KR101272082B1 - Iron-cobalt catalyst, manufacturing method same and method for obtaining water-gas shift reaction activity and for highly selective liquid fuel production in Fischer-Tropsch synthesis using iron-cobalt catalyst - Google Patents

Iron-cobalt catalyst, manufacturing method same and method for obtaining water-gas shift reaction activity and for highly selective liquid fuel production in Fischer-Tropsch synthesis using iron-cobalt catalyst Download PDF

Info

Publication number
KR101272082B1
KR101272082B1 KR1020110067491A KR20110067491A KR101272082B1 KR 101272082 B1 KR101272082 B1 KR 101272082B1 KR 1020110067491 A KR1020110067491 A KR 1020110067491A KR 20110067491 A KR20110067491 A KR 20110067491A KR 101272082 B1 KR101272082 B1 KR 101272082B1
Authority
KR
South Korea
Prior art keywords
iron
cobalt
catalyst
reaction
composite catalyst
Prior art date
Application number
KR1020110067491A
Other languages
Korean (ko)
Other versions
KR20130005848A (en
Inventor
이호태
정헌
천동현
김학주
양정일
양정훈
박지찬
김병권
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020110067491A priority Critical patent/KR101272082B1/en
Publication of KR20130005848A publication Critical patent/KR20130005848A/en
Application granted granted Critical
Publication of KR101272082B1 publication Critical patent/KR101272082B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • C07C1/044Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof containing iron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons

Abstract

본 발명은 석탄액화(CTL) 및 천연가스 액화(GTL) 공정에서 피셔-트롭쉬(Fischer-Tropsch; F-T) 반응에 사용되는 철-코발트 복합 촉매 및 그 제조 방법과 이를 촉매로 이용한 피셔-트롭쉬 합성 반응에서의 수성가스전환반응 활성구현과 고선택적 액체 연료 제조방법에 관한 것으로, 보다 상세하게는 피셔-트롭쉬 반응에서 합성가스의 H2/CO 조성 몰비가 2.0 근방의 범위에서 높은 활성을 보이지만 2.0 미만으로 낮아지게 되면 급격하게 활성이 떨어지는 기존의 코발트(Co) 촉매의 단점을 보완하고, 고온의 반응에서도 액체 오일(C5+) 생산에 높은 선택성을 보이는 철 성분을 첨가한 철-코발트 복합 촉매 및 그 제조 방법을 이용하는데 있다.The present invention relates to an iron-cobalt composite catalyst used in Fischer-Tropsch (FT) reactions in a coal liquefaction (CTL) and natural gas liquefaction (GTL) process, and to a method for preparing the same, and to Fischer-Tropsch using the catalyst as a catalyst. The present invention relates to a water gas shift reaction activity in a synthesis reaction and a method for producing a highly selective liquid fuel. More specifically, in the Fischer-Tropsch reaction, the mole ratio of H 2 / CO composition of the synthesis gas shows a high activity in the vicinity of 2.0. When lowered to less than 2.0, the iron-cobalt composite with iron component exhibiting high selectivity for the production of liquid oil (C 5+ ) is compensated for. It uses a catalyst and its manufacturing method.

Description

철-코발트 복합 촉매 및 그 제조 방법과 이를 촉매로 이용한 피셔-트롭쉬 합성 반응에서의 수성가스전환반응 활성구현과 고선택적 액체 연료 제조방법{Iron-cobalt catalyst, manufacturing method same and method for obtaining water-gas shift reaction activity and for highly selective liquid fuel production in Fischer-Tropsch synthesis using iron-cobalt catalyst}Ion-cobalt catalyst, manufacturing method same and method for obtaining water- and iron-cobalt composite catalyst and its production method and water gas conversion reaction in Fischer-Tropsch synthesis gas shift reaction activity and for highly selective liquid fuel production in Fischer-Tropsch synthesis using iron-cobalt catalyst}

본 발명은 석탄액화(CTL) 및 천연가스 액화(GTL) 공정에서 피셔-트롭쉬(Fischer-Tropsch; F-T) 반응에 사용되는 철-코발트 복합 촉매 및 그 제조 방법에 관한 것으로, 보다 상세하게는 피셔-트롭쉬 반응에서 합성가스의 H2/CO 조성 몰비가 2.0 근방의 범위에서 높은 활성을 보이지만 2.0 미만으로 낮아지게 되면 급격하게 활성이 떨어지는 기존의 코발트(Co) 촉매의 단점을 보완하고, 고온의 반응에서도 액체 오일(C5+) 생산에 높은 선택성을 보이는 철 성분을 첨가한 철-코발트 복합 촉매 및 그 제조 방법과 이를 촉매로 이용한 피셔-트롭쉬 합성 반응에서의 수성가스전환반응 활성구현과 고선택적 액체 연료 제조방법에 관한 것이다. The present invention relates to an iron-cobalt composite catalyst used in the Fischer-Tropsch (FT) reaction in a coal liquefaction (CTL) and natural gas liquefaction (GTL) process, and more particularly to a fischer. -In the Tropsch reaction, the mole ratio of H 2 / CO composition of the syngas shows high activity in the range of 2.0, but when it is lower than 2.0, it rapidly compensates for the disadvantage of the conventional cobalt (Co) catalyst, which is rapidly deactivated. Iron-cobalt complex catalyst with iron component showing high selectivity in liquid oil (C 5+ ) production and its production method and water gas conversion reaction in Fischer-Tropsch synthesis reaction It relates to a method for producing a selective liquid fuel.

일반적으로, F-T 반응공정은 석탄을 가스화, 합성가스 정제, 액화공정을 통해 최종적으로 왁스형태의 탄화수소를 제조하여 자동차 연료 또는 화학제품의 원료로 사용할 수 있도록 하는 석탄 간접 액화 시스템(CTL)과, 천연가스를 개질하여 수소와 일산화탄소를 제조하고 다시 액화하여 기름을 만드는 천연가스액화시스템(GTL), 그리고 목재 등의 바이오매스, 폐기물 등 다양한 원료를 가스화하여 기름을 만드는 액화시스템(χTL)의 핵심공정이다. In general, the FT reaction process is a coal indirect liquefaction system (CTL) that produces coal in the form of wax and finally can be used as a raw material for automobile fuels or chemicals through gasification, syngas purification, and liquefaction. Natural gas liquefaction system (GTL), which reforms gas to produce hydrogen and carbon monoxide, and liquefies to make oil, and liquefied system (χTL), which makes oil by gasifying various raw materials such as biomass and waste such as wood. .

상기의 CTL, GTL, χTL 공정의 가스화 공정에서 생성되는 수소와 일산화탄소의 조성 몰비(H2/CO)는 원료물질에 따라 다양하게 분포하고 있다. 석탄, 페트롤륨코크, 중질잔사 및 목재 등의 바이오매스와 같은 고체를 원료로 사용하는 경우에는, 상기 조성 몰비가 0.6∼1.2의 분포를 보이고 있으며, 천연가스 및 공정 폐가스 등 기체를 원료로 사용할 경우에는, 상기 조성 몰비가 1.2∼2.0의 분포를 보이고 있다. The composition molar ratio (H 2 / CO) of hydrogen and carbon monoxide generated in the gasification process of the CTL, GTL, χTL process is distributed according to the raw material. In the case of using solids such as biomass such as coal, petroleum coke, heavy residues and wood as raw materials, the composition molar ratio is in the range of 0.6 to 1.2, and when using gases such as natural gas and process waste gas as raw materials. Shows a distribution of the composition molar ratio of 1.2 to 2.0.

F-T 반응공정은 합성가스(CO + H2)를 유입시켜 반응기 본체 내의 촉매와 반응하도록 하여 액체상태의 합성연료를 생성한다. 이때 F-T 반응기에서 사용하는 촉매로는 주로 철(Fe) 촉매와 코발트(Co) 촉매가 주로 사용된다. In the FT reaction process, the synthesis gas (CO + H 2 ) is introduced to react with the catalyst in the reactor body, thereby producing liquid synthetic fuel. In this case, as the catalyst used in the FT reactor, iron (Fe) catalyst and cobalt (Co) catalyst are mainly used.

이 중에서 철 촉매는 공침법을 이용하여 제조를 하게 된다. Wenjuan Hou 등(Catalyst Letter, vol. 119, 353-360 (2007))에 의하면, 철 촉매는 철(Fe), 구리(Cu), 칼륨(K)과 실리카(SiO2)의 중량비를 100 : 5 : 4 : 25의 비율로 제조한 상용 촉매를 기본으로 하여 SiO2의 양을 조절하면서 촉매를 제조하는 방법을 제시하고 있다. Of these, the iron catalyst is prepared using the coprecipitation method. According to Wenjuan Hou et al. (Catalyst Letter, vol. 119, 353-360 (2007)), the iron catalyst has a weight ratio of iron (Fe), copper (Cu), potassium (K), and silica (SiO 2 ) to 100: 5. : 4: a commercially available catalyst made from a ratio of 25 with base presents a method for producing a catalyst, while controlling the amount of SiO 2.

상용 촉매의 제조는 도 1에 도시된 것과 같이, FeNO3·9H2O 와 Cu(NO3)2·H2O를 알려진 비율대로 정량하고 증류수에 녹여 수용액을 만들며, 여기에 Na2CO3 수용액을 조금씩 첨가하여서 침전을 시켜 촉매를 제조한다(Coprecipitation). 이때 침전조는 80±1℃, pH는 8.0±1로 유지한다(단계 S10). Preparation of a commercial catalyst, as shown in Figure 1, quantify FeNO 3 · 9H 2 O and Cu (NO 3 ) 2 · H 2 O in a known ratio and dissolved in distilled water to form an aqueous solution, Na 2 CO 3 aqueous solution To precipitate by adding little by little to prepare a catalyst (Coprecipitation). At this time, the precipitation tank is maintained at 80 ± 1 ℃, pH is 8.0 ± 1 (step S10).

그리고 생성된 침전물은 여과와 증류수로의 세척을 반복하여 침전물 속에 있는 나트륨(Na) 성분을 제거한다(Washing, 단계 S20). 나트륨 성분이 제거된 침전물을 sol 상태의 SiO2 용액과 K2CO3 용액과 혼합(SiO2, K addition, 단계 S30)하여 200℃의 온도에서 분무건조(Spray-Drying, 단계 S40)시키면, 구형의 촉매 입자가 만들어진다. The resulting precipitate is filtered and washed with distilled water to remove the sodium (Na) component in the precipitate (Washing, step S20). Sodium-free precipitates were mixed with SiO 2 solution and K 2 CO 3 solution in sol state (SiO 2 , K addition, step S30) and spray-dried at a temperature of 200 ° C. (Spray-Drying, step S40). Catalyst particles are made.

만들어진 촉매를 400℃에서 8시간 가열하여 소성시키면 안정화된 촉매의 제조가 완성된다(Calcination). 제조된 촉매는 반응 직전에 환원 처리하여 사용된다.The produced catalyst is heated and calcined at 400 ° C. for 8 hours to complete the preparation of the stabilized catalyst (Calcination). The prepared catalyst is used after reduction treatment immediately before the reaction.

한편, 일반적으로 고정층 반응기에 사용되는 코발트 촉매의 제조에는 함침법이 사용되는데 고표면적의 알루미나(Al2O3)와 실리카(SiO2) 담체에 코발트 전구체의 수용액을 담지하고, 건조한 후에 소성과정을 거쳐 제조한다.
In general, an impregnation method is used to prepare a cobalt catalyst used in a fixed bed reactor. An aqueous solution of a cobalt precursor is supported on alumina (Al 2 O 3 ) and silica (SiO 2 ) carriers having a high surface area, and dried and then calcined. Manufacture through.

F-T 반응기에서 사용되는 촉매의 종류는 반응기에 유입되는 합성가스의 조성몰비(H2/CO)에 따라 결정되며, 철 촉매는 촉매에 함유된 성분이 일산화탄소(CO)를 수소로 전환하는 수성가스전환반응(water-gas shift reaction)을 일으키기 때문에 H2/CO 조성 몰비가 0.6∼3.5의 넓은 범위에서 사용이 가능하다. 그러나 철 촉매는 코발트 촉매에 비해 활성이 낮기 때문에 높은 활성을 얻기 위해서는 반응온도와 압력이 높아지며, 촉매의 수명이 단축되는 결과를 가져온다.The type of catalyst used in the FT reactor is determined by the composition molar ratio (H 2 / CO) of the synthesis gas flowing into the reactor, and the iron catalyst converts water gas in which the components contained in the catalyst convert carbon monoxide (CO) to hydrogen. Since it causes a water-gas shift reaction, the molar ratio of H 2 / CO composition can be used in a wide range of 0.6 to 3.5. However, iron catalysts have lower activity than cobalt catalysts, so that the reaction temperature and pressure are increased in order to obtain high activity, resulting in a shorter catalyst life.

반면에 코발트 촉매는 활성이 높아 반응온도와 압력이 철 촉매에 비해 상대적으로 낮지만, H2/CO 조성 몰비를 2.0 근방의 영역으로 유지하지 않으면 촉매의 비활성화 현상이 가속화되어 촉매의 수명이 짧아진다. 따라서 코발트 촉매를 사용할 경우에는 F-T 반응기 앞에 수성가스 반응기를 부착하여 F-T 반응기에 유입되는 합성가스의 H2/CO 조성 몰비를 2.0 근방으로 유지해주는 것이 필요하다. Cobalt catalysts, on the other hand, have higher activity and lower reaction temperatures and pressures than iron catalysts. However, if the H 2 / CO mole ratio is not maintained around 2.0, catalyst deactivation is accelerated, resulting in shorter catalyst life. . Therefore, when using a cobalt catalyst it is necessary to attach a water gas reactor in front of the FT reactor to maintain the mole ratio of H 2 / CO composition of the synthesis gas flowing into the FT reactor to around 2.0.

이와 같이 철 촉매와 코발트 촉매는 각각의 장단점을 가지고 있기 때문에 이들의 장단점을 서로 보완하면서, F-T 합성 반응에서 광범위한 H2/CO의 반응물 조성에서, 그리고 보다 낮은 온도에서 높은 활성과 액체오일(C5 +)의 선택도를 보이는 촉매의 개발이 필요하다.As these iron and cobalt catalysts have their respective advantages and disadvantages, they complement each other, providing high activity and liquid oil (C 5) at a wide range of reactant compositions of H 2 / CO and at lower temperatures in FT synthesis reactions. There is a need for the development of catalysts with a selectivity of + ).

본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은, 수성가스전환반응(water-gas shift reaction)을 구현할 수 있는 기능을 갖고 있는 철 촉매에 코발트 촉매를 담지하여 합성가스의 H2/CO 조성 몰비가 2.0 미만의 조건에서도 높은 활성을 보이는 철-코발트 복합 촉매 및 그 제조 방법과 이를 촉매로 이용한 피셔-트롭쉬 합성 반응에서의 수성가스전환반응 활성구현과 고선택적 액체 연료 제조방법을 제공하는데 있다. The present invention has been made in view of the above problems, an object of the present invention, by supporting the cobalt catalyst on the iron catalyst having a function capable of implementing a water-gas shift reaction (synthesis gas) H 2 / CO composition molar ratio of iron with a high activity in terms of less than 2.0 cobalt complex catalyst and a method of manufacturing and using the same as a catalyst Fischer-Tropsch implemented water gas shift reaction activity in the synthetic reaction and a high selective liquid fuel production To provide a method.

본 발명의 다른 목적은, 기존의 코발트 촉매의 반응온도보다 높은 온도에서 일산화탄소 전환율이 높고 액체오일(C5 +)의 생성물에 대한 선택도를 높여 오일의 수율을 높일 수 있는 철-코발트 복합 촉매 및 그 제조 방법과 이를 촉매로 이용한 피셔-트롭쉬 합성 반응에서의 수성가스전환반응 활성구현과 고선택적 액체 연료 제조방법을 제공하는데 있다.Another object of the present invention is to provide an iron-cobalt complex catalyst having a higher carbon monoxide conversion and higher selectivity for a product of liquid oil (C 5 + ) at a higher temperature than the reaction temperature of a conventional cobalt catalyst, and an oil yield. The present invention provides a method for producing the water gas shift reaction in the Fischer-Tropsch synthesis reaction and a method for producing a highly selective liquid fuel using the catalyst.

본 발명의 또 다른 목적은, 수성가스전환반응의 활성을 적절히 조절하여 이산화탄소(CO2)의 선택도를 낮추고 합성가스의 손실을 최소화하면서 액체오일로의 수율을 높일 수 있는 철-코발트 복합 촉매 및 그 제조 방법과 이를 촉매로 이용한 피셔-트롭쉬 합성 반응에서의 수성가스전환반응 활성구현과 고선택적 액체 연료 제조방법을 제공하는데 있다.Still another object of the present invention is to provide an iron-cobalt complex catalyst capable of increasing the yield of liquid oil while reducing the selectivity of carbon dioxide (CO 2 ) and minimizing the loss of syngas by appropriately adjusting the activity of the water gas shift reaction; The present invention provides a method for producing the water gas shift reaction in the Fischer-Tropsch synthesis reaction and a method for producing a highly selective liquid fuel using the catalyst.

본 발명은 상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 일산화탄소와 수소로부터 액체오일을 제조하는 피셔-트롭쉬 반응에 사용되는 철-코발트 복합촉매의 제조방법에 있어서, 수성가스 전환반응의 반응활성을 보이고 공침법에 의해 제조된 철 촉매에 상기 철 촉매 100중량부에 대해 5~20중량부의 코발트를 담지하는 단계; 및 담지된 철-코발트를 건조하는 단계;를 포함한다.According to a feature of the present invention for achieving the above object, the present invention provides a method for producing an iron-cobalt composite catalyst used in the Fischer-Tropsch reaction for producing a liquid oil from carbon monoxide and hydrogen, water gas conversion Carrying 5 to 20 parts by weight of cobalt with respect to 100 parts by weight of the iron catalyst on the iron catalyst prepared by the coprecipitation method showing the reaction activity of the reaction; And drying the supported iron-cobalt.

상기 담지단계에서 상기 코발트는 철 촉매 100중량부에 대해 10~15중량부 범위 내에서 사용되는 것이 바람직하다.In the supporting step, the cobalt is preferably used in the range of 10 to 15 parts by weight based on 100 parts by weight of the iron catalyst.

상기 건조단계에서는, 상기 철-코발트를 100~150℃에서 3~5시간 동안 건조하는 것이 바람직하다.In the drying step, the iron-cobalt is preferably dried for 3 to 5 hours at 100 ~ 150 ℃.

상기 건조단계 이후에는, 건조된 철-코발트를 소성하는 단계; 및 소성된 철-코발트를 수소 분위기에서 환원 처리하는 단계;를 더 포함한다.After the drying step, calcining the dried iron-cobalt; And reducing the calcined iron-cobalt in a hydrogen atmosphere.

상기 소성단계에서는, 상기 철-코발트를 350~450℃에서 7~9시간 동안 소성하는 것이 바람직하다.In the firing step, the iron-cobalt is preferably baked for 7 to 9 hours at 350 ~ 450 ℃.

상기 환원 처리단계에서는, 300~400℃, 95~105㎪, 18~22시간 범위 내에서 수행되고, 상기 철-코발트 χg에 대해 (20χ~30χ)㎖/min 유량범위 내의 수소가 사용되는 것이 바람직하다.In the reduction treatment step, it is carried out within the range of 300 ~ 400 ℃, 95 ~ 105㎪, 18 ~ 22 hours, it is preferable that hydrogen in the flow rate range of (20χ ~ 30χ) ml / min for the iron-cobalt χg is used. Do.

본 발명에 따른 철-코발트 복합촉매를 사용함으로써 합성가스에 대한 액체오일의 수율을 높일 수 있으며, 이에 따라 합성가스에서 합성석유를 생산하는 반응 공정의 경제성을 높이는 효과가 있다. By using the iron-cobalt composite catalyst according to the present invention it is possible to increase the yield of the liquid oil for the synthesis gas, thereby increasing the economic efficiency of the reaction process for producing synthetic oil from the synthesis gas.

또한 본 발명에 따르면, 수성가스전환반응에도 활성을 보이기 때문에 H2/CO의 조성 몰비가 2.0 미만인 반응물 합성가스에서도 촉매의 활성저하 없이 사용이 가능하여, 특히 석탄액화 공정의 경우에는 초기투자 비용을 줄일 수 있는 이점이 있다.In addition, according to the present invention, since it is also active in the water gas shift reaction, it is possible to use the reactant syngas having a composition molar ratio of H 2 / CO less than 2.0 without deactivation of the catalyst. There is an advantage to reduce.

그리고 본 발명에 따르면, 생성물 이산화탄소(CO2)의 선택도가 비교적 낮아 석탄액화 공정에서의 이산화탄소의 발생을 최소화하여 온실가스의 배출에 따른 부담을 줄일 수 있는 장점이 있다.In addition, according to the present invention, the selectivity of the product carbon dioxide (CO 2 ) is relatively low to minimize the generation of carbon dioxide in the coal liquefaction process has the advantage of reducing the burden due to the emission of greenhouse gases.

도 1은 F-T 반응에서 상업적으로 사용되고 있는 철 촉매의 제조에 대한 흐름도,
도 2는 본 발명의 철-코발트 복합 촉매의 제조 방법을 도시한 흐름도이다.
1 is a flow chart for the preparation of iron catalysts used commercially in the FT reaction,
2 is a flowchart illustrating a method of preparing the iron-cobalt composite catalyst of the present invention.

본 발명에 따른 합성가스의 H2/CO 조성 몰비가 2.0 미만인 조건에서 F-T 반응에 높은 활성을 보이는 철-코발트 복합촉매에 관하여 첨부되어진 도면과 함께 더불어 상세히 설명하기로 한다.
The iron-cobalt composite catalyst showing a high activity in the FT reaction under the condition that the H 2 / CO composition molar ratio of the synthesis gas according to the present invention will be described in detail with reference to the accompanying drawings.

본 발명에서 사용되는 철 촉매는 종래기술에서 언급된 공침법에 의해 제조된다. 공침법에 따른 철 촉매의 제조방법은, 도 1에 도시된 바와 같이, 철, 구리, 칼륨과 실리카의 중량비를 100 : 5 : 4 : 25의 비율로 제조한 상용 촉매를 기본으로 하여 SiO2의 양을 조절하면서 촉매를 제조한다. The iron catalyst used in the present invention is prepared by the coprecipitation method mentioned in the prior art. Method of producing an iron catalyst according to the coprecipitation method is, as shown in Figure 1, the ratio by weight of iron, copper, potassium and silica of 100: 5: 4: the base to a commercial catalyst produced in a ratio of 25 of SiO 2 The catalyst is prepared while adjusting the amount.

상용 촉매의 제조는 FeNO3·9H2O 와 Cu(NO3)2·H2O를 알려진 비율대로 정량하고 증류수에 녹여 수용액을 만들며, 여기에 Na2CO3 수용액을 조금씩 첨가하여서 침전을 시켜 촉매를 제조한다(Coprecipitation). 이때 침전조는 80±1℃, pH는 8.0±1로 유지한다(단계 S100). In the preparation of a commercial catalyst, FeNO 3 · 9H 2 O and Cu (NO 3 ) 2 · H 2 O are quantified in a known ratio, and dissolved in distilled water to form an aqueous solution. A small amount of Na 2 CO 3 aqueous solution is added to precipitate the catalyst. Prepare (Coprecipitation). At this time, the precipitation tank is maintained at 80 ± 1 ℃, pH is 8.0 ± 1 (step S100).

그리고 생성된 침전물은 여과와 증류수로의 세척을 반복하여 침전물속에 있는 나트륨(Na) 성분을 제거한다(Washing, 단계 S110). 나트륨 성분이 제거된 침전물을 sol 상태의 SiO2 용액과 K2CO3 용액과 혼합(SiO2, K addition, 단계 S120)하여 200℃의 온도에서 분무건조(Spray-Drying, 단계 S130)시키면 구형의 촉매 입자가 만들어진다. 만들어진 촉매를 400℃에서 8시간 가열하여 소성시키면 안정화된 촉매의 제조가 완성된다.The produced precipitate is removed by repeating filtration and washing with distilled water to remove sodium (Na) component in the precipitate (Washing, step S110). Sodium-free precipitates were mixed with SiO 2 solution and K 2 CO 3 solution in sol state (SiO 2 , K addition, step S120) and spray-dried at a temperature of 200 ° C. (Spray-Drying, step S130). Catalyst particles are made. The produced catalyst is heated and calcined at 400 ° C. for 8 hours to complete the production of the stabilized catalyst.

이와 같이 제조된 분말의 철 촉매에 일정한 양의 코발트를 담지한다(Co impregnation). 담지하는 코발트의 양은 철 촉매 100중량부에 대하여 5~20중량부인 것이 바람직하고, 10~15중량부인 것이 보다 바람직하다. 이는 코발트의 양이 5중량부를 미달하면 촉매의 반응 활성과 액체오일의 선택도가 저하되고, 20중량부를 초과하면 촉매의 반응 활성이 저하되고 촉매의 가격이 상승하기 때문이다. 한편 상기 범위 내에서도 코발트의 양이 10~15중량부 범위 내에서 사용될 때 액체오일의 생산량이 가장 높은 것으로 시험 결과 나타났다(단계 S140).A constant amount of cobalt is supported on the iron catalyst of the powder thus prepared (Co impregnation). It is preferable that it is 5-20 weight part with respect to 100 weight part of iron catalysts, and, as for the quantity of cobalt supported, it is more preferable that it is 10-15 weight part. This is because if the amount of cobalt is less than 5 parts by weight, the reaction activity of the catalyst and the selectivity of the liquid oil are lowered. On the other hand, even in the above range, when the amount of cobalt is used within the range of 10 to 15 parts by weight, the test results showed that the liquid oil yield was the highest (step S140).

담지된 철-코발트는 100~150℃에서 3~5시간 건조하여 철-코발트 복합촉매를 제조한다(단계 S150).The supported iron-cobalt is dried at 100 to 150 ° C. for 3 to 5 hours to produce an iron-cobalt composite catalyst (step S150).

철-코발트 복합촉매는 일단 상기 과정을 통해 제조되지만, 사용을 위한 후속 처리가 추가될 수 있으므로, 철-코발트 복합촉매의 제조과정은 다음의 단계를 포함할 수 있다.The iron-cobalt composite catalyst is prepared once through the above process, but since subsequent processing for use may be added, the manufacturing process of the iron-cobalt composite catalyst may include the following steps.

즉, 제조된 철-코발트 복합촉매는 350~450℃에서 7~9시간 소성(Calcination)하고, 촉매는 반응기에서 반응 전에 수소 분위기에서 환원 처리한 후 사용한다. 이때 환원 처리시에는, 300~400℃, 95~105㎪, 18~22시간 범위 내에서 수행되고, 상기 철-코발트의 중량값(χg)에 대해 분당 20~30배의 유량범위 내((20χ~30χ)㎖/min)의 수소가 사용된다.
That is, the prepared iron-cobalt composite catalyst is calcined (Calcination) for 7 to 9 hours at 350 ~ 450 ℃, the catalyst is used after the reduction treatment in a hydrogen atmosphere before the reaction in the reactor. At this time, in the reduction treatment, it is carried out within the range of 300 ~ 400 ℃, 95 ~ 105 kPa, 18 ~ 22 hours, in the flow range of 20 to 30 times per minute with respect to the weight value (χ g) of the iron-cobalt ((20χ ˜30χ) ml / min) of hydrogen is used.

이와 같이 제조된 철-코발트 복합촉매를 이용하면, H2 및 CO가 주성분인 합성가스와 피셔-트롭쉬 합성 반응에 의해 수성가스전환반응의 활성이 적절히 조절되어 생성물 이산화탄소의 선택도가 높지 않고 액체 오일(C5 +)의 선택도가 높아 생산되는 액체오일의 수율이 높아짐으로, 고선택적 액체연료를 제조할 수 있게 된다.Using the iron-cobalt composite catalyst prepared as described above, the activity of the water gas shift reaction is appropriately controlled by the synthesis gas and Fischer-Tropsch synthesis reaction mainly composed of H 2 and CO, so that the selectivity of the product carbon dioxide is not high and the liquid The high selectivity of the oil (C 5 + ) increases the yield of the liquid oil produced, thereby producing a highly selective liquid fuel.

또한 철-코발트 복합촉매를 이용하면, 2.0미만의 H2/CO 조성 몰비에서도 촉매의 활성저하가 이루어지지 않으므로, 복합촉매의 수명을 연장할 수 있을 뿐만 아니라, F-T 반응기 앞에 수성가스 반응기를 부착할 필요가 없어지므로, 장치가 단순화되고 비용 절감을 달성할 수 있다.
In addition, the use of the iron-cobalt composite catalyst does not reduce the activity of the catalyst even at a molar ratio of H 2 / CO of less than 2.0, thereby extending the life of the composite catalyst and attaching a water gas reactor in front of the FT reactor. Since there is no need, the apparatus can be simplified and cost reduction can be achieved.

다음으로 본 발명에 따른 철-코발트 복합촉매에 대한 구체적인 실시예에 대해 설명한다.Next, specific examples of the iron-cobalt composite catalyst according to the present invention will be described.

본 실시예에 따른 철-코발트 복합촉매에서 철 촉매는 공침법에 의해 제조되었고, 상기 철 촉매를 상기 철 촉매 100중량부에 대해 5, 10, 15 및 20중량부의 코발트를 각각 담지하여 120℃에서 4시간 동안 건조하였다. 그리고 건조된 철-코발트를 400℃에서 8시간 동안 소성하였으며, [표 1]에 표시된 조건에 따라 환원 처리한 후 반응 시험을 수행하였다.
In the iron-cobalt composite catalyst according to the present embodiment, the iron catalyst was prepared by co-precipitation method, and the iron catalyst was carried out at 120 ° C. with 5, 10, 15, and 20 parts by weight of cobalt, respectively, based on 100 parts by weight of the iron catalyst. Dry for 4 hours. The dried iron-cobalt was calcined at 400 ° C. for 8 hours, and then subjected to a reduction test according to the conditions shown in [Table 1].

환원restoration 반응reaction 온도(℃)Temperature (℃) 350350 210, 240, 270210, 240, 270 압력(㎪)Pressure 101.325101.325 15001500 유량(㎖/min)Flow rate (ml / min) H2 20H 2 20 H2:CO=26:13(=2:1)H 2 : CO = 26: 13 (= 2: 1) 시간(hour)Hour 2020 1818 촉매량(gcat)Catalyst amount (g cat ) 0.80.8 0.80.8

일정량(0.8g)의 촉매를 마이크로 고정층 반응기에 넣은 후 [표 1]의 조건과 같이 환원 처리한 후 합성가스를 H2/CO 조성 몰비가 2.0인 조건으로 흘리면서 온도변화에 따라 반응할 경우, 그 결과를 [표 2], [표 3] 및 [표 4]에 나타내었다. 즉, [표 2]는 210℃에서의 반응 결과를 나타내고, [표 3]은 240℃에서의 반응 결과를 나타내며, [표 4]는 270℃에서의 반응 결과를 나타낸 것이다.
After putting a certain amount (0.8 g) of the catalyst in a micro fixed bed reactor and reducing the composition as shown in [Table 1], the synthesis gas reacts according to the temperature change while flowing under the condition that the mole ratio of H 2 / CO composition is 2.0. The results are shown in [Table 2], [Table 3] and [Table 4]. That is, Table 2 shows the reaction results at 210 ° C, Table 3 shows the reaction results at 240 ° C, and Table 4 shows the reaction results at 270 ° C.

Co
Conc.
Co
Conc.
CO
Conv.
CO
Conv.
CO to
CO2
CO to
CO 2
CO to
HC
CO to
HC
H2 Conv.H 2 Conv. CO2 Sel.
(Cmol%)
CO 2 Sel.
(Cmol%)
CH4 Sel.
(Cmol%)
CH 4 Sel.
(Cmol%)
C2-4 Sel.
(Cmol%)
C 2 - 4 Sel.
(Cmol%)
C5 + Sel.
(Cmol%)
C 5 + Sel.
(Cmol%)
5%5% 13.5913.59 2.762.76 10.8410.84 7.9627.962 21.4421.44 2.4992.499 13.3213.32 62.7362.73 10%10% 13.9813.98 1.8771.877 12.112.1 4.8074.807 13.4213.42 2.8532.853 10.9010.90 72.8272.82 15%15% 12.7812.78 1.4191.419 11.3611.36 4.7234.723 11.111.1 2.5742.574 11.5611.56 74.7674.76 20%20% 13.6913.69 1.3421.342 12.3512.35 5.8645.864 9.8019.801 2.2312.231 10.1310.13 77.8377.83

Co
Conc.
Co
Conc.
CO
Conv.
CO
Conv.
CO to
CO2
CO to
CO 2
CO to
HC
CO to
HC
H2 Conv.H 2 Conv. CO2 Sel.
(Cmol%)
CO 2 Sel.
(Cmol%)
CH4 Sel.
(Cmol%)
CH 4 Sel.
(Cmol%)
C2-4 Sel.
(Cmol%)
C 2 - 4 Sel.
(Cmol%)
C5 + Sel.
(Cmol%)
C 5 + Sel.
(Cmol%)
5%5% 46.8046.80 18.9618.96 27.8427.84 22.1022.10 40.1140.11 2.3402.340 14.1314.13 43.4243.42 10%10% 56.4456.44 12.7512.75 43.743.7 18.7618.76 22.6922.69 1.7071.707 9.3699.369 66.2466.24 15%15% 53.6953.69 10.6310.63 43.0643.06 18.4518.45 19.9419.94 1.7091.709 9.2419.241 69.1169.11 20%20% 36.6736.67 13.8913.89 22.7822.78 18.9918.99 38.1838.18 3.2053.205 19.8519.85 38.7638.76

Co
Conc.
Co
Conc.
CO
Conv.
CO
Conv.
CO to
CO2
CO to
CO 2
CO to
HC
CO to
HC
H2 Conv.H 2 Conv. CO2 Sel.
(Cmol%)
CO 2 Sel.
(Cmol%)
CH4 Sel.
(Cmol%)
CH 4 Sel.
(Cmol%)
C2-4 Sel.
(Cmol%)
C 2 - 4 Sel.
(Cmol%)
C5 + Sel.
(Cmol%)
C 5 + Sel.
(Cmol%)
5%5% 72.9472.94 32.2232.22 40.7240.72 31.2431.24 44.1644.16 5.2675.267 14.814.8 35.7735.77 10%10% 73.5373.53 35.2135.21 38.3238.32 30.2130.21 47.9947.99 7.6947.694 17.0917.09 27.2327.23 15%15% 75.0475.04 36.3736.37 38.6738.67 31.9931.99 48.5448.54 8.398.39 18.0118.01 25.0625.06 20%20% 74.9574.95 32.9732.97 41.9841.98 30.5130.51 44.0144.01 7.5947.594 21.4721.47 26.9226.92

[표 2] 내지 [표 4]에 표시된 바와 같이, 반응온도가 증가하면서 일산화탄소 전환율은 증가하지만 메탄과 C2∼C4의 기체 탄화수소 생성물의 양도 증가하여 액체오일(C5 +)의 수율은 반응 온도 240℃에서 최대값을 보임을 알 수 있다.As shown in Tables 2 to 4, as the reaction temperature increases, the carbon monoxide conversion increases, but the amount of gaseous hydrocarbon products of methane and C 2 to C 4 also increases, so that the yield of liquid oil (C 5 + ) is reacted. It can be seen that the maximum value is shown at a temperature of 240 ℃.

또한 코발트의 담지량에 따른 결과는 240℃의 반응 온도에서 10%와 15%의 코발트 함량에서 액체오일의 생성량이 가장 높게 나타났다.
In addition, the result of cobalt loading showed the highest amount of liquid oil production at the reaction temperature of 240 ° C at 10% and 15% cobalt content.

비록 본 발명이 상기에서 언급한 바람직한 실시예와 관련하여 설명되어졌지만, 본 발명의 요지와 범위로부터 벗어남이 없이 다른 다양한 수정 및 변형이 가능할 것이다. 따라서, 첨부된 청구의 범위는 본 발명의 진정한 범위내에 속하는 그러한 수정 및 변형을 포함할 것이라고 여겨진다.Although the present invention has been described in connection with the preferred embodiments mentioned above, various other modifications and variations will be possible without departing from the spirit and scope of the invention. It is, therefore, to be understood that the appended claims are intended to cover such modifications and changes as fall within the true scope of the invention.

Claims (9)

일산화탄소와 수소로부터 액체오일을 제조하는 피셔-트롭쉬 반응에 사용되는 철-코발트 복합촉매의 제조방법에 있어서,
수성가스 전환반응의 반응활성을 보이고 공침법에 의해 철, 구리, 칼륨과 실리카의 중량비를 100 : 5 : 4 : 25의 비율로 제조한 상용 촉매를 기본으로 하여 SiO2의 양을 조절하면서 제조된 철 촉매에 상기 철 촉매 100중량부에 대해 5~20중량부의 코발트를 담지하는 단계; 및
담지된 철-코발트를 건조하는 단계;를 포함하는 것을 특징으로 하는 철-코발트 복합촉매의 제조방법.
In the production method of iron-cobalt composite catalyst used in the Fischer-Tropsch reaction for producing a liquid oil from carbon monoxide and hydrogen,
Prepared by controlling the amount of SiO 2 on the basis of a commercial catalyst which shows the reaction activity of the water gas conversion reaction and prepared by the coprecipitation method the weight ratio of iron, copper, potassium and silica in a ratio of 100: 5: 4: 25. Supporting 5 to 20 parts by weight of cobalt based on 100 parts by weight of the iron catalyst on an iron catalyst; And
Drying the supported iron-cobalt; Method for producing an iron-cobalt composite catalyst comprising a.
제1항에 있어서,
상기 담지단계에서 상기 코발트는 철 촉매 100중량부에 대해 10~15중량부 범위 내에서 사용되는 것을 특징으로 하는 철-코발트 복합촉매의 제조방법.
The method of claim 1,
In the supporting step, the cobalt is used in the preparation of iron-cobalt composite catalyst, characterized in that used in the range of 10 to 15 parts by weight based on 100 parts by weight of the iron catalyst.
제1항에 있어서,
상기 건조단계에서는, 상기 철-코발트를 100~150℃에서 3~5시간 동안 건조하는 것을 특징으로 하는 철-코발트 복합촉매의 제조방법.
The method of claim 1,
In the drying step, the iron-cobalt is a method for producing an iron-cobalt composite catalyst, characterized in that for 3 to 5 hours to dry at 100 ~ 150 ℃.
제1항에 있어서,
상기 건조단계 이후에는,
건조된 철-코발트를 소성하는 단계; 및
소성된 철-코발트를 수소 분위기에서 환원 처리하는 단계;를 더 포함하는 것을 특징으로 하는 철-코발트 복합촉매의 제조방법.
The method of claim 1,
After the drying step,
Calcining the dried iron-cobalt; And
Reducing the calcined iron-cobalt in a hydrogen atmosphere; method for producing an iron-cobalt composite catalyst, characterized in that it further comprises.
제4항에 있어서,
상기 소성단계에서는, 상기 철-코발트를 350~450℃에서 7~9시간 동안 소성하는 것을 특징으로 하는 철-코발트 복합촉매의 제조방법.
5. The method of claim 4,
In the firing step, the iron-cobalt is produced for 7 to 9 hours at 350 ~ 450 ℃ the iron-cobalt composite catalyst production method.
제4항에 있어서,
상기 환원 처리단계에서는, 300~400℃, 95~105㎪, 18~22시간 범위 내에서 수행되고, 상기 철-코발트의 중량값(χg)에 대해 분당 20~30배의 유량범위 내((20χ~30χ)㎖/min)의 수소가 사용되는 것을 특징으로 하는 철-코발트 복합촉매의 제조방법.
5. The method of claim 4,
In the reduction treatment step, it is carried out in the range of 300 to 400 ℃, 95 to 105 kPa, 18 to 22 hours, in the flow range of 20 to 30 times per minute with respect to the weight value (χg) of the iron-cobalt ((20χ A method for producing an iron-cobalt composite catalyst, characterized in that hydrogen of ˜30χ) ml / min) is used.
제1항 내지 제6항 중 어느 한 항에 의해 제조되는 것을 특징으로 하는 철-코발트 복합촉매.An iron-cobalt composite catalyst prepared by any one of claims 1 to 6. 제7항에 의해 제조된 철-코발트 복합촉매를 이용하여 H2/CO의 조성 몰비가 2 미만인 합성가스와 피셔-트롭쉬 합성 반응에 의해 수성가스전환반응을 활성화시켜 고선택적 액체연료를 생산하는 것을 특징으로 하는 철-코발트 복합촉매를 이용한 피셔-트롭쉬 합성 반응에서의 수성가스전환반응 활성구현과 고선택적 액체 연료 제조방법.By using the iron-cobalt composite catalyst prepared according to claim 7 to produce a high-selective liquid fuel by activating the water gas shift reaction by the synthesis gas and Fischer-Tropsch synthesis reaction having a composition ratio of H 2 / CO less than 2 An embodiment of water gas conversion reaction in Fischer-Tropsch synthesis reaction using an iron-cobalt composite catalyst and a method for producing a highly selective liquid fuel. 삭제delete
KR1020110067491A 2011-07-07 2011-07-07 Iron-cobalt catalyst, manufacturing method same and method for obtaining water-gas shift reaction activity and for highly selective liquid fuel production in Fischer-Tropsch synthesis using iron-cobalt catalyst KR101272082B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110067491A KR101272082B1 (en) 2011-07-07 2011-07-07 Iron-cobalt catalyst, manufacturing method same and method for obtaining water-gas shift reaction activity and for highly selective liquid fuel production in Fischer-Tropsch synthesis using iron-cobalt catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110067491A KR101272082B1 (en) 2011-07-07 2011-07-07 Iron-cobalt catalyst, manufacturing method same and method for obtaining water-gas shift reaction activity and for highly selective liquid fuel production in Fischer-Tropsch synthesis using iron-cobalt catalyst

Publications (2)

Publication Number Publication Date
KR20130005848A KR20130005848A (en) 2013-01-16
KR101272082B1 true KR101272082B1 (en) 2013-06-07

Family

ID=47837052

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110067491A KR101272082B1 (en) 2011-07-07 2011-07-07 Iron-cobalt catalyst, manufacturing method same and method for obtaining water-gas shift reaction activity and for highly selective liquid fuel production in Fischer-Tropsch synthesis using iron-cobalt catalyst

Country Status (1)

Country Link
KR (1) KR101272082B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060472A1 (en) 2013-10-22 2015-04-30 한국에너지기술연구원 Cobalt-based catalyst based on metal structure for fischer-tropsch reaction for selective synthetic oil production, preparation method therefor, and selective synthetic oil preparation method using cobalt-based catalyst based on metal structure
KR20160077860A (en) 2014-12-24 2016-07-04 한국과학기술연구원 A method for praparing synthetic fuel from natural gas of standard gas field by GTL-FPSO system and an equipment for praparing it
KR20180092831A (en) 2017-02-10 2018-08-20 연세대학교 원주산학협력단 Preparation of alkali metal or alkaline earth metal promoted Co-based catalysts for the water gas shift reaction
KR20190140536A (en) 2018-05-31 2019-12-20 한국화학연구원 Catalytic Structure for Fischer―Tropsch Synthesis

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140095188A (en) * 2013-01-24 2014-08-01 한국에너지기술연구원 system for preparing of hydrocarbons by Fischer-Tropsch synthesis
KR20140095187A (en) * 2013-01-24 2014-08-01 한국에너지기술연구원 Method for preparing of hydrocarbons by Fischer-Tropsch synthesis
KR20140095189A (en) * 2013-01-24 2014-08-01 한국에너지기술연구원 Catalytic reduction reactor by Fischer-Tropsch synthesis
KR101496097B1 (en) * 2014-07-25 2015-02-27 한국에너지기술연구원 Method for preparing iron-based catalyst and iron-based catalyst prepared by the same
KR101875857B1 (en) * 2016-04-06 2018-07-06 한국가스공사 Method for preparing high caloric synthetic natural gas
KR102114538B1 (en) * 2018-01-22 2020-05-22 서강대학교산학협력단 Cobalt-Iron Hybrid Catalyst Having Ordered Mesoporous Channels As a Main Framework for Fischer-Tropsch Synthesis, a Method for Preparing the Same, and a Method for Preparing Hydrocarbons Using the Same
US11261390B2 (en) 2018-09-10 2022-03-01 Korea Institute Of Science And Technology Apparatus and method of preparing synthetic fuel using natural gas
KR102250016B1 (en) * 2019-05-17 2021-05-07 경북대학교 산학협력단 Catalyst for synthesizing synthetic natural gas with high heating value and method of synthesizing the synthetic natural gas using the catalyst

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100847443B1 (en) 2007-02-23 2008-07-22 고려대학교 산학협력단 Cr-free catalysts for high temperature water gas shift reaction to remove carbon monoxide
KR100962181B1 (en) 2008-04-28 2010-06-10 한국화학연구원 Iron-based catalyst for Fischer-Tropsch synthesis and method for preparing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100847443B1 (en) 2007-02-23 2008-07-22 고려대학교 산학협력단 Cr-free catalysts for high temperature water gas shift reaction to remove carbon monoxide
KR100962181B1 (en) 2008-04-28 2010-06-10 한국화학연구원 Iron-based catalyst for Fischer-Tropsch synthesis and method for preparing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문;APPLIED CATALYSIS A:GENERAL *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060472A1 (en) 2013-10-22 2015-04-30 한국에너지기술연구원 Cobalt-based catalyst based on metal structure for fischer-tropsch reaction for selective synthetic oil production, preparation method therefor, and selective synthetic oil preparation method using cobalt-based catalyst based on metal structure
US9586198B2 (en) 2013-10-22 2017-03-07 Korea Institute Of Energy Research Cobalt-based catalyst on metal structure for selective production of synthetic oil via fischer-tropsch reaction, method of preparing the same, and method of selectively producing synthetic oil using the same
KR20160077860A (en) 2014-12-24 2016-07-04 한국과학기술연구원 A method for praparing synthetic fuel from natural gas of standard gas field by GTL-FPSO system and an equipment for praparing it
US9822311B2 (en) 2014-12-24 2017-11-21 Korea Institute Of Science And Technology Method for preparing synthetic fuel from natural gas of stranded gas field and associated gas from oil and gas fields by GTL-FPSO process
KR20180092831A (en) 2017-02-10 2018-08-20 연세대학교 원주산학협력단 Preparation of alkali metal or alkaline earth metal promoted Co-based catalysts for the water gas shift reaction
KR20190140536A (en) 2018-05-31 2019-12-20 한국화학연구원 Catalytic Structure for Fischer―Tropsch Synthesis

Also Published As

Publication number Publication date
KR20130005848A (en) 2013-01-16

Similar Documents

Publication Publication Date Title
KR101272082B1 (en) Iron-cobalt catalyst, manufacturing method same and method for obtaining water-gas shift reaction activity and for highly selective liquid fuel production in Fischer-Tropsch synthesis using iron-cobalt catalyst
KR101026536B1 (en) Fe-based catalyst for the reaction of Fischer-Tropsch synthesis and preparation method thereof
JP4933014B2 (en) Highly active Fischer-Tropsch synthesis using doped and thermally stable catalyst supports
Li et al. A novel oxygen carrier for chemical looping reforming: LaNiO3 perovskite supported on montmorillonite
US7067562B2 (en) Iron-based Fischer-Tropsch catalysts and methods of making and using
KR100903439B1 (en) Preparation method of direct synthesis of light hydrocarbons from natural gas
KR102061235B1 (en) Activation method of catalyst for fischer-tropsch synthesis
CN105944751A (en) Catalyst for directly preparing synthesis gas into aromatic compounds and preparation method and application of catalyst
JP2011529394A (en) Catalyst for producing synthesis gas from natural gas and carbon dioxide and method for producing the same
JP4132295B2 (en) Method for producing liquid hydrocarbon oil from lower hydrocarbon gas containing carbon dioxide gas
KR101453443B1 (en) Catalysts for the production of higher calorific synthetic natural gas and the preparation method thereof
JP2012520819A (en) Process for preparing a gas mixture rich in hydrogen
KR101847549B1 (en) Methods of manufacturing iron-base catalysts and methods of manufacturing hydrocarbons using iron-base catalysts made by the method
Tri et al. High activity and stability of nano‐nickel catalyst based on LaNiO3 perovskite for methane bireforming
KR20170058210A (en) Synthesized catalyst of methanation, the method of manufacturing the same, and the method of manufacturing synthetic natural gas using the same
CA1071616A (en) Carbon and erosion resistant catalyst
KR101969554B1 (en) Fe-Co based complex catalyst for producing Synthetic-Natural-Gas of higher heating level and Use thereof
KR101968297B1 (en) Catalyst for producing Synthetic-Natural-Gas of higher heating level and Use thereof
KR102073959B1 (en) Catalyst for synthesizing synthetic natural gas and manufacturing method for high calorific synthetic natural gas using the same
KR101447681B1 (en) Supported Perovskite type catalysts for combined steam and carbon dioxide reforming with methane
KR101792630B1 (en) Preparation method of cobalt-based Fischer-Tropsch catalysts and regeneration method of catalysts by feeding of liquid hydrocarbons formed during FTS reaction
JP2002161280A (en) Method for producing hydrocarbons in the presence of carbon dioxide
KR20150129566A (en) Ni-based catalysts for combined steam and carbon dioxide reforming with natural gas
De la Osa et al. Silica-Based Catalysts for Fuel Applications
KR101451407B1 (en) CATAlYST COMPOSITION FOR AUTOTHERMAL REACTION OF METHANE, METHOD FOR PREPARING THE SAME, METHOD FOR PREPARING A SYNGAS USING THE SAME

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160513

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170308

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180416

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200309

Year of fee payment: 8