KR101298052B1 - Set-up for production of hydrogen gas by thermo-chemical decomposition of water using steel plant slag and waste materials - Google Patents

Set-up for production of hydrogen gas by thermo-chemical decomposition of water using steel plant slag and waste materials Download PDF

Info

Publication number
KR101298052B1
KR101298052B1 KR1020087003880A KR20087003880A KR101298052B1 KR 101298052 B1 KR101298052 B1 KR 101298052B1 KR 1020087003880 A KR1020087003880 A KR 1020087003880A KR 20087003880 A KR20087003880 A KR 20087003880A KR 101298052 B1 KR101298052 B1 KR 101298052B1
Authority
KR
South Korea
Prior art keywords
water
slag
hydrogen
gas
thermo
Prior art date
Application number
KR1020087003880A
Other languages
Korean (ko)
Other versions
KR20080110979A (en
Inventor
데바쉬스 바트타차르제
티. 무카르제
비라스 타트하바드카르
Original Assignee
타타 스틸 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 타타 스틸 리미티드 filed Critical 타타 스틸 리미티드
Publication of KR20080110979A publication Critical patent/KR20080110979A/en
Application granted granted Critical
Publication of KR101298052B1 publication Critical patent/KR101298052B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/061Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of metal oxides with water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/14Handling of heat and steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/04Cyclic processes, e.g. alternate blast and run
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/57Gasification using molten salts or metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1615Stripping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Processing Of Solid Wastes (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

본 발명은 제철 슬래그(steel plant slag) 및 폐기물을 이용한 물의 열-화학적 분해에 의한 수소가스 생산장치에 관한 것으로서, 물의 열-화학적 분해에 의해 수소를 생성하기 위해 슬래그와 탄소질 플럭스에 물을 첨가하는 과정을 포함하는 물로부터 수소가스를 생산하는 신규한 방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing hydrogen gas by thermo-chemical decomposition of water using steel plant slag and waste, wherein water is added to slag and carbonaceous flux to generate hydrogen by thermo-chemical decomposition of water. It relates to a novel method for producing hydrogen gas from water, including the process of.

슬래그, 물 분해, 수소, 재생, 플럭스 Slag, water decomposition, hydrogen, regeneration, flux

Description

제철 슬래그 및 폐기물을 이용한 물의 열-화학적 분해에 의한 수소가스 생산장치{SET-UP FOR PRODUCTION OF HYDROGEN GAS BY THERMO-CHEMICAL DECOMPOSITION OF WATER USING STEEL PLANT SLAG AND WASTE MATERIALS}TECHNICAL DECOMPOSITION OF HYDROGEN GAS BY THERMO-CHEMICAL DECOMPOSITION OF WATER USING STEEL PLANT SLAG AND WASTE MATERIALS}

본 발명은 물로부터 수소가스를 생산하는 신규한 방법에 관한 것이다.The present invention relates to a novel process for producing hydrogen gas from water.

수소는 화석연료들의 유력한 대안으로 대두 되고 있다. 최근, 수소는 공급원료(feedstock), 중간 화합물 또는 소량으로는 전문화학약품으로 주로 사용된다. 현재 생산된 수소의 적은 부분만 주로 항공우주산업에 의해 에너지 캐리어(carrier)로 사용된다. 자동차산업은 수소를 기초로 하는 내연기관(ICEs)이나 가솔린으로 주행할 수 있는 연료전지 자동차와 같은 새로운 모델을 개발하고 있다. 그러나, 대부분의 상업적 수소 생산 공정은 예를 들면 자동차나 가정용과 같이 분산된 곳에서 수소제조공장이나 화력발전소와 같은 보다 집중된 곳으로 오염원을 옮기는 것에 불과하기 때문에 재생 가능한 것으로 간주하지 않는다. 미국 수소산업에서만 현재 화학약품제조(chemicals production), 석유정제, 금속처리(metal treating) 및 전기적 용도(electrical applications)로 매년 9백만톤의 수소를 생산한다. Hydrogen is emerging as a viable alternative to fossil fuels. Recently, hydrogen is mainly used as feedstock, intermediate compound or specialized chemical in small amount. Only a small fraction of the hydrogen produced is used as energy carriers, mainly by the aerospace industry. The automotive industry is developing new models such as hydrogen-based internal combustion engines (ICEs) and fuel cell vehicles that can run on gasoline. However, most commercial hydrogen production processes are not considered renewable because they only transfer pollutants from more dispersed locations, such as automobiles or households, to more concentrated sites such as hydrogen plants or thermal power plants. Only the US hydrogen industry currently produces 9 million tonnes of hydrogen annually for chemicals production, petroleum refining, metal treating and electrical applications.

현재, 수소를 연료로 이용하는 기술은 태양에너지, 풍력, 수력에너지, 지열에너지와 같은 재생가능자원으로부터 수소를 효과적으로 생산하는 기술보다 진보된 단계에 있다. 따라서 보다 우수하고, 효율적이며, 저렴하게 재생가능자원으로부터 수소를 생산하는 기술을 개발하고 또한 수소의 생산과 소비기술 사이의 결함을 보완하고 두 기술 사이의 시너지를 달성하는 것이 시급하게 요구된다. 인도정부의 국가 수소에너지 로드 맵은 수소연료를 기초로 한 진보적인 생산기술의 개발 및 적용에 현저한 발전을 도모하고 있다. Currently, the technology of using hydrogen as a fuel is at an advanced stage than the technology of effectively producing hydrogen from renewable resources such as solar energy, wind power, hydro energy and geothermal energy. Therefore, there is an urgent need to develop techniques to produce hydrogen from renewable resources that are better, more efficient and cheaper, and to compensate for the deficiencies between hydrogen production and consumption technologies and to achieve synergy between the two technologies. The Government of India's National Hydrogen Energy Roadmap is making significant strides in the development and application of advanced fuel technologies based on hydrogen fuel.

전기분해 공정이 수소가스를 생산하기 위해 전세계적으로 이용된다. 현재, 전기분해방법은 고순도(high purity)의 수소 생산에 이용된다. 전기분해방법을 이용한 수소의 생산비용은 아주 높기 때문에 반도체 제조와 같은 특별한 경우에만 적용된다. 그러나 전기분해방법은 재생 가능한 원자력 자원으로부터 생성된 전기를 사용하는 보다 광범위한 수소생성을 촉진하고 최소한의 분포와 저장만으로 지역적인 요구를 충족시키는데 도움을 줄 것이다. Electrolysis processes are used worldwide to produce hydrogen gas. Currently, electrolysis methods are used to produce hydrogen of high purity. The cost of producing hydrogen using the electrolysis method is very high and therefore only applies in special cases such as semiconductor manufacturing. However, electrolysis methods will promote wider hydrogen production using electricity generated from renewable nuclear resources and help meet local needs with minimal distribution and storage.

전기분해공정의 주 부산물은 산소이다. 스팀-메탄 개질 공정(steam-methane reforming process) 또한 수소생산에 널리 이용된다. 이러한 촉매반응을 일으키는 공정에서 천연가스 또는 다른 경질 탄화수소(light hydrocarbons)가 스팀과 반응하여 수소와 이산화탄소 혼합물을 생성한다. 고순도의 수소는 그때 혼합물로부터 분리된다. 이 방법은 현재 이용할 수 있는 상업적인 기술 중 에너지 효율이 가장 높으며, 대량생산에 적용시 비용효과가 가장 큰 방법이다. 열적 수소생산의 다른 방법으로 대형 기화장치에서 화석연료를 부분적으로 산화시키는 방법이 있다. 이 방법은 수소혼합물을 생성하기 위한 산소의 공급이 제한되는 연료의 반응을 수반하며, 수소혼합물은 그때 정제된다. 부분산화는 천연가스, 중유, 고형의 바이오매 스(solid biomass) 및 석탄을 포함하는 광범위한 탄화수소 공급 원료들에 적용될 수 있다. 이 방법의 주 부산물은 이산화탄소이다. 최근의 방법은 이산화탄소를 방출하지 않고 수소를 생산할 수 있는 가능성을 보여주지만, 이 방법들은 모두 아직 개발 초기상태이다. 이들 기술 중 일부는 원자핵 및 태양열을 이용한 열-화학적 물 분해(thermo-chemical water-splitting), 광-전기화학(photo-electrochemical)이나 전기분해와 같은 고체기술(solid state techniques)을 이용한 광분해 공정, 탄소 격리(carbon sequestration) 화석연료 수소생산 및 생물학적 기법(조류 및 박테리아)이다. The main by-product of the electrolysis process is oxygen. The steam-methane reforming process is also widely used for hydrogen production. In this catalytic reaction, natural gas or other light hydrocarbons react with steam to produce a mixture of hydrogen and carbon dioxide. High purity hydrogen is then separated from the mixture. This method is the most energy-efficient of the currently available commercial technologies, and is the most cost-effective for mass production. Another method of thermal hydrogen production is the partial oxidation of fossil fuels in large vaporizers. This method involves the reaction of a fuel in which the supply of oxygen to produce a hydrogen mixture is limited, and the hydrogen mixture is then purified. Partial oxidation can be applied to a wide range of hydrocarbon feedstocks, including natural gas, heavy oil, solid biomass and coal. The main byproduct of this method is carbon dioxide. Recent methods show the possibility of producing hydrogen without releasing carbon dioxide, but these methods are still in early development. Some of these techniques include thermo-chemical water-splitting using nuclear nuclei and solar heat, photolysis processes using solid state techniques such as photo-electrochemical or electrolysis, Carbon sequestration Fossil fuel hydrogen production and biological techniques (algae and bacteria).

본 발명의 목적은 물로부터 수소가스를 생산하는 신규한 방법을 제공하는 것이다.It is an object of the present invention to provide a novel method of producing hydrogen gas from water.

본 발명의 다른 목적은 탄소질의 폐기물 및 촉매 플럭스의 존재하에 물로부터 수소가스를 생산하는 신규한 방법을 제공하는 것이다. Another object of the present invention is to provide a novel process for producing hydrogen gas from water in the presence of carbonaceous waste and catalyst flux.

본 발명의 또 다른 목적은 물로부터 수소가스를 생산하는 신규한 방법을 제공하는 것이며, 여기서 물의 열-화학적 분해에 용융 슬래그가 사용된다. Another object of the present invention is to provide a novel process for producing hydrogen gas from water, wherein molten slag is used for thermo-chemical decomposition of water.

본 발명의 또 다른 목적은 제조공정이 간단하고 비용효과가 높은, 물로부터 수소가스를 생산하는 신규한 방법을 제공하는 것이다.It is a further object of the present invention to provide a novel process for producing hydrogen gas from water, in which the manufacturing process is simple and cost effective.

본 발명에 따르면 물의 열-화학적 분해에 의해 수소를 생성하기 위해 슬래그및 탄소질 플럭스에 물을 첨가하는 과정을 포함하는 물로부터 수소가스를 생산하는 신규한 방법이 제공된다. According to the present invention there is provided a novel process for producing hydrogen gas from water which comprises adding water to slag and carbonaceous flux to produce hydrogen by thermo-chemical decomposition of water.

도 1a는 1873K 온도에서 물-슬래그의 상평형 계산 결과에 근거한 FeO 및 Fe2O3가 농축된 슬래그 내의 물 첨가 효과 및 H2 가스 생성을 나타낸다. FIG. 1A shows the effect of water addition and H 2 in FeO and Fe 2 O 3 enriched slag based on the results of phase equilibrium calculation of water-slag at 1873K temperature. Indicates gas production.

도 1b는 1873K 온도에서 물-슬래그의 상평형 계산 결과에 근거한 물-슬래그 시스템의 엔탈피를 나타낸다. 1B shows the enthalpy of a water-slag system based on the results of the phase equilibrium calculation of water-slag at 1873 K temperature.

도 2는 1873K 온도에서 FACT-sage 프로그램을 이용하여 FeO 및 Fe2O3가 농축된 슬래그 내의 물 첨가 효과 및 H2, CO 및 CO2 가스 생성을 나타낸다. FIG. 2 shows the effect of water addition and H 2 , CO and CO 2 gas production in slag enriched FeO and Fe 2 O 3 using the FACT-sage program at 1873K temperature.

도 3은 수소생산용 실험장치를 나타낸다.3 shows an experimental apparatus for producing hydrogen.

도 4는 플랜트 레벨 슬래그 피트(slag pit)에서 수소를 생산하는 장치의 라인 다이어그램(line diagram) 및 개략도이다. 4 is a line diagram and schematic diagram of a device for producing hydrogen in a plant level slag pit.

이하, 첨부 도면을 참조하여 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

탄소질의 폐기물과 촉매 플럭스의 존재하에 물과 슬래그의 반응에 의해 수소를 생산하는 신규한 방법이 개발된다. A new method of producing hydrogen by reaction of water and slag in the presence of carbonaceous waste and catalyst flux is developed.

수소가스가 생성되는 전체적인 반응식은 다음과 같다.The overall reaction formula for generating hydrogen gas is as follows.

<A> H 2 O + xC +2 yFeO

Figure 112008012064443-pct00001
<x+y+z> H 2 +<x-z>CO+ zCO 2 + yFe 2 O 3 +<A-x-y-z> H 2 O <A> H 2 O + xC +2 yFeO
Figure 112008012064443-pct00001
<x + y + z> H 2 + <xz> CO + zCO 2 + yFe 2 O 3 + <Axyz> H 2 O

여기서 A는 장치(system)에 첨가되는 물의 양이며, x는 플럭스 내의 이용 가능한 탄소(C)의 양이며, y는 슬래그 내의 FeO의 양이며, z는 CO와 물의 반응에 의해 생성되는 CO2의 양이다. 본 발명에서 슬래그는 흡열분해반응에 필요한 현열(sensible heat) 뿐만 아니라 수소와 산소가스 사이의 역반응을 방지하기 위한 열을 제공한다. 철(Fe)과 슬래그 내의 저가 철산화물(lower oxides of Fe)은 가스 혼합물(product gas mix) 내의 산소가스와 반응하여 Fe2O3를 형성하며 이에 의해 산소의 열역학반응을 감소시킨다. 탈산소제로 작용할 수 있는 다른 종류의 폐기물이 수소가스 생산을 증가시키는 플럭스로 사용될 수 있다. Where A is the amount of water added to the system, x is the amount of available carbon (C) in the flux, y is the amount of FeO in the slag, and z is the amount of CO 2 produced by the reaction of CO with water. Amount. In the present invention, the slag provides heat to prevent the reverse reaction between hydrogen and oxygen gas as well as sensible heat required for the endothermic decomposition reaction. Lower oxides of Fe in Fe and slag react with oxygen gas in the product gas mix to form Fe 2 O 3 , thereby reducing the thermodynamic reaction of oxygen. Other types of waste that can act as deoxidants can be used as fluxes to increase hydrogen gas production.

슬래그의Of slag 존재하에 정제된 물의 열분해 Pyrolysis of Purified Water in Presence

용융 슬래그의 현열(sensible heat)은 물의 열-화학적 분해에 이용될 수 있다. 상기 공정에서 슬래그는 열원으로 작용하며 슬래그 내에 함유된 일부 탈산소제(Fe, FeO)는 반응(2)를 통해 발생기산소와 반응함으로써 분해반응(1)에 참가한다.Sensitive heat of molten slag can be used for thermo-chemical decomposition of water. In the above process, the slag serves as a heat source and some deoxygenating agents (Fe, FeO) contained in the slag participate in the decomposition reaction (1) by reacting with the generator oxygen through reaction (2).

H 2 O

Figure 112008012064443-pct00002
H 2 + ½ O 2 ΔH1873K = 362 kJ/mole of water ...(1) H 2 O
Figure 112008012064443-pct00002
H 2 + ½ O 2 ΔH 1873 K = 362 kJ / mole of water ... (1)

2FeO + ½O2

Figure 112013003010394-pct00003
½Fe2O3 ΔH1873K = -175 kJ/mole of FeO ...(2) 2FeO + ½O 2
Figure 112013003010394-pct00003
½ Fe 2 O 3 ΔH 1873 K = -175 kJ / mole of FeO ... (2)

발열 산화반응은 반응(1)에 필요한 추가적인 에너지를 공급하고, 또한 장치의 산소분압을 감소시키며 이에 의해 수소가스 생성율을 증가시킨다. 1600C의 온도에서 100g의 LD슬래그와 물의 반응을 위한 상평형 데이터(phase equilibria data)를 산출하였다. 수소가스 생성에 대한 슬래그 대 물의 비율의 영향을 알아보고자 물의 양을 0에서 100ml로 변화시켰다. 산출 결과는 도 1a 및 도 1b에 도시된 바와 같다. 도 1a는 수소가스 생성에 첨가되는 물의 효과 및 슬래그 내의 FeO 및 Fe2O3의 농도변화를 나타낸다. 도 1b는 서로 다른 물의 첨가에 따른 장치의 엔탈피(enthalpy)를 나타낸 것으로, 슬래그 100g의 엔탈피는 물 11.3㎖ 정도까지의 반응을 지지하며 물을 추가할 경우 에너지도 추가도 공급해야 함을 나타낸다. 따라서 이론적으로 1873K 온도에서 슬래그 1㎏과 물 113㎖가 반응할 경우 에너지를 공급하지 않고도 0.8 몰 예를 들면, 19.2리터의 수소가스를 생성할 수 있다. The exothermic oxidation reaction supplies the additional energy required for reaction (1), and also reduces the oxygen partial pressure of the device, thereby increasing the hydrogen gas production rate. Phase equilibria data for the reaction of 100 g of LD slag and water at 1600 C were calculated. The amount of water was varied from 0 to 100 ml to determine the effect of slag to water ratio on hydrogen gas production. The calculation result is as shown in FIGS. 1A and 1B. Figure 1a shows the effect of water added to hydrogen gas production and the concentration changes of FeO and Fe 2 O 3 in the slag. Figure 1b shows the enthalpy of the device according to the addition of different water, the enthalpy of 100g of slag supports the reaction up to about 11.3ml of water and indicates that additional energy should be supplied when water is added. Theoretically, when 1 kg of slag and 113 ml of water react at 1873 K, it is possible to produce 0.8 moles, for example 19.2 liters of hydrogen gas, without supplying energy.

슬래그Slag 및 탄소질  And carbonaceous 플럭스의Flux 존재하에 정제된 물의 열분해 Pyrolysis of Purified Water in Presence

탄소질이나 석탄가루(coal fines), 코크스 가루(coke breeze) 등과 같은 다른 산업 폐기물이 물의 열-화학적 분해에 의한 수소생성을 촉진하는 촉매로 사용될 수 있다. Other industrial wastes such as carbonaceous, coal fines, coke breeze and the like can be used as catalysts to promote hydrogen production by thermo-chemical decomposition of water.

물과 탄소의 반응은 다음과 같다. The reaction of water and carbon is

H 2 O + C

Figure 112008012064443-pct00004
H 2 + CO ΔH1873K = 133 kJ/mole of H2O ...(3) H 2 O + C
Figure 112008012064443-pct00004
H 2 + CO ΔH 1873 K = 133 kJ / mole of H 2 O ... (3)

H 2 O + CO

Figure 112008012064443-pct00005
H 2 + CO 2 ΔH1873K = -27 kJ/mole of H2O ...(4) H 2 O + CO
Figure 112008012064443-pct00005
H 2 + CO 2 ΔH 1873 K = -27 kJ / mole of H 2 O ... (4)

도 2는 1873K 온도에서 100g의 슬래그와 <A>㎖의 물 및 10g의 탄소의 상평형 데이터(phase equilibria data) 산출결과를 나타낸 것이다. 도 2의 산출결과에 의하면 탄소반응에 필요한 화학량적인(stoichiometric) 요구를 초과하여 물을 첨가할 경우 수소가스의 발생을 촉진함을 알 수 있다. 초과된 물은 장치 내에서 높은 온도의 분위기 하에서 CO 가스와 반응하여 CO2 가스를 생성한다. 만일 <A>=5.55 몰(100㎖)이고, x=0.20 몰이면 1873K의 온도에서 1.2 몰의 H2, 0.46 몰의 CO 및 0.37 몰 의 CO2를 생성하는데 필요한 에너지는 740kJ이다. 1900K의 온도에서 슬래그 1kg의 엔탈피는 -2120kJ이다. 이론적으로, 1600C의 온도에서 물 100ml와 탄소 10g이 반응하여 1.20 몰 예를 들면, 26.9리터의 수소가스를 생성하며 슬래그 350g의 현열을 사용한다(H2O:C = 10:1). 따라서 이론적으로, 슬래그 1kg의 반응에 의해 ~70리터의 가스를 생성할 수 있다. 낮은 효율의 조성반응, 열전도 과정 및 다른 동역학적 제한(kinetic limitations)을 고려하면, 실제로는 슬래그 1kg 당 수소가스 ~10리터를 생성할 수 있다. FIG. 2 shows the calculation results of phase equilibria data of 100 g of slag, <A> ml of water, and 10 g of carbon at 1873 K. 2 shows that the addition of water in excess of stoichiometric requirements for the carbon reaction promotes the generation of hydrogen gas. The excess water reacts with the CO gas under high temperature atmosphere in the device to produce CO 2 gas. Ten thousand and one is <A> = 5.55 mol (100㎖) and, x = 0.20 mol is 1.2 mol H2 at a temperature of 1873K, the energy required for producing the CO 2 of 0.46 moles of CO and 0.37 mole of 740kJ. At a temperature of 1900 K, the enthalpy of 1 kg of slag is -2120 kJ. Theoretically, 100 ml of water and 10 g of carbon react at a temperature of 1600 C to produce 1.20 moles, for example 26.9 liters of hydrogen gas, using 350 g of sensible heat of slag (H2O: C = 10: 1). Theoretically, therefore, a reaction of 1 kg of slag can produce ˜70 liters of gas. Considering low efficiency compositional reactions, thermal conduction processes and other kinetic limitations, it can actually produce ~ 10 liters of hydrogen gas per kilogram of slag.

실험장치는 제철산업 슬래그를 열원으로 사용하여 수소가스를 생성하도록 설계(design) 및 제조되었다. 상기 장치는 슬래그로부터 폐기되는 열을 이용하여 35% 이상의 수소를 함유하는 생산가스를 효과적으로 수집할 수 있도록 설계되었다.The experimental apparatus was designed and manufactured to produce hydrogen gas using steel industry slag as a heat source. The device is designed to efficiently collect production gases containing at least 35% hydrogen using heat that is disposed of from slag.

도 3은 용융슬래그와 물의 반응에 대해 조사하기 위해 설계된 실험 장치이다. 도 3에 도시된 장비를 이용한 통상의 실험과정은 다음과 같다. 3 is an experimental device designed to investigate the reaction of molten slag and water. A typical experimental procedure using the equipment shown in FIG. 3 is as follows.

실험을 시작하기 전에, 먼저 진공펌프(13)를 이용하여 콘덴서(6) 및 가스수집탱크(11)의 잔류 공기를 제거하고 탱크 내의 가스 유속이 부압(negative pressure)이 되도록 한다. 실험 전에 밸브(6,12)를 잠궈 장치를 주변으로부터 분리시킨다. LD 제철공정 중의 과립형태의 슬래그를 유도로(induction furnace) 내에서 용융하고, 1650~1700C의 온도로 비등점 이상으로 가열한다. 예열된 흑연도가니(1)에 용융 슬래그를 부은 다음 반응후드(2)를 상기 흑연도가니(1) 위에 유지시킨다. 송수관(water line)(3)을 통해 용융 슬래그 표면에 적정량의 물을 분무한다. 물, 슬래그 내의 탈산소제 및 도가니의 탄소의 반응에 의해 생산물 가스(product gas)가 형성된다. 강철 튜브(4)를 통해 반응 생산물 가스를 후드(2)에서 탱크로 수집한다. 실험이 진행되는 동안 화학적 분석을 위해 시료 포트(5)에서 생산물 가스 시료(samples)를 수집한다. 가스밸브(6)를 개방하여 생산물 가스를 콘덴서 탱크(7)로 이송한다. 콘덴서 탱크(7)는 외부 탱크(8)에 저장된 물에 의해 냉각된다. 생산물 가스의 스팀을 제거한 다음 가스 유량 제어 밸브(9,10)를 개방하여 가스수집탱크(11)에 생산물 가스를 수집한다. 가스 시료 수집 밸브(9) 및 (12)에 각각 연결하여 콘덴서 탱크 및 가스 수집탱크로부터 가스 시료를 수집한다. 콘덴서 탱크(7) 바닥에 연결된 밸브(14)를 개방하여 콘덴서 탱크(7)에 저장된 물을 제거한다. Before starting the experiment, the vacuum pump 13 is used to first remove the residual air from the condenser 6 and the gas collection tank 11 and to allow the gas flow rate in the tank to be negative pressure. Lock the valves 6 and 12 before the experiment to isolate the device from the surroundings. The granular slag in the LD steelmaking process is melted in an induction furnace and heated to a boiling point above the temperature of 1650-1700C. The molten slag is poured into the preheated graphite crucible 1 and then the reaction hood 2 is held on the graphite crucible 1. A suitable amount of water is sprayed onto the surface of the molten slag through a water line 3. The product gas is formed by the reaction of water, deoxidizer in the slag and carbon in the crucible. The reaction product gas is collected from the hood 2 into the tank via a steel tube 4. During the experiment the product gas samples are collected at the sample port 5 for chemical analysis. The gas valve 6 is opened to transfer the product gas to the condenser tank 7. The condenser tank 7 is cooled by water stored in the outer tank 8. After the steam of the product gas is removed, the gas flow control valves 9 and 10 are opened to collect the product gas in the gas collection tank 11. The gas samples are collected from the condenser tank and the gas collection tank by connecting to the gas sample collection valves 9 and 12, respectively. The valve 14 connected to the bottom of the condenser tank 7 is opened to remove water stored in the condenser tank 7.

시료 포트(5), 콘덴서 탱크(7) 및 수집 탱크(11)에서 수집한 가스 시료의 분석결과는 다음과 같다.The analysis result of the gas sample collected by the sample port 5, the condenser tank 7, and the collection tank 11 is as follows.

(Vol % 농도)                                                           (Vol% concentration)

시료/구성성분Sample / Component H2 H 2 COCO CO2 CO 2 O2 O 2 CH4 CH 4 CmHn C m H n N2 N 2 포트[5]Port [5] 22.822.8 11.211.2 7.07.0 3.03.0 6.26.2 0.60.6 33.433.4 콘덴서 탱크[7]Condenser Tank [7] 23.023.0 1.61.6 1.21.2 1.21.2 2.02.0 1.01.0 70.070.0 수집 탱크[11]Collection Tank [11] 20.020.0 1.81.8 NilNil 2.02.0 4.04.0 1.21.2 71.171.1

플랜트 테스트용 장비:Equipment for plant testing:

도 4는 LD#2 제철공장에서 슬래그 피트(slag pit)에서 실험을 수행하기 위해 설계 및 제조된 장치이다. 통상의 공정은 다음과 같다. Figure 4 is a device designed and manufactured to perform the experiment in the slag pit (slag pit) in the LD # 2 steel mill. Typical processes are as follows.

실험은 제철장비 LD#2의 슬래그 피트에서 수행되었다. LD#2 제철포트(pot)의 슬래그 덤핑(dumping) 공정을 간단히 설명하면 다음과 같다. 플랜트에서 전로용기의 슬래그를 ~25톤정도 슬래그 포트(pot)에 수집한다. 그런 다음 슬래그 트롤리(trolley)를 이용하여 슬래그 포트를 슬래그 덤핑 영역으로 이동시킨다. 슬래그 피트 영역에 슬래그 포트 트롤리가 도착한 다음 오버헤드 크래인을 이용하여 트롤리로부터 포트를 제거한 다음, 슬래그 피트에 슬래그를 붓는다. 슬래그 피트를 가득 채우는데 2일 정도 소요된다. 슬래그 피트에 슬래그가 가득 차면 슬래그를 냉각한 다음 측면 및 상부에 물을 분무하여 열을 식힌다. 용탕에서 슬래그를 냉각하는데 하루정도 소요된다. 슬래그를 냉각하는 동안 많은 양의 스팀이 공기 중으로 방출된다. 냉각 후 덤퍼(dumper)를 이용하여 슬래그를 피트에서 제거한 다음 슬래그 공정영역(slag processing area)로 수송한다. 실험은 거의 가득찬 피트에서 수행되었다. Experiments were carried out on the slag pits of the steelmaking equipment LD # 2. A slag dumping process of the LD # 2 steelmaking pot is briefly described as follows. In the plant, slag of converter vessel is collected in the slag pot of ~ 25 tons. A slag trolley is then used to move the slag port to the slag dumping area. The slag port trolley arrives in the slag pit area and then the port is removed from the trolley using an overhead crane and then slag is poured into the slag pit. It takes about two days to fill the slag pit. When the slag pit is full of slag, the slag is cooled and then cooled by spraying water on the sides and top. It takes about a day to cool the slag in the melt. While cooling the slag a large amount of steam is released into the air. After cooling, the slag is removed from the pit using a dumper and then transported to the slag processing area. Experiments were performed on nearly full feet.

실험을 시작하기 전에, 가스수집탱크(11) 및 콘덴서 탱크(7)를 포함하는 모든 장비를 진공펌프(13)를 이용하여 배기한다. 탱크 내의 압력은 콘덴서 탱크(7)에 부착된 합성계기(compound gauge)(15)를 이용하여 모니터링 한다. 합성계기가 -500mm가 되면 밸브(6,12,17 및 18)을 잠궈 장비 예를 들면 탱크를 분리한다. 크레인를 이용하여 슬래그를 피트에 부은 후 트랙터를 이용하여 트롤리(24) 위에 탑재된 도 3에 도시한 바와 같은 실험장비를 슬래그 피트 근처로 이동시킨다. 트롤리가 표시된 영역에 도달하면, 우선 폴리에틸렌컨테이너 백(polythene container bags)을 이용하여 탄소질 물질을 함유하고 있는 플럭스를 용융 슬래그의 표면에 분무한 다음 체인-풀리 블록 시스템(chain-pulley block system)(23)을 이용하여 반응후드(2)를 뜨거운 슬래그 표면에 올려놓는다. 주위 환경과 확실히 분리되도록 고온 세라믹 섬유 털실(25)을 반응후드(2) 가장자리에 고정시킨다. 후드(2)를 슬래그 표면에 놓은 후 입수(water inlet) 밸브(20)를 개방하며 입수관에 연결된 지시계(21)를 통해 유수량(water flow)을 모니터 한다. 그런 다음 노즐(26)를 이용하여 용융 슬래그의 표면에 물을 균일하게 분무한다. 생산물 가스는 전술한 바와 같은 물-슬래그-플럭스 사이의 반응에 의해 형성된다. 입수 밸브(20)을 개방한 직후에 가스 송풍기(22)를 온(ON)하며, 밸브(19)를 개방하여 가스 파이프라인으로부터 공기와 스팀을 제거한다. 스팀을 함유한 생성가스가 송풍기(22)의 배출 파이브로부터 나오기 시작하면 밸브(19)를 잠그고 밸브(6)을 천천히 개방한다. 생산물 가스 시료는 가스 시료 수집기에 연결된 개방밸브(5)를 이용하여 수집한다. 탱크내의 가스 압력이 +800mm(합성계기(15))이 되면 가스밸브(6)은 잠그고, 가스밸브(19)를 개방한다. 그런 다음 반응후드(2)를 위로 이동시키고 밸브(17 및 18)에 연결된 시료 포트를 이용하여 콘덴서(7) 및 수집탱크(11)로부터 시료를 수집하였다. 시료 수집 후 전술한 바와 같이 다음 실험 전에 장비를 배기시킨다. 30% 초과의 수소 및 10% 미만의 일산화탄소와 같은 가연성 폭발 가스를 함유하는 생산물 가스로 인한 폭발로부터 장치를 보호하기 위해 수집 탱크 및 콘덴서 탱크에는 격판(explosive diaphragms)이 마련되어 있다. Before starting the experiment, all the equipment including the gas collecting tank 11 and the condenser tank 7 is evacuated using the vacuum pump 13. The pressure in the tank is monitored using a compound gauge 15 attached to the condenser tank 7. When the synthesizer reaches -500 mm, shut off the valves (6, 12, 17 and 18) to isolate the equipment, eg the tank. After the slag is poured into the pit using a crane, the experimental equipment as shown in FIG. 3 mounted on the trolley 24 using the tractor is moved near the slag pit. When the trolley reaches the marked area, first, the flux containing the carbonaceous material is sprayed onto the surface of the molten slag using a polythene container bags, followed by a chain-pulley block system ( 23) is placed on the hot slag surface. The high temperature ceramic fiber yarn 25 is secured to the edge of the reaction hood 2 to ensure separation from the surrounding environment. After the hood 2 is placed on the slag surface, the water inlet valve 20 is opened and the water flow is monitored through the indicator 21 connected to the inlet pipe. The nozzle 26 is then used to evenly spray water onto the surface of the molten slag. The product gas is formed by the reaction between water-slag-flux as described above. Immediately after opening the intake valve 20, the gas blower 22 is turned on, and the valve 19 is opened to remove air and steam from the gas pipeline. When the product gas containing steam starts to come out of the exhaust pipe of the blower 22, the valve 19 is closed and the valve 6 is slowly opened. The product gas sample is collected using an open valve 5 connected to the gas sample collector. When the gas pressure in the tank reaches +800 mm (synthesis meter 15), the gas valve 6 is closed and the gas valve 19 is opened. The reaction hood 2 was then moved up and samples were collected from the condenser 7 and collection tank 11 using sample ports connected to valves 17 and 18. After sample collection, the equipment is evacuated before the next experiment as described above. Collection tanks and condenser tanks are equipped with explosive diaphragms to protect the device from explosions caused by product gases containing more than 30% hydrogen and less than 10% carbon monoxide.

시료 포트(5)로부터 수집된 가스 시료 분석결과는 다음과 같다. The gas sample analysis result collected from the sample port 5 is as follows.

시료/구성성분Sample / Component H2 H 2 COCO CO2 CO 2 O2 O 2 CH4 CH 4 CmHn C m H n N2 N 2 Expt/Slag5/04/01Expt / Slag5 / 04/01 40.640.6 4.84.8 1.01.0 9.69.6 --- --- BalBal Expt/Slag6/30/01Expt / Slag6 / 30/01 36.636.6 7.47.4 3.03.0 3.43.4 --- --- BalBal

Claims (7)

용융 슬래그에 H2O:C 비율이 중량비 10:1이 되도록 물과 탄소질 플럭스(flux)를 첨가하는 과정을 포함하는, 물의 열-화학적 분해에 의해 물로부터 총 생산물 가스 중 30vol% 초과의 수소 및 10vol% 미만의 일산화탄소를 생성하기 위한 방법.More than 30 vol% hydrogen in total product gas from water by thermo-chemical decomposition of water, comprising adding water and carbonaceous flux so that the H 2 O: C ratio is 10: 1 by weight to the molten slag. And a method for producing less than 10 vol% carbon monoxide. 제 1 항에 있어서, 상기 슬래그는 열원으로 작용하며, 용융 슬래그 내의 환원성분 FeO가 물 분해반응에서 생성된 발생기산소와 반응하는 것을 특징으로 하는 방법. The method according to claim 1, wherein the slag serves as a heat source, and the reducing component FeO in the molten slag reacts with the generator oxygen generated in the water decomposition reaction. 제 2 항에 있어서, 용융 슬래그 내의 FeO와 발생기산소의 발열 산화반응은 물 분해의 흡열반응에 필요한 추가적인 에너지를 제공하고 시스템의 산소분압을 감소시켜 수소가스 생성률을 향상시키는 것을 특징으로 하는 방법.3. The method of claim 2, wherein the exothermic oxidation of FeO and generator oxygen in the molten slag provides additional energy for the endothermic reaction of water decomposition and reduces the partial pressure of oxygen in the system to improve hydrogen gas production rates. 삭제delete 삭제delete 삭제delete 삭제delete
KR1020087003880A 2006-04-28 2006-06-13 Set-up for production of hydrogen gas by thermo-chemical decomposition of water using steel plant slag and waste materials KR101298052B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN387KO2006 2006-04-28
IN387/KOL/06 2006-04-28
PCT/IN2006/000198 WO2007125537A1 (en) 2006-04-28 2006-06-13 Set - up for production of hydrogen gas by thermo- chemical decomposition of water using steel plant slag and waste materials

Publications (2)

Publication Number Publication Date
KR20080110979A KR20080110979A (en) 2008-12-22
KR101298052B1 true KR101298052B1 (en) 2013-08-20

Family

ID=38655111

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087003880A KR101298052B1 (en) 2006-04-28 2006-06-13 Set-up for production of hydrogen gas by thermo-chemical decomposition of water using steel plant slag and waste materials

Country Status (10)

Country Link
US (3) US20100111826A1 (en)
EP (1) EP2013139A4 (en)
JP (1) JP5017362B2 (en)
KR (1) KR101298052B1 (en)
CN (1) CN101203455A (en)
BR (1) BRPI0612895B1 (en)
CA (1) CA2622171C (en)
MX (1) MX2007016201A (en)
RU (1) RU2415071C2 (en)
WO (1) WO2007125537A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2404114C2 (en) 2005-09-30 2010-11-20 Тата Стил Лимитед Method of producing hydrogen and/or other gases from steel work wastes and waste heat
JP5017362B2 (en) * 2006-04-28 2012-09-05 ターター スチール リミテッド Method for producing hydrogen gas by thermo-chemical decomposition of water using steelworks slag and waste materials
IT1400139B1 (en) * 2010-05-20 2013-05-17 Asiu S P A A PROCEDURE FOR THE PRODUCTION OF HYDROGEN, FOR THE SEQUESTING OF CARBON DIOXIDE AND FOR THE PRODUCTION OF CONSTRUCTION MATERIALS STARTING FROM SCORES AND / OR INDUSTRIAL ASHES.
US10899610B2 (en) 2013-03-29 2021-01-26 Centre National De La Recherche Scientifique Method for producing high-purity hydrogen gas and/or nanomagnetite
EP2978710B1 (en) * 2013-03-29 2019-10-02 Centre National de la Recherche Scientifique (C.N.R.S.) Method for producing high-purity hydrogen gas
CN103894199B (en) * 2014-04-04 2015-09-30 哈尔滨工程大学 As porous ferric oxide nanometer sheet and the preparation method of the graphene modified of photocatalytic water oxygen
CN105056857A (en) * 2015-08-21 2015-11-18 黄文鹏 Production line for raw materials for screw synthesis extrusion
CN108467012A (en) * 2018-05-07 2018-08-31 浙江高成绿能科技有限公司 It is a kind of can Fast Persistence production hydrogen chemical hydrogen generating system
CN111943136A (en) * 2020-07-29 2020-11-17 浙江工业大学 Method for producing hydrogen by directly utilizing household garbage incineration slag
CN113023672B (en) * 2021-04-28 2022-11-25 北京中电企发能源科技有限公司 System and method for producing hydrogen by using waste heat of steel-making converter casting residue

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4389246A (en) * 1980-12-02 1983-06-21 Sumitomo Metal Industries Gasification process of solid carbonaceous material
US5066476A (en) 1989-08-02 1991-11-19 Krupp Koppers Gmbh Method of producing hydrogen-rich gas

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191023418A (en) 1910-10-10 1911-05-18 Wilhelm Gerhartz Improvements in and relating to the Method of Gaining Hydrogen by the Decomposition of Water Steam with the Aid of Melted Iron.
US2953445A (en) * 1955-08-11 1960-09-20 Rummel Roman Gasification of fuels and decomposition of gases
US2908737A (en) * 1957-02-08 1959-10-13 Dominicis Giovanni De Smoke suction installation for electric metal melting furnaces
US3083957A (en) * 1958-08-06 1963-04-02 Voest Ag Tilting crucible with smoke seal means
US3205810A (en) * 1962-09-04 1965-09-14 Inland Steel Co Adjustable hood construction for metallurgical furnace
US3421869A (en) * 1964-06-01 1969-01-14 Con Gas Service Corp Method for the production of a mixture of hydrogen and steam
US3460934A (en) * 1966-12-19 1969-08-12 John J Kelmar Blast furnace method
US3531270A (en) * 1967-04-10 1970-09-29 Intern Steel Slag Corp Molten steel slag handling method and apparatus
US3615298A (en) * 1969-04-14 1971-10-26 Consolidation Coal Co Gasification of carbonaceous material
US3709997A (en) * 1970-12-20 1973-01-09 J Alferov Convertible electrode electric furnace installation and method
US3761243A (en) * 1971-05-21 1973-09-25 Steel Corp Method of quenching slag
US3787193A (en) * 1971-11-18 1974-01-22 Fmc Corp Production of water gas
DE2556732A1 (en) 1975-12-17 1977-06-30 Wilhelm Wissing Coke and hydrocarbon prodn. - combined with power generation in molten metal bath gasifier and hydrogen producer
FR2366217A1 (en) * 1975-08-27 1978-04-28 Comp Generale Electricite HYDROGEN GENERATOR DEVICE
US3979551A (en) * 1975-09-24 1976-09-07 Hawley Manufacturing Corporation Arc furnace fumes control system
JPS5241606A (en) 1975-09-30 1977-03-31 Nippon Steel Corp Method for gasification of coal by using molten slug and molten iron
JPS549189A (en) * 1975-10-27 1979-01-23 Agency Of Ind Science & Technol Method of thermochemical producing hydrogen and oxygne from water
JPS5821955B2 (en) * 1977-11-21 1983-05-04 三菱重工業株式会社 Coal gasification equipment using molten slag heat
US4222768A (en) * 1978-03-14 1980-09-16 Asahi Giken Kogyo Kabushiki Kaisha Method for producing electric steel
JPS5826392B2 (en) 1979-03-09 1983-06-02 新日本製鐵株式会社 Molten blast furnace slag sensible heat utilization method
JPS5688494A (en) * 1979-12-20 1981-07-17 Nippon Steel Corp Process and apparatus for recovering sensible heat of slag
DE3032043A1 (en) 1980-08-26 1982-03-04 Klöckner-Werke AG, 4100 Duisburg METHOD FOR DESULFURATION IN GAS PRODUCTION IN THE IRON BATH REACTOR
GB2144988A (en) * 1983-08-20 1985-03-20 Metal Box Plc Thermal treatment apparatus
JPS6183653A (en) * 1984-10-01 1986-04-28 日本鋼管株式会社 Manufacture of water-granulated slag
US4696680A (en) * 1985-10-03 1987-09-29 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption
JPS63103016U (en) 1986-12-24 1988-07-04
US5004495A (en) * 1990-02-05 1991-04-02 Labate M D Method for producing ultra clean steel
US5984985A (en) 1990-06-21 1999-11-16 Marathon Ashland Petroleum Llc Multiple vessel molten metal gasifier
US5211744A (en) * 1991-10-02 1993-05-18 Premelt Systems, Inc. Method and means for improving molten metal furnace charging efficiency
DE19522320C1 (en) * 1995-06-20 1996-08-22 Joseph E Doumet Cooling and solidifying red hot molten blast furnace slag in metallurgy
EP0946680A4 (en) * 1996-11-25 2003-01-22 Ashland Inc Two-zone molten metal hydrogen-rich and carbon monoxide-rich gas generation process
AT406262B (en) * 1998-06-29 2000-03-27 Holderbank Financ Glarus METHOD AND DEVICE FOR GRANULATING AND CRUSHING LIQUID SLAG
FR2801895B1 (en) * 1999-12-03 2002-03-01 Agriculture Azote Et Carbone O PROCESS AND PLANT FOR GASIFICATION OF CARBON COMPOUNDS
ES2640910T3 (en) * 2000-10-27 2017-11-07 Air Products And Chemicals, Inc. Systems and processes to provide hydrogen to fuel cells
US6663681B2 (en) 2001-03-06 2003-12-16 Alchemix Corporation Method for the production of hydrogen and applications thereof
US6685754B2 (en) * 2001-03-06 2004-02-03 Alchemix Corporation Method for the production of hydrogen-containing gaseous mixtures
EP1373131A4 (en) * 2001-03-06 2007-10-03 Alchemix Corp Method for the production of hydrogen and applications thereof
US7011136B2 (en) * 2001-11-12 2006-03-14 Bwxt Y-12, Llc Method and apparatus for melting metals
AT412650B (en) * 2003-09-25 2005-05-25 Voest Alpine Ind Anlagen METHOD AND APPARATUS FOR GRANULATING SLAG
JP2006036804A (en) 2004-07-22 2006-02-09 Nippon Steel Chem Co Ltd Method for producing combustible gas from organic waste
RU2404114C2 (en) * 2005-09-30 2010-11-20 Тата Стил Лимитед Method of producing hydrogen and/or other gases from steel work wastes and waste heat
JP5017362B2 (en) * 2006-04-28 2012-09-05 ターター スチール リミテッド Method for producing hydrogen gas by thermo-chemical decomposition of water using steelworks slag and waste materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4389246A (en) * 1980-12-02 1983-06-21 Sumitomo Metal Industries Gasification process of solid carbonaceous material
US5066476A (en) 1989-08-02 1991-11-19 Krupp Koppers Gmbh Method of producing hydrogen-rich gas

Also Published As

Publication number Publication date
KR20080110979A (en) 2008-12-22
BRPI0612895B1 (en) 2020-12-22
MX2007016201A (en) 2008-03-11
US9346675B2 (en) 2016-05-24
JP5017362B2 (en) 2012-09-05
BRPI0612895A2 (en) 2012-12-04
RU2008101532A (en) 2009-07-20
EP2013139A4 (en) 2009-12-16
US20120171080A1 (en) 2012-07-05
CA2622171C (en) 2014-12-23
US20100111826A1 (en) 2010-05-06
WO2007125537A9 (en) 2010-12-02
CN101203455A (en) 2008-06-18
CA2622171A1 (en) 2007-11-08
US20110027133A1 (en) 2011-02-03
RU2415071C2 (en) 2011-03-27
EP2013139A1 (en) 2009-01-14
JP2009535287A (en) 2009-10-01
WO2007125537A1 (en) 2007-11-08

Similar Documents

Publication Publication Date Title
KR101298052B1 (en) Set-up for production of hydrogen gas by thermo-chemical decomposition of water using steel plant slag and waste materials
US6571747B1 (en) Method and device for producing energy or methanol
JP2015025206A (en) Operation method of blast furnace or iron mill
CN103765986B (en) Plasma arc furnace and application
CA2930342A1 (en) Method for reducing co2 emissions in the operation of a metallurgical plant
US20150005399A1 (en) Method and device for producing synthetic gas and method and device for synthesizing liquid fuel
US20220081295A1 (en) System and method for adjusting pressure in a reservoir and system for producing at least one energy carrier
KR20190133347A (en) System for converting carbon dioxide using recycling the waste and method thereof
Southall et al. Hydrogen storage and transportation technologies to enable the hydrogen economy: liquid organic hydrogen carriers: overview and perspectives on liquid organic hydrogen carriers technology
EP3906356B1 (en) System and method for adjusting pressure in a reservoir
CN210595252U (en) Biomass pyrolysis gas hydrogen production device and control system thereof
CN214654555U (en) System for utilize boiler sulfur-containing flue gas system methane
WO2023279034A1 (en) Methods, processes and systems for the production of hydrogen &amp; carbon from waste, biogenic waste and biomass
CN114162781A (en) Method and system for producing hydrogen from liquid steel slag
CN216638917U (en) Liquid steel slag hydrogen production system
RU2780486C1 (en) Induction pyrolysis reactor of hydrogen and solid carbon from hydrocarbon gases and method for production thereof
Yao et al. Thermodynamics of Hydrogen Production from Steam Reforming of Tar Model Compound with Blast Furnace Slag
CN201442924U (en) Gas-making furnace having gasification with enriched air
CN114275784A (en) By using CO2System and method for preparing CO gas
Zhang et al. Hydrogen Production and Storage
KR20240062164A (en) Regenerative Turquoise Hydrogen production system
JP2954585B1 (en) Hydrogen production method and apparatus
CN116768154A (en) Large-scale pure hydrogen preparation method and system for hydrogen metallurgy
CN114023176A (en) Scientific demonstration device and method for petroleum generation principle in earth depth
TW202300662A (en) Method of operating an electric arc furnace, electric arc furnace and steel mill

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160620

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170719

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180620

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190809

Year of fee payment: 7