KR20140095188A - system for preparing of hydrocarbons by Fischer-Tropsch synthesis - Google Patents

system for preparing of hydrocarbons by Fischer-Tropsch synthesis Download PDF

Info

Publication number
KR20140095188A
KR20140095188A KR1020130007785A KR20130007785A KR20140095188A KR 20140095188 A KR20140095188 A KR 20140095188A KR 1020130007785 A KR1020130007785 A KR 1020130007785A KR 20130007785 A KR20130007785 A KR 20130007785A KR 20140095188 A KR20140095188 A KR 20140095188A
Authority
KR
South Korea
Prior art keywords
fischer
catalyst
tropsch synthesis
reactor
hydrocarbon compound
Prior art date
Application number
KR1020130007785A
Other languages
Korean (ko)
Inventor
이호태
정헌
천동현
양정일
박지찬
홍성준
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020130007785A priority Critical patent/KR20140095188A/en
Priority to PCT/KR2013/004277 priority patent/WO2014115932A1/en
Publication of KR20140095188A publication Critical patent/KR20140095188A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/20Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/34Apparatus, reactors
    • C10G2/342Apparatus, reactors with moving solid catalysts
    • C10G2/344Apparatus, reactors with moving solid catalysts according to the "fluidised-bed" technique

Abstract

The present invention relates to a system for manufacturing a hydrocarbon compound by using Fischer-Tropsch synthesis, and the system for manufacturing the hydrocarbon compound by using the Fischer-Tropsch synthesis, according to the present invention, comprises: a catalyst reduction reactor comprising a mixer into which an iron-based catalyst is charged, a first synthetic gas is injected to reduce the iron-based catalyst, and into which a second synthetic gas is injected so as to be mixed with the reduced iron-based catalyst; and a Fischer-Tropsch synthesis reactor for subjecting to a reaction the mixture of the second synthetic gas and the reduced iron-based catalyst transported online through a tube connected to the catalyst reduction reactor to manufacture the hydrocarbon compound. As a result, a catalyst is reduced (activated) in a separate reactor and then introduced into the Fischer-Tropsch reactor thereby facilitating introduction of an additional catalyst when manufacturing the hydrocarbon compound using the Fischer-Tropsch synthesis, and reducing the time required for manufacturing the hydrocarbon compound using the Fischer-Tropsche synthesis by supplying the activated catalyst.

Description

피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조 시스템{system for preparing of hydrocarbons by Fischer-Tropsch synthesis}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for preparing hydrocarbon compounds using Fischer-Tropsch synthesis reaction,

본 발명은 탄화수소 제조 시스템에 관한 것으로, 더욱 상세하게는 피셔-트롭쉬 합성반응을 이용한 탄화수소 제조 시스템에 관한 것이다.The present invention relates to a hydrocarbon manufacturing system, and more particularly, to a hydrocarbon manufacturing system using a Fischer-Tropsch synthesis reaction.

산업화 이후로 석유에 대한 수요는 꾸준히 증가하고 있는 반면, 석유의 매장량은 제한되어 있기 때문에, 석유의 공급이 수요를 따라가지 못하는 시점(피크오일, peak oil)이 필연적으로 도래하게 되며, 많은 학자들이 이러한 피크오일이 이미 도래했거나 조만간 도래할 것으로 예측하고 있다. 따라서 피크오일이 도래한 이후 발생할 경제/사회적 위기 및 충격을 최소화하기 위해, 원유 의존도를 줄이는 기술의 개발과 더불어 원유의 부족한 부분을 원유 이외의 원료에서 제조하여 보충하기 위한 합성석유 제조기술의 개발에 대한 관심이 커지고 있다.Since industrialization, demand for petroleum has steadily increased. However, since oil reserves are limited, it is inevitable that the supply of oil will not meet demand (peak oil, peak oil), and many scholars It is predicted that such a peak oil has already arrived or will soon arrive. Therefore, in order to minimize the economic and social crisis and impact that will occur after the arrival of peak oil, the development of synthetic oil production technology to manufacture and replenish scarce parts of crude oil other than crude oil Interest is growing.

대표적인 합성석유 제조기술 중의 하나인 석탄간접액화(indirect coal liquefaction)는 석탄가스화 및 정제를 통해 얻어진 합성가스(H2+CO)를 피셔-트롭쉬 합성반응을 통해 액상합성석유로 전환하는 공정으로, 석탄의 청정활용이라는 측면과 고부가가치산물을 얻을 수 있다는 측면에서 매우 유망한 기술이다. 특히 석탄은 매장량이 풍부하고, 전세계적으로 고루 분포해 있을 뿐만 아니라, 가격이 싸다는 장점을 지니고 있다.The indirect coal liquefaction process, which is one of the representative synthetic petroleum production technologies, is a process of converting synthesis gas (H 2 + CO) obtained through coal gasification and purification into liquid synthetic oil through Fischer-Tropsch synthesis reaction. It is a very promising technology in terms of clean utilization of coal and high value-added products. In particular, coal is rich in reserves, is distributed throughout the world, and has the advantage of being cheap.

피셔-트롭쉬 합성반응은 1923년 독일의 화학자 피셔(Fischer)와 트롭쉬(Tropsch)가 석탄의 가스화에 의해 합성가스로부터 합성연료를 제조하는 기술을 개발한데서 처음 시작되었다. 피셔-트롭쉬 합성반응은 촉매를 사용하여 합성가스를 탄화수소로 전환하는 반응인데, 여기서 사용되는 촉매는 활성도가 높은 촉매일수록 일반적인 생산성의 지표인 탄소 수가 5 이상인 탄화수소의 생산성을 높이고, 전체적인 탄소 효율을 높일 수 있다.The Fischer-Tropsch synthesis reaction began in 1923 when German chemists Fischer and Tropsch developed a technique for producing synthetic fuels from syngas by coal gasification. The Fischer-Tropsch synthesis reaction is a reaction in which a syngas is converted to a hydrocarbon by using a catalyst. The catalyst used herein is a catalyst having high activity, which increases productivity of hydrocarbons having a carbon number of 5 or more, which is an index of general productivity, .

피셔-트롭쉬 합성반응에 활성을 보이는 물질로는 철(Fe), 코발트(Co), 니켈(Ni), 루테늄(Ru) 등의 그룹 금속물질이 보고되고 있다. 그 중에서 철(Fe)계 촉매는 낮은 제조단가, 우수한 성능, 수성-가스전환반응(WGS, Water-Gas Shift)에도 활성을 보인다는 점 때문에 석탄간접액화와 연계된 피셔-트롭쉬 합성반응에 특히 장점을 보인다.Group metallic materials such as iron (Fe), cobalt (Co), nickel (Ni) and ruthenium (Ru) have been reported as active substances in the Fischer-Tropsch synthesis reaction. Among them, iron (Fe) -based catalysts are particularly suitable for the Fischer-Tropsch synthesis reaction associated with indirect indirect liquefaction because of their low production cost, excellent performance, and activity in water-gas shift (WGS) It looks good.

피셔-트롭쉬 합성반응용 촉매는 일반적으로 제조된(as-prepared) 상태에서는 피셔-트롭쉬 합성반응에 활성이 없다. 따라서 반응을 수행하기 전에 적절한 조건에서 환원(활성화)처리를 수행하여 촉매를 활성을 띄는 형태로 바꿔 주어야 한다.The Fischer-Tropsch synthesis catalyst is not active in the Fischer-Tropsch synthesis reaction in the as-prepared state. Therefore, a reduction (activation) treatment should be carried out under appropriate conditions before the reaction is carried out to convert the catalyst into an active form.

철계 촉매는 철계 탄화물(iron-carbide)이 주요 활성종으로 알려져 있으며, 환원처리 및 반응 중에 다양한 금속/탄화물/산화물 구조가 복잡하게 형성이 되므로, 단순히 금속상이 활성종으로 쓰이는 Co, Ni, Ru계 촉매와 비교할 경우 그 성능이 환원조건에 크게 의존한다.Since iron-based carbides are known as iron-carbide as a main active species, various metal / carbide / oxide structures are complexly formed during the reduction treatment and reaction. Therefore, Compared with the catalyst, its performance is highly dependent on the reduction conditions.

피셔-트롭쉬 합성반응을 수행하기 위해 피셔-트롭쉬 합성반응에 필요한 철계 촉매와 합성가스를 피셔-트롭쉬 합성 반응기에 넣어 우선적으로, 촉매 환원(활성화)반응이 수행되고 다음으로 피셔-트롭쉬 합성반응이 수행된다.In order to carry out the Fischer-Tropsch synthesis reaction, an iron-based catalyst and a syngas necessary for a Fischer-Tropsch synthesis reaction are put into a Fischer-Tropsch synthesis reactor to preferentially perform a catalytic reduction (activation) reaction, A synthesis reaction is carried out.

이와 같이 단일 피셔-트롭쉬 합성 반응기에서 촉매 환원(활성화)반응과 피셔-트롭쉬 합성반응이 수행되기 때문에 사용자는 촉매를 보충하고자 할 때, 합성반응을 중단하고 피셔-트롭쉬 반응기 내부로 투입해야 하는 문제점이 있다.Since the catalytic reduction (activation) reaction and the Fischer-Tropsch synthesis reaction are performed in a single Fischer-Tropsch synthesis reactor, the user must stop the synthesis reaction and introduce it into the Fischer-Tropsch reactor .

또한, 활성화 되지 않는 촉매를 보충하기 때문에 다시 피셔-트롭쉬 합성반응이 수행되기 위해선 많은 시간이 소요된다. In addition, it takes a long time to perform the Fischer-Tropsch synthesis reaction again because it replenishes the catalyst which is not activated.

따라서 상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 피셔-트롭쉬 합성과정에서 추가로 촉매를 투입하기 용이하고, 활성화된 촉매를 공급하여 피셔-트롭쉬 합성반응이 수행되는 시간을 단축할 수 있는 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조 시스템을 제공하기 위한 것이다.Accordingly, it is an object of the present invention to solve the above-mentioned problems and it is an object of the present invention to provide a process for synthesizing a Fischer-Tropsch synthesis catalyst, The present invention provides a system for producing a hydrocarbon compound using a Fischer-Tropsch synthesis reaction.

상기와 같은 목적을 달성하기 위하여, 본 발명은 철계 촉매가 장입되고, 제1 합성가스가 주입되어 상기 철계 촉매가 환원처리되고, 상기 환원처리된 철계 촉매와 주입된 제2 합성가스를 교반하는 교반기를 포함하는 촉매 환원 반응기 및 상기 촉매 환원 반응기와 연결된 관을 통해 온라인(online)으로 이동된 상기 교반된 제2 합성가스 및 환원처리된 철계 촉매를 반응시켜 탄화수소 화합물을 제조하는 피셔-트롭쉬 합성 반응기를 포함하는 것을 특징으로 하는 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조 시스템을 제공한다.In order to accomplish the above object, the present invention provides a method for producing iron-based catalyst, comprising the steps of charging an iron-based catalyst, injecting a first syngas to reduce the iron-based catalyst, And a Fischer-Tropsch synthesis reactor for producing a hydrocarbon compound by reacting the agitated second syngas and the reduced iron-based catalyst, which are transferred on-line via a pipe connected to the catalyst reduction reactor, The present invention also provides a system for producing a hydrocarbon compound using a Fischer-Tropsch synthesis reaction.

본 발명에 따른 피셔-트롭쉬 합성 반응을 이용한 탄화수소 화합물의 제조 시스템에 따르면, 별도의 반응기에서 촉매를 환원(활성화)시켜 피셔-트롭쉬 반응기에 투입시키기 때문에 피셔-트롭쉬 합성 반응을 이용한 탄화수소 화합물의 제조과정에서 추가로 촉매를 투입하기 용이하고, 활성화된 촉매를 공급하여 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물이 제조되는 시간을 단축할 수 있다.According to the system for producing hydrocarbon compounds using the Fischer-Tropsch synthesis reaction according to the present invention, since the catalyst is reduced (activated) in a separate reactor and fed to the Fischer-Tropsch reactor, the hydrocarbon compound It is easy to add a catalyst in the production process of the Fischer-Tropsch synthesis catalyst, and the time for producing the hydrocarbon compound using the Fischer-Tropsch synthesis reaction can be shortened by supplying the activated catalyst.

도 1은 본 발명의 제1 실시예에 따른 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조 시스템을 나타낸 도면이다.
도 2은 본 발명의 제1 실시예에 따른 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조방법을 나타낸 흐름도이다.
도 3는 본 발명의 제2 실시예에 따른 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조방법을 나타낸 흐름도이다.
도 4은 본 발명의 제3 실시예에 따른 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조방법을 나타낸 흐름도이다.
도 5는 본 발명의 제4 실시예에 따른 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조방법을 나타낸 흐름도이다.
1 is a view showing a system for producing a hydrocarbon compound using a Fischer-Tropsch synthesis reaction according to a first embodiment of the present invention.
2 is a flowchart illustrating a method of producing a hydrocarbon compound using a Fischer-Tropsch synthesis reaction according to a first embodiment of the present invention.
3 is a flowchart illustrating a method of producing a hydrocarbon compound using a Fischer-Tropsch synthesis reaction according to a second embodiment of the present invention.
4 is a flowchart illustrating a method for producing a hydrocarbon compound using a Fischer-Tropsch synthesis reaction according to a third embodiment of the present invention.
5 is a flowchart illustrating a method of producing a hydrocarbon compound using a Fischer-Tropsch synthesis reaction according to a fourth embodiment of the present invention.

하기의 설명에서는 본 발명의 실시예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.In the following description, only parts necessary for understanding the embodiments of the present invention will be described, and the description of other parts will be omitted so as not to obscure the gist of the present invention.

이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.The terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary meanings and the inventor is not limited to the meaning of the terms in order to describe his invention in the best way. It should be interpreted as meaning and concept consistent with the technical idea of the present invention. Therefore, the embodiments described in the present specification and the configurations shown in the drawings are merely preferred embodiments of the present invention, and are not intended to represent all of the technical ideas of the present invention, so that various equivalents And variations are possible.

이하, 첨부된 도면을 참조하여 본 발명에 따른 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조방법을 단계별로 더욱 상세히 설명한다.Hereinafter, a method for producing a hydrocarbon compound using a Fischer-Tropsch synthesis reaction according to the present invention will be described in more detail with reference to the accompanying drawings.

도 1은 본 발명의 제1 실시예에 따른 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조 시스템을 나타낸 도면이다.1 is a view showing a system for producing a hydrocarbon compound using a Fischer-Tropsch synthesis reaction according to a first embodiment of the present invention.

도 1을 참조하면, 본 발명의 제1 실시예에 따른 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조 시스템(100)은 촉매 환원 반응기(10) 및 피셔-트롭쉬 합성 반응기(20)를 포함한다.1, a system 100 for producing a hydrocarbon compound using a Fischer-Tropsch synthesis reaction according to the first embodiment of the present invention includes a catalyst reduction reactor 10 and a Fischer-Tropsch synthesis reactor 20 do.

촉매 환원 반응기(10)는 철계 촉매가 장입되고, 제1 합성가스가 주입되어 철계 촉매가 환원처리된다.The catalyst reduction reactor 10 is charged with an iron-based catalyst, and the first synthesis gas is injected to reduce the iron-based catalyst.

철계 촉매는 철(Fe), 구리(Cu), 칼륨(K) 및 실리카 산화물(SiO2) 포함할 수 있다. 이 때, 철계 촉매는 Fe : Cu : K : SiO2 = 100 : 1 ~ 10 : 1 ~ 20 : 10 ~ 50의 중량비를 가질 수 있다. 구리는 철 100 중량에 대하여 1 ~ 10 중량비 범위로 함유하여 조촉매성분으로 사용할 수 있다. 구리 금속의 함유량이 1 중량비 미만이면 메탄 생성량이 많아지는 문제가 발생하고, 10 중량비를 초과하는 경우에는 반응 활성이 떨어지는 문제가 발생하므로 이 범위를 유지하는 것이 바람직하다. 칼륨 금속은 메탄 생성을 억제시키는 역할을 하며, 질산칼륨, 탄산칼륨 등의 칼륨 함유 화합물을 전구체로 사용 할 수 있다. 칼륨의 함유량이 철 100 중량부에 대하여 1 중량부 미만이면 메탄 생성의 억제 효과를 보기 힘들 수 있고, 20 중량부를 초과하면 촉매의 안정성이 떨어질 수 있으므로 이 범위 내로 함유하고 있는 것이 바람직하다. 실리카 산화물은 지지체 또는 촉매 분산체로 사용하는데 철 100 중량부에 대하여, 10 ~ 50 중량부를 사용하는 것이 바람직하다. 이 때, 실리카 산화물의 사용량이 10 중량부 미만이면 그 사용량이 너무 적어서, 지지체로서의 역할을 수행할 수 없는 문제가 있고, 50 중량부를 초과하면 그 사용 증대에 의한 효과 증대가 없으므로 비경제적이므로 이 범위 내로 사용하는 것이 바람직하다.The iron-based catalyst may include iron (Fe), copper (Cu), potassium (K), and silica oxide (SiO 2 ). At this time, the iron-based catalyst may have a weight ratio of Fe: Cu: K: SiO 2 = 100: 1 to 10: 1 to 20:10 to 50. Copper is contained in a range of 1 to 10 weight ratio with respect to 100 parts by weight of iron and can be used as a co-catalyst component. When the content of the copper metal is less than 1 part by weight, the amount of methane produced increases. When the amount of the copper metal exceeds 10 parts by weight, the reaction activity decreases. The potassium metal serves to inhibit the formation of methane, and potassium-containing compounds such as potassium nitrate and potassium carbonate can be used as precursors. If the content of potassium is less than 1 part by weight based on 100 parts by weight of iron, it may be difficult to obtain an effect of suppressing the formation of methane. If the content of potassium exceeds 20 parts by weight, stability of the catalyst may deteriorate. The silica oxide is used as a support or a catalyst dispersion, and it is preferable to use 10 to 50 parts by weight with respect to 100 parts by weight of iron. If the amount of the silica oxide is less than 10 parts by weight, the amount of the silica oxide used is too small to serve as a support. On the other hand, if the amount of the silica oxide is more than 50 parts by weight, It is preferable to use it as the inside.

또한, 철계 촉매는 철계 촉매는 철(Fe), 구리(Cu), 칼륨(K) 및 실리카 산화물(SiO2) 포함하고 있으며, 나트륨(Na)을 더 포함할 수 있다. 이 때, 철계 촉매는 Fe : Cu : K : SiO2 : Na = 100 : 1 ~ 10 : 1 ~ 20 : 10 ~ 50 : 1 ~ 20의 중량비를 갖는 것이 바람직하다. 나트륨 금속은 메탄 생성을 억제시키는 역할을 한다. 나트륨의 함유량이 철 100 중량부에 대하여 1 중량부 미만이면 메탄 생성의 억제 효과를 보기 힘들 수 있고, 20 중량부를 초과하면, 촉매의 안정성이 떨어질 수 있으므로 범위 내로 함유하고 있는 것이 바람직하다.The iron-based catalyst includes iron (Fe), copper (Cu), potassium (K), and silica oxide (SiO 2 ), and may further include sodium (Na). At this time, the iron-based catalyst preferably has a weight ratio of Fe: Cu: K: SiO 2 : Na = 100: 1 to 10: 1 to 20:10 to 50: 1 to 20. Sodium metal plays a role in suppressing methane production. If the content of sodium is less than 1 part by weight based on 100 parts by weight of iron, it may be difficult to obtain an effect of suppressing the formation of methane. If the content of sodium exceeds 20 parts by weight, the stability of the catalyst may deteriorate.

제1 합성가스는 촉매 환원 반응기에 장입된 철계 촉매를 환원(활성화)시키는 물질로 천연 가스 또는 유사한 경질(light) 탄화수소 공급원료로 부터 생성 될 수 있는 가스(수소와 탄소산화물들의 혼합)을 사용한다. 즉, 제1 합성가스는 H2 또는 CO를 포함할 수 있다.The first synthesis gas uses a gas (a mixture of hydrogen and carbon oxides) that can be generated from a natural gas or a similar light hydrocarbon feedstock as a substance that reduces (activates) an iron-based catalyst charged in a catalytic reduction reactor . That is, the first synthesis gas may comprise H 2 or CO.

촉매 환원 반응기(10)는 교반기(15)를 포함하는데 교반기(15)는 촉매 환원 반응기(10)에서 환원 처리된 철계 촉매와 주입된 제2 합성가스를 교반한다.The catalytic reduction reactor 10 includes a stirrer 15 in which the iron-based catalyst reduced in the catalytic reduction reactor 10 is stirred with the injected second synthesis gas.

제2 합성가스는 촉매 환원 반응기에 장입된 철계 촉매를 환원(활성화)시키는 물질로 천연 가스 또는 유사한 경질(light) 탄화수소 공급원료로 부터 생성 될 수 있는 가스(수소와 탄소산화물들의 혼합)를 사용한다. 즉, 제1 합성가스는 H2 또는 CO를 포함할 수 있다. 또한, 제2 합성가스는 N2, CO2 및 CH4 중 적어도 하나를 더 포함할 수 있다.The second syngas uses a gas (a mixture of hydrogen and carbon oxides) that can be generated from a natural gas or a similar light hydrocarbon feedstock as a material that reduces (activates) the iron-based catalyst charged into the catalytic reduction reactor . That is, the first synthesis gas may comprise H 2 or CO. In addition, the second synthesis gas may further include at least one of N 2 , CO 2, and CH 4 .

촉매 환원 반응기(10)는 피셔-트롭쉬 합성 반응기(20)와 관을 통해 연결된다. 즉, 촉매 환원 반응기(10)의 교반기(15)에서 교반된 제2 합성가스 및 환원처리된 철계 촉매를 관을 통해 온라인(online)으로 피셔-트롭쉬 합성 반응기(20)로 이동시킨다.The catalytic reduction reactor (10) is connected via a pipe to the Fischer-Tropsch synthesis reactor (20). That is, the second synthesis gas and the reduced iron-based catalyst stirred in the agitator 15 of the catalytic reduction reactor 10 are transferred to the Fischer-Tropsch synthesis reactor 20 online via a pipe.

피셔-트롭쉬 합성 반응기(20)는 관을 통해 온라인(online)으로 이동한 교반된 제2 합성가스 및 환원처리된 철계 촉매를 반응시켜 탄화수소 화합물을 제조한다.The Fischer-Tropsch synthesis reactor (20) reacts the stirred second synthetic gas, which has been brought online via a pipe, and a reduced iron-based catalyst to produce a hydrocarbon compound.

종래에는 피셔-트롭쉬 합성반응을 통해 탄화수소 화합물을 제조할 때, 피셔-트롭쉬 합성 반응기에서 촉매 환원(활성화)반응과 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물 제조반응을 in-situ 방식으로 수행했기 때문에 제조공정 중 촉매 보충이 필요할 시에 공정자체를 중단하고 촉매를 투입하여야 하는 문제점이 있었다.Conventionally, when a hydrocarbon compound is produced through a Fischer-Tropsch synthesis reaction, a catalyst reduction (activation) reaction in a Fischer-Tropsch synthesis reactor and a reaction of producing a hydrocarbon compound using a Fischer-Tropsch synthesis reaction are performed in-situ There is a problem in that when the catalyst replenishment is required during the manufacturing process, the process itself must be stopped and the catalyst must be supplied.

하지만 본 발명의 제1 실시예에 따른 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조 시스템은 촉매 환원 반응기(10)를 구비하여 촉매 환원 반응기(10)에서 철계 촉매를 환원(활성화)시키고, 교반기(15)에 제2 합성가스를 주입시켜 환원처리된 철계 촉매와 교반시키고 연결된 관을 통해 온라인(online)으로 교반된 제2 합성가스 및 환원처리된 철계 촉매를 피셔-트롭쉬 합성 반응기(20)로 주입시켜 피셔-트롭쉬 합성 반응기(20)에서 탄화수소 화합물 제조반응이 수행되기 때문에, 피셔- 트롭쉬 합성 반응기(20)에서 탄화수소 화합물 제조공정 중 촉매 보충이 필요할 시에 공정자체를 중단할 필요없이 촉매 환원 반응기(10)에 촉매를 투입하여 환원시켜, 환원된 촉매를 바로 피셔-트롭쉬 합성 반응기(20)에 주입시킬 수 있다. However, the system for producing a hydrocarbon compound using the Fischer-Tropsch synthesis reaction according to the first embodiment of the present invention comprises a catalytic reduction reactor 10 in which the iron-based catalyst is reduced (activated) in the catalytic reduction reactor 10, The second syngas is introduced into the Fischer-Tropsch synthesis reactor 20, the second synthesis gas is introduced into the Fischer-Tropsch synthesis reactor 20, Tropsch synthesis reactor 20 in the Fischer-Tropsch synthesis reactor 20, it is unnecessary to stop the process itself in the Fischer-Tropsch synthesis reactor 20 when catalyst replenishment is required during the hydrocarbon compound production process The reduced catalyst can be directly injected into the Fischer-Tropsch synthesis reactor 20 by introducing a catalyst into the catalyst reduction reactor 10 to reduce it.

또한, 피셔-트롭쉬 합성 반응기(20)에 주입되는 촉매는 환원된 촉매이기 때문에 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조되는 시간을 단축할 수 있다.In addition, since the catalyst injected into the Fischer-Tropsch synthesis reactor 20 is a reduced catalyst, the time for producing the hydrocarbon compound using the Fischer-Tropsch synthesis reaction can be shortened.

이와 같이 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조 시스템(100)에서 탄화수소 화합물의 제조하는 방법은 도 2와 같다.A method for producing a hydrocarbon compound in the system 100 for producing a hydrocarbon compound using the Fischer-Tropsch synthesis reaction is shown in FIG.

도 2은 본 발명의 제1 실시예에 따른 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조방법을 나타낸 흐름도이다.2 is a flowchart illustrating a method of producing a hydrocarbon compound using a Fischer-Tropsch synthesis reaction according to a first embodiment of the present invention.

도 2을 참조하면, 본 발명의 제2 실시예에 따른 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물 제조방법은 장입단계(S10), 환원단계(S20), 교반단계(S30), 주입단계(S35) 및 제조단계(S40)를 포함한다. Referring to FIG. 2, a method for producing a hydrocarbon compound using a Fischer-Tropsch synthesis reaction according to a second embodiment of the present invention includes a charging step S10, a reducing step S20, a stirring step S30, And a manufacturing step S40.

장입단계(S10)는 촉매 환원 반응기에 철계 촉매를 장입한다.In the charging step S10, the iron-based catalyst is charged into the catalytic reduction reactor.

환원단계(S20)는 촉매 환원 반응기에 촉매 활성화를 위한 제1 합성가스를 주입하여 환원처리한다.In the reducing step S20, the first synthesis gas for catalytic activation is injected into the catalytic reduction reactor to perform reduction treatment.

교반단계(S30)는 촉매 환원 반응기의 교반기에 제2 합성가스와 환원단계에서 환원 처리한 철계 촉매를 주입시켜 교반시키고, 주입단계(S35)는 교반단계(S30)에서 교반된 제2 합성가스 및 환원 처리된 철계 촉매를 연결된 관을 통해 온라인(online)으로 피셔-트롭쉬 합성반응기로 주입한다.In the stirring step S30, the second synthesis gas and the iron-based catalyst reduced in the reducing step are injected into the stirrer of the catalytic reduction reactor and stirred, and the injecting step S35 is carried out by mixing the second synthesis gas and the second synthesis gas stirred in the stirring step S30. The reduced iron-based catalyst is injected into a Fischer-Tropsch synthesis reactor via a connected pipe.

제조단계(S40)는 피셔-트롭쉬 합성 반응기에서 교반된 제2 합성가스 및 환원처리된 철계 촉매를 반응시켜 탄화수소 화합물을 제조한다.In the production step (S40), the second synthesis gas stirred in the Fischer-Tropsch synthesis reactor and the reduced iron-based catalyst are reacted to produce a hydrocarbon compound.

앞서 언급했듯이, 종래에는 피셔-트롭쉬 합성반응을 통해 탄화수소 화합물을 제조할 때, 피셔-트롭쉬 합성 반응기에서 촉매 환원(활성화)반응과 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물 제조반응을 in-situ 방식으로 수행했기 때문에 제조공정 중 촉매 보충이 필요할 시에 공정자체를 중단하고 촉매를 투입하여야 하는 문제점이 있었다.As mentioned above, conventionally, when a hydrocarbon compound is produced through a Fischer-Tropsch synthesis reaction, a reaction of producing a hydrocarbon compound using a Fischer-Tropsch synthesis reaction and a catalytic reduction (activation) reaction in a Fischer- situ method, there is a problem that when the catalyst replenishment is required during the manufacturing process, the process itself must be stopped and the catalyst must be supplied.

하지만 본 발명의 제1 실시예에 따른 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조방법은 별도의 촉매 환원 반응기를 구비하여 촉매 환원 반응기에서 철계 촉매를 환원(활성화)시키고, 촉매 환원 반응기에 제2 합성가스를 주입시켜 환원처리된 철계 촉매와 교반시키고 연결된 관을 통해 온라인(online)으로 피셔-트롭쉬 합성 반응기로 주입시켜 피셔-트롭쉬 합성 반응기에서 탄화수소 화합물 제조반응이 수행되기 때문에, 피셔-트롭쉬 합성 반응기에서 탄화수소 화합물 제조공정 중 촉매 보충이 필요할 시에 공정자체를 중단할 필요없이 촉매 환원 반응기에 촉매를 투입하여 환원시켜, 환원된 촉매를 바로 피셔-트롭쉬 합성 반응기에 주입시킬 수 있다. However, the method for producing a hydrocarbon compound using the Fischer-Tropsch synthesis reaction according to the first embodiment of the present invention includes a separate catalytic reduction reactor to reduce (activate) the iron-based catalyst in the catalytic reduction reactor, 2 synthesis gas into a Fischer-Tropsch synthesis reactor through a pipe connected to the reactor through a pipe connected to the Fischer-Tropsch synthesis reactor, so that the Fischer- In the Tropsch synthesis reactor, when a catalyst replenishment is required during the hydrocarbon compound production process, the catalyst can be added to the catalyst reduction reactor without reducing the process itself, and the reduced catalyst can be directly injected into the Fischer-Tropsch synthesis reactor .

또한, 피셔-트롭쉬 합성 반응기에 주입되는 촉매는 환원된 촉매이기 때문에 피셔- 트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조되는 시간을 단축할 수 있다.In addition, since the catalyst injected into the Fischer-Tropsch synthesis reactor is a reduced catalyst, it is possible to shorten the production time of the hydrocarbon compound using the Fischer-Tropsch synthesis reaction.

도 3은 본 발명의 제2 실시예에 따른 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조방법을 나타낸 흐름도이다.3 is a flowchart illustrating a method of producing a hydrocarbon compound using a Fischer-Tropsch synthesis reaction according to a second embodiment of the present invention.

도 3을 참조하면, 본 발명의 제2 실시예에 따른 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물 제조방법은 장입단계(S10), 환원단계(S20), 교반단계(S30), 주입단계(S35) 및 제조단계(S40)를 포함한다. 도 2에 있어서, 장입단계(S10), 환원단계(S20), 교반단계(S30) 및 제조단계(S40)는 각각 도 1의 장입단계(S10), 환원단계(S20), 교반단계(S30) 및 제조단계(S40)와 동일하다. 따라서, 이하에서는 주입단계(S25)를 위주로 설명한다.Referring to FIG. 3, a method for producing a hydrocarbon compound using a Fischer-Tropsch synthesis reaction according to a second embodiment of the present invention includes a charging step S10, a reducing step S20, a stirring step S30, And a manufacturing step S40. 2, the charging step S10, the reducing step S20, the stirring step S30 and the manufacturing step S40 are the loading step S10, the reducing step S20, the stirring step S30, And the manufacturing step S40. Therefore, the injection step S25 will be mainly described below.

주입단계(S35)는 교반단계(S30)에서 교반된 제2 합성가스 및 환원 처리된 철계 촉매를 촉매 환원 반응기에서 회수하여 ex-situ 방식으로 피셔-트롭쉬 합성반응기로 주입한다.In the injecting step S35, the stirred second syngas and the reduced iron-based catalyst in the stirring step S30 are recovered in the catalytic reduction reactor and injected into the Fischer-Tropsch synthesis reactor ex situ.

따라서, 본 발명의 제2 실시예에 따른 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조방법은 별도의 촉매 환원 반응기를 구비하여 촉매 환원 반응기에서 철계 촉매를 환원(활성화)시키고, 촉매 환원 반응기의 교반기에 제2 합성가스및 환원처리된 철계 촉매를 주입하여 교반시키고 회수한 후, 교반된 제2 합성가스 및 환원처리된 철계 촉매를 피셔-트롭쉬 합성 반응기로 주입시켜 피셔-트롭쉬 합성 반응기에서 탄화수소 화합물 제조반응이 수행된다.Accordingly, the method for producing the hydrocarbon compound using the Fischer-Tropsch synthesis reaction according to the second embodiment of the present invention includes a separate catalytic reduction reactor to reduce (activate) the iron-based catalyst in the catalytic reduction reactor, After the second synthesis gas and the reduced iron-based catalyst were injected into the stirrer, stirred and recovered, the stirred second synthetic gas and the reduced iron-based catalyst were injected into the Fischer-Tropsch synthesis reactor, The hydrocarbon compound production reaction is carried out.

이로써 피셔- 트롭쉬 합성 반응기에서 탄화수소 화합물 제조공정 중 촉매 보충이 필요할 시에 공정자체를 중단할 필요없이 촉매 환원 반응기에 촉매를 투입하여 환원시켜, 환원된 촉매를 바로 피셔-트롭쉬 합성 반응기에 주입시킬 수 있다. In this way, when a catalyst replenishment is required in the Fischer-Tropsch synthesis reactor, the catalyst is supplied to the catalyst reduction reactor without reducing the process itself, and the reduced catalyst is directly injected into the Fischer- .

또한, 피셔-트롭쉬 합성 반응기에 주입되는 촉매는 환원된 촉매이기 때문에 피셔- 트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조되는 시간을 단축할 수 있다.In addition, since the catalyst injected into the Fischer-Tropsch synthesis reactor is a reduced catalyst, it is possible to shorten the production time of the hydrocarbon compound using the Fischer-Tropsch synthesis reaction.

도 4은 본 발명의 제3 실시예에 따른 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조방법을 나타낸 흐름도이다.4 is a flowchart illustrating a method for producing a hydrocarbon compound using a Fischer-Tropsch synthesis reaction according to a third embodiment of the present invention.

도 4을 참조하면, 본 발명의 제3 실시예에 따른 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물 제조방법은 장입단계(S10), 환원단계(S20), 주입단계(S30) 및 제조단계(S40)를 포함한다.Referring to FIG. 4, a method for producing a hydrocarbon compound using a Fischer-Tropsch synthesis reaction according to a third embodiment of the present invention includes a charging step S10, a reducing step S20, an injection step S30, ).

도 4에 있어서, 장입단계(S10), 환원단계(S20)는 각각 도 1의 장입단계(S10), 환원단계(S20)와 동일하다. 따라서, 이하에서는 주입단계(S30) 및 제조단계(S40)를 위주로 설명한다.4, the charging step S10 and the reducing step S20 are the same as the charging step S10 and the reducing step S20 in Fig. 1, respectively. Therefore, the injection step S30 and the manufacturing step S40 will be mainly described below.

주입단계(S30)는 환원단계(S20)에서 환원처리한 철계 촉매를 연결된 관을 통해 온라인(online)으로 제2 합성가스가 주입되어 있는 피셔-트롭쉬 합성 반응기로 주입한다.The injecting step S30 is a step in which the iron-based catalyst reduced in the reducing step S20 is injected via a pipe connected to the Fischer-Tropsch synthesis reactor into which the second syngas is injected.

제조단계(S40)는 환원단계(S30)에서 환원처리한 철계 촉매가 주입된 피셔-트롭쉬 합성 반응기에서 제2 합성가스를 반응시켜 탄화수소 화합물을 제조한다.In the production step S40, a second synthesis gas is reacted in a Fischer-Tropsch synthesis reactor in which an iron-based catalyst reduced in the reduction step S30 is injected to produce a hydrocarbon compound.

즉, 제조단계(S40)에서 환원처리된 철계 촉매와 제2 합성가스가 반응하여 탄화수소 화합물이 제조되는 것이다. That is, the iron-based catalyst reduced in the production step (S40) reacts with the second synthesis gas to produce the hydrocarbon compound.

따라서, 본 발명의 제3 실시예에 따른 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조방법은 별도의 촉매 환원 반응기를 구비하여 촉매 환원 반응기에서 철계 촉매를 환원(활성화)시키고, 환원처리된 철계 촉매를 연결된 관을 통하여 온라인(online)으로 피셔-트롭쉬 합성 반응기로 주입시켜 피셔-트롭쉬 합성 반응기에서 탄화수소 화합물 제조반응이 수행된다.Accordingly, the method for producing the hydrocarbon compound using the Fischer-Tropsch synthesis reaction according to the third embodiment of the present invention includes a separate catalytic reduction reactor to reduce (activate) the iron-based catalyst in the catalytic reduction reactor, The catalyst is injected online into a Fischer-Tropsch synthesis reactor through a connected tube to produce the hydrocarbon compound in the Fischer-Tropsch synthesis reactor.

이로써, 피셔-트롭쉬 합성 반응기에서 탄화수소 화합물 제조공정 중 촉매 보충이 필요할 시에 공정자체를 중단할 필요없이 촉매 환원 반응기에 촉매를 투입하여 환원시켜, 환원된 촉매를 바로 피셔-트롭쉬 합성 반응기에 주입시킬 수 있다. In the Fischer-Tropsch synthesis reactor, when a catalyst is required to be replenished during the hydrocarbon compound production process, the catalyst is supplied to the catalyst reduction reactor without reducing the process itself, and the reduced catalyst is directly fed to the Fischer- Can be injected.

또한, 피셔-트롭쉬 합성 반응기에 주입되는 촉매는 환원된 촉매이기 때문에 피셔- 트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조되는 시간을 단축할 수 있다. In addition, since the catalyst injected into the Fischer-Tropsch synthesis reactor is a reduced catalyst, it is possible to shorten the production time of the hydrocarbon compound using the Fischer-Tropsch synthesis reaction.

도 5는 본 발명의 제4 실시예에 따른 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조방법을 나타낸 흐름도이다.5 is a flowchart illustrating a method of producing a hydrocarbon compound using a Fischer-Tropsch synthesis reaction according to a fourth embodiment of the present invention.

도 5를 참조하면, 본 발명의 제4 실시예에 따른 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물 제조방법은 장입단계(S10), 환원단계(S20), 주입단계(S30) 및 제조단계(S40)를 포함한다. 도 5에 있어서, 장입단계(S10), 환원단계(S20) 및 제조단계(S40)는 각각 도 4의 장입단계(S10), 환원단계(S20) 및 제조단계(S40)와 동일하다. 따라서, 이하에서는 주입단계(S30)를 위주로 설명한다.Referring to FIG. 5, a method of producing a hydrocarbon compound using a Fischer-Tropsch synthesis reaction according to a fourth embodiment of the present invention includes a charging step S10, a reducing step S20, an injection step S30, ). 5, the charging step S10, the reducing step S20 and the manufacturing step S40 are the same as the charging step S10, the reducing step S20 and the manufacturing step S40 of Fig. 4, respectively. Therefore, the injection step S30 will be mainly described below.

주입단계(S30)는 환원단계(S20)에서 환원처리한 철계 촉매를 회수하여 ex-situ 방식으로 제2 합성가스가 주입되어 있는 피셔-트롭쉬 합성 반응기로 주입한다.In the injection step S30, the iron-based catalyst reduced in the reduction step S20 is recovered and injected into the Fischer-Tropsch synthesis reactor in which the second synthesis gas is injected in an ex-situ manner.

따라서, 본 발명의 제4 실시예에 따른 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조방법은 별도의 촉매 환원 반응기를 구비하여 촉매 환원 반응기에서 철계 촉매를 환원(활성화)시키고, 환원처리된 철계 촉매를 회수한 후 피셔-트롭쉬 합성 반응기로 주입시켜 피셔-트롭쉬 합성 반응기에서 탄화수소 화합물 제조반응이 수행된다.Therefore, the method for producing the hydrocarbon compound using the Fischer-Tropsch synthesis reaction according to the fourth embodiment of the present invention includes a separate catalytic reduction reactor to reduce (activate) the iron-based catalyst in the catalytic reduction reactor, The catalyst is recovered and fed into a Fischer-Tropsch synthesis reactor to carry out the hydrocarbon compound production reaction in the Fischer-Tropsch synthesis reactor.

이로써, 피셔- 트롭쉬 합성 반응기에서 탄화수소 화합물 제조공정 중 촉매 보충이 필요할 시에 공정자체를 중단할 필요없이 촉매 환원 반응기에 촉매를 투입하여 환원시켜, 환원된 촉매를 바로 피셔-트롭쉬 합성 반응기에 주입시킬 수 있다. In the Fischer-Tropsch synthesis reactor, when a catalyst is required to be replenished during the hydrocarbon compound production process, the catalyst is supplied to the catalyst reduction reactor without reducing the process itself, and the reduced catalyst is directly fed to the Fischer- Can be injected.

또한, 피셔-트롭쉬 합성 반응기에 주입되는 촉매는 환원된 촉매이기 때문에 피셔- 트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조되는 시간을 단축할 수 있다.In addition, since the catalyst injected into the Fischer-Tropsch synthesis reactor is a reduced catalyst, it is possible to shorten the production time of the hydrocarbon compound using the Fischer-Tropsch synthesis reaction.

한편, 본 도면에 개시된 실시예는 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다.It should be noted that the embodiments disclosed in the drawings are merely examples of specific examples for the purpose of understanding, and are not intended to limit the scope of the present invention. It will be apparent to those skilled in the art that other modifications based on the technical idea of the present invention are possible in addition to the embodiments disclosed herein.

10 : 촉매 환원 반응기
15 : 교반기
20 : 피셔-트롭쉬 합성 반응기
100 : 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조 시스템
10: Catalytic reduction reactor
15: stirrer
20: Fischer-Tropsch synthesis reactor
100: Production system of hydrocarbon compounds using Fischer-Tropsch synthesis reaction

Claims (1)

철계 촉매가 장입되고, 제1 합성가스가 주입되어 상기 철계 촉매가 환원처리되고, 상기 환원처리된 철계 촉매와 주입된 제2 합성가스를 교반하는 교반기를 포함하는 촉매 환원 반응기;
상기 촉매 환원 반응기와 연결된 관을 통해 온라인(online)으로 이동된 상기 교반된 제2 합성가스 및 환원처리된 철계 촉매를 반응시켜 탄화수소 화합물을 제조하는 피셔-트롭쉬 합성 반응기;
를 포함하는 것을 특징으로 하는 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물의 제조 시스템.
A catalyst reduction reactor including an iron-based catalyst, an agitator for charging the first syngas to reduce the iron-based catalyst, and a stirrer for stirring the reduced iron-based catalyst and the second syngas;
A Fischer-Tropsch synthesis reactor for producing a hydrocarbon compound by reacting the agitated second syngas and a reduced iron-based catalyst, which are brought online via a pipe connected to the catalyst reduction reactor;
Wherein the reaction system is a reaction system comprising a hydrocarbon and a hydrocarbon.
KR1020130007785A 2013-01-24 2013-01-24 system for preparing of hydrocarbons by Fischer-Tropsch synthesis KR20140095188A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020130007785A KR20140095188A (en) 2013-01-24 2013-01-24 system for preparing of hydrocarbons by Fischer-Tropsch synthesis
PCT/KR2013/004277 WO2014115932A1 (en) 2013-01-24 2013-05-14 System for manufacturing hydrocarbon compound using fischer-tropsch synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130007785A KR20140095188A (en) 2013-01-24 2013-01-24 system for preparing of hydrocarbons by Fischer-Tropsch synthesis

Publications (1)

Publication Number Publication Date
KR20140095188A true KR20140095188A (en) 2014-08-01

Family

ID=51227711

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130007785A KR20140095188A (en) 2013-01-24 2013-01-24 system for preparing of hydrocarbons by Fischer-Tropsch synthesis

Country Status (2)

Country Link
KR (1) KR20140095188A (en)
WO (1) WO2014115932A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023092377A1 (en) * 2021-11-25 2023-06-01 国家能源投资集团有限责任公司 Method and device for continuous operation of fischer-tropsch synthesis catalyst

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003270808A1 (en) * 2002-09-20 2004-04-08 Conocophillips Company Slurry activation of fischer-tropsch catalyst with carbon monoxide co-feed
US7311626B2 (en) * 2004-03-01 2007-12-25 Peco, Inc. Crank shaft power takeoff system and method
JP4747339B2 (en) * 2006-06-30 2011-08-17 電源開発株式会社 Iron-based catalyst for Fischer-Tropsch synthesis reaction, method for producing the same, and method for producing hydrocarbons using the same
KR101087165B1 (en) * 2009-07-20 2011-11-25 (주)시너지 The method for preparing of Fe based catalyst used in Fischer-Tropsch systhesis reaction and that of liquid hydrocarbon using Fe based catalyst
KR101272082B1 (en) * 2011-07-07 2013-06-07 한국에너지기술연구원 Iron-cobalt catalyst, manufacturing method same and method for obtaining water-gas shift reaction activity and for highly selective liquid fuel production in Fischer-Tropsch synthesis using iron-cobalt catalyst

Also Published As

Publication number Publication date
WO2014115932A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
Cheng et al. Advances in catalysis for syngas conversion to hydrocarbons
CA3014935C (en) System and method for pyrolysis using a liquid metal catalyst
Fang et al. A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas
KR101716486B1 (en) Process for comprehensively utilizing low carbon emission fischer-tropsch synthesis tail gas
CN105080597B (en) Synthesis gas alkene catalyst and preparation method thereof
CN104549447B (en) Synthesis gas alkene catalyst and preparation method thereof
CN104549343B (en) Preparation of low carbon olefines by synthetic gas catalyst, preparation method and its usage
KR101418911B1 (en) Hydrocarbons by Fischer-Tropsch synthesis and Method for preparing of hydrocarbons thereof
CN102649079B (en) Catalyst based with ferrimanganic is the method for low-carbon alkene by Synthetic holography
CN114939433A (en) Composite catalyst for directly preparing light aromatic hydrocarbon by carbon dioxide hydrogenation, preparation and application thereof
CN112916020A (en) Iron-based catalyst for preparing high-carbon hydrocarbon by carbon dioxide hydrogenation and preparation and application thereof
CN104226327A (en) Catalyst for alkene preparation from synthesis gas and preparation method thereof
CN103664436A (en) Method for directly transforming synthesis gas into low-carbon olefin
CN102319575A (en) Cu-Fe-based catalyst used in synthesis of higher alcohol with synthetic gas, preparation method thereof and application thereof to process for synthesizing higher alcohol with synthetic gas
KR101524750B1 (en) Hydrocarbons by Fischer-Tropsch synthesis and Method for preparing of hydrocarbons thereof
CN105435801B (en) Load typed iron catalyst and its preparation method and application
CN105562026A (en) Sulfur-containing Fe-based catalyst as well as preparation method and application thereof
KR20140095188A (en) system for preparing of hydrocarbons by Fischer-Tropsch synthesis
KR20140095189A (en) Catalytic reduction reactor by Fischer-Tropsch synthesis
KR20140095187A (en) Method for preparing of hydrocarbons by Fischer-Tropsch synthesis
KR101405090B1 (en) Hydrocarbons by Fischer-Tropsch synthesis and Method for preparing of hydrocarbons thereof
CN105080587B (en) Synthesis gas alkene catalyst and its application method
KR101561627B1 (en) preparing method of hydrocarbons for Hydrocarbons by Fischer-Tropsch synthesis
CN103521239A (en) Catalyst for preparing low-carbon olefin through Fischer-Tropsch synthesis and preparation method of catalyst
KR101458762B1 (en) Hydrocarbons by Fischer-Tropsch synthesis and Method for preparing of hydrocarbons thereof

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid