the resulting nanofibers appears very discontinuous. Graphene oxide or defects were similar to those commonly observed in many carbon structures.

[실시예 4] 금속지지체 표면에 성장한 탄소나노박막을 열처리한 이후 TEM 이미지Example 4 TEM image after heat-treatment of carbon nano thin film grown on surface of metal support

도 5는 본 발명에 따른 금속지지체 표면에 성장한 탄소나노박막을 열처리한 이후 TEM (transmission electron microscopy) 이미지를 보여준다. 고온,저압 분위기에서 열러리한 시료는 기계적 강도가 증가했을 뿐 아니라, 결정 구조에 있어서도 매우 향상된 결과를 보였다. 대부분의 결정들이 연속적이고 결점이 없어진 듯한 모양을 갖는다.
Figure 5 shows a transmission electron microscopy (TEM) image after heat-treating the carbon nano thin film grown on the surface of the metal support according to the present invention. Samples opened in high temperature and low pressure atmosphere not only increased the mechanical strength but also improved the crystal structure. Most crystals appear to be continuous and flawless.

[실시예 5] 탄소나노섬유-탄소나노박막으로 구성된 하이브리드 탄소나노박막 구조체에 대한 SEM 이미지Example 5 SEM image of a hybrid carbon nano thin film structure composed of carbon nano fiber-carbon nano thin film

도 6은 본 발명에 따른 탄소나노섬유-탄소나노박막으로 구성된 하이브리드 탄소나노박막 구조체에 대한 SEM 이미지를 보여준다. (a) 하이브리드 박막의 두께를 보여준다. 탄소나노박막 층이 약 500 ㎚이고, 표면에 성장한 탄소나노섬유 층이 약 500 ㎚로 측정된다. (b)는 탄소나노박막 표면에 성장한 탄소나노섬유를 보여준다. 탄소섬유들은 지름이 약 100 ㎚로 되어 있으며, 성장을 유도한 나노입자들이 곳곳에서 확인된다.
6 shows an SEM image of a hybrid carbon nano thin film structure composed of a carbon nano fiber-carbon nano thin film according to the present invention. (a) It shows the thickness of the hybrid thin film. The carbon nano thin film layer is about 500 nm, and the carbon nanofiber layer grown on the surface is measured at about 500 nm. (b) shows carbon nanofibers grown on the surface of the carbon nano thin film. Carbon fibers are about 100 nm in diameter, and nanoparticles that induce growth are found everywhere.

10: 금속지지체
12: 탄소나노박막
14: 나노입자
16: 탄소나노섬유
10: metal support
12: carbon nano thin film
14: nanoparticle
16: carbon nano fiber

Claims (13)

금속 지지체 위에 탄소나노박막을 화학기상증착법을 이용하여 형성하는 단계; 및
탄소나노박막이 증착된 금속 지지체를 수소 분위기에서 열처리하는 단계를 포함하는 탄소나노섬유로 구성된 탄소박막 합성방법.
Forming a carbon nano thin film on the metal support by chemical vapor deposition; And
A carbon thin film synthesis method comprising carbon nanofibers, comprising the step of heat-treating a metal support on which a carbon nano thin film is deposited in a hydrogen atmosphere.
금속 지지체 위에 금속 또는 산화금속 나노입자를 코팅하는 단계;
금속 또는 산화금속 나노입자가 코팅된 금속 지지체에 화학기상증착법을 이용하여 탄소나노박막-탄소나노섬유를 형성하는 단계;
탄소나노박막-탄소나노섬유가 형성된 금속지지체를 수소 분위기에서 열처리하는 단계를 포함하는 것을 특징으로 하는 탄소나노섬유로 구성된 탄소박막 합성방법.
Coating the metal or metal oxide nanoparticles on the metal support;
Forming a carbon nano thin film-carbon nanofiber using a chemical vapor deposition method on a metal support coated with metal or metal oxide nanoparticles;
Carbon nano thin film-Carbon thin film composite method comprising carbon nanofibers comprising the step of heat-treating the metal support formed with carbon nanofibers in a hydrogen atmosphere.
제1항 또는 제2항에 있어서, 상기 금속지지체는 다공성 구조를 가지는 것을 특징으로 하는 탄소나노섬유로 구성된 탄소박막 합성방법.
The method of synthesizing a carbon thin film of claim 1 or 2, wherein the metal support has a porous structure.
제1항 또는 제2항에 있어서, 상기 화학기상증착은 2~750 Torr에서 이루어지 것을 특징으로 하는 탄소나노섬유로 구성된 탄소박막 합성방법.
[Claim 3] The method of claim 1 or 2, wherein the chemical vapor deposition is performed at 2 to 750 Torr.
제1항 또는 제2항에 있어서, 상기 화학기상증착의 온도는 550~850℃인 것을 특징으로 하는 탄소나노섬유로 구성된 탄소박막 합성방법.
The method of claim 1 or 2, wherein the chemical vapor deposition has a temperature of 550 to 850 ° C.
제1항 또는 제2항에 있어서, 상기 화학기상증착 시간은 1~60분인 것을 특징으로 하는 탄소나노섬유로 구성된 탄소박막 합성방법.
The method for synthesizing a carbon thin film of carbon nanofibers according to claim 1 or 2, wherein the chemical vapor deposition time is 1 to 60 minutes.
제1항 또는 제2항에 있어서, 상기 화학기상증착에서 합성가스는 지방족 탄화수소 또는 방향족 탄화수소인 것을 특징으로 하는 탄소나노섬유로 구성된 탄소박막 합성방법.
The method of synthesizing a carbon thin film of carbon nanofibers according to claim 1 or 2, wherein the synthesis gas in the chemical vapor deposition is an aliphatic hydrocarbon or an aromatic hydrocarbon.
제1항 또는 제2항에 있어서, 열처리 온도는 1500~2000℃에서 제어되는 것을 특징으로 하는 탄소나노섬유로 구성된 탄소박막 합성방법.
The method of synthesizing a carbon thin film of carbon nanofibers according to claim 1 or 2, wherein the heat treatment temperature is controlled at 1500 to 2000 ° C.
제1항 또는 제2항에 있어서, 열처리 압력은 0.001~ 100 Torr에서 이루어지는 것을 특징으로 하는 탄소나노섬유로 구성된 탄소박막 합성방법.
The method for synthesizing a carbon thin film of carbon nanofibers according to claim 1 or 2, wherein the heat treatment pressure is performed at 0.001 to 100 Torr.
제1항 또는 제2항에 있어서, 열처리 시간은 2~5시간인 것을 특징으로 하는 탄소나노섬유로 구성된 탄소박막 합성방법.
The method of synthesizing a carbon thin film of carbon nanofibers according to claim 1 or 2, wherein the heat treatment time is 2 to 5 hours.
제1항 또는 제2항에 있어서, 코팅되는 나노입자는 니켈, 철, 코발트, 주석, 구리 중 어느 하나 또는 이들의 산화물인 것을 특징으로 하는 탄소나노섬유로 구성된 탄소박막 합성방법.
The method of claim 1 or 2, wherein the nanoparticles to be coated are one of nickel, iron, cobalt, tin, and copper, or an oxide thereof.
제1항의 탄소나노섬유로 구성된 탄소박막 합성방법으로 제작되는 탄소나노박막와 금속지지체로 이루어지는 구조체.
A structure consisting of a carbon nano thin film and a metal support produced by the carbon thin film synthesis method of claim 1 carbon nanofibers.
제2항의 탄소나노섬유로 구성된 탄소박막 합성방법으로 제작되는 탄소나노박막, 탄소나노섬유, 및 금속지지체로 이루어지는 구조체.A structure comprising a carbon nano thin film, a carbon nano fiber, and a metal support fabricated by a method of synthesizing a carbon thin film composed of carbon nanofibers of claim 2.
KR1020120126188A 2012-11-08 2012-11-08 Synthesis method of carbon nanofibers thin film and the structure thereof KR101349041B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120126188A KR101349041B1 (en) 2012-11-08 2012-11-08 Synthesis method of carbon nanofibers thin film and the structure thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120126188A KR101349041B1 (en) 2012-11-08 2012-11-08 Synthesis method of carbon nanofibers thin film and the structure thereof

Publications (1)

Publication Number Publication Date
KR101349041B1 true KR101349041B1 (en) 2014-01-13

Family

ID=50144935

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120126188A KR101349041B1 (en) 2012-11-08 2012-11-08 Synthesis method of carbon nanofibers thin film and the structure thereof

Country Status (1)

Country Link
KR (1) KR101349041B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100478145B1 (en) 2002-03-06 2005-03-22 재단법인 포항산업과학연구원 Method for Manufacturing Carbon Nano Fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100478145B1 (en) 2002-03-06 2005-03-22 재단법인 포항산업과학연구원 Method for Manufacturing Carbon Nano Fiber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Worx G. Che, et. al., Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method, Chem. Mater., 1998, 10 (1), pp 260-267. *

Similar Documents

Publication Publication Date Title
KR101289256B1 (en) Methods for growing and harvesting carbon nanotubes
US10953467B2 (en) Porous materials comprising two-dimensional nanomaterials
Chen et al. Electroless deposition of Ni nanoparticles on carbon nanotubes with the aid of supercritical CO2 fluid and a synergistic hydrogen storage property of the composite
TWI245079B (en) Method for growing highly-ordered nanofibers
KR20050121426A (en) Method for preparing catalyst for manufacturing carbon nano tubes
JP2006516944A (en) Formation of nanostructures
Zhu et al. Direct fabrication of single-walled carbon nanotube macro-films on flexible substrates
Kim et al. Factors governing the growth mode of carbon nanotubes on carbon-based substrates
US8758715B2 (en) Porous wall hollow glass microspheres as a medium or substrate for storage and formation of novel materials
Frusteri et al. Carbon growth evidences as a result of benzene pyrolysis
JP2012213716A (en) Base material for producing aligned carbon-nanotube aggregate, method for producing aligned carbon-nanotube aggregate, and method for producing base material for producing aligned carbon-nanotube aggregate
KR20120099957A (en) Carbon fiber-carbon nanotube hybrid with improved adhesion to the carbon fiber surface and the method for preparing the same
TW201420499A (en) Carbon nanotubes conformally coated with diamond nanocrystals or silicon carbide, methods of making the same and methods of their use
US11365123B2 (en) Method for producing graphene nanospheres
US9028916B2 (en) Method for synthesizing carbon nanowires on surface of pores or gaps in structure
KR101470830B1 (en) Fabrication method of three-dimensional carbon structure and the structure thereof
KR101349041B1 (en) Synthesis method of carbon nanofibers thin film and the structure thereof
Popp et al. Porous carbon nanotube-reinforced metals and ceramics via a double templating approach
US9970130B2 (en) Carbon nanofibers with sharp tip ends and a carbon nanofibers growth method using a palladium catalyst
KR20160062810A (en) Method for preparing carbon nanotube and hybrid carbon nanotube composite
KR101415228B1 (en) Synthesizing method of 1-dimensional carbon nano fiber
JP7163645B2 (en) Carbon nanotube electrode, electricity storage device using the same, and method for producing carbon nanotube composite
US11578404B2 (en) Synthesis of carbon-based nanostructures using eutectic compositions
KR101383821B1 (en) Direct synthesis method of carbon nanotube using intermetallic nano-catalysts formed on surface of various metal substrates and the structure thereof
TWI353679B (en)

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171228

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181211

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191210

Year of fee payment: 7