KR101282061B1 - Nonwoven fabric complex using carbon nanotube and manufacturing method thereof - Google Patents

Nonwoven fabric complex using carbon nanotube and manufacturing method thereof Download PDF

Info

Publication number
KR101282061B1
KR101282061B1 KR1020110072168A KR20110072168A KR101282061B1 KR 101282061 B1 KR101282061 B1 KR 101282061B1 KR 1020110072168 A KR1020110072168 A KR 1020110072168A KR 20110072168 A KR20110072168 A KR 20110072168A KR 101282061 B1 KR101282061 B1 KR 101282061B1
Authority
KR
South Korea
Prior art keywords
nonwoven fabric
carbon nanotube
composite nonwoven
carbon nanotubes
thermoplastic polymer
Prior art date
Application number
KR1020110072168A
Other languages
Korean (ko)
Other versions
KR20130011193A (en
Inventor
추정주
정경학
차봉준
지성대
Original Assignee
웅진케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 웅진케미칼 주식회사 filed Critical 웅진케미칼 주식회사
Priority to KR1020110072168A priority Critical patent/KR101282061B1/en
Publication of KR20130011193A publication Critical patent/KR20130011193A/en
Application granted granted Critical
Publication of KR101282061B1 publication Critical patent/KR101282061B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • D10B2101/122Nanocarbons

Abstract

본 발명에서는 분체상 탄소나노튜브가 열가소성 고분자 소재의 부직포에 흡착된 여재층이 열가소성 고분자 소재의 부직포 지지층 사이에 적층된 탄소나노튜브 복합 부직포 및 그 제조방법을 제공한다.
본 발명의 본 발명의 탄소나노튜브 복합 부직포는 분체상의 탄소 나노튜브를 열가소성 고분자 소재의 부직포에 열압착을 통하여 접착시킴으로써, 복합 부직포로부터 탄소나노튜브의 탈리가 발생하지 않을 뿐만 아니라, 두께가 균일하면서도 수투과도및 투수율이 낮으므로, 방습용 필터에 유용하게 사용될 수 있다.
The present invention provides a carbon nanotube composite nonwoven fabric in which a filter medium in which powdery carbon nanotubes are adsorbed onto a nonwoven fabric of a thermoplastic polymer is laminated between a nonwoven fabric support layer of a thermoplastic polymer material and a method of manufacturing the same.
In the carbon nanotube composite nonwoven fabric of the present invention, the carbon nanotubes in powder form are bonded to the nonwoven fabric of a thermoplastic polymer by thermocompression, so that desorption of carbon nanotubes from the composite nonwoven fabric does not occur and the thickness is uniform. Since the water permeability and permeability are low, it can be usefully used for moisture proof filters.

Description

탄소나노튜브 복합 부직포 및 그의 제조방법{NONWOVEN FABRIC COMPLEX USING CARBON NANOTUBE AND MANUFACTURING METHOD THEREOF}Carbon nanotube composite nonwoven fabric and its manufacturing method {NONWOVEN FABRIC COMPLEX USING CARBON NANOTUBE AND MANUFACTURING METHOD THEREOF}

본 발명은 탄소나노튜브 복합 부직포 및 그의 제조방법에 관한 것으로, 보다 상세하게는 분체상의 탄소나노튜브를 열가소성 고분자 소재의 상에 고정하여 탄소나노튜브의 탈리가 없으면서도 수투과도, 투수율이 적은 탄소나노튜브 복합 부직포 및 그 제조방법에 관한 것이다The present invention relates to a carbon nanotube composite nonwoven fabric and a method of manufacturing the same, and more particularly, carbon nanotubes fixed in a powdery carbon nanotube on a thermoplastic polymer material and having low water permeability and low permeability without desorption of carbon nanotubes. Tube composite nonwoven fabric and method for producing same

탄소나노튜브는 흑연면(graphite sheet)의 결합 수에 따라서 단일벽 나노튜브(single wall nanotube, SWNT), 다중벽 나노튜브(muli-walled nanotube, MWNT), 다발형 나노튜브(rope nanotube)로 분류될 수 있으며, 이 흑연이 말리는 각도에 따라 다양한 구조를 갖고, 구조에 따라 전기적, 열적, 기계적 특성이 크게 달라지기 때문에 전계방출소자, 전기화학 및 에너지저장, 초미세 메카트로닉 시스템, 유기 및 무기 복합소재 등 다양한 산업분야에 응용이 가능한 것으로 제시되고 있다. 탄소나노튜브의 기계적 특성은 특히 보강 재료로 이용할 때 매우 중요하다. 전반적으로 SWNT는 강철보다 10~100배 견고(stiff)하고 물리적인 충격에 강하다고 보고하고 있다. 또한 탄소나노튜브는 향균성 및 항바이러스성을 가지고 있어서 박테리아와 바이러스의 활성을 억제하는 능력이 있다고 보고된다. 따라서 에어필터 또는 수처리 필터에 적용하여 박테리아와 바이러스를 여과하는 기능성을 부가할 수 있다. 탄소나노튜브의 소수성으로 인하여 에어필터 재료로 사용되었을 경우 방습 기능을 부가할 수 있으며 바이러스 및 미생물은 습기를 매개로 이동하므로 습도 제어시 부가적인 효과를 기대할 수 있다. Carbon nanotubes are classified into single wall nanotubes (SWNTs), multi-walled nanotubes (MWNTs), and rope nanotubes according to the number of bonds in the graphite sheet. Since the graphite has various structures depending on the angle of drying and the electrical, thermal, and mechanical properties vary greatly depending on the structure, field emission devices, electrochemical and energy storage, ultra-fine mechatronic systems, organic and inorganic complexes It is suggested to be applicable to various industries such as materials. The mechanical properties of carbon nanotubes are particularly important when used as reinforcing materials. Overall, SWNTs report 10 to 100 times more stiffness and physical impact than steel. In addition, carbon nanotubes have antimicrobial and antiviral properties and are reported to have the ability to inhibit the activity of bacteria and viruses. Therefore, it can be applied to an air filter or a water treatment filter to add functionality to filter bacteria and viruses. Due to the hydrophobicity of carbon nanotubes, when used as an air filter material, it is possible to add a moisture proof function, and since viruses and microorganisms move through moisture, an additional effect can be expected when controlling humidity.

탄소나노튜브를 고분자 지지체에 복합화하는 연구는 많이 진행되고 있으나(참조: 비특허문헌 1, 2) 탄소나노튜브 복합 재료를 필터 여재로 사용하려는 연구는 미미한 실정이다. 또한 탄소나노튜브를 필터 여재로 사용할 때 복합화된 탄소나노튜브가 지지체로부터 이탈될 경우 발암물질로 취급되기 때문에(참조: 비특허문헌 3, 4) 탄소나노튜브의 안전한 고정화가 필수적이다. 이에 본 발명자들은 분체상의 탄소나노튜브를 사용하는 경우 부직포 등에 용이하게 고정될 수 있음을 확인하고 본 발명에 이르게 되었다.Many studies have been conducted to complex carbon nanotubes to a polymer support (see Non-Patent Documents 1 and 2). However, studies on using carbon nanotube composites as filter media have been insignificant. In addition, when carbon nanotubes are used as filter media, the complexed carbon nanotubes are treated as carcinogens when they are separated from the support (see Non-Patent Documents 3 and 4). Therefore, safe immobilization of carbon nanotubes is essential. Accordingly, the present inventors have confirmed that the present invention can be easily fixed to a nonwoven fabric or the like when using carbon nanotubes in powder form.

Rowan Blake et al., Journal of American Chemical Society 2004, 126, 10226-10227.Rowan Blake et al., Journal of American Chemical Society 2004, 126, 10226-10227. Junichi Masuda et al. Macromolecules 2008, 41, 5974-5977. Junichi Masuda et al. Macromolecules 2008, 41, 5974-5977. Nancy A. Monteiro-Riviere et al., Toxicology Letters 2005, 155, 377-384.Nancy A. Monteiro-Riviere et al., Toxicology Letters 2005, 155, 377-384. Sunil K. Manna et al., Nano Letters 2005, 5, 1676-1684.Sunil K. Manna et al., Nano Letters 2005, 5, 1676-1684.

본 발명의 목적은 분체상의 탄소나노튜브를 열가소성 고분자 소재의 부직포 상에 고정하여 탄소나노튜브의 탈리가 없는 탄소나노튜브 복합 부직포를 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a carbon nanotube composite nonwoven fabric free of carbon nanotubes by fixing powdery carbon nanotubes on a nonwoven fabric of a thermoplastic polymer.

본 발명의 다른 목적은 상기 탄소나노튜브 복합 부직포의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing the carbon nanotube composite nonwoven fabric.

본 발명의 탄소나노튜브 복합 부직포는 분체상 탄소나노튜브가 열가소성 고분자 소재의 부직포에 흡착된 여재층이, 열가소성 고분자 소재의 부직포 지지층 사이에 적층된 것이다.In the carbon nanotube composite nonwoven fabric of the present invention, a filter medium layer in which powdery carbon nanotubes are adsorbed on a nonwoven fabric of a thermoplastic polymer material is laminated between a nonwoven fabric support layer of a thermoplastic polymer material.

상기 열가소성 고분자는 폴리에틸렌, 폴리프로필렌, 폴리에스테르, 나일론, 폴리우레탄, 폴리비닐화불소 및 폴리아크릴로니트릴로 구성된 군으로부터 선택되는 하나 이상인 것이 바람직하고, 보다 바람직하게는 폴리프로필렌이다.The thermoplastic polymer is preferably at least one selected from the group consisting of polyethylene, polypropylene, polyester, nylon, polyurethane, fluorinated polyvinylidene and polyacrylonitrile, more preferably polypropylene.

상기 여재층에 흡착된 탄소나노튜브의 흡착량은 1~20g/m2인 것이 바람직하다.The adsorption amount of carbon nanotubes adsorbed on the filter medium layer is preferably 1-20 g / m 2 .

상기 여재층에 흡착된 탄소나노튜브의 탈리율이 중량비로 0.1% 이하인 것이 바람직하다.Preferably, the desorption rate of the carbon nanotubes adsorbed on the filter medium layer is 0.1% or less by weight.

상기 복합 부직포의 두께편차가 1% 이하인 것이 바람직하다.It is preferable that the thickness deviation of the said composite nonwoven fabric is 1% or less.

상기 복합 부직포의 지지층/여재층/지지층은 열압착된 것임이 바람직하다.Preferably, the support layer / media layer / support layer of the composite nonwoven fabric is thermocompressed.

상기 탄소나노튜브 복합 부직포는 상기 탄소나노튜브 복합 부직포의 47cm2의 단면적, 1bar의 정압 및 1분의 단위시간으로 설정하여, 멤브레인을 투과하는 물의 양을 측정한 수투과도가 15(ml/cm2·min·bar) 이하이며; 실내 습도 RH 2% 이하 및 실내온도 20~25℃ 에서 8.04cm2의 단면적, 200sccm의 정량으로 및 5000초의 단위시간으로 설정하여, 멤브레인을 투과하는 수증기의 양을 측정한 투수율이 1.0 x 10-12(mol·m/m2·s·Pa)이하인 것을 특징으로 한다.The carbon nanotube composite nonwoven fabric was set at a cross-sectional area of 47 cm 2 , a constant pressure of 1 bar and a unit time of 1 minute of the carbon nanotube composite nonwoven fabric, and the water permeability measured by measuring the amount of water permeating through the membrane was 15 (ml / cm 2). Min bar) or less; In the room humidity RH 2% or less, and 20 ~ 25 ℃ room temperature by setting the cross-sectional area, and the amount per unit time of 5000 seconds 200sccm of 8.04cm 2, the permeability was measured the amount of water vapor passing through the membrane is 1.0 x 10 -12 (mol · m / m 2 · s · Pa) or less.

본 발명의 복합 부직포의 제조방법은 열가소성 고분자 소재 부직포 양면에 탄소나노튜브를 흡착시키는 제1단계; 상기 탄소나노튜브가 부착된 부직포 양면에 열가소성 고분자 소재 부직포를 적층하는 제2단계; 및 상기 적층체를 열압착하여 합지하는 제3단계:를 포함한다.Method for producing a composite nonwoven fabric of the present invention comprises the first step of adsorbing carbon nanotubes on both sides of the thermoplastic polymer nonwoven fabric; Stacking a thermoplastic polymer nonwoven fabric on both sides of the nonwoven fabric to which the carbon nanotubes are attached; And a third step of laminating the laminate by thermocompression bonding.

본 발명의 탄소나노튜브 복합 부직포는 분체상의 탄소 나노튜브를 폴리프로필렌 부직포에 열압착을 통하여 접착시킴으로써, 방습기능이 있는 복합 부직포로부터 탄소나노튜브의 탈리가 발생하지 않을 뿐만 아니라, 두께가 균일하면서도 수투과도 및 투수율이 낮으므로 이를 방습용 필터로 사용할 수 있다.In the carbon nanotube composite nonwoven fabric of the present invention, the carbon nanotubes of the powdery form are bonded to the polypropylene nonwoven fabric by thermocompression, so that the carbon nanotubes are not detached from the composite nonwoven fabric having moisture-proof function, and the thickness of the carbon nanotubes is uniform. Low permeability and permeability can be used as a filter for moisture proof.

도1은 본 발명의 탄소나노튜브 복합 부직포에 사용된 분체상 탄소나노튜브의 시차주사전자현미경(SEM) 사진이다.
도2는 상기 분체상 탄소나노튜브 입자가 폴리프로필렌 멜트블로운 부직포에 흡착된 다음 열압착된 여재층의 표면에 대한 SEM 사진이다.
도3은 실시예 1에서 제조된 복합 부직포의 표면에 대한 SEM사진이다.
1 is a differential scanning electron microscope (SEM) photograph of powdery carbon nanotubes used in the carbon nanotube composite nonwoven fabric of the present invention.
FIG. 2 is a SEM photograph of the surface of the media layer, wherein the powdery carbon nanotube particles are adsorbed onto a polypropylene meltblown nonwoven fabric and then thermocompressed.
3 is an SEM photograph of the surface of the composite nonwoven fabric prepared in Example 1. FIG.

본 발명의 탄소나노튜브 복합 부직포는 분체상 탄소나노튜브가 열가소성 고분자 소재 부직포에 흡착된 여재층이, 열가소성 고분자 소재 부직포 지지층 사이에 적층되어 접착된 것이다.In the carbon nanotube composite nonwoven fabric of the present invention, a filter medium layer in which powdery carbon nanotubes are adsorbed on a thermoplastic polymer material nonwoven fabric is laminated and bonded between a thermoplastic polymer material nonwoven fabric support layer.

본 발명의 복합 부직포에 사용되는 여재층은 분체상 탄소나노튜브가 열가소성 고분자 소재 부직포에 흡착된 것이다. 본 발명에서 분체상 탄소나노튜브라 함은 탄소나노튜브가 집속되어 육안상으로는 분말상으로 관찰되는 형태의 것을 말한다. 비록 육안상으로는 분말상으로 관찰된다 하여도 주사전자현미경으로 관찰했을시 도1에서와 같이 가로세로 비(aspect ratio)가 500 이상인 튜브형태로 존재한다. 탄소나노튜브의 형태에 관해서는 단일벽 탄소나노튜브이든 다중벽 탄소나노튜브이든 본 발명의 관계없이 탄소나노튜브 복합 부직포의 여재층에 사용될 수 있다.The media layer used in the composite nonwoven fabric of the present invention is a powdered carbon nanotube adsorbed onto a thermoplastic polymer material nonwoven fabric. In the present invention, the powdered carbon nanotubes refer to those in which carbon nanotubes are concentrated and visually observed in powder form. Although visually observed in powder form, when viewed with a scanning electron microscope, it exists in the form of a tube having an aspect ratio of 500 or more as shown in FIG. 1. Regarding the shape of the carbon nanotubes, whether single-walled carbon nanotubes or multi-walled carbon nanotubes, the carbon nanotubes may be used in the media layer of the carbon nanotube composite nonwoven fabric regardless of the present invention.

상기 여재층에 흡착된 탄소나노튜브의 흡착량은 바람직하게는 1~20g/m2, 더욱 바람직하게는 10~15g/m2이다. 흡착량이 1~20g/m2 미만인 경우에는 투수율이 높아져 방습효과가 미미하게 되고, 20g/m2인을 초과하는 경우에는 탄소나노튜브의 탈리현상이 높아지는 문제점이 있다.The adsorption amount of carbon nanotubes adsorbed on the filter medium layer is preferably 1 to 20 g / m 2 , and more preferably 10 to 15 g / m 2 . If the amount of adsorption is less than 1 ~ 20g / m 2 , the water permeability is increased and the moisture-proof effect is insignificant, and when the amount exceeds 20g / m 2 phosphorus there is a problem that the desorption phenomenon of carbon nanotubes increases.

이때, 상기 부직포를 구성하는 열가소성 고분자 수지로는 열압착이 가능한 열가소성 고분자 섬유이면 어느 것이나 사용 가능하다. 바람직하게는 소수성 탄소나노튜브와의 친화성이 우수하면서도 저온에서 열압착이 가능한 폴리에틸렌, 폴리프로필렌, 폴리에스테르, 나일론, 폴리우레탄, 폴리비닐화불소 및 폴리아크릴로니트릴로 구성된 군으로부터 선택되는 하나 이상을 사용한다.At this time, as the thermoplastic polymer resin constituting the nonwoven fabric, any thermoplastic polymer fiber capable of thermocompression bonding can be used. Preferably, polyethylene, polypropylene, polyester, nylon, polyurethane, polyvinylidene fluoride, and polyacrylonitrile, which have excellent affinity with hydrophobic carbon nanotubes and can be thermally compressed at low temperatures Use one or more selected from the group consisting of.

상기 부직포의 제조 형태에 관해서는 멜트블로운 부직포이든 스펀본드 부직포이든 관계없이 사용될 수 있으며, 바람직하게는 세섬도로 제작이 가능하면서도 평균기공을 작게 제어할 수 있는 멜트블로운 부직포를 사용한다.Regarding the manufacturing form of the nonwoven fabric, it can be used regardless of whether it is a meltblown nonwoven fabric or a spunbond nonwoven fabric, and preferably, a meltblown nonwoven fabric which can be manufactured in fine granularity and which can control the average pore small.

상기 분체상 탄소나노튜브는 열가소성 고분자 소재의 부직포에 흡착된 후, 열가소성 고분자 소재 부직포 지지층 사이에 적층된 다음, 열압착에 의하여 열가소성 고분자 소재 부직포에 부분적으로 접착된다. 지지층/여재층/지지층의 3층으로 구성된 탄소나노튜브 복합 부직포에서 지지층이 열압착에 의해 용융되어 여재층의 탄소나노튜브와 접착제 또는 바인더 역할을 하여 탄소나노튜브를 고정시킴으로써 탄소나노튜브가 부직포로부터 이탈되는 것을 방지한다. 이때 탄소나노튜브가 고정화된 여재층이 활성층으로서 소수성을 나타낸다.The powdery carbon nanotubes are adsorbed onto the nonwoven fabric of the thermoplastic polymer material, then laminated between the thermoplastic polymer material nonwoven fabric support layers, and then partially bonded to the thermoplastic polymer material nonwoven fabric by thermocompression bonding. In the carbon nanotube composite nonwoven fabric composed of three layers of a support layer, a media layer, and a support layer, the support layer is melted by thermocompression, and the carbon nanotubes are fixed as the adhesive or binder with the carbon nanotubes of the media layer. Prevent deviations. At this time, the carbon nanotube-immobilized media layer shows hydrophobicity as the active layer.

이때, 지지층에 사용되는 열가소성 고분자 소재 부직포를 구성하는 고분자 소재는 여재층의 열가소성 고분자 소재와 동일하다.
At this time, the polymer material constituting the thermoplastic polymer material nonwoven fabric used in the support layer is the same as the thermoplastic polymer material of the media layer.

한편, 상기 분체상 탄소나노튜브가 흡착되는 열가소성 고분자 소재 부직포는 열압착 후 기공크기가 평균공경 0.5~5㎛인 것이 바람직하다. 평균공경의 크기가 0.5㎛ 미만인 경우는 공경의 크기가 너무 작아 유속이 감소하는 문제점이 발생하고, 5㎛를 초과하는 경우에는 적층체의 접착 후 분체상 탄소나노튜브의 탈리가 발생되므로 바람직하지 않다.On the other hand, the thermoplastic polymer material non-woven fabric to which the powdery carbon nanotubes are adsorbed is preferably a pore size of 0.5 ~ 5㎛ average pore size after thermocompression bonding. If the average pore size is less than 0.5 μm, the pore size is too small to reduce the flow velocity, and if the average pore size is more than 5 μm, it is not preferable since the desorption of powdery carbon nanotubes occurs after adhesion of the laminate. .

한편, 상기 여재층과, 여재층의 양면에 접착되는 지지층 사이의 접착 방식은 분체상탄소나노튜브와 여재층을 구성하는 폴리프로필렌 부직포, 또는 여재층의 상면에 존재하는 분체상 탄소나노튜브와 지지층을 구성하는 폴리프로필렌 부직포 사이에 부분적인 접착이 가능하도록 열압착 방식에 의한 것이 바람직하다. 상기 열압착 방식은 제조되는 복합 부직포의 두께편차를 1% 이내로 줄일 수 있다는 점에서도 접착제 등에 의한 접착방식에 비하여 장점이 있다.On the other hand, the adhesion method between the media layer and the support layer bonded to both sides of the media layer is a powdery carbon nanotube and the polypropylene nonwoven fabric constituting the media layer, or the powdery carbon nanotube and the support layer present on the upper surface of the media layer It is preferable to use a thermocompression bonding method to enable partial adhesion between the constituent polypropylene nonwoven fabrics. The thermocompression method has an advantage over an adhesive method using an adhesive in that the thickness deviation of the manufactured composite nonwoven fabric can be reduced to within 1%.

상기 탄소나노튜브 복합 부직포는, 47cm2의 단면적, 1bar의 정압 및 1분의 단위시간으로 설정하여, 멤브레인을 투과하는 물의 양을 측정한 수투과도가 15(ml/cm2·min·bar) 이하이고; 실내 습도 RH 2% 이하 및 실내온도 20~25℃에서 8.04cm2의 단면적, 200sccm의 정량으로 및 5000초의 단위시간으로 설정하여, 멤브레인을 투과하는 수증기의 양을 측정한 투수율이 1.0 x 10-12(mol·m/m2·s·Pa) 이하의 값을 갖는다.
The carbon nanotube composite nonwoven fabric has a cross-sectional area of 47 cm 2 , a static pressure of 1 bar, and a unit time of 1 minute, and has a water permeability of 15 (ml / cm 2 · min · bar) or less measuring the amount of water that permeates the membrane. ego; In the room humidity RH 2% or less and room temperature 20 ~ 25 ℃ by setting the cross-sectional area, and the amount per unit time of 5000 seconds 200sccm of 8.04cm 2, the permeability was measured the amount of water vapor passing through the membrane is 1.0 x 10 -12 It has a value of (mol · m / m 2 · s · Pa) or less.

이하. 본 발명의 탄소나노튜브 복합 부직포의 제조방법에 대하여 설명한다.Below. The manufacturing method of the carbon nanotube composite nonwoven fabric of this invention is demonstrated.

본 발명의 탄소나노튜브 복합 부직포의 제조방법은 폴리프로필렌 부직포 양면에 탄소나노튜브를 흡착시키는 제1단계; 상기 탄소나노튜브가 부착된 부직포 양면에 폴리프로필렌 부직포를 적층하는 제2단계; 및 겹쳐진 부직포를 열압착하여 합지하는 제3단계:를 포함한다.The carbon nanotube composite nonwoven fabric of the present invention comprises a first step of adsorbing carbon nanotubes on both sides of a polypropylene nonwoven fabric; Stacking a polypropylene nonwoven on both sides of the nonwoven fabric to which the carbon nanotubes are attached; And a third step of thermally compressing and laminating the overlapping nonwoven fabrics.

상기에서 복합 부직포의 제조방법은 폴리프로필렌 부직포 양면에 탄소나노튜브의 흡착은 습식 방법으로 또는 건식방법으로 수행될 수 있다. 습식방법이라 함은 분체상탄소나노튜브를 적당한 용매에 희석한 다음 이를 여재층의 기재로 사용되는 폴리프로필렌 부직포에 도포한 다음 용매를 건조하여 제거하는 하는 방법을 말한다. 이 때. 사용되는 용매로는 친수성 용매를 사용하는 것이 바람직하며, 구체적으로는 물, 메탄올, 에탄올, 디메틸포름아미드 등이 바람직하다. 한편 건식방법이라 함은 용매를 사용하지 아니하고 직접 건조상태의 분체상 탄소나노튜브를 폴리프로필렌 상에 도포하는 벙법을 말한다. 구체적으로, 정전기적 인력에 의한 물리적인 흡착방법을 이용하여 탄소나노튜브를 직접 흡착시키는 방법을 말한다.In the manufacturing method of the composite nonwoven fabric, adsorption of carbon nanotubes on both sides of the polypropylene nonwoven fabric may be performed by a wet method or a dry method. The wet method refers to a method of diluting powdery carbon nanotubes in a suitable solvent and then applying the same to a polypropylene nonwoven fabric used as a substrate for the filter layer, followed by drying and removing the solvent. At this time. It is preferable to use a hydrophilic solvent as a solvent, and water, methanol, ethanol, dimethylformamide, etc. are preferable specifically ,. On the other hand, the dry method refers to a method of applying powdery carbon nanotubes directly dried onto a polypropylene without using a solvent. Specifically, it refers to a method of directly adsorbing carbon nanotubes using a physical adsorption method by electrostatic attraction.

한편, 상기 열압착은 온도 100~155℃, 압력 5000~13000톤/m2의 조건에서 수행되는 것이 바람직하다. 열접착의 온도가 100℃ 미만인 경우에는 여재층과 지지체층 및 분체상 탄소나노튜브의 접착이 충분치 않아 제조된 복합 부직포에서 분체상 탄소나노튜브의 탈리가 발생하는 문제점이 있고, 155℃를 초과하는 경우에는 반대로 접착이 과도하여 분체상 탄소나노튜브의 방습효과가 떨어질 뿐만이 아니라 제조된 복합 부직포의 기공크기가 과도하게 적어지고, 부직포의 용융으로 인한 손상이 발생하는 문제점이 있다.
On the other hand, the thermocompression is preferably carried out under the conditions of temperature 100 ~ 155 ℃, pressure 5000 ~ 13000 tons / m 2 . When the temperature of the thermal bonding is less than 100 ℃, there is a problem that the detachment of the powdery carbon nanotubes in the composite nonwoven fabric produced due to insufficient adhesion of the media layer, the support layer and the powdery carbon nanotubes, and exceeds 155 ℃ In this case, the adhesion is excessive, and the moisture-proofing effect of the powdery carbon nanotubes is not only lowered, the pore size of the manufactured composite nonwoven fabric is excessively reduced, and there is a problem that damage due to melting of the nonwoven fabric occurs.

이하, 본 발명을 실시예에 의하여 상세히 설명한다. 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to examples. The following examples are merely illustrative of the present invention, but the scope of the present invention is not limited to the following examples.

<실시예 1>&Lt; Example 1 >

폴리프로필렌(Polypropylene, PP) 멜트블로운 부직포(웅진케미칼 제조, 두께 110㎛, 평균공경 8㎛, 평량 15g/m2)에 탄소나노튜브(MWNT, CNT M95, 카본나노텍)를 350ml취하여 1m2 부직포에 흡착시시켜(10.038g/m2) 여재층을 준비하였다. 탄소나노튜브는 직경 5~15 nm(평균직경 10nm), 길이 ~ 10mm, 순도 > 95 wt%, 비표면적(BET) 100 ~ 700 cm2/g, 부피밀도 0.02 ~ 0.04 g/cm3인 것을 사용하였다.1m 2 nonwoven fabric with 350ml of carbon nanotubes (MWNT, CNT M95, carbon nanotech) in polypropylene (PP) meltblown nonwoven fabric (Woongjin Chemical, 110㎛ thickness, average diameter 8㎛, basis weight 15g / m 2 ) When adsorbed on (10.038 g / m 2 ), a filter medium layer was prepared. Carbon nanotubes with diameters of 5 to 15 nm (average diameter of 10 nm), lengths of 10 mm, purity> 95 wt%, specific surface area (BET) 100 to 700 cm 2 / g, bulk density 0.02 to 0.04 g / cm 3 It was.

이후, 상기 여재층의 양면에 탄소나노튜브가 부착되지 않은 부직포(여재층의 부직포와 동일)를 지지체로서 적층한 다음, 겹쳐진 부직포를 130℃로 가열된 압착기에 넣어 7800ton/m2의 압력으로 1분간 열압착을 실시하여 합지를하여 탄소나노튜브 복합 부직포를 제조하였다.Subsequently, the nonwoven fabric (the same as the nonwoven fabric of the filter media layer) to which the carbon nanotubes are not attached is laminated on both sides of the filter media layer as a support, and then the overlapping nonwoven fabric is put into a press heated to 130 ° C. at a pressure of 7800 ton / m 2 . Carbon nanotube composite nonwoven fabric was prepared by carrying out thermocompression bonding for a minute.

도1은 본 발명의 실시에에서 탄소나노튜브 복합 부직포에 사용된 분체상 탄소나노튜브의 전자현미경 사진이고. 도2는 상기 분체상 탄소나노튜브 입자가 폴리프로필렌 멜트블로운 부직포에 흡착된 다음 열압착된 여재층의 표면에 대한 SEM 사진이다. 도2의 사진으로부터, 분체상 탄소타노튜브가 열압착에 의하여 폴리프로필렌 부직포에 눌린 상태로 고정화되어 있는 것을 확인할 수 있다.1 is an electron micrograph of the powdered carbon nanotubes used in the carbon nanotube composite nonwoven fabric in the practice of the present invention. FIG. 2 is a SEM photograph of the surface of the media layer, wherein the powdery carbon nanotube particles are adsorbed onto a polypropylene meltblown nonwoven fabric and then thermocompressed. From the photograph of FIG. 2, it can be seen that the powdery carbon nanotubes are fixed in a state of being pressed on the polypropylene nonwoven fabric by thermocompression bonding.

<실시예 2><Example 2>

여재층에 흡착된 탄소나노튜브의 흡착량을 400ml/m2(11.239g/m2)으로 한 것을 제외하고는 실시예 1과 동일한 방법으로 탄소나노튜브 복합 부직포를 제조하였다.A carbon nanotube composite nonwoven fabric was prepared in the same manner as in Example 1 except that the adsorption amount of carbon nanotubes adsorbed on the filter media layer was 400 ml / m 2 (11.239 g / m 2 ).

<실시예 3><Example 3>

여재층에 흡착된 탄소나노튜브의 흡착량을 500ml/m2(15.201g/m2)으로 한 것을 제외하고는 실시예 1과 동일한 방법으로 탄소나노튜브 복합 부직포를 제조하였다.
A carbon nanotube composite nonwoven fabric was manufactured in the same manner as in Example 1 except that the adsorption amount of carbon nanotubes adsorbed on the filter media layer was 500 ml / m 2 (15.201 g / m 2 ).

<비교예 1>&Lt; Comparative Example 1 &

상기 실시예 1에서 열압착 조건을 동일하게 하되, 탄소나노튜브를 부착시키지 않은 폴리프로필렌 멜트블로운 부직포만을 가지고 열압착을 실시하여 복합 부직포를 제조하였다.The same thermal compression conditions as in Example 1, but the thermocompression bonding was carried out with only a polypropylene melt blown non-woven fabric without carbon nanotubes attached to prepare a composite nonwoven fabric.

<비교예 2>Comparative Example 2

상기 실시예 1에서 사용한 폴피프로필렌 멜트블로운 부직포만을 가지고 실시하였다.The polypropylene melt blown nonwoven fabric used in Example 1 was used.

<비교예 3>&Lt; Comparative Example 3 &

여재층에 흡착된 탄소나노튜브의 흡착량을 300ml/m2(9.021g/m2)으로 한 것을 제외하고는 실시예 1과 동일한 방법으로 탄소나노튜브 복합 부직포를 제조하였다.A carbon nanotube composite nonwoven fabric was manufactured in the same manner as in Example 1 except that the adsorption amount of carbon nanotubes adsorbed on the filter media layer was 300 ml / m 2 (9.021 g / m 2 ).

<비교예 4>&Lt; Comparative Example 4 &

여재층에 흡착된 탄소나노튜브의 흡착량을 600ml/m2(17.881g/m2)으로 한 것을 제외하고는 실시예 1과 동일한 방법으로 탄소나노튜브 복합 부직포를 제조하였다.
A carbon nanotube composite nonwoven fabric was manufactured in the same manner as in Example 1 except that the adsorption amount of carbon nanotubes adsorbed on the filter media layer was set to 600 ml / m 2 (17.881 g / m 2 ).

<평가><Evaluation>

1. 평균공경 및 최대공경1. Average diameter and maximum diameter

평균공경 및 최대공경은 PMI사 캐필러리 플로우 포로미터(Capillary Flow Porometer)를 이용하여 측정하였고, 드라이-업 웨트-업(dry-up wet-up) 방식을 사용하였으며 웨트-업(wet-up) 측정시 표면장력이 16 DYNES/CM인 POREWICK을 사용하였다.Average and maximum pore diameters were measured using PMI Capillary Flow Porometer, dry-up wet-up method, and wet-up method. ) POREWICK with a surface tension of 16 DYNES / CM was used.

2. 수투과도2. Permeability

수투과도는 평막수투과도 장치를 이용 1bar의 압력하에 1분간 부직포를 투과한 물의 질량을 측정하여 계산하였다.The water permeability was calculated by measuring the mass of water permeated through the nonwoven fabric under a pressure of 1 bar using a flat membrane water permeability apparatus.

3. 방습실험3. Moisture proof experiment

방습실험은 가스 분리 테스트 장비를 이용하여 필터 홀더에 실시예 1에서 제조한 탄소나노튜브 복합 부직포를 장착하한 다음, 수투과도와 투수율을 다음의 조건으로 실시하였다.Moisture proof experiment was carried out by mounting the carbon nanotube composite nonwoven fabric prepared in Example 1 to the filter holder using a gas separation test equipment, and then the water permeability and permeability were carried out under the following conditions.

1) 수투과도 : 47cm2의 단면적, 1bar의 정압 및 1분의 단위시간으로 설정하여, 멤브레인을 투과하는 물의 양을 측정하였다.1) Water Permeability: The amount of water permeating through the membrane was measured by setting a cross-sectional area of 47 cm 2 , a static pressure of 1 bar and a unit time of 1 minute.

2) 투수율 측정 : 실내 습도는 RH 2%이하 및 실내온도 20~25도 에서 8.04cm2의 단면적, 200sccm의 정량으로 및 5000초의 단위시간으로 설정하여, 멤브레인을 투과하는 수증기의 양을 측정하였다.2) Permeability Measurement: The room humidity was set at a cross-sectional area of 8.04 cm 2 , a quantitative measurement of 200 sccm and a unit time of 5000 seconds at an RH of 2% or less and a room temperature of 20 to 25 ° C., to measure the amount of water vapor passing through the membrane.

이상의 실험 결과를 아래의 표 1에 정리하였다.The above experimental results are summarized in Table 1 below.

구분division 평균공경
(㎛)
Average pore size
(탆)
최대공경
(㎛)
Maximum diameter
(탆)
수투과도
(ml/cm2·min·bar)
Water permeability
(ml / cm 2 · min · bar)
투수율
(mol·m/m2·s·Pa)
Permeability
(mol · m / m 2 · s · Pa)
실시예 1Example 1 1.561.56 3.413.41 10.2110.21 3.2 x 10-13 3.2 x 10 -13 실시예 2Example 2 1.581.58 3.513.51 9.589.58 1.9 x 10-13 1.9 x 10 -13 실시예 3Example 3 1.571.57 3.533.53 9.019.01 1.3 x 10-13 1.3 x 10 -13 비교예 1Comparative Example 1 1.541.54 2.022.02 16.8516.85 2.3 x 10-10 2.3 x 10 -10 비교예 2Comparative Example 2 8.098.09 11.2111.21 72.7772.77 4.5 x 10-9 4.5 x 10 -9 비교예 3Comparative Example 3 1.581.58 3.513.51 14.7814.78 1.9 x 10-14 1.9 x 10 -14 비교예 4Comparative Example 4 1.011.01 2.532.53 3.233.23 1.1 x 10-16 1.1 x 10 -16

상기 표 1로부터 본 발명에 의하여 제조된 탄소나노튜브 복합 부직포는 탄소나노튜브를 사용하지 않은 복합 부직포에 비하여 수투과도가 약 40% 이상 투수율이1/1000 수준으로 감소함을 확인할 수 있다. 따라서, 이를 방습용 필터로 사용할 수 있을 것이다.It can be seen from Table 1 that the carbon nanotube composite nonwoven fabric prepared according to the present invention has a water permeability of about 40% or more reduced to a level of 1/1000 as compared to the composite nonwoven fabric that does not use carbon nanotubes. Therefore, it may be used as a filter for moisture proof.

4. 탄소나노튜브 탈리 실험4. Carbon Nanotube Desorption Experiment

실시예 및 비교예들에서 제조한 탄소나노튜브 복합 부직포에서 탄소나노튜브가 탈리되는 정도를 알아보기 위하여 탈리 실험을 진행하였다. 탄소나노튜브 복합 부직포를 초음파로 10분, 30분, 1시간 동안 처리한 후 처리 전에 부직포에 복합화된 탄소나노튜브의 질량과 처리 후의 질량을 측정하여 아래의 표에 1m2당 질량으로 정리하였다.A desorption experiment was conducted to determine the degree of desorption of carbon nanotubes in the carbon nanotube composite nonwoven fabric prepared in Examples and Comparative Examples. CNT composite nonwoven fabric 10 min ultrasonically, by measuring the 30 minutes, the mass and the mass after the treatment of the CNT composite in the nonwoven fabric prior to the post-processing treatment for one hour to clean the 1m 2 by mass in the table below.

구분division 흡착된
탄소나노튜브 질량 (g/ m2)
Adsorbed
Carbon nanotube mass (g / m 2 )
초음파 처리 후의
탄소나노튜브 질량 (g/m2)
After sonication
Carbon nanotube mass (g / m 2 )
탈리율 (%)Desorption rate (%)
10분10 minutes 30분30 minutes 1시간1 hours 10분10 minutes 30분30 minutes 1시간1 hours 실시예 1Example 1 10.03810.038 10.02910.029 10.02810.028 10.02810.028 0.080.08 0.090.09 0.090.09 실시예 2Example 2 11.23911.239 11.22111.221 11.22111.221 11.22111.221 0.070.07 0.070.07 0.070.07 실시예 3Example 3 15.20115.201 15.19115.191 14.18814.188 14.18814.188 0.060.06 0.080.08 0.080.08 비교예 3Comparative Example 3 9.0219.021 9.0119.011 9.0099.009 9.0089.008 0.110.11 0.130.13 0.140.14 비교예 4Comparative Example 4 17.88117.881 17.86117.861 17.85517.855 17.85017.850 0.110.11 0.140.14 0.170.17

표2로부터, 탄소나노튜브가 탈리되는 정도는 중량비로 0.1% 미만으로서, 탄소나노튜브를 포함하는 여재층이 지지체에 의하여 접합됨에 따라, 본 발명에 의하여 제조된 탄소나노튜브 복합 부직포에서 탄소나노튜브의 탈리가 매우 적은 수준임을 확인할 수 있었다.From Table 2, the degree of carbon nanotube desorption is less than 0.1% by weight, and as the media layer including carbon nanotubes is joined by a support, carbon nanotubes in the carbon nanotube composite nonwoven fabric prepared according to the present invention. It can be confirmed that the tally of the very low level.

도3은 실시예 1에서 제조된 복합 부직포의 표면에 대한 SEM사진이다. 도3의 사진으로부터, 본 발명의 복합 부직포 표면에 여재층에 부착된 분체상 탄소나노튜브가 지지층 밖으로의 탈리가 전혀 발생하지 않았음을 확인할 수 있다.
3 is an SEM photograph of the surface of the composite nonwoven fabric prepared in Example 1. FIG. From the photograph of Figure 3, it can be seen that the powdery carbon nanotubes attached to the filter medium layer on the surface of the composite nonwoven fabric of the present invention did not occur at all out of the support layer.

이상에서 본 발명은 기재된 실시예에 대해서만 상세히 기술되었지만, 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.Although the present invention has been described in detail only with respect to the embodiments described, it will be apparent to those skilled in the art that various modifications and variations are possible within the technical scope of the present invention, and such modifications and modifications belong to the appended claims.

본 발명으로 제조된 탄소나노튜브 복합 부직포는 방습효과가 뛰어나기 때문에 방습 기능을 필요로 하는 필터의 여재로 사용될 수 있으며, 바이러스나 미생물이 습기를 매개로 이동하기 때문에 방습 기능을 이용 부가적인 효과도 얻을 수 있다. 또한 본 발명에서 제시한 복합 부직포 제조방법은 기존에 탈리현상으로 인한 문제점이 발생하는 제조공정을 개선하기 위하여 사용될 수 있다.Carbon nanotube composite non-woven fabric prepared by the present invention can be used as a filter medium that requires a moisture-proof function because it has excellent moisture-proof effect, and additional effects by using a moisture-proof function because viruses or microorganisms move through moisture. You can get it. In addition, the method for manufacturing a composite nonwoven fabric according to the present invention can be used to improve a manufacturing process in which a problem due to a detachment phenomenon occurs.

Claims (11)

분체상 탄소나노튜브가 열가소성 고분자 소재의 부직포에 흡착된 여재층이, 열가소성 고분자 소재의 부직포 지지층 사이에 적층된 복합부직포로서, 상기 복합 부직포의 지지층/여재층/지지층은 열압착된 것임을 특징으로 하는 탄소나노튜브 복합 부직포.A composite nonwoven fabric in which powdery carbon nanotubes are adsorbed onto a nonwoven fabric of a thermoplastic polymer material is laminated between a nonwoven fabric support layer of a thermoplastic polymer material, and the support layer / media layer / support layer of the composite nonwoven fabric is thermocompressed. Carbon nanotube composite nonwoven fabric. 제1항에 있어서, 상기 열가소성 고분자는 폴리에틸렌, 폴리프로필렌, 폴리에스테르, 나일론, 폴리우레탄, 폴리비닐화불소 및 폴리아크릴로니트릴로 구성된 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 상기 탄소나노튜브 복합 부직포.The carbon nanotube composite nonwoven fabric of claim 1, wherein the thermoplastic polymer is at least one selected from the group consisting of polyethylene, polypropylene, polyester, nylon, polyurethane, fluorinated polyvinylidene, and polyacrylonitrile. 제1항에 있어서, 상기 열가소성 고분자는 폴리프로필렌인 것을 특징으로 하는 상기 탄소나노튜브 복합 부직포.The carbon nanotube composite nonwoven fabric of claim 1, wherein the thermoplastic polymer is polypropylene. 제1항에 있어서, 상기 여재층에 흡착된 탄소나노튜브의 흡착량은 1~20g/m2인 것을 특징으로 하는 상기 탄소나노튜브 복합 부직포.The carbon nanotube composite nonwoven fabric of claim 1, wherein an adsorption amount of carbon nanotubes adsorbed on the filter medium layer is 1-20 g / m 2 . 제1항에 있어서, 상기 여재층에 흡착된 탄소나노튜브의 탈리율이 중량비로 0.1% 이하인 것을 특징으로 하는 상기 탄소나노튜브 복합 부직포The carbon nanotube composite nonwoven fabric as claimed in claim 1, wherein the carbon nanotubes adsorbed on the media layer are 0.1% or less by weight. 제1항에 있어서, 상기 복합 부직포는 두께편차가 1% 이하인 것을 특징으로 하는 상기 탄소나노튜브 복합 부직포.The carbon nanotube composite nonwoven fabric of claim 1, wherein the composite nonwoven fabric has a thickness deviation of 1% or less. 삭제delete 제1항에 있어서, 상기 탄소나노튜브 복합 부직포는
47cm2의 단면적, 1bar의 정압 및 1분의 단위시간으로 설정하여, 멤브레인을 투과하는 물의 양을 측정한 수투과도가 15(ml/cm2·min·bar) 이하이고;
실내 습도 RH 2% 이하 및 실내온도 20~25℃ 에서 8.04cm2의 단면적, 200sccm의 정량으로 및 5000초의 단위시간으로 설정하여, 멤브레인을 투과하는 수증기의 양을 측정한 투수율이 1.0 x 10-12(mol·m/m2·s·Pa) 이하인 것을 특징으로 하는 상기 탄소나노튜브 복합 부직포.
The method of claim 1, wherein the carbon nanotube composite nonwoven fabric
A water permeability measured at an amount of water permeating through the membrane at a cross-sectional area of 47 cm 2 , a static pressure of 1 bar, and a unit time of 1 minute, was 15 (ml / cm 2 · min · bar) or less;
In the room humidity RH 2% or less and a room temperature 20 ~ 25 ℃ by setting the cross-sectional area, and the amount per unit time of 5000 seconds 200sccm of 8.04cm 2, the permeability was measured the amount of water vapor passing through the membrane is 1.0 x 10 -12 (mol m / m 2 · s · Pa) or less, the carbon nanotube composite nonwoven fabric.
열가소성 고분자 소재 부직포 양면에 탄소나노튜브를 흡착시키는 제1단계;
상기 탄소나노튜브가 부착된 부직포 양면에 열가소성 고분자 소재 부직포를 적층하는 제2단계; 및
상기 적층체를 열압착하여 합지하는 제3단계:를 포함하는 탄소나노튜브 복합 부직포의 제조방법.
A first step of adsorbing carbon nanotubes on both sides of the thermoplastic polymer nonwoven fabric;
Stacking a thermoplastic polymer nonwoven fabric on both sides of the nonwoven fabric to which the carbon nanotubes are attached; And
Method of manufacturing a carbon nanotube composite nonwoven fabric comprising: a third step of laminating the laminate by thermal compression.
제9항에 있어서, 상기 열가소성 고분자 소재는 폴리프로필렌인 것을 특징으로 하는 상기 복합 부직포의 제조방법.The method of manufacturing a composite nonwoven fabric according to claim 9, wherein the thermoplastic polymer material is polypropylene. 제9항에 있어서, 상기 열압착은 온도 100~155℃, 압력 5000~13000톤/m2의 조건에서 수행되는 것을 특징으로 하는 상기 복합 부직포의 제조방법.10. The method of claim 9, wherein the thermocompression is performed at a temperature of 100 to 155 ° C and a pressure of 5000 to 13000 tons / m 2 .
KR1020110072168A 2011-07-20 2011-07-20 Nonwoven fabric complex using carbon nanotube and manufacturing method thereof KR101282061B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110072168A KR101282061B1 (en) 2011-07-20 2011-07-20 Nonwoven fabric complex using carbon nanotube and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110072168A KR101282061B1 (en) 2011-07-20 2011-07-20 Nonwoven fabric complex using carbon nanotube and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20130011193A KR20130011193A (en) 2013-01-30
KR101282061B1 true KR101282061B1 (en) 2013-07-05

Family

ID=47840202

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110072168A KR101282061B1 (en) 2011-07-20 2011-07-20 Nonwoven fabric complex using carbon nanotube and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR101282061B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110770387B (en) * 2017-09-28 2022-01-28 日本瑞翁株式会社 Sheet and manufacturing method thereof
KR101975118B1 (en) * 2017-11-30 2019-08-28 주식회사 한일타포린 cargo cover for pallet of air freight
CN111377116A (en) * 2018-12-29 2020-07-07 韩一 Cargo cover for aviation tray
KR102154308B1 (en) * 2019-07-12 2020-09-09 주식회사 메이스터 Functional filter media adhering apparatus for adhering functional filter media to fiber yarn
US10757988B1 (en) * 2020-04-07 2020-09-01 Molecular Rebar Design, Llc Personal protective equipment with functionalized nanotube compositions to control pathogens such as SARS CoV-2 (coronavirus)
EP3974045A1 (en) 2020-09-29 2022-03-30 Clustervibe Oü Element for air purification

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675680B1 (en) 2004-03-23 2007-01-29 이노필텍(주) Filtering medium including composite layer
KR100812388B1 (en) 2006-09-12 2008-03-11 한국생산기술연구원 Air-filter for removing hazardous gases and deordorizing, and method for preparing the same
US20080264259A1 (en) * 2007-04-26 2008-10-30 Leung Wallace W Nanofiber filter facemasks and cabin filters
KR20110023683A (en) * 2009-08-31 2011-03-08 서울대학교산학협력단 Functional materials-introduced protective fabric for adsorption-removal of chemical warfare agents and method of preparing the same and protective clothes for adsorption-removal of chemical warfare agents using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675680B1 (en) 2004-03-23 2007-01-29 이노필텍(주) Filtering medium including composite layer
KR100812388B1 (en) 2006-09-12 2008-03-11 한국생산기술연구원 Air-filter for removing hazardous gases and deordorizing, and method for preparing the same
US20080264259A1 (en) * 2007-04-26 2008-10-30 Leung Wallace W Nanofiber filter facemasks and cabin filters
KR20110023683A (en) * 2009-08-31 2011-03-08 서울대학교산학협력단 Functional materials-introduced protective fabric for adsorption-removal of chemical warfare agents and method of preparing the same and protective clothes for adsorption-removal of chemical warfare agents using the same

Also Published As

Publication number Publication date
KR20130011193A (en) 2013-01-30

Similar Documents

Publication Publication Date Title
KR101282061B1 (en) Nonwoven fabric complex using carbon nanotube and manufacturing method thereof
Xiao et al. Graphene/nanofiber aerogels: performance regulation towards multiple applications in dye adsorption and oil/water separation
Liu et al. Macroscopic carbon nanotube assemblies: preparation, properties, and potential applications
US7931838B2 (en) Method for making oriented single-walled carbon nanotube/polymer nano-composite membranes
Zeng et al. Robust lignin-based aerogel filters: High-efficiency capture of ultrafine airborne particulates and the mechanism
Arif et al. Tunable morphology and its influence on electrical, thermal and mechanical properties of carbon nanostructure-buckypaper
JP5428857B2 (en) Deodorizing fiber structure and air filter
WO2020134836A1 (en) Multi-dimensional hydrophilic-hydrophobic composite nanofiber membrane and preparation method thereof
CN110770387B (en) Sheet and manufacturing method thereof
HwaáLee et al. Highly entangled carbon nanotube scaffolds by self-organized aqueous droplets
KR102129457B1 (en) Gas adsorbent, gas adsorbing sheet, and air filter
Wen et al. A paper-making transformation: From cellulose-based superwetting paper to biomimetic multifunctional inorganic paper
JP2009061445A (en) Gas adsorbing sheet
US10717051B2 (en) Carbon nanotube membrane systems and methods of synthesis
Xiong et al. Preparation and thermal properties of soluble poly (phthalazinone ether sulfone ketone) composites reinforced with multi-walled carbon nanotube buckypaper
Shang et al. Bioelectret poly (lactic acid) membranes with simultaneously enhanced physical interception and electrostatic adsorption of airborne PM0. 3
Park et al. Carbon nanotube-poly (vinyl alcohol) hybrid aerogels: Improvements in the surface area and structural stability by internal morphology control
WO2020067203A1 (en) Electromagnetic wave absorbing sheet and method for manufacturing same
Wang et al. Integration of natural clay into cellulose membrane for efficient CO2/N2 separation
JP2018167155A (en) Adsorbent
JP2019074751A (en) Sound absorbing material
WO2020244611A1 (en) Automobile air conditioner filter material having voc filtering function and process therefor
Swain et al. Synergistic influence of anisotropic 3D carbon nanotube-graphene hybrid mixed matrix membranes on stability and gas permeation characteristics
JP5564220B2 (en) Composite structure including three-dimensional structure and filter using the structure
Zhu et al. Filter‐through method of making highly efficient polymer‐clay nanocomposite membranes

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160616

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170607

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180619

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190626

Year of fee payment: 7