JP2019074751A - Sound absorbing material - Google Patents

Sound absorbing material Download PDF

Info

Publication number
JP2019074751A
JP2019074751A JP2018236378A JP2018236378A JP2019074751A JP 2019074751 A JP2019074751 A JP 2019074751A JP 2018236378 A JP2018236378 A JP 2018236378A JP 2018236378 A JP2018236378 A JP 2018236378A JP 2019074751 A JP2019074751 A JP 2019074751A
Authority
JP
Japan
Prior art keywords
absorbing material
sound absorbing
nanofibers
fibers
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018236378A
Other languages
Japanese (ja)
Other versions
JP2019074751A5 (en
Inventor
大詞 桂
Hiroshi Katsura
大詞 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2018236378A priority Critical patent/JP2019074751A/en
Publication of JP2019074751A publication Critical patent/JP2019074751A/en
Publication of JP2019074751A5 publication Critical patent/JP2019074751A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Nonwoven Fabrics (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

To provide a sound absorbing material having an excellent deformation restoring property and an excellent shape maintaining property, and achieving sufficient sound absorbency in a wide frequency range from a low frequency to a high frequency, particularly in an intermediate frequency range.SOLUTION: The sound absorbing material is in a nonwoven fabric form including microfibers 1 having a micro-order fiber diameter and nanofibers 2a having a nano-order fiber diameter, the nano fibers having a porosity of 92 to 99.9%.SELECTED DRAWING: Figure 1

Description

本発明は吸音材に関する。   The present invention relates to a sound absorbing material.

自動車、列車などの車両には、軽量化と静粛性との両立が求められており、静粛性を確保するために、車両の壁、床および天井に貼付して、車外の音を吸収する吸音材が使用されている。車両、特に自動車の吸音材には低周波数から高周波数までの広い周波数域で吸音することが要求されている。吸音材は、特性上、低中周波数域の吸音には音の入射方向に対してある程度の厚みが必要であるが、車室内をより広く確保するためには、薄さと低中周波数域の吸音性を両立する必要がある。   Vehicles such as automobiles and trains are required to have both weight reduction and quietness, and in order to ensure quietness, sound absorption is applied to the walls, floor and ceiling of the vehicle to absorb sounds outside the vehicle Wood is used. The sound absorbing materials of vehicles, particularly automobiles, are required to absorb sound in a wide frequency range from low frequencies to high frequencies. Due to the characteristics of the sound absorbing material, sound absorption in the low and middle frequency regions requires a certain thickness in the sound incident direction, but in order to secure a wider cabin, the sound absorption in the low and middle frequency regions It is necessary to balance the sex.

吸音材として、シンサレート(3M社製)などの有機繊維のみからなる不織布が知られている。しかしながら、このような吸音材は、厚みを比較的薄くできるものの、十分な吸音性を達成することはできなかった。   As a sound absorbing material, a non-woven fabric made only of organic fibers such as Thinsulate (manufactured by 3M) is known. However, although such a sound absorbing material can be made relatively thin, sufficient sound absorbing properties can not be achieved.

一方、天然繊維および極太化繊を含む繊維ウェブにポリウレタン樹脂を含浸発泡させた弾性マット体を含む、軽量性等に優れた内装基材が開示されている(特許文献1)。また、強化繊維からなるシート状の強化繊維基材の少なくとも片面に、短繊維からなる不織布が積層された、賦形性等に優れた複合強化繊維基材が開示されている(特許文献2)。さらに、熱可塑性の繊維を主たる構成成分とする不織布を中芯材として、その上層及び下層として微細径セルロース繊維を主たる構成成分とする多孔性繊維層を備えた、シート強度性等に優れた3層積層シートが開示されている(特許文献3)。   On the other hand, there has been disclosed an interior base material excellent in lightness and the like, including an elastic mat body obtained by impregnating and foaming a polyurethane resin in a fiber web containing natural fibers and extra-thick synthetic fibers (Patent Document 1). In addition, a composite reinforcing fiber base excellent in formability and the like is disclosed in which a non-woven fabric consisting of short fibers is laminated on at least one side of a sheet-like reinforcing fiber base consisting of reinforcing fibers (Patent Document 2) . Furthermore, a nonwoven fabric mainly composed of thermoplastic fibers as a central core material, and a porous fiber layer mainly composed of fine diameter cellulose fibers as an upper layer and a lower layer thereof, excellent in sheet strength and the like 3 A layer laminated sheet is disclosed (Patent Document 3).

特開2002−172720号公報Japanese Patent Application Laid-Open No. 2002-172720 特開2010−155460号公報Unexamined-Japanese-Patent No. 2010-155460 特開2013−099940号公報JP, 2013-099940, A

本発明の発明者等は、以下のことを見い出した。
(1)上記した従来の内装基材、複合強化繊維基材および3層積層シートを吸音材として使用しても、十分な吸音性は得られなかった。
(2)ナノオーダーの繊維径を有するナノ繊維を例えば90%以上の高空隙率で不織布化すると、吸音性能が劇的に改善した。特に100nm以下の繊維径を有するナノ繊維を用いると断熱性能も劇的に改善した。しかしながら、ナノ繊維のみからなる高空隙率の不織布は、弾性が過度に低いため、変形後の復元が困難であったり、形状の維持が困難であったりした。その結果、取り扱いが困難である、という新たな課題が生じた。
(3)そこでガラス繊維などの無機繊維のみからなる不織布を吸音材として使用すると、十分な吸音性は得られなかった。このため、無機繊維のみからなる不織布において、無機繊維の繊維径を低減すると、低周波数から高周波数までの広い周波数域で吸音性が向上するが、中周波数域(1kHz周辺)において、共振により、吸音性が低下し、十分な吸音性が得られない、という新たな課題が生じた。
The inventors of the present invention have found the following.
(1) Even if the above-mentioned conventional interior base material, composite reinforcing fiber base material and three-layer laminated sheet are used as a sound absorbing material, sufficient sound absorbing properties can not be obtained.
(2) When the nanofibers having a fiber diameter of nano order are made into a non-woven fabric with a high porosity of, for example, 90% or more, the sound absorbing performance is dramatically improved. The thermal insulation performance was also dramatically improved, especially when using nanofibers with a fiber diameter of 100 nm or less. However, since the non-woven fabric having high porosity only consisting of nanofibers has too low elasticity, recovery after deformation is difficult or maintenance of the shape is difficult. As a result, new problems have arisen that handling is difficult.
(3) If a non-woven fabric consisting only of inorganic fibers such as glass fibers is used as a sound absorbing material, sufficient sound absorbing properties can not be obtained. For this reason, in a non-woven fabric consisting only of inorganic fibers, if the fiber diameter of the inorganic fibers is reduced, the sound absorption improves in a wide frequency range from low frequency to high frequency, but in the middle frequency range (around 1 kHz) due to resonance. A new problem arises in that the sound absorbing property is lowered and sufficient sound absorbing property can not be obtained.

本発明は、変形復元性および形状維持性に優れるとともに、低周波数から高周波数までの広い周波数域、特に中周波数域(500〜1600Hz)において、十分な吸音性を達成する吸音材を提供することを目的とする。   The present invention provides a sound absorbing material which is excellent in deformation restorability and shape maintainability and achieves sufficient sound absorption in a wide frequency range from low frequency to high frequency, particularly in a middle frequency range (500 to 1600 Hz). With the goal.

本発明は、マイクロオーダーの繊維径を有するマイクロ繊維およびナノオーダーの繊維径を有するナノ繊維を含み、不織布形態を有する吸音材であって、
前記ナノ繊維が92〜99.9%の空隙率を有する、吸音材に関する。
The present invention is a sound absorbing material having a non-woven form, comprising microfibers having a fiber diameter of micro order and nanofibers having a fiber diameter of nano order,
The present invention relates to a sound absorbing material, wherein the nanofibers have a porosity of 92 to 99.9%.

本発明の吸音材は、低周波数から高周波数までの広い周波数域、特に中周波数域において、十分な吸音性を達成する。
本発明の吸音材はまた、変形復元性および形状維持性に優れている。
本発明の吸音材はさらに、優れた断熱性を有する。
The sound absorbing material of the present invention achieves sufficient sound absorbing properties in a wide frequency range from low frequencies to high frequencies, particularly in the middle frequency range.
The sound absorbing material of the present invention is also excellent in deformation recovery and shape maintenance.
The sound absorbing material of the present invention further has excellent thermal insulation.

ナノ繊維付着型吸音材内部の拡大模式図である。It is an expansion schematic diagram inside a nanofiber attached type sound absorbing material. ナノ繊維絡合型吸音材内部の拡大模式図である。It is an expansion schematic diagram inside a nano fiber entangled type sound absorbing material.

[吸音材]
本発明の吸音材は、マイクロオーダーの繊維径を有するマイクロ繊維およびナノオーダーの繊維径を有するナノ繊維を含み、不織布形態を有している。不織布とは、複数の繊維を互いに絡み合わせたまたは結合させたランダム配向のシート状繊維群のことである。
[Sound absorbing material]
The sound absorbing material of the present invention comprises a microfiber having a micro-order fiber diameter and a nano fiber having a nano-order fiber diameter, and has a non-woven form. The non-woven fabric is a group of randomly oriented sheet-like fibers in which a plurality of fibers are intertwined or bonded to each other.

本発明の吸音材は、マイクロ繊維が不織布形態を有しながら吸音材の不織布形態を形成し、すなわち、マイクロ繊維が形成する不織布の形態が吸音材の不織布形態、特に外観を規定する。   In the sound absorbing material of the present invention, the micro fibers form the non-woven fabric of the sound absorbing material while having the non-woven fabric form, that is, the non-woven fabric formed by the micro fibers defines the non-woven fabric of the sound absorbing material, in particular the appearance.

本発明においては、マイクロ繊維不織布の空隙部内で、ナノ繊維が不織布形態を有しながら存在しており、例えば、マイクロ繊維不織布(吸音材)内部を観察したとき、当該不織布内の空隙部を多数のナノ繊維が分割し、結果として当該空隙部内でナノ繊維不織布が形成されている。ナノ繊維が不織布形態を有しながら存在するとは、マイクロ繊維不織布(吸音材)内部において、複数のナノ繊維が任意(ランダム)の方向で空隙部を横切ったり、かつ/または空隙部に向かって突出したりして、空隙部を分割し、ナノ繊維がランダムに配向しているという意味である。このように、マイクロ繊維不織布の空隙部内で、ナノ繊維が不織布形態を有するため、本発明の吸音材は、変形復元性および形状維持性に優れるとともに、十分な吸音性が得られる。吸音メカニズムの詳細は明らかではないが、以下のメカニズムに基づくものと考えられる。マイクロ繊維不織布の空隙部内における不織布形態のナノ繊維が、気体間の粘性損失および母材(繊維)と母材(繊維)または気体との間の摩擦損失に基づいて、音の振動エネルギーの熱エネルギーへの変換を促進する。このため、低周波数から高周波数までの広い周波数域、特に中周波数域において、十分な吸音性を達成できるものと考えられる。   In the present invention, the nanofibers are present in the form of a nonwoven fabric in the voids of the microfiber non-woven fabric, and for example, when the inside of the microfiber non-woven fabric (sound absorbing material) is observed, the voids in the non-woven fabric are numerous. The nanofibers are divided, and as a result, a nanofiber nonwoven fabric is formed in the void. In the microfiber non-woven fabric (sound absorbing material), the presence of the nano-fiber in the non-woven fabric form means that a plurality of nano-fibers cross the void in an arbitrary (random) direction and / or project toward the void In other words, it means that the voids are divided and the nanofibers are randomly oriented. As described above, since the nano fiber is in the form of a non-woven fabric in the void portion of the microfiber non-woven fabric, the sound absorbing material of the present invention is excellent in deformation / restoration and shape maintenance, and sufficient sound absorption can be obtained. Although the details of the sound absorption mechanism are not clear, it is considered to be based on the following mechanism. Thermal energy of vibrational energy of sound based on viscosity loss between gases and friction loss between matrix (fibers) and matrix (fibers) or gas within the void portion of the microfiber non-woven fabric. Promote conversion to Therefore, it is considered that sufficient sound absorption can be achieved in a wide frequency range from low frequency to high frequency, particularly in the middle frequency range.

本発明の吸音材は、ナノ繊維の繊維長に応じて、ナノ繊維の存在形態が異なる吸音材、例えば、ナノ繊維付着型吸音材、ナノ繊維絡合型吸音材およびこれらの複合型吸音材を包含する。吸音性のさらなる向上の観点から好ましい吸音材はナノ繊維付着型吸音材である。   The sound absorbing material of the present invention is a sound absorbing material in which the existence form of the nano fiber differs according to the fiber length of the nano fiber, for example, a nano fiber attached type sound absorbing material, a nano fiber entangled sound absorbing material and a composite type sound absorbing material Include. A preferred sound absorbing material from the viewpoint of further improving the sound absorbing property is a nanofiber attached sound absorbing material.

ナノ繊維付着型吸音材は、マイクロ繊維不織布の空隙部において、マイクロ繊維の表面に相対的に短いナノ繊維を付着させることにより、マイクロ繊維不織布の空隙部内にナノ繊維不織布を形成させた吸音材である。詳しくは、ナノ繊維付着型吸音材においては、図1に示すように、マイクロ繊維1の不織布内の空隙部で、複数のナノ繊維2aは互いに接触しながら、マイクロ繊維1の表面に付着している。その結果、複数のナノ繊維2aは任意(ランダム)の方向で空隙部を横切ったり、かつ/または前記空隙部に向かって突出し、不織布形態を有している。ナノ繊維付着型吸音材においては、上記のように、複数のナノ繊維2aは互いに接触しながら、マイクロ繊維1の表面に付着しているため、不織布形態を有するマイクロ繊維の表面において、ナノ繊維が不織布形態で積層されている、ともいうことができる。このとき、マイクロ繊維表面のナノ繊維不織布はマイクロ繊維不織布の全体にわたって形成されている。   The nano-fiber-adhesion type sound absorbing material is a sound-absorbing material in which nano-fiber non-woven fabric is formed in the void portion of the micro-fiber non-woven fabric by depositing relatively short nano fibers on the surface of the micro-fiber is there. More specifically, in the nanofiber attached type sound absorbing material, as shown in FIG. 1, the plurality of nanofibers 2a adhere to the surface of the microfiber 1 while being in contact with each other in the void in the non-woven fabric of the microfiber 1 There is. As a result, the plurality of nanofibers 2a cross the cavity in an arbitrary (random) direction and / or protrude toward the cavity, and have a non-woven form. In the nanofiber attached type sound absorbing material, as described above, since the plurality of nanofibers 2a are attached to the surface of the microfiber 1 while contacting each other, the nanofibers are formed on the surface of the microfiber having the non-woven fabric form. It can also be said that it is laminated in the form of non-woven fabric. At this time, the nano fiber non-woven fabric on the micro fiber surface is formed over the entire micro fiber non-woven fabric.

ナノ繊維絡合型吸音材は、マイクロ繊維不織布の製造に際し、マイクロ繊維とともに、当該マイクロ繊維と同程度の相対的に長いナノ繊維を用いて、互いに機械的に絡み合わせることにより、マイクロ繊維不織布の空隙部内にナノ繊維不織布を形成させた吸音材である。詳しくはナノ繊維絡合型吸音材においては、図2に示すように、マイクロ繊維1の不織布内の空隙部で、複数のナノ繊維2bは複数のマイクロ繊維1とともに互いに機械的に絡み合いながら、混然一体となって不織布を形成する。その結果、複数のナノ繊維2bは任意(ランダム)の方向で前記空隙部を横切ったり、かつ/または前記空隙部に向かって突出し、不織布形態を有している。ナノ繊維絡合型吸音材においては、上記のように、複数のナノ繊維2bは複数のマイクロ繊維1とともに互いに機械的に絡み合いながら、混然一体となって不織布を形成するため、ナノ繊維不織布の空隙部内で、マイクロ繊維が不織布形態を有している、ともいうことができる。このとき、ナノ繊維もマイクロ繊維も吸音材の全体としてはじめて不織布の形態をなしている。   The nano fiber entangled type sound absorbing material is a micro fiber non-woven fabric by using a relatively long nano fiber similar to the micro fiber together with the micro fiber in the production of the micro fiber non-woven fabric by mechanically intertwining each other. It is a sound absorbing material in which a nanofiber non-woven fabric is formed in the void. More specifically, in the nano fiber entangled type sound absorbing material, as shown in FIG. 2, the plurality of nano fibers 2 b are mixed together with the plurality of micro fibers 1 mechanically in the voids in the non-woven fabric of the micro fibers 1. However, they integrally form a non-woven fabric. As a result, the plurality of nanofibers 2 b cross the cavity in an arbitrary (random) direction and / or protrude toward the cavity, and have a non-woven form. In the nano fiber entangled type sound absorbing material, as described above, since the plurality of nano fibers 2 b are mechanically entangled with each other with the plurality of micro fibers 1 to form a non-woven fabric in a mixed and integrated manner, It can also be said that within the void, the microfibers have a non-woven form. At this time, neither the nano fiber nor the micro fiber is in the form of a non-woven fabric as the whole of the sound absorbing material.

本発明の吸音材(特記しない限り、ナノ繊維付着型吸音材およびナノ繊維絡合型吸音材を包含する)において、ナノ繊維の空隙率は92〜99.9%であり、吸音性のさらなる向上の観点から、好ましくは95〜99.9%、より好ましくは97〜99%である。ナノ繊維の空隙率が小さすぎると、形成されるナノ繊維不織布の量が多すぎて、吸音材の通気抵抗が上昇し、吸音材に入射した音波が吸音材表面で反射してしまい吸音材内部の空気の振動が十分に行われないため、吸音性が低下する。ナノ繊維の空隙率が大きすぎると、形成されるナノ繊維不織布の量が少なすぎて、粘性損失および摩擦損失に基づく熱エネルギーへの変換が十分に行われないため、吸音性が低下する。   In the sound absorbing material of the present invention (unless otherwise specified, including the nanofiber attached sound absorbing material and the nanofiber intertwined sound absorbing material), the porosity of the nanofibers is 92 to 99.9%, and the sound absorbing property is further improved Preferably, it is 95 to 99.9%, more preferably 97 to 99%. If the porosity of the nano fiber is too small, the amount of the nano fiber non-woven fabric formed is too large, the air flow resistance of the sound absorbing material is increased, and the sound wave incident on the sound absorbing material is reflected on the surface of the sound absorbing material. Since the air does not vibrate sufficiently, the sound absorption is reduced. When the porosity of the nano fiber is too large, the amount of the nano fiber non-woven fabric formed is too small, and the conversion into thermal energy based on the viscosity loss and the friction loss is not sufficiently performed, so that the sound absorption is reduced.

ナノ繊維の空隙率は小さいほど、ナノ繊維の量は多いことを示す。ナノ繊維の空隙率の詳しい算出方法は後述する通りである。   The smaller the porosity of the nanofibers, the greater the amount of nanofibers. The detailed calculation method of the porosity of a nano fiber is as mentioned later.

ナノ繊維の平均繊維径は通常、1〜900nmであり、吸音性のさらなる向上の観点から、好ましくは1〜800nm、より好ましくは1〜100nmである。本発明において使用されるマイクロ繊維の平均繊維径と前記ナノ繊維の平均繊維径との差は通常、900nm以上であるため、吸音材内部の顕微鏡による観察により、マイクロ繊維とナノ繊維とはその径により明瞭に区別することができる。   The average fiber diameter of the nanofibers is usually 1 to 900 nm, and preferably 1 to 800 nm, more preferably 1 to 100 nm, from the viewpoint of further improvement of sound absorption. Since the difference between the average fiber diameter of the microfibers used in the present invention and the average fiber diameter of the nanofibers is usually 900 nm or more, the diameters of the microfibers and the nanofibers are observed by a microscope with a sound absorbing material inside Can be clearly distinguished.

ナノ繊維の平均繊維径は、吸音材内部の顕微鏡写真において任意の100本のナノ繊維を選択し、それらの測定値を平均して得られた値を用いている。   The average fiber diameter of the nano fiber is a value obtained by selecting arbitrary 100 nano fibers in the micrograph of the inside of the sound absorbing material and averaging their measured values.

ナノ繊維の平均繊維長は、ナノ繊維付着型吸音材の場合、通常0.1〜30μmであり、好ましくは0.5〜10μm、より好ましくは2〜8μm、さらに好ましくは2〜5μmである。ナノ繊維絡合型吸音材におけるナノ繊維の平均繊維長は、通常2〜200mmであり、好ましくは5〜150mm、より好ましくは30〜150mm、さらに好ましくは30〜100mmである。   The average fiber length of the nanofibers is usually 0.1 to 30 μm, preferably 0.5 to 10 μm, more preferably 2 to 8 μm, and still more preferably 2 to 5 μm in the case of a nanofiber attached sound absorbing material. The average fiber length of the nanofibers in the nanofiber intertwined sound absorbing material is usually 2 to 200 mm, preferably 5 to 150 mm, more preferably 30 to 150 mm, still more preferably 30 to 100 mm.

ナノ繊維の平均繊維長は、吸音材内部の顕微鏡写真において任意の10本のナノ繊維を選択し、それらの測定値を平均して得られた値を用いている。   The average fiber length of the nano fiber is a value obtained by selecting arbitrary 10 nano fibers in the micrograph of the inside of the sound absorbing material and averaging their measured values.

ナノ繊維は、無機繊維、有機繊維およびこれらの混合繊維からなる群から選択される。ナノ繊維としての無機繊維としては、例えば、ガラス繊維、ステンレス繊維および炭素繊維が挙げられる。ナノ繊維としての有機繊維としては、例えば、セルロース繊維、ポリエステル繊維、ポリアミド繊維、ポリアクリル繊維およびポリオレフィン繊維が挙げられる。ポリエステル繊維としては、例えば、ポリエチレンテレフタレート(PET)繊維、ポリエチレンナフタレート(PEN)、ポリトリブチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)が挙げられる。ポリオレフィン繊維として、例えば、ポリエチレン繊維、ポリプロピレン繊維が挙げられる。好ましいナノ繊維は有機繊維である。より好ましいナノ繊維は、セルロース繊維、ポリオレフィン繊維(特にポリプロピレン繊維)またはこれらの混合繊維である。吸音材においてナノ繊維としての有機繊維(例えば、セルロース繊維、ポリオレフィン繊維)は、後述するマイクロ繊維としての無機繊維および/または有機繊維と水素結合により比較的強固に付着するため、吸音材からナノ繊維が脱落することはない。   Nanofibers are selected from the group consisting of inorganic fibers, organic fibers and their mixed fibers. As an inorganic fiber as a nano fiber, glass fiber, stainless steel fiber, and carbon fiber are mentioned, for example. Examples of organic fibers as nano fibers include cellulose fibers, polyester fibers, polyamide fibers, polyacrylic fibers and polyolefin fibers. Examples of polyester fibers include polyethylene terephthalate (PET) fibers, polyethylene naphthalate (PEN), polytributylene terephthalate (PTT), and polybutylene terephthalate (PBT). Examples of polyolefin fibers include polyethylene fibers and polypropylene fibers. Preferred nanofibers are organic fibers. More preferred nanofibers are cellulose fibers, polyolefin fibers (especially polypropylene fibers) or mixed fibers thereof. In the sound absorbing material, organic fibers as nanofibers (for example, cellulose fibers and polyolefin fibers) adhere relatively firmly to the inorganic fibers and / or organic fibers as micro fibers described later due to hydrogen bonding, so the sound absorbing material to nanofibers Will not fall out.

本発明の吸音材において、マイクロ繊維の空隙率は、吸音材の通気抵抗の低下による吸音性のさらなる向上ならびに変形復元性および形状維持性のさらなる向上の観点から、好ましくは88〜99.9%、より好ましくは90〜99.9%、さらに好ましくは95〜99.5%である。   In the sound absorbing material of the present invention, the porosity of the microfibers is preferably 88 to 99.9% from the viewpoint of further improving the sound absorbing property by reducing the air flow resistance of the sound absorbing material and further improving the deformation restorability and the shape maintaining property. More preferably, it is 90 to 99.9%, and more preferably 95 to 99.5%.

マイクロ繊維の空隙率は、吸音材がナノ繊維を含まないものと仮定したときの吸音材中の空気の体積含有率のことである。マイクロ繊維の空隙率が小さいほど、マイクロ繊維の量は多いことを示す。マイクロ繊維の空隙率の詳しい算出方法は後述する通りである。   The porosity of the microfibers refers to the volume content of air in the sound absorbing material, assuming that the sound absorbing material does not contain nanofibers. The smaller the porosity of the microfibers, the greater the amount of microfibers. The detailed calculation method of the porosity of a microfiber is as mentioned later.

本発明において、マイクロ繊維の平均繊維径は通常、1〜180μmであり、吸音性のさらなる向上の観点から好ましくは1〜150μm、より好ましくは1〜100μm、さらに好ましくは1〜20μmである。   In the present invention, the average fiber diameter of the microfibers is usually 1 to 180 μm, preferably 1 to 150 μm, more preferably 1 to 100 μm, still more preferably 1 to 20 μm from the viewpoint of further improvement of sound absorption.

マイクロ繊維の平均繊維径は、吸音材内部の顕微鏡写真において任意の100本のマイクロ繊維を選択し、それらの測定値を平均して得られた値を用いている。   The average fiber diameter of the microfibers is a value obtained by selecting arbitrary 100 microfibers in a microphotograph of the inside of the sound absorbing material and averaging the measured values thereof.

マイクロ繊維の平均繊維長は、通常2〜1000mmであり、好ましくは20〜200mmである。   The average fiber length of the microfibers is usually 2 to 1000 mm, preferably 20 to 200 mm.

マイクロ繊維の平均繊維長は、吸音材内部の顕微鏡写真において任意の10本のマイクロ繊維を選択し、それらの測定値を平均して得られた値を用いている。   The average fiber length of the microfibers is a value obtained by selecting arbitrary 10 microfibers in a microphotograph of the inside of the sound absorbing material and averaging the measured values thereof.

マイクロ繊維は無機繊維、有機繊維およびこれらの混合繊維からなる群から選択される。マイクロ繊維としての無機繊維としては、例えば、ガラス繊維、ステンレス繊維および炭素繊維が挙げられる。マイクロ繊維としての有機繊維としては、例えば、ポリエステル繊維、ポリアミド繊維、ポリアクリル繊維およびポリオレフィン繊維が挙げられる。ポリエステル繊維としては、例えば、ポリエチレンテレフタレート(PET)繊維、ポリエチレンナフタレート(PEN)、ポリトリブチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)が挙げられる。ポリオレフィン繊維として、例えば、ポリエチレン繊維、ポリプロピレン繊維が挙げられる。好ましいマイクロ繊維は、ガラス繊維、ステンレス繊維、ポリエステル繊維(特にPET繊維)またはこれらの混合繊維である。   The microfibers are selected from the group consisting of inorganic fibers, organic fibers and their mixed fibers. Examples of inorganic fibers as microfibers include glass fibers, stainless steel fibers and carbon fibers. Organic fibers as microfibers include, for example, polyester fibers, polyamide fibers, polyacrylic fibers and polyolefin fibers. Examples of polyester fibers include polyethylene terephthalate (PET) fibers, polyethylene naphthalate (PEN), polytributylene terephthalate (PTT), and polybutylene terephthalate (PBT). Examples of polyolefin fibers include polyethylene fibers and polypropylene fibers. Preferred microfibers are glass fibers, stainless steel fibers, polyester fibers (especially PET fibers) or mixed fibers thereof.

吸音材におけるナノ繊維の重量比率(ナノ繊維重量/(マイクロ繊維重量+ナノ繊維重量))は通常、0.3〜90%であり、吸音性のさらなる向上の観点から好ましくは5〜75%である。   The weight ratio of nanofibers in the sound absorbing material (nanofiber weight / (microfiber weight + nanofiber weight)) is usually 0.3 to 90%, preferably 5 to 75% from the viewpoint of further improvement of sound absorption. is there.

本発明の吸音材の空隙率は通常、85〜99.8%であり、吸音性のさらなる向上の観点から好ましくは90〜99.5%、より好ましくは95〜99%である。   The porosity of the sound absorbing material of the present invention is usually 85 to 99.8%, preferably 90 to 99.5%, more preferably 95 to 99% from the viewpoint of further improvement of the sound absorbing property.

吸音材の空隙率は、吸音材中の空気の体積含有率のことである。吸音材の空隙率が小さいほど、吸音材を構成するマイクロ繊維およびナノ繊維の量が多いことを示す。吸音材の空隙率の詳しい算出方法は後述する通りである。   The porosity of the sound absorbing material is the volume content of air in the sound absorbing material. The smaller the porosity of the sound absorbing material, the greater the amount of microfibers and nano fibers constituting the sound absorbing material. The detailed calculation method of the porosity of a sound absorbing material is as mentioned later.

[吸音材の製造方法]
(ナノ繊維付着型吸音材の製造方法)
ナノ繊維付着型吸音材は、例えば、マイクロ繊維不織布を一旦、製造した後で、当該マイクロ繊維不織布に、比較的短いナノ繊維の分散液を含浸させ、乾燥することにより得ることができる。
[Method of manufacturing sound absorbing material]
(Manufacturing method of nanofiber attached type sound absorbing material)
The nanofiber attached sound absorbing material can be obtained, for example, by once making a microfiber non-woven fabric, impregnating the micro fiber non-woven fabric with a dispersion of relatively short nanofibers and drying.

マイクロ繊維不織布はあらゆる方法で製造されてもよく、例えば、いわゆるニードルパンチ法、乾式法、湿式法、スパンボンド法、メルトブロー法、サーマルボンド法、ケミカルボンド法、スパンレース法、ステッチボンド法、スチームジェット法により製造されてよい。好ましい製造方法はニードルパンチ法である。   The microfiber non-woven fabric may be produced by any method, for example, so-called needle punch method, dry method, wet method, spun bond method, melt blow method, thermal bond method, chemical bond method, spun lace method, stitch bond method, steam It may be manufactured by the jet method. The preferred method of manufacture is the needle punch method.

ナノ繊維分散液は通常、水にナノ繊維が分散されているものが使用される。分散液中のナノ繊維濃度(固形分濃度)は、特に限定されず、通常は0.01〜8重量%であり、吸音性のさらなる向上の観点から、好ましくは0.05〜6重量%、より好ましくは0.08〜4重量%、さらに好ましくは1〜3重量%である。   Nanofiber dispersions are generally used in which nanofibers are dispersed in water. The concentration of nanofibers (solids concentration) in the dispersion is not particularly limited, and is usually 0.01 to 8% by weight, and preferably 0.05 to 6% by weight, from the viewpoint of further improvement of sound absorption. More preferably, it is 0.08 to 4% by weight, still more preferably 1 to 3% by weight.

分散液の使用量およびナノ繊維の含浸量は、上記したマイクロ繊維とナノ繊維との重量比率が達成されるような量であればよい。   The amount of dispersion used and the amount of impregnation of nanofibers may be such that the weight ratio of the above-mentioned microfibers to nanofibers is achieved.

乾燥方法は特に限定されないが、吸音性のさらなる向上の観点から、フリーズドライ法が好ましい。   The drying method is not particularly limited, but the freeze-drying method is preferable from the viewpoint of further improvement of the sound absorption.

(ナノ繊維絡合型吸音材の製造方法)
ナノ繊維絡合型吸音材は、例えば、マイクロ繊維およびナノ繊維の混合繊維を用いて不織布を製造し、ナノ繊維とマイクロ繊維とを機械的に絡み合わせることにより得ることができる。
(Manufacturing method of nano fiber entangled sound absorbing material)
The nano fiber entangled sound absorbing material can be obtained, for example, by producing a non-woven fabric using a mixture of micro fibers and nano fibers, and mechanically interlacing the nano fibers and the micro fibers.

マイクロ繊維およびナノ繊維の使用量は、上記したマイクロ繊維とナノ繊維との重量比率が達成されるような量であればよい。   The amount of microfibers and nanofibers used may be such that the weight ratio of microfibers to nanofibers described above is achieved.

不織布の製造方法は、マイクロ繊維およびナノ繊維を絡み合わせることができる方法であれば特に限定されず、吸音性のさらなる向上の観点から、ニードルパンチ法が好ましい。   The method for producing the non-woven fabric is not particularly limited as long as the method can entangle micro fibers and nano fibers, and from the viewpoint of further improvement of sound absorption, the needle punch method is preferable.

実施例中の物性値の測定法は次の通りである。   The measuring method of the physical-property value in an Example is as follows.

(a)空隙率
(a1)ナノ繊維付着型吸音材の空隙率
メトラー社製 電子天秤 AE160を使用し、複合処理前後の重量の測定を行い、素材の比重と試験片の体積から空隙率(サンプル材料中の空気の体積含有率)を算出した。複合処理前の不織布の重量をw1(g)、複合処理後の不織布の重量をw2(g)、マイクロ繊維の比重をc1(g/cm)、ナノ繊維の比重をc2(g/cm)、吸音率測定試験片の体積をv(cm)としたとき、マイクロ繊維の空隙率k1(%)、ナノ繊維の空隙率k2(%)および吸音材の空隙率Ka(%)は以下の式により算出される。
マイクロ繊維の空隙率k1(%)={1−w1/(c1×v)}×100
ナノ繊維の空隙率k2(%)={1−(w2−w1)/(c2×v×k1/100)}×100
吸音材の空隙率Ka(%)={(k1/100)×(k2/100)}×100
(A) Porosity (a1) Porosity of nanofiber attached type sound absorbing material The weight before and after the composite treatment is measured using an electronic balance AE160 manufactured by METTLER, and the porosity based on the specific gravity of the material and the volume of the test piece (sample The volume content of air in the material was calculated. The weight of the non-woven fabric before composite treatment is w1 (g), the weight of the non-woven fabric after composite treatment is w2 (g), the specific gravity of microfibers is c1 (g / cm 3 ), and the specific gravity of nanofibers is c2 (g / cm 3) When the volume of the test piece for measuring the sound absorption coefficient is v (cm 3 ), the porosity k1 (%) of the microfibers, the porosity k2 (%) of the nanofibers, and the porosity Ka (%) of the sound absorbing material are as follows It is calculated by the equation of
Micro fiber porosity k1 (%) = {1-w1 / (c1 x v)} x 100
Porosity of nano fiber k2 (%) = {1- (w2-w1) / (c2 x v x k1 / 100)} x 100
Porosity of sound absorbing material Ka (%) = {(k1 / 100) x (k2 / 100)} x 100

(a2)ナノ繊維絡合型吸音材の空隙率
複合処理前後の重量の測定を行う代わりに、使用されるマイクロ繊維の重量W3(g)およびナノ繊維の重量W4(g)の測定を行うこと、およびマイクロ繊維の空隙率k3(%)、ナノ繊維の空隙率k4(%)および吸音材の空隙率Kb(%)は以下の式により算出されること以外、上記付着型吸音材の空隙率の算出方法と同様の方法により、絡合型吸音材の空隙率を算出した)。
マイクロ繊維の空隙率k3(%)={1−w3/(c1×v)}×100
ナノ繊維の空隙率k4(%)={1−w4/(c2×v)}×100
吸音材の空隙率Kb(%)=(v−w3/c1−w4/c2)/v×100
(A2) Porosity of nano fiber entangled type sound absorbing material Instead of measuring the weight before and after the composite treatment, measure the weight W3 (g) of the microfiber used and the weight W4 (g) of the nano fiber And the porosity k3 (%) of the microfibers, the porosity k4 (%) of the nanofibers, and the porosity Kb (%) of the sound absorbing material, except that the porosity of the attached sound absorbing material is calculated by the following equation The porosity of the entangled sound absorbing material was calculated by the same method as the calculation method of
Porosity of microfibers k3 (%) = {1-w3 / (c1 x v)} x 100
Porosity of nano fiber k4 (%) = {1-w4 / (c2 x v)} x 100
Porosity of sound absorbing material Kb (%) = (v-w3 / c1-w4 / c2) / v × 100

(b)吸音率(α)
日本音響エンジニアリング社製 垂直入射吸音率測定システム WinZacMTXを使用し、測定周波数範囲 200〜4800Hz(1/3オクターブバンド)、内径40mmの音響管を用いた垂直入射吸音率測定(JIS A 1405−2、ISO 10534−2準拠)を行い、500〜1600Hzの平均垂直入射吸音率を算出した。マイクロ繊維の空隙率が同じ吸音材について、ナノ繊維を使用しなかったときの吸音率からの増加率を合わせて算出した。
(B) Sound absorption coefficient (α)
Japan Sound Engineering Co., Ltd. Vertical Incident Sound Absorption Coefficient Measurement System Using WinZacMTX, measurement of vertical incident sound absorption coefficient using an acoustic tube with a measurement frequency range of 200 to 4800 Hz (1/3 octave band) and an inner diameter of 40 mm (JIS A 1405-2, According to ISO 10534-2, the average normal incidence sound absorption coefficient of 500 to 1600 Hz was calculated. The increase rate from the sound absorption coefficient when not using the nano fiber was calculated together about the sound absorption material in which the void ratio of the micro fiber is the same.

(c)変形復元性
初期の厚みに対し90%の厚みになるまで荷重を印加して圧縮変形し、除荷後24時間放置した。その後、初期厚みに対し95%以上まで厚みが復元していれば○、それ以外を×とした。
(C) Deformation and restoration property A load was applied so as to obtain a thickness of 90% of the initial thickness, and compression deformation was performed, and left for 24 hours after unloading. Thereafter, if the thickness was restored to 95% or more with respect to the initial thickness, it was evaluated as 以外, and the others were evaluated as x.

(d)形状維持性
縦20mm×横70mm×厚みt=5mm(又は2.5mm×2枚)の短冊状試験片を作製した。試験片が水平になるように、治具にて、長手方向(70mm方向)の一方の側を20mm幅で保持および固定した。保持していない他方の側の自由端の撓みによる変位を測定した。詳しくは、試験片の自由端について、自由端の下表面の初期高さを0mmとしたとき、自由端の下端辺の高さ(厚み)方向の変位が5mm以内であれば○、それ以外を×とした。
(D) Shape Maintainability A strip-shaped test piece of 20 mm long × 70 mm wide × t = 5 mm (or 2.5 mm × 2 sheets) was prepared. A jig was used to hold and fix one side in the longitudinal direction (70 mm direction) with a width of 20 mm so that the test piece was horizontal. The displacement due to the deflection of the free end of the other side not held was measured. Specifically, for the free end of the test piece, if the initial height of the lower surface of the free end is 0 mm, if the displacement in the height (thickness) direction of the lower end of the free end is within 5 mm, ○, otherwise ×.

(e)熱伝導率
吸音材について、厚み方向の熱伝導率をJIS A1412−2第2部熱流計法に基づいて測定した。
(E) Thermal conductivity About the sound absorbing material, the thermal conductivity in the thickness direction was measured based on JIS A 1412-2 second part heat flow meter method.

以下、実施例/比較例における製造条件および評価結果は、基材の材種ごとに分けて表1〜表5に示した。   Hereinafter, the manufacturing conditions and the evaluation results in the examples / comparative examples are shown in Tables 1 to 5 separately for each material type of the base material.

実施例1〜4(ナノ繊維付着型吸音材)
実施例1〜4における製造条件はそれぞれ表1〜表4に示す。
表に示す材種、平均繊維径のマイクロ繊維を、空隙率99%、厚み5mmになるよう、ニードルパンチにてシート状に成形し、不織布(A)を得た。不織布(A)を直径40mm、厚み5mmの円柱状にくり抜いて円柱状不織布(B)を作製し、電子天秤にて重量を測定した。その後、表に示す材種のナノ繊維材(TEMPO触媒酸化法で作製した繊維径0.004〜0.02μmのセルロースナノファイバ)の分散液を純水で表に示す固形分濃度になるよう希釈し、分散液を得た。分散液を円柱状不織布(B)の空隙部に完全に含浸させた。分散液から取り出した円柱状不織布(B)を恒温恒湿槽(エスペック社製 PSL−2K)に投入し、0℃×5時間→−20℃×20時間の条件で凍結させ、分散液凍結円柱状不織布(C)を得た。分散液凍結円柱状不織布(C)を真空凍結乾燥機(東京理化器械社製 FDU−830)に投入し、72時間放置して完全に乾燥させ、基材となる円柱状不織布(B)の空隙部にナノ繊維の不織布が形成された吸音率測定試験片(D)を得た。吸音率測定試験片(D)の重量を測定しナノ繊維の不織布の空隙率を算出した。その後、走査型電子顕微鏡で観察し、基材となるマイクロ繊維の不織布の空隙部に、直径0.004〜0.4μmのナノ繊維またはナノ繊維群(凝集束)の不織布が形成されており、かつ、ナノ繊維の不織布は基材となる不織布の繊維表面に付着(接着)していることを確認した。吸音率測定試験片(D)を2枚重ねて吸音率を測定した結果、および、変形復元性を評価した結果を表に示した。また、吸音率測定試験片(D)と同様の製法で縦20mm×横70mm×厚みt=5mmの短冊状試験片を作製し、形状維持性を評価した結果を表に示した。
Examples 1 to 4 (nanofiber attached type sound absorbing material)
The manufacturing conditions in Examples 1 to 4 are shown in Tables 1 to 4, respectively.
The material types shown in the table and microfibers having an average fiber diameter were formed into a sheet by needle punching so as to have a porosity of 99% and a thickness of 5 mm, to obtain a nonwoven fabric (A). The non-woven fabric (A) was hollowed out in a cylindrical shape having a diameter of 40 mm and a thickness of 5 mm to produce a cylindrical non-woven fabric (B), and the weight was measured by an electronic balance. After that, dilute the dispersion of nano fiber material (cellulose nanofiber with a fiber diameter of 0.004 to 0.02 μm prepared by TEMPO catalytic oxidation method) shown in the table with pure water so that the solid concentration shown in the table can be obtained. The dispersion was obtained. The dispersion was completely impregnated in the voids of the cylindrical non-woven fabric (B). The cylindrical non-woven fabric (B) taken out of the dispersion is placed in a constant temperature and humidity chamber (PSL-2K manufactured by ESPEC Co., Ltd.) and frozen under the conditions of 0 ° C. × 5 hours → -20 ° C. × 20 hours, and the dispersion freeze circle A columnar non-woven fabric (C) was obtained. The dispersion frozen cylindrical non-woven fabric (C) is placed in a vacuum freeze dryer (FDU-830, manufactured by Tokyo Rika Kikai Co., Ltd.), allowed to stand for 72 hours for complete drying, and the voids of the cylindrical non-woven fabric (B) as a substrate The sound absorption coefficient measurement test piece (D) in which the nonwoven fabric of the nanofiber was formed in the part was obtained. The weight of the sound absorption coefficient measurement test piece (D) was measured to calculate the porosity of the nanofiber non-woven fabric. Thereafter, observation is made with a scanning electron microscope, and a nonwoven fabric of nanofibers or nanofibers (aggregated bundle) with a diameter of 0.004 to 0.4 μm is formed in the void portion of the nonwoven fabric of microfibers serving as a base material. And, it was confirmed that the non-woven fabric of nanofibers was adhered (adhered) to the surface of the non-woven fabric as the base material. The results of measuring the sound absorption coefficient by stacking two sound absorption coefficient measurement test pieces (D), and the results of evaluating the deformation recovery are shown in the table. Moreover, the strip-shaped test piece of length 20 mm x width 70 mm x thickness t = 5 mm was produced by the manufacturing method similar to a sound absorption coefficient measurement test piece (D), and the result of having evaluated shape maintenance was shown in the table.

実施例5〜7(ナノ繊維付着型吸音材)
実施例5〜7における製造条件は表2に示す。
平均繊維径約3〜4μmからなるグラスウール(マイクロ繊維)を、表に示す空隙率で厚み5mmになるよう、ニードルパンチにてシート状に成形し、不織布(E)を得た。不織布(E)を直径40mm、厚み5mmの円柱状にくり抜いて円柱状不織布(F)を作製し、電子天秤にて重量を測定した。その後、表に示す材種のナノ繊維材(TEMPO触媒酸化法で作製した繊維径0.004〜0.02μmのセルロースナノファイバ)の分散液を表に示す固形分濃度になるよう調整し分散液を得た。分散液を円柱状不織布(F)の空隙部に完全に含浸させた。分散液から取り出した円柱状不織布(F)を恒温恒湿槽(エスペック社製 PSL−2K)に投入し、0℃×5時間→−20℃×20時間の条件で凍結させ、分散液凍結円柱状不織布(G)を得た。分散液凍結円柱状不織布(G)を真空凍結乾燥機(東京理化器械社製 FDU−830)に投入し、72時間放置して完全に乾燥させ、基材となる円柱状不織布(F)の空隙部にナノ繊維の不織布が形成された吸音率測定試験片(H)を得た。吸音率測定試験片(H)の重量を測定しナノ繊維の不織布の空隙率を算出した。その後、走査型電子顕微鏡で観察し、基材となる不織布の空隙部に、直径0.004〜0.4μmのナノ繊維またはナノ繊維群(凝集束)の不織布が形成されており、かつ、ナノ繊維の不織布は基材となる不織布の繊維に付着(接着)していることを確認した。吸音率測定試験片(H)を2枚重ねて吸音率を測定した結果、および、変形復元性を評価した結果を表に示した。また、吸音率測定試験片(H)と同様の製法で縦20mm×横70mm×厚みt=5mmの短冊状試験片を作製し、形状維持性を評価した結果を表に示した。
Examples 5 to 7 (nanofiber attached type sound absorbing material)
The production conditions in Examples 5 to 7 are shown in Table 2.
Glass wool (microfibers) having an average fiber diameter of about 3 to 4 μm was formed into a sheet by needle punching so as to have a thickness of 5 mm at the porosity shown in the table, to obtain a nonwoven fabric (E). The non-woven fabric (E) was cut out into a cylindrical shape having a diameter of 40 mm and a thickness of 5 mm to produce a cylindrical non-woven fabric (F), and the weight was measured by an electronic balance. Thereafter, the dispersion of the nano-fiber material (cellulose nanofiber having a fiber diameter of 0.004 to 0.02 μm prepared by TEMPO catalytic oxidation method) shown in the table is adjusted to have the solid concentration shown in the table, and the dispersion is I got The dispersion was completely impregnated in the voids of the cylindrical non-woven fabric (F). The cylindrical non-woven fabric (F) taken out of the dispersion is placed in a constant temperature and humidity chamber (PSL-2K manufactured by ESPEC Co., Ltd.) and frozen under the conditions of 0 ° C. × 5 hours → -20 ° C. × 20 hours, and the dispersion freeze circle A columnar non-woven fabric (G) was obtained. The dispersion frozen cylindrical non-woven fabric (G) is placed in a vacuum freeze dryer (FDU-830, manufactured by Tokyo Rika Kikai Co., Ltd.), allowed to stand for 72 hours for complete drying, and the voids of the cylindrical non-woven fabric (F) as a substrate The sound absorption coefficient measurement test piece (H) in which the nonwoven fabric of the nanofiber was formed in the part was obtained. The weight of the sound absorption coefficient measurement test piece (H) was measured to calculate the porosity of the nanofiber non-woven fabric. Thereafter, observation is made with a scanning electron microscope, and a nonwoven fabric of nanofibers or nanofibers (aggregated bundle) having a diameter of 0.004 to 0.4 μm is formed in the void portion of the nonwoven fabric serving as the base material, and nano It was confirmed that the non-woven fabric of the fibers adhered (adhered) to the fibers of the non-woven fabric as the base material. The results of measuring the sound absorption coefficient by stacking two sound absorption coefficient measurement test pieces (H), and the results of evaluating the deformation recovery are shown in the table. Moreover, the strip-shaped test piece of length 20 mm x width 70 mm x thickness t = 5 mm was produced by the manufacturing method similar to a sound absorption coefficient measurement test piece (H), and the result of having evaluated shape maintenance was shown in the table.

実施例8(ナノ繊維付着型吸音材)
実施例8における製造条件は表2に示す。
表に示す製造条件を採用したこと以外、実施例5〜7の吸音率測定試験片(H)と同様の製法により、直径40mm、厚みt=2.5mmの吸音率測定試験片(I)を得た。吸音率測定試験片(I)の重量を測定しナノ繊維の不織布の空隙率を算出した。その後、吸音率測定試験片(I)を4枚重ねて吸音率を測定した結果、および、変形復元性を評価した結果を表に示した。また、吸音率測定試験片(I)と同様の製法で縦20mm×70mm×厚みt=2.5mmの短冊状試験片を作製し、2枚重ねて形状維持性を評価した結果を表に示した。
Example 8 (nanofiber attached type sound absorbing material)
The production conditions in Example 8 are shown in Table 2.
A sound absorption coefficient measurement test piece (I) having a diameter of 40 mm and a thickness t = 2.5 mm was obtained by the same method as the sound absorption coefficient measurement test pieces (H) of Examples 5 to 7 except that the production conditions shown in the table were adopted. Obtained. The weight of the sound absorption coefficient measurement test piece (I) was measured to calculate the porosity of the nonwoven fabric of nanofibers. Thereafter, four sheets of sound absorption coefficient measurement test pieces (I) were stacked to measure the sound absorption coefficient, and the results of evaluating the deformation recovery were shown in the table. Moreover, the strip-shaped test piece of length 20 mm * 70 mm * thickness t = 2.5 mm was produced by the manufacturing method similar to sound absorption coefficient measurement test piece (I), two sheets were accumulated, and the result of evaluating shape maintenance was shown in the table. The

実施例9(ナノ繊維絡合型吸音材)
実施例9における製造条件は表2に示す。
平均繊維径約3〜4μmからなる2枚のグラスウール(マイクロ繊維)で表に示す材種のナノ繊維材(メルトブローン法で作製した繊維径0.4〜0.8μmからなるPP繊維)で挟持し、グラスウールの空隙率99%、ナノ繊維材の空隙率98%、トータル厚み5mmになるよう、ニードルパンチにてシート状に成形し、不織布(J)を得た。不織布(J)を直径40mm、厚み5mmの円柱状にくり抜いて吸音率測定試験片(K)を作製した。吸音率測定試験片(K)を走査型電子顕微鏡で観察し、基材となる不織布の空隙部に、直径0.4〜0.8μmのナノ繊維の不織布が形成されており、かつ、ナノ繊維の不織布は基材となる不織布の繊維と機械的に絡み合っていることを確認した。吸音率測定試験片(K)を2枚重ねて吸音率を測定した結果、および、変形復元性を評価した結果を表に示した。また、吸音率測定試験片(K)と同様の製法で縦20mm×横70mm×厚みt=5mmの短冊状試験片を作製し、形状維持性を評価した結果を表に示した。
Example 9 (nanofiber entangled type sound absorbing material)
The production conditions in Example 9 are shown in Table 2.
Sandwiched by two kinds of glass wool (microfibers) with an average fiber diameter of about 3 to 4 μm and the types of nano fiber material shown in the table (PP fibers consisting of a fiber diameter of 0.4 to 0.8 μm prepared by the meltblown method) A nonwoven fabric (J) was obtained by needle punching to a sheet shape so that the porosity of glass wool was 99%, the porosity of nano fiber material was 98%, and the total thickness was 5 mm. The non-woven fabric (J) was cut out in a cylindrical shape having a diameter of 40 mm and a thickness of 5 mm to prepare a sound absorption coefficient measurement test piece (K). The sound absorption coefficient measurement test piece (K) is observed with a scanning electron microscope, and a non-woven fabric of nanofibers having a diameter of 0.4 to 0.8 μm is formed in the void portion of the non-woven fabric serving as a base material. It was confirmed that the nonwoven fabric of the present invention mechanically interlocked with the fibers of the nonwoven fabric as the base material. The results of measuring the sound absorption coefficient by overlapping two sound absorption coefficient measurement test pieces (K), and the results of evaluating the deformation and restoration properties are shown in the table. Moreover, the strip-shaped test piece of length 20 mm x width 70 mm x thickness t = 5 mm was produced by the manufacturing method similar to a sound absorption coefficient measurement test piece (K), and the result of having evaluated shape maintenance was shown in the table.

比較例1〜4
比較例1〜4における製造条件はそれぞれ表1〜表4に示す。
比較例1〜4においてはそれぞれ実施例1〜4で作製した円柱状不織布(B)をそのまま用いた。
実施例1〜4で作製した円柱状不織布(B)を2枚重ねて吸音率を測定した結果、および、変形復元性を評価した結果を表に示した。また、円柱状不織布(B)と同様の製法で縦20mm×横70mm×厚みt=5mmの短冊状試験片を作製し、形状維持性を評価した結果を表に示した。
Comparative Examples 1 to 4
The manufacturing conditions in Comparative Examples 1 to 4 are shown in Tables 1 to 4, respectively.
In Comparative Examples 1 to 4, the cylindrical non-woven fabric (B) produced in Examples 1 to 4 was used as it is.
The results of measuring the sound absorption coefficient by stacking two cylindrical non-woven fabrics (B) manufactured in Examples 1 to 4 and the results of evaluating the deformation recovery are shown in the table. Moreover, the strip-shaped test piece of length 20 mm x width 70 mm x thickness t = 5 mm was produced by the manufacturing method similar to a column-shaped nonwoven fabric (B), and the result of having evaluated shape maintenance property was shown in the table.

比較例5
比較例5における製造条件は表5に示す。
表に示す材種のナノ繊維材(TEMPO触媒酸化法で作製した繊維径0.004〜0.02μmのセルロースナノファイバ)の分散液を、表に示す固形分濃度になるよう調整した。分散液を直径約90mm、深さ20mmのステンレスシャーレ内に深さ10mmまで注水して、恒温恒湿槽(エスペック社製 PSL−2K)に投入し、0℃×5時間→−20℃×20時間の条件で凍結させ、円柱状凍結分散液(L)を得た。円柱状凍結分散液(L)を真空凍結乾燥機(東京理化器械社製 FDU−830)に投入し、72時間放置して完全に乾燥させ、直径40mm、厚み10mmの円柱状にくり抜いて吸音率測定試験片(M)を作製した。吸音率測定試験片(M)の吸音率を測定した結果、および、変形復元性を評価した結果を表に示した。また、吸音率測定試験片(M)と同様の製法で縦20mm×横70mm×厚みt=5mmの短冊状試験片を作製し、形状維持性を評価した結果を表に示した。
Comparative example 5
The production conditions in Comparative Example 5 are shown in Table 5.
A dispersion liquid of nanofibrous materials of the types shown in the table (cellulose nanofibers with a fiber diameter of 0.004 to 0.02 μm prepared by TEMPO catalytic oxidation method) was adjusted to have a solid content concentration shown in the table. The dispersion is injected to a depth of 10 mm in a stainless steel dish with a diameter of about 90 mm and a depth of 20 mm, and placed in a constant temperature and humidity chamber (PSL-2K manufactured by ESPEC Corp.), 0 ° C. × 5 hours → -20 ° C. × 20 The mixture was frozen under time conditions to obtain a cylindrical frozen dispersion (L). The cylindrical frozen dispersion (L) was charged into a vacuum freeze dryer (FDU-830, manufactured by Tokyo Rika Kikai Co., Ltd.), allowed to stand for 72 hours for complete drying, and hollowed out in a cylindrical shape having a diameter of 40 mm and a thickness of 10 mm. Measurement test pieces (M) were produced. The results of measuring the sound absorption coefficient of the sound absorption coefficient measurement test piece (M) and the results of evaluating the deformation recovery are shown in the table. Moreover, the strip-shaped test piece of length 20 mm x width 70 mm x thickness t = 5 mm was produced by the manufacturing method similar to a sound absorption coefficient measurement test piece (M), and the result of having evaluated shape maintenance was shown in the table.

比較例6
比較例6における製造条件は表2に示す。
表に示す製造条件を採用したこと以外、実施例5〜7の吸音率測定試験片(H)と同様の製法により、直径40mm、厚みt=2.5mmの吸音率測定試験片(N)を得た。吸音率測定試験片(N)の重量を測定しナノ繊維の不織布の空隙率を算出した。その後、吸音率測定試験片(N)を4枚重ねて吸音率を測定した結果、および、変形復元性を評価した結果を表に示した。また、吸音率測定試験片(N)と同様の製法で縦20mm×横70mm×厚みt=2.5mmの短冊状試験片を作製し、2枚重ねて形状維持性を評価した結果を表に示した。
Comparative example 6
The manufacturing conditions in Comparative Example 6 are shown in Table 2.
A sound absorption coefficient measurement specimen (N) having a diameter of 40 mm and a thickness t = 2.5 mm was obtained by the same method as the sound absorption coefficient measurement specimen (H) in Examples 5 to 7 except that the production conditions shown in the table were adopted. Obtained. The weight of the sound absorption coefficient measurement test piece (N) was measured to calculate the porosity of the nanofiber non-woven fabric. Thereafter, four sheets of sound absorption coefficient measurement test pieces (N) were stacked to measure the sound absorption coefficient, and the results of evaluating the deformation recovery were shown in the table. In addition, a strip-shaped test piece measuring 20 mm long × 70 mm wide × t = 2.5 mm long was prepared in the same manner as the sound absorption coefficient measurement test piece (N), and two sheets were stacked to evaluate the shape maintainability. Indicated.

比較例7
比較例7における製造条件は表5に示す。
表に示す材種のナノ繊維材(メルトブローン法で作製した繊維径0.4〜0.8μmからなるPP繊維)をシート状に紡出し、空隙率98%の不織布(O)を得た。不織布(O)を直径40mm、厚み10mmの円柱状にくり抜いて吸音率測定試験片(P)を作製した。吸音率測定試験片(P)の吸音率を測定した結果、および、変形復元性を評価した結果を表に示した。また、吸音率測定試験片(P)と同様の製法で縦20mm×横70mm×厚みt=5mmの短冊状試験片を作製し、形状維持性を評価した結果を表に示した。
Comparative example 7
The production conditions in Comparative Example 7 are shown in Table 5.
Nanofiber materials of the types shown in the table (PP fibers having a fiber diameter of 0.4 to 0.8 μm prepared by a meltblown method) were spun into a sheet to obtain a nonwoven fabric (O) having a porosity of 98%. A non-woven fabric (O) was cut out in a cylindrical shape having a diameter of 40 mm and a thickness of 10 mm to prepare a sound absorption coefficient measurement test piece (P). The results of measuring the sound absorption coefficient of the sound absorption coefficient measurement test piece (P) and the results of evaluating the deformation recovery are shown in the table. Moreover, the strip-shaped test piece of length 20 mm x width 70 mm x thickness t = 5 mm was produced by the manufacturing method similar to a sound absorption coefficient measurement test piece (P), and the result of having evaluated shape maintenance was shown in the table.

Figure 2019074751
Figure 2019074751

Figure 2019074751
Figure 2019074751

Figure 2019074751
Figure 2019074751

Figure 2019074751
Figure 2019074751

Figure 2019074751
Figure 2019074751

表1〜表5中、以下の材料を使用した。
グラスウールA:平均繊維径約1〜2μmおよび平均繊維長30〜150mmからなる硝子繊維
グラスウールB:平均繊維径約3〜4μmおよび平均繊維長30〜150mmからなる硝子繊維
PET不織布:繊維長51mm、繊度2.2デニール(繊維径約16μm)のPET繊維
ステンレスウール:平均繊維径約150μmおよび平均繊維長30〜150mmからなるステンレス繊維
ナノファイバA:繊維径4〜20nmおよび平均繊維長2〜8μmのセルロースナノファイバ
ナノファイバB:繊維径400〜800nmおよび平均繊維長30〜150mmからなるPP繊維
In Tables 1 to 5, the following materials were used.
Glass wool A: Glass fiber glass wool comprising an average fiber diameter of about 1 to 2 μm and an average fiber length of 30 to 150 mm Glass fiber PET non-woven fabric comprising an average fiber diameter of about 3 to 4 μm and an average fiber length of 30 to 51 mm: fiber length of 51 mm, denier 2.2 PET fiber stainless steel wool of 2.2 denier (fiber diameter about 16 μm): stainless fiber nanofiber A consisting of an average fiber diameter of about 150 μm and an average fiber length of 30 to 150 mm A cellulose of 4 to 20 nm fiber diameter and an average fiber length of 2 to 8 μm Nanofiber Nanofiber B: PP fiber consisting of a fiber diameter of 400 to 800 nm and an average fiber length of 30 to 150 mm

本発明の吸音材は、自動車、列車などの車両の壁、床および天井に貼付して使用される吸音材または断熱材として有用である。   The sound absorbing material of the present invention is useful as a sound absorbing material or heat insulating material which is used by being attached to the wall, floor and ceiling of a vehicle such as an automobile or a train.

Claims (19)

マイクロオーダーの繊維径を有するマイクロ繊維およびナノオーダーの繊維径を有するナノ繊維を含み、不織布形態を有する吸音材であって、
前記ナノ繊維が92〜99.9%の空隙率を有する、吸音材。
What is claimed is: 1. A sound absorbing material having a non-woven form, comprising microfibers having a fiber diameter of micro order and nanofibers having a fiber diameter of nano order,
A sound absorbing material, wherein the nanofibers have a porosity of 92 to 99.9%.
前記マイクロ繊維が不織布形態を有しながら前記吸音材の不織布形態を形成し、
該マイクロ繊維不織布の空隙部内で、前記ナノ繊維が不織布形態を有しながら存在している、請求項1に記載の吸音材。
Forming the non-woven form of the sound absorbing material while the micro fiber has the non-woven form;
The sound absorbing material according to claim 1, wherein the nanofibers are present in the form of a non-woven fabric in the void portion of the microfiber non-woven fabric.
前記マイクロ繊維が88〜99.9%の空隙率を有する、請求項1または2に記載の吸音材。   The sound absorbing material according to claim 1, wherein the microfibers have a porosity of 88 to 99.9%. 前記マイクロ繊維が1〜180μmの平均繊維径を有し、
前記ナノ繊維が1〜900nmの平均繊維径を有する、請求項1〜3のいずれかに記載の吸音材。
The microfibers have an average fiber diameter of 1 to 180 μm,
The sound absorbing material according to any one of claims 1 to 3, wherein the nanofibers have an average fiber diameter of 1 to 900 nm.
前記マイクロ繊維の平均繊維径と前記ナノ繊維の平均繊維径との差が900nm以上である、請求項1〜4のいずれかに記載の吸音材。   The sound absorbing material according to any one of claims 1 to 4, wherein a difference between an average fiber diameter of the microfibers and an average fiber diameter of the nanofibers is 900 nm or more. 前記マイクロ繊維不織布内において、前記ナノ繊維が前記マイクロ繊維の表面に付着しながら、任意の方向で前記空隙部を横切ったり、かつ/または前記空隙部に向かって突出し、不織布形態を有している、請求項1〜5のいずれかに記載の吸音材。   In the microfiber non-woven fabric, the nano-fiber adheres to the surface of the micro-fiber, crosses the void in any direction and / or protrudes toward the void, and has a non-woven form The sound absorbing material according to any one of claims 1 to 5. 前記ナノ繊維の平均繊維長が0.1〜30μmである、請求項6に記載の吸音材。   The sound absorbing material according to claim 6, wherein an average fiber length of the nanofibers is 0.1 to 30 m. 前記マイクロ繊維不織布内において、前記ナノ繊維が前記マイクロ繊維と機械的に絡み合いながら、任意の方向で前記空隙部を横切ったり、かつ/または前記空隙部に向かって突出し、不織布形態を有している、請求項1〜5のいずれかに記載の吸音材。   In the microfiber non-woven fabric, the nanofibers mechanically intertwine with the microfibers, cross the cavity in any direction and / or protrude toward the cavity, and have a non-woven fabric form The sound absorbing material according to any one of claims 1 to 5. 前記ナノ繊維の平均繊維長が2〜200mmである、請求項8に記載の吸音材。   The sound absorbing material according to claim 8, wherein the average fiber length of the nanofibers is 2 to 200 mm. 前記マイクロ繊維が無機繊維、有機繊維およびこれらの混合繊維からなる群から選択される、請求項1〜9のいずれかに記載の吸音材。   The sound absorbing material according to any one of claims 1 to 9, wherein the microfibers are selected from the group consisting of inorganic fibers, organic fibers and mixed fibers thereof. 前記ナノ繊維が有機繊維である、請求項1〜10のいずれかに記載の吸音材。   The sound absorbing material according to any one of claims 1 to 10, wherein the nanofibers are organic fibers. 前記ナノ繊維が、セルロース繊維、ポリオレフィン繊維またはこれらの混合繊維である、請求項1〜11のいずれかに記載の吸音材。   The sound absorbing material according to any one of claims 1 to 11, wherein the nanofibers are cellulose fibers, polyolefin fibers or mixed fibers thereof. 前記吸音材が85〜99.8%の空隙率を有する、請求項1〜12のいずれかに記載の吸音材。   The sound absorbing material according to any one of claims 1 to 12, wherein the sound absorbing material has a porosity of 85 to 99.8%. 前記吸音材におけるナノ繊維の重量比率(ナノ繊維重量/(マイクロ繊維重量+ナノ繊維重量))が0.3〜90%である、請求項1〜13のいずれかに記載の吸音材。   The sound absorbing material according to any one of claims 1 to 13, wherein the weight ratio of nanofibers in the sound absorbing material (nanofiber weight / (microfiber weight + nanofiber weight)) is 0.3 to 90%. 請求項6または7に記載の吸音材の製造方法であって、
前記マイクロ繊維からなる不織布に、前記ナノ繊維の分散液を含浸させた後、乾燥する、吸音材の製造方法。
A method of manufacturing a sound absorbing material according to claim 6 or 7,
The manufacturing method of the sound-absorbing material which is dried after impregnating the dispersion liquid of the said nanofiber in the nonwoven fabric which consists of said microfiber.
前記乾燥をフリーズドライ法により行う、請求項15に記載の吸音材の製造方法。   The method for producing a sound absorbing material according to claim 15, wherein the drying is performed by a freeze drying method. 請求項8または9に記載の吸音材の製造方法であって、
前記マイクロ繊維および前記ナノ繊維の混合繊維を用いて不織布を製造する、吸音材の製造方法。
A method of manufacturing a sound absorbing material according to claim 8 or 9,
The manufacturing method of a sound absorbing material which manufactures a nonwoven fabric using the mixed fiber of the said microfiber and the said nanofiber.
前記不織布をニードルパンチ法により製造する、請求項17に記載の吸音材の製造方法。   The method for producing a sound absorbing material according to claim 17, wherein the non-woven fabric is produced by a needle punch method. 請求項15〜18のいずれかに記載の吸音材の製造方法により製造される吸音材。   The sound-absorbing material manufactured by the manufacturing method of the sound-absorbing material in any one of Claims 15-18.
JP2018236378A 2018-12-18 2018-12-18 Sound absorbing material Pending JP2019074751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018236378A JP2019074751A (en) 2018-12-18 2018-12-18 Sound absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018236378A JP2019074751A (en) 2018-12-18 2018-12-18 Sound absorbing material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016071579A Division JP6493276B2 (en) 2016-03-31 2016-03-31 Sound absorbing material

Publications (2)

Publication Number Publication Date
JP2019074751A true JP2019074751A (en) 2019-05-16
JP2019074751A5 JP2019074751A5 (en) 2019-06-20

Family

ID=66543228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018236378A Pending JP2019074751A (en) 2018-12-18 2018-12-18 Sound absorbing material

Country Status (1)

Country Link
JP (1) JP2019074751A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111907141A (en) * 2020-08-04 2020-11-10 芜湖利通新材料有限公司 Sound-absorbing noise-reducing flame-retardant material and preparation method thereof
JP2020189562A (en) * 2019-05-22 2020-11-26 東日本旅客鉄道株式会社 Railway vehicle
WO2023106609A1 (en) * 2021-12-07 2023-06-15 주식회사 에스엔티 Sound absorbing material for reducing noise in audible frequency band of single layer in which melt-blown fibers and nanofibers are randomly mixed, apparatus and method for manufacturing same, and sound absorbing material manufactured thereby
KR20230163330A (en) * 2021-12-07 2023-11-30 주식회사 에스엔티 Method for manufacturing of single layer sound adsorbing material having hybrid pad randomly mixed with meltblown fiber and nano fiber for reducing noise in audio frequency band and sound adsorbing material manufactured using the same
KR20230163331A (en) * 2021-12-07 2023-11-30 주식회사 에스엔티 Apparatus for manufacturing of single layer sound adsorbing material having hybrid pad randomly mixed with meltblown fiber and nano fiber for reducing noise in audio frequency band and sound adsorbing material manufactured using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243831A (en) * 2009-04-07 2010-10-28 Nagoya Oil Chem Co Ltd Sound absorbing sheet material and sound absorbing interior material
JP2011017104A (en) * 2009-07-09 2011-01-27 Teijin Fibers Ltd Fiber structure and fiber product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243831A (en) * 2009-04-07 2010-10-28 Nagoya Oil Chem Co Ltd Sound absorbing sheet material and sound absorbing interior material
JP2011017104A (en) * 2009-07-09 2011-01-27 Teijin Fibers Ltd Fiber structure and fiber product

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020189562A (en) * 2019-05-22 2020-11-26 東日本旅客鉄道株式会社 Railway vehicle
CN111907141A (en) * 2020-08-04 2020-11-10 芜湖利通新材料有限公司 Sound-absorbing noise-reducing flame-retardant material and preparation method thereof
WO2023106609A1 (en) * 2021-12-07 2023-06-15 주식회사 에스엔티 Sound absorbing material for reducing noise in audible frequency band of single layer in which melt-blown fibers and nanofibers are randomly mixed, apparatus and method for manufacturing same, and sound absorbing material manufactured thereby
KR20230163330A (en) * 2021-12-07 2023-11-30 주식회사 에스엔티 Method for manufacturing of single layer sound adsorbing material having hybrid pad randomly mixed with meltblown fiber and nano fiber for reducing noise in audio frequency band and sound adsorbing material manufactured using the same
KR20230163331A (en) * 2021-12-07 2023-11-30 주식회사 에스엔티 Apparatus for manufacturing of single layer sound adsorbing material having hybrid pad randomly mixed with meltblown fiber and nano fiber for reducing noise in audio frequency band and sound adsorbing material manufactured using the same
KR102658323B1 (en) 2021-12-07 2024-04-18 주식회사 에스엔티 Apparatus for manufacturing of single layer sound adsorbing material having hybrid pad randomly mixed with meltblown fiber and nano fiber for reducing noise in audio frequency band and sound adsorbing material manufactured using the same
KR102658315B1 (en) 2021-12-07 2024-04-18 주식회사 에스엔티 Method for manufacturing of single layer sound adsorbing material having hybrid pad randomly mixed with meltblown fiber and nano fiber for reducing noise in audio frequency band and sound adsorbing material manufactured using the same

Similar Documents

Publication Publication Date Title
Tang et al. Acoustic energy absorption properties of fibrous materials: A review
JP2019074751A (en) Sound absorbing material
US10783868B2 (en) Acoustic air flow resistive article and method of making
JP5586851B2 (en) Porous membrane
CN107675354B (en) Method and device for preparing three-component sound-absorbing cotton by electrostatic spinning, melt blowing and dry method web forming
JP6493276B2 (en) Sound absorbing material
KR20200130304A (en) Laminated sound absorbing material
Patnaik Materials used for acoustic textiles
CN113039065A (en) Flame retardant nonwoven fiber assembly
WO2019059360A1 (en) Melt-blown nonwoven fabric, use of same, and method for producing same
JP6498454B2 (en) Sheet for multilayer molding and sheet molded body
KR20090106211A (en) Ultra light acoustic absorbent and Preparing method thereof
JP2016122185A (en) Sound absorber
US20220227100A1 (en) Nonwoven fibrous web
JP7032032B2 (en) Sound absorbing felt
JP6751278B1 (en) Laminated sound absorbing material
US20220396903A1 (en) Flame-retardant non-woven fibrous webs
JP4827784B2 (en) Insulating material and manufacturing method thereof
JP7468255B2 (en) Nonwoven fabric for sound absorption, sound absorbing material, and method for manufacturing nonwoven fabric for sound absorbing
JP2021018265A (en) Sound absorbing material and product
US20220242089A1 (en) Flame-resistant foam and nonwoven fiberous web thereof
KR101958482B1 (en) Fiber aggregate having excellent sound absorption performance and manufacturing method thereof
JP7142189B1 (en) SOUND ABSORBING MATERIAL AND METHOD FOR MANUFACTURING SOUND ABSORBING MATERIAL
Yilmaz et al. Biocomposite Structures as Sound Absorber Materials
US20240035213A1 (en) Multi-layer meltblown non-woven fabric and preparation method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200609