KR101219171B1 - Negative electrode material for lithium rechargeable battery and manufacturing method thereof - Google Patents

Negative electrode material for lithium rechargeable battery and manufacturing method thereof Download PDF

Info

Publication number
KR101219171B1
KR101219171B1 KR1020110008412A KR20110008412A KR101219171B1 KR 101219171 B1 KR101219171 B1 KR 101219171B1 KR 1020110008412 A KR1020110008412 A KR 1020110008412A KR 20110008412 A KR20110008412 A KR 20110008412A KR 101219171 B1 KR101219171 B1 KR 101219171B1
Authority
KR
South Korea
Prior art keywords
negative electrode
electrode material
silicon
secondary battery
nanoparticles
Prior art date
Application number
KR1020110008412A
Other languages
Korean (ko)
Other versions
KR20120087000A (en
Inventor
유광현
서창호
Original Assignee
도레이첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도레이첨단소재 주식회사 filed Critical 도레이첨단소재 주식회사
Priority to KR1020110008412A priority Critical patent/KR101219171B1/en
Publication of KR20120087000A publication Critical patent/KR20120087000A/en
Application granted granted Critical
Publication of KR101219171B1 publication Critical patent/KR101219171B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 리튬 2차 전지용 음극재 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 간단한 공정만으로 2차 전지 음극재의 용량을 3배 가량 증가시킬 수 있으며 기존 실리콘 음극재와 달리 사이클링이 우수하고, 기존 탄소 음극재 대비 사이클링 특성이나 고용량 구현이 가능하며, 또한 제조비용도 기존 실리콘 음극재보다 작기 때문에 대량공정 시 매우 유리한 리튬 2차 전지용 음극재 및 이의 제조방법에 관한 것이다. 이를 위해 본 발명에 따른 리튬 2차 전지용 음극재는 실리콘(Si) 나노 입자와 상기 실리콘 나노 입자의 표면에 1층 이상의 전도성 물질이 코팅된 것을 특징으로 하고, 바람직하게는 상기 실리콘 나노 입자는 Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Ta, Ti, W, U 및 V의 나노 입자 중에서 적어도 하나를 더 포함하는 것을 특징으로 한다.The present invention relates to a negative electrode material for a lithium secondary battery and a method for manufacturing the same. More specifically, the capacity of the secondary battery negative electrode material can be increased by about three times with a simple process. The present invention relates to a lithium secondary battery negative electrode material and a method of manufacturing the same, which can implement cycling characteristics or high capacity compared to a carbon negative electrode material, and a manufacturing cost is smaller than that of a conventional silicon negative electrode material. To this end, the negative electrode material for a lithium secondary battery according to the present invention is characterized in that at least one layer of conductive material is coated on the surface of the silicon (Si) nanoparticles and the silicon nanoparticles, preferably the silicon nanoparticles are Ni, Co. Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Ta, Ti, W, U and V characterized in that it further comprises at least one of the nanoparticles.

Description

리튬 2차 전지용 음극재 및 이의 제조방법{NEGATIVE ELECTRODE MATERIAL FOR LITHIUM RECHARGEABLE BATTERY AND MANUFACTURING METHOD THEREOF} Negative material for lithium secondary battery and method for manufacturing same {NEGATIVE ELECTRODE MATERIAL FOR LITHIUM RECHARGEABLE BATTERY AND MANUFACTURING METHOD THEREOF}

본 발명은 리튬 2차 전지용 음극재 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 간단한 공정만으로 2차 전지 음극재의 용량을 3배 가량 증가시킬 수 있으며 기존 실리콘 음극재와 달리 사이클링이 우수하고, 기존 탄소 음극재 대비 사이클링 특성이나 고용량 구현이 가능하며, 또한 제조비용도 기존 실리콘 음극재보다 작기 때문에 대량공정 시 매우 유리한 리튬 2차 전지용 음극재 및 이의 제조방법에 관한 것이다.The present invention relates to a negative electrode material for a lithium secondary battery and a method for manufacturing the same. More specifically, the capacity of the secondary battery negative electrode material can be increased by about three times with a simple process. The present invention relates to a lithium secondary battery negative electrode material and a method of manufacturing the same, which can implement cycling characteristics or high capacity compared to a carbon negative electrode material, and a manufacturing cost is smaller than that of a conventional silicon negative electrode material.

최근, 휴대전화, 노트북 및 전기자동차 등 전지를 사용하는 전자기기들의 빠른 보급에 힘입어, 2차전지의 고용량에 대한 수요가 늘고 있고, 향후 이러한 추세는 가속화 될 것으로 판단되고 있다.Recently, with the rapid spread of electronic devices using batteries such as mobile phones, laptops and electric vehicles, demand for high capacity of secondary batteries is increasing, and this trend is expected to accelerate in the future.

이러한 2차전지용 음극 활물질의 재료로써 널리 사용되고 있는 물질은 천연흑연이다. 이러한 천연흑연은 초도용량은 우수하나, 충방전 사이클이 반복되면서 효율 저하 및 용량 저하의 문제점을 가지고 있다. The material widely used as a material of the negative electrode active material for secondary batteries is natural graphite. The natural graphite is excellent in supercapacitor, but has a problem in efficiency reduction and capacity reduction as the charge and discharge cycle is repeated.

한편, 인조흑연 역시 많이 사용되고 있는데 인조흑연은 충방전 안정성은 확보하고 있으나 초도용량, 충방전 효율, 용량 면에서 천연흑연보다 질이 떨어지는 문제점을 가지고 있다. 그 외에도 일부 실리콘이 사용되고 있는데 고용량 구현은 가능하지만 충전시 실리콘에 리튬 이온이 격자 내부로 들어갈 때 부피가 4배가량 팽창하여 충방전 싸이클의 반복성이 좋지 못한 단점을 가진다. On the other hand, artificial graphite is also used a lot, but artificial graphite has the stability of charging and discharging, but has a problem inferior to natural graphite in terms of supercapacity, charge and discharge efficiency, capacity. In addition, some silicon is used, but a high capacity can be realized, but when lithium ions enter the lattice during charging, the volume expands by about 4 times, which results in a poor repeatability of the charge / discharge cycle.

또한 최근 실리콘과 탄소의 복합 음극재를 일부 도입하고 있는데 용량과 싸이클의 반복성은 우수한 특징이 있으나 연속공정 도입이 어렵다는 문제점을 가지고 있다.In addition, recently, a composite anode material of silicon and carbon has been introduced, but the capacity and cycle repeatability are excellent, but there is a problem that it is difficult to introduce a continuous process.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, 본 발명의 목적은 간단한 공정만으로 2차 전지 음극재의 용량을 3배 가량 증가시킬 수 있으며 기존 실리콘 음극재와 달리 사이클링이 우수하고, 기존 탄소 음극재 대비 사이클링 특성이나 고용량 구현이 가능하며, 또한 제조비용도 기존 실리콘 음극재보다 작기 때문에 대량공정 시 매우 유리한 리튬 2차 전지용 음극재 및 이의 제조방법을 제공하고자 하는 것이다.The present invention has been made to solve the above problems, an object of the present invention is to increase the capacity of the secondary battery negative electrode material by about three times with a simple process and excellent cycling unlike the existing silicon negative electrode material, the existing carbon Cycling characteristics or high capacity can be realized in comparison with the negative electrode material, and the manufacturing cost is also smaller than that of the conventional silicon negative electrode material, and thus it is intended to provide a lithium secondary battery negative electrode material and a method of manufacturing the same which are very advantageous in mass processing.

본 발명의 상기 및 다른 목적과 이점은 바람직한 실시예를 설명한 하기의 설명으로부터 보다 분명해 질 것이다.These and other objects and advantages of the present invention will become more apparent from the following description of a preferred embodiment thereof.

상기 목적은, 실리콘(Si) 나노 입자와 상기 실리콘 나노 입자의 표면에 1층 이상의 전도성 물질이 코팅된 것을 특징으로 하는 리튬 2차 전지용 음극재에 의해 달성된다.The object is achieved by a negative electrode material for a lithium secondary battery, characterized in that the silicon (Si) nanoparticles and at least one conductive material is coated on the surface of the silicon nanoparticles.

여기서, 상기 실리콘 나노 입자는 Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Ta, Ti, W, U 및 V의 나노 입자 중에서 적어도 하나를 더 포함하는 것을 특징으로 한다.The silicon nanoparticles may further include at least one of nanoparticles of Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Ta, Ti, W, U, and V. It is characterized by.

바람직하게는, 상기 전도성 물질은 탄소구조체인 것을 특징으로 한다.Preferably, the conductive material is characterized in that the carbon structure.

바람직하게는, 상기 실리콘 나노 입자는 하기 수학식 1을 만족하되,Preferably, the silicon nanoparticles satisfy the following Equation 1,

(수학식 1)(1)

1nm < N < 150nm이고, 여기서 "N"은 상기 실리콘 나노 입자의 입경인 것을 특징으로 한다.1 nm <N <150 nm, where "N" is the particle diameter of the silicon nanoparticles.

바람직하게는, 상기 리튬 2차 전지용 음극재는 2차전지 셀 테스트의 100 사이클 충방전 이후에 Capacity Retention 방전용량이 90%이상의 효율을 갖는 것을 특징으로 한다.Preferably, the negative electrode material for a lithium secondary battery has a capacity retention capacity of 90% or more after 100 cycles of charge and discharge of a secondary battery cell test.

또한 상기 목적은, 실리콘(Si) 나노 입자를 용매에 분산시켜 실리콘 나노 입자를 포함하는 용액을 제조하는 제1단계와, 상기 실리콘 나노 입자가 분산된 용액을 추출하여 탄소전구체와 혼합하는 제2단계와, 상기 제2단계의 용매를 건조시킨 후 산소가 없는 환경에서 상기 탄소전구체를 탄화시켜 상기 실리콘 나노 입자의 표면에 1층 이상의 탄소구조체를 코팅시키는 제3단계를 포함하는 것을 특징으로 하는 리튬 2차 전지용 음극재의 제조방법에 의해 달성된다.In addition, the above object, the first step of preparing a solution containing the silicon nanoparticles by dispersing the silicon (Si) nanoparticles in a solvent, and the second step of extracting a solution in which the silicon nanoparticles are dispersed and mixed with the carbon precursor And a third step of drying the solvent of the second step and carbonizing the carbon precursor in an oxygen-free environment to coat one or more layers of carbon structures on the surface of the silicon nanoparticles. It is achieved by a method for producing a negative electrode material for a secondary battery.

여기서, 상기 제1단계는 실리콘 웨이퍼를 용매에 넣고 레이저를 조사하여 상기 실리콘 나노 입자를 고농도로 분산시키는 것을 특징으로 한다.Here, the first step is characterized by dispersing the silicon nanoparticles in a high concentration by placing a silicon wafer in a solvent and irradiating a laser.

바람직하게는, 상기 제1단계의 레이저는 다음 수학식 2와 3의 레이저 조사시간과 레이저 파장을 만족하되,Preferably, the laser of the first step satisfies the laser irradiation time and the laser wavelength of the following equations (2) and (3),

(수학식 2)(2)

T = N/(P/W)T = N / (P / W)

여기서, "T"는 레이저 조사 시간이고, "P"는 레이징 면적이고, "W"는 실리콘 웨이퍼 면적이며, "N"은 상수로서 1보다 크고 1000보다 작은 정수이고,Where "T" is the laser irradiation time, "P" is the lasing area, "W" is the silicon wafer area, "N" is an integer greater than 1 and less than 1000 as a constant,

(수학식 3)(3)

λ = λ'X 1/N λ = λ'X 1 / N

여기서, "λ"는 레이저 파장이고, "λ'"는 용매의 진동모드 파장이고, "N"은 자연수인 것을 특징으로 한다.Here, "λ" is a laser wavelength, "λ '" is a vibration mode wavelength of a solvent, and "N" is a natural number.

본 발명에 따르면, 간단한 공정만으로 2차 전지 음극재의 용량을 3배 가량 증가시킬 수 있으며 기존 실리콘 음극재와 달리 사이클링이 우수하고, 기존 탄소 음극재 대비 사이클링 특성이나 고용량 구현이 가능하며, 또한 제조비용도 기존 실리콘 음극재보다 작기 때문에 대량공정 시 매우 유리한 등의 효과를 가진다.According to the present invention, it is possible to increase the capacity of the secondary battery negative electrode material by about three times with a simple process, and unlike the existing silicon negative electrode material, the cycling is excellent, and the cycling characteristics or the high capacity can be realized compared to the existing carbon negative electrode material, and also the manufacturing cost Since it is smaller than the conventional silicon anode material, it has an effect such as very advantageous in mass processing.

도 1은 본 발명에 따른 실리콘(Si) 나노 분산 용액 단계에 대한 투과전자현미경 사진.
도 2는 본 발명에 따른 실리콘 나노입자의 원소분석(EDS) 그래프.
도 3은 본 발명에 따른 실리콘 나노입자의 입도분포 그래프.
1 is a transmission electron micrograph of the silicon (Si) nano dispersion solution step according to the present invention.
2 is an elemental analysis (EDS) graph of silicon nanoparticles according to the present invention.
3 is a particle size distribution graph of silicon nanoparticles according to the present invention.

이하, 본 발명의 실시예를 참조하여 본 발명을 상세히 설명한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위해 예시적으로 제시한 것일 뿐, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가지는 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in detail with reference to examples of the present invention. These examples are only presented by way of example only to more specifically describe the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples. .

도 1은 본 발명에 따른 실리콘(Si) 나노 분산 용액 단계에 대한 투과전자현미경 사진이고, 도 2는 본 발명에 따른 실리콘 나노입자의 원소분석(EDS) 그래프이며, 도 3은 본 발명에 따른 실리콘 나노입자의 입도분포 그래프이다.1 is a transmission electron micrograph of the silicon (Si) nano dispersion solution step according to the present invention, Figure 2 is an elemental analysis (EDS) graph of the silicon nanoparticles according to the present invention, Figure 3 is a silicon according to the present invention Graph of particle size distribution of nanoparticles.

일반적인 실리콘(Si) 음극재는 탄소 음극재에 비해 고용량 구현은 가능하지만 리튬(Li) 이온의 음극재에 함유될 시 부피가 4배까지 증가하므로 쇼팅, 단락 등의 문제를 가지고 있어 나노 구조를 가진 분산체로 만들어 사용해야 하지만, 제조 비용적인 부분이나 프로세스적인 부분에서 실리콘(Si) 나노 분산 구조체는 시장성이 떨어지는 문제점이 발생하는 바, 본 발명은 용매 상에 실리콘 웨이퍼에 레이징을 하여 간단한 공정만으로 용액상 실리콘 나노입자의 고분산을 유도하고 첨가제를 넣어 탄화시킴으로써 고분산 실리콘 나노 입자가 포함된 탄소-실리콘 음극재를 제조하는 방법과 더불어 전극형성 단계까지 안정적으로 유지될 수 있는 이차전지용 음극재 및 이를 이용한 이차전지를 제공하고자 하는 것이다.Although general silicon (Si) anode material can realize higher capacity than carbon anode material, when it is contained in anode material of lithium (Li) ion, the volume increases up to 4 times, so it has problems such as shorting and short circuit. The Si nano-dispersion structure has a problem of poor marketability in the part of manufacturing cost or process, but the present invention is a solution silicon in a simple process by lasing the silicon wafer on a solvent A method of manufacturing carbon-silicon anode material containing highly dispersed silicon nanoparticles by inducing high dispersion of carbon nanoparticles and carbonizing additives, and a secondary battery anode material and secondary battery using the same, which can be stably maintained until the electrode formation step It is to provide a battery.

이를 위해 본 발명에 따른 리튬 2차 전지용 음극재는, 실리콘(Si) 나노 입자와 상기 실리콘 나노 입자의 표면에 1층 이상의 전도성 물질이 코팅된 것을 특징으로 한다. 바람직하게는 상기 실리콘 나노 입자는 Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Ta, Ti, W, U 및 V의 나노 입자 중에서 적어도 하나를 더 포함한다. To this end, the negative electrode material for a rechargeable lithium battery according to the present invention is characterized in that at least one conductive material is coated on the surface of the silicon (Si) nanoparticles and the silicon nanoparticles. Preferably, the silicon nanoparticles further include at least one of nanoparticles of Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Ta, Ti, W, U, and V. do.

또한 상기 전도성 물질은 탄소구조체인 것이 바람직하다.In addition, the conductive material is preferably a carbon structure.

또한 상기 실리콘 나노 입자는 하기 수학식 1을 만족하되,In addition, the silicon nanoparticles satisfy the following Equation 1,

(수학식 1)(1)

1nm < N < 150nm이고,1 nm <N <150 nm,

여기서 "N"은 상기 실리콘 나노 입자의 입경인 것을 특징으로 한다."N" is characterized in that the particle size of the silicon nanoparticles.

또한 상기 리튬 2차 전지용 음극재는 2차전지 셀 테스트의 100 사이클 충방전 이후에 Capacity Retention 방전용량이 90%이상의 효율을 갖는 것이 바람직하다.In addition, the negative electrode material for the lithium secondary battery preferably has a capacity retention capacity of 90% or more after 100 cycles of charge and discharge of the secondary battery cell test.

다음으로 본 발명에 따른 리튬 2차 전지용 음극재의 제조방법에 대해 설명한다.Next, the manufacturing method of the negative electrode material for lithium secondary batteries which concerns on this invention is demonstrated.

본 발명에 따른 리튬 2차 전지용 음극재의 제조방법은 3단계로 이루어지는 것이 바람직한데, 구체적으로는 실리콘(Si) 나노 입자를 용매에 분산시켜 실리콘 나노 입자를 포함하는 용액을 제조하는 제1단계와, 상기 실리콘 나노 입자가 분산된 용액을 추출하여 탄소전구체와 혼합하는 제2단계와, 상기 제2단계의 용매를 건조시킨 후 산소가 없는 환경에서 상기 탄소전구체를 탄화시켜 상기 실리콘 나노 입자의 표면에 1층 이상의 탄소구조체를 코팅시키는 제3단계를 포함하는 것을 특징으로 한다.Preferably, the method for manufacturing a negative electrode material for a lithium secondary battery according to the present invention comprises three steps, specifically, a first step of dispersing silicon (Si) nanoparticles in a solvent to prepare a solution including the silicon nanoparticles; Extracting the solution in which the silicon nanoparticles are dispersed and mixing the carbon precursor with the second step, and drying the solvent of the second step, carbonizing the carbon precursor in an oxygen-free environment on the surface of the silicon nanoparticle 1 And a third step of coating the carbon structure over the layer.

상기 제1단계는 실리콘 웨이퍼를 용매에 넣고 레이저를 조사하여 상기 실리콘 나노 입자를 고농도로 분산시키는 것이 바람직하고, 상기 용매는 어떤 용매를 사용해도 무관하나 바람직하게는 수용성 용매, 더욱 바람직하게는 수산화기를 가진 용매를 사용하는 것이 좋다. 본 단계에서 레이저는 용매의 진동모드의 1/n(n은 자연수)에 맞는 파장을 이용함이 바람직하다. 또한 레이저의 에너지는 10~100mJ/mm2, 1~100 Hz Pulse가 바람직하며, Pulse duration은 10~45 fs인 것이 바람직하다. 또한 광원 조사는 넓으면 넓을수록 좋다. 또한 상기 제1단계에서 레이저 조사시간과 레이저 파장은 다음 수학식 2와 3을 만족하는 것이 바람직하다.In the first step, a silicon wafer is placed in a solvent and irradiated with a laser to disperse the silicon nanoparticles at a high concentration. The solvent may be any solvent, but is preferably a water-soluble solvent, more preferably a hydroxyl group. It is better to use a solvent with. In this step, the laser preferably uses a wavelength that matches 1 / n (n is a natural number) of the vibration mode of the solvent. In addition, the energy of the laser is preferably 10 ~ 100mJ / mm 2 , 1 ~ 100 Hz Pulse, the pulse duration is preferably 10 ~ 45 fs. In addition, the wider the light source irradiation, the better. In addition, the laser irradiation time and the laser wavelength in the first step preferably satisfy the following equations (2) and (3).

(수학식 2)(2)

T = N/(P/W)T = N / (P / W)

여기서, "T"는 레이저 조사 시간이고, "P"는 레이징 면적이고, "W"는 실리콘 웨이퍼 면적이며, "N"은 상수로서 1보다 크고 1000보다 작은 정수이다.Here, "T" is the laser irradiation time, "P" is the lasing area, "W" is the silicon wafer area, and "N" is an integer greater than 1 and less than 1000 as a constant.

(수학식 3)(3)

λ = λ'X 1/N λ = λ'X 1 / N

여기서, "λ"는 레이저 파장이고, "λ'"는 용매의 진동모드 파장이고, "N"은 자연수이다.Here, "λ" is a laser wavelength, "λ '" is a vibration mode wavelength of a solvent, and "N" is a natural number.

다음으로, 상기 제2단계는 탄소전구체를 혼합하는 과정이다. 상기 제1단계에서 생성된 실리콘 나노 입자가 분산된 용액을 추출하여 그 용매에 잘 용해되는 지방족 탄화수소를 섞는다. 질량 농도로 용액 대비 0.1~10wt%가 바람직하며 종류로는 바람직하게 용매에 잘 용해되면서 벤젠기가 있는 유기물질이면 좋다. 본 발명에서 상기 탄소전구체는 풀빅산(fulvic acid)을 사용하는 것이 바람직하다.Next, the second step is a process of mixing the carbon precursor. Extracting the solution in which the silicon nanoparticles produced in the first step is dispersed and mixes aliphatic hydrocarbons that are well dissolved in the solvent. The mass concentration is preferably 0.1 to 10wt% relative to the solution, and the organic material having a benzene group is preferably dissolved in a solvent. In the present invention, the carbon precursor is preferably used fulvic acid (fulvic acid).

다음으로, 상기 제3단계는 탄화단계이다. 상기 제2단계의 용매를 건조시킨 후 산소가 없는 환경에서 상기 탄소전구체를 탄화시킨다. 탄화온도는 500℃이상이 바람직하며 더욱 바람직하게는 700℃~1500℃가 바람직하다. 이러한 탄화과정을 거치면 상기 실리콘 나노 입자의 표면에 1층 이상의 탄소구조체가 코팅되어 리튬 2차 전지용 음극재를 생성하게 되는 것이다. Next, the third step is a carbonization step. After drying the solvent of the second step, the carbon precursor is carbonized in an oxygen-free environment. The carbonization temperature is preferably 500 ° C. or more, and more preferably 700 ° C. to 1500 ° C. Through such a carbonization process, one or more layers of carbon structures are coated on the surface of the silicon nanoparticles to generate a negative electrode material for a lithium secondary battery.

이하, 실시예와 비교예를 통하여 본 발명의 구성 및 그에 따른 효과를 보다 상세히 설명하고자 한다.        Hereinafter, the configuration and effects of the present invention will be described in more detail with reference to Examples and Comparative Examples.

[실시예 1]Example 1

먼저, 용매인 물 안에 실리콘 웨이퍼를 담그고 실리콘 웨이퍼에 레이저를 조사하여 실리콘 나노 입자를 포함하는 용액을 제조하였다. 이때 레이저의 에너지는 30mJ 10Hz pulse로 하여 다발형태의 1 X 1 cm 의 면적에 20분간 조사하였다. 다음으로 상기 용액을 추출하여 풀빅산(fulvic acid)이 0.5wt% 첨가된 용액으로 제조하여 이를 건조한 후 700℃에서 탄화시켜 음극활물질(음극재)을 제조하였다.First, a solution containing silicon nanoparticles was prepared by dipping a silicon wafer in water as a solvent and irradiating a laser to the silicon wafer. At this time, the energy of the laser was irradiated for 20 minutes to the area of 1 × 1 cm in the bundle form with 30mJ 10Hz pulse. Next, the solution was extracted to prepare a solution in which 0.5 wt% of fulvic acid was added, dried, and carbonized at 700 ° C. to prepare a negative electrode active material (anode material).

다음으로, 탄소 음극재 100g을 500ml의 반응기에 넣고 소량의 N-메틸피톨리돈(NMP)과 바인더(PVDF)를 투입하고, 믹서를 이용하여 혼련한 후 구리호일 상에 압착 건조하여 전극을 제조하였다. 여기서, 전극의 압착 후 밀도는 1.65g/㎠가 되도록 하였으며, 이렇게 제조된 전극을 이용해 코인전지(coincell)를 제조하여 충,방전 효율을 평가하였다.Next, 100 g of the carbon negative electrode material was put in a 500 ml reactor, a small amount of N-methyl pitolidon (NMP) and a binder (PVDF) were added, kneaded using a mixer, and pressed and dried on a copper foil to prepare an electrode. . Herein, the electrode was pressed to have a density of 1.65 g / cm 2, and a coin cell was manufactured using the electrode thus prepared to evaluate charge and discharge efficiency.

[실시예 2][Example 2]

풀빅산을 1wt% 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 음극활물질과 전극을 제조하였다.A negative electrode active material and an electrode were prepared in the same manner as in Example 1, except that 1 wt% of fulvic acid was added.

[비교예1][Comparative Example 1]

실리콘 나노 입자를 사용하지 않고 풀빅산 만을 700℃에서 탄화시켜 음극활물질을 제조하여 실시예 1과 동일한 방법으로 음극활물질과 전극을 제조하였다.Only the fulvic acid was carbonized at 700 ° C. without using the silicon nanoparticles to prepare a negative electrode active material, thereby preparing a negative electrode active material and an electrode in the same manner as in Example 1.

[비교예 2]Comparative Example 2

실시예 1의 풀빅산 대신 천연흑연과 피치(7wt%)를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 음극활물질과 전극을 제조하였다.A negative electrode active material and an electrode were prepared in the same manner as in Example 1, except that natural graphite and pitch (7 wt%) were used instead of the fulvic acid of Example 1.

구분division 1st Cycle
방전용량
(mAh/g)
1 st Cycle
Discharge capacity
(mAh / g)
1st Cycle
효율
(%)
1 st Cycle
efficiency
(%)
Capacity Retention 방전용량
(@100 Cycle)
Capacity Retention Discharge Capacity
(@ 100 Cycle)
실시예1Example 1 1012.11012.1 94.1%94.1% 97%97% 실시예2Example 2 1009.41009.4 94.3%94.3% 96%96% 비교예1Comparative Example 1 352.4352.4 89.3%89.3% 86%86% 비교예2Comparative Example 2 352.3352.3 91.6%91.6% 87%87%

상기 표 1에서 확인할 수 있는 바와 같이 본 발명에 따른 리튬 2차 전지용 음극재 및 이의 제조방법을 사용한 전극인 실시예들은 비교예들에 비해 간단한 공정만으로 2차 전지 음극재의 용량을 3배 가량 증가시키며 기존 실리콘 음극재와 달리 사이클링도 우수한 특성을 보임을 알 수 있고, 기존 탄소 음극재 대비 사이클링 특성이나 고용량 구현이 가능함을 알 수 있다. As can be seen in Table 1, the embodiments of the lithium secondary battery negative electrode material according to the present invention and the electrode using the manufacturing method thereof increase the capacity of the secondary battery negative electrode material by about three times by a simple process compared to the comparative examples. Unlike the conventional silicon anode material, it can be seen that cycling also shows excellent characteristics, and that cycling characteristics or high capacity can be realized compared to the existing carbon anode material.

또한 본 발명에 따른 리튬 2차 전지용 음극재의 제조방법은 공정의 난이도 역시 낮고 제조비용 또한 기존 실리콘 음극재 제조보다 높지 않기 때문에 대량공정 시 매우 유리하다는 것을 알 수 있다.In addition, it can be seen that the manufacturing method of the negative electrode material for a lithium secondary battery according to the present invention is very advantageous in mass processing because the difficulty of the process is also low and the manufacturing cost is not higher than that of the conventional silicon negative electrode material.

본 명세서에서는 본 발명자들이 수행한 다양한 실시예 가운데 몇 개의 예만을 들어 설명하는 것이나 본 발명의 기술적 사상은 이에 한정하거나 제한되지 않고, 당업자에 의해 변형되어 다양하게 실시될 수 있음은 물론이다. It is to be understood that the present invention is not limited to the above embodiments and various changes and modifications may be made by those skilled in the art without departing from the spirit and scope of the invention.

Claims (8)

리튬 2차 전지용 음극재에 있어서,
실리콘(Si) 나노 입자 및 Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Ta, Ti, W, U 및 V의 나노 입자 중 적어도 하나의 나노 입자와,
상기 나노 입자의 표면에 1층 이상의 전도성 물질이 코팅된 것을 특징으로 하는, 리튬 2차 전지용 음극재.
In the negative electrode material for a lithium secondary battery,
Silicon (Si) nanoparticles and at least one of the nanoparticles of Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Ta, Ti, W, U and V ,
At least one conductive material is coated on the surface of the nanoparticles, lithium secondary battery negative electrode material.
삭제delete 제1항에 있어서,
상기 전도성 물질은 탄소구조체인 것을 특징으로 하는, 리튬 2차 전지용 음극재.
The method of claim 1,
The conductive material is a carbon structure, characterized in that the negative electrode material for a lithium secondary battery.
제1항에 있어서,
상기 실리콘 나노 입자는 하기 수학식 1을 만족하되,
(수학식 1)
1nm < N < 150nm이고,
여기서 "N"은 상기 실리콘 나노 입자의 입경인 것을 특징으로 하는, 리튬 2차 전지용 음극재.
The method of claim 1,
The silicon nanoparticles satisfy the following Equation 1,
(1)
1 nm <N <150 nm,
"N" is a particle size of the silicon nanoparticles, characterized in that the negative electrode material for a lithium secondary battery.
제1항, 제3항 또는 제4항 중 어느 한 항에 있어서,
상기 리튬 2차 전지용 음극재는 2차전지 셀 테스트의 100 사이클 충방전 이후에 Capacity Retention 방전용량이 90%이상의 효율을 갖는 것을 특징으로 하는, 리튬 2차 전지용 음극재.
The method according to any one of claims 1, 3 or 4,
The negative electrode material for a lithium secondary battery has a capacity retention capacity of 90% or more after 100 cycles of charge and discharge of a secondary battery cell test, the lithium secondary battery negative electrode material.
리튬 2차 전지용 음극재의 제조방법에 있어서,
실리콘(Si) 나노 입자를 용매에 분산시켜 실리콘 나노 입자를 포함하는 용액을 제조하는 제1단계와,
상기 실리콘 나노 입자가 분산된 용액을 추출하여 탄소전구체와 혼합하는 제2단계와,
상기 제2단계의 용매를 건조시킨 후 산소가 없는 환경에서 상기 탄소전구체를 탄화시켜 상기 실리콘 나노 입자의 표면에 1층 이상의 탄소구조체를 코팅시키는 제3단계를 포함하는 것을 특징으로 하는, 리튬 2차 전지용 음극재의 제조방법.
In the manufacturing method of the negative electrode material for lithium secondary batteries,
Dispersing silicon (Si) nanoparticles in a solvent to prepare a solution containing silicon nanoparticles;
A second step of extracting the solution in which the silicon nanoparticles are dispersed and mixing with the carbon precursor;
And drying the solvent of the second step, carbonizing the carbon precursor in an oxygen-free environment, and including a third step of coating one or more layers of carbon structures on the surface of the silicon nanoparticles. Method for producing a negative electrode material for batteries.
제6항에 있어서,
상기 제1단계는 실리콘 웨이퍼를 용매에 넣고 레이저를 조사하여 상기 실리콘 나노 입자를 고농도로 분산시키는 것을 특징으로 하는, 리튬 2차 전지용 음극재의 제조방법.
The method according to claim 6,
In the first step, the silicon wafer is placed in a solvent and irradiated with a laser to disperse the silicon nanoparticles at a high concentration, the method of manufacturing a negative electrode material for a lithium secondary battery.
제7항에 있어서,
상기 제1단계의 레이저는 다음 수학식 2와 3의 레이저 조사시간과 레이저 파장을 만족하되,
(수학식 2)
T = N/(P/W)
여기서, "T"는 레이저 조사 시간이고, "P"는 레이징 면적이고, "W"는 실리콘 웨이퍼 면적이며, "N"은 상수로서 1보다 크고 1000보다 작은 정수이고,
(수학식 3)
λ = λ'X 1/N
여기서, "λ"는 레이저 파장이고, "λ'"는 용매의 진동모드 파장이고, "N"은 자연수인 것을 특징으로 하는, 리튬 2차 전지용 음극재의 제조방법.
The method of claim 7, wherein
The laser of the first step satisfies the laser irradiation time and the laser wavelength of the following Equations 2 and 3,
(2)
T = N / (P / W)
Where "T" is the laser irradiation time, "P" is the lasing area, "W" is the silicon wafer area, "N" is an integer greater than 1 and less than 1000 as a constant,
(3)
λ = λ'X 1 / N
Here, "λ" is a laser wavelength, "λ '" is a vibration mode wavelength of a solvent, and "N" is a natural number, The manufacturing method of the negative electrode material for lithium secondary batteries.
KR1020110008412A 2011-01-27 2011-01-27 Negative electrode material for lithium rechargeable battery and manufacturing method thereof KR101219171B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110008412A KR101219171B1 (en) 2011-01-27 2011-01-27 Negative electrode material for lithium rechargeable battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110008412A KR101219171B1 (en) 2011-01-27 2011-01-27 Negative electrode material for lithium rechargeable battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20120087000A KR20120087000A (en) 2012-08-06
KR101219171B1 true KR101219171B1 (en) 2013-01-08

Family

ID=46872663

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110008412A KR101219171B1 (en) 2011-01-27 2011-01-27 Negative electrode material for lithium rechargeable battery and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR101219171B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101906973B1 (en) * 2012-12-05 2018-12-07 삼성전자주식회사 Silicon nano particles for anode active materials having modified surface characteristics and methods of preparing the same
KR20160088338A (en) * 2013-12-10 2016-07-25 삼성전자주식회사 Anode active material for lithium ion secondary battery, and manufacturing method therefor
KR102301040B1 (en) * 2014-12-31 2021-09-14 삼성전자주식회사 Silicon-based anode active material, method of preparing the same, anode including the silicon-based anode active material, and lithium secondary battery including the anode
KR102287988B1 (en) * 2019-11-06 2021-08-09 광주과학기술원 Manufacturing Technology of Lithium Secondary Battery Electrode Treated by Laser and Lithium Secondary Battery Using the Same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100112442A (en) * 2009-04-09 2010-10-19 삼성전자주식회사 Process for preparing anode active composite material
KR101113008B1 (en) * 2008-08-04 2012-03-13 (주)썬텔 Silicon anode composite active material for lithium secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101113008B1 (en) * 2008-08-04 2012-03-13 (주)썬텔 Silicon anode composite active material for lithium secondary battery
KR20100112442A (en) * 2009-04-09 2010-10-19 삼성전자주식회사 Process for preparing anode active composite material

Also Published As

Publication number Publication date
KR20120087000A (en) 2012-08-06

Similar Documents

Publication Publication Date Title
Xu et al. Conformal conducting polymer shells on V2O5 nanosheet arrays as a high‐rate and stable zinc‐ion battery cathode
US9911976B2 (en) Negative electrode active material for secondary battery, conductive composition for secondary battery, negative electrode material comprising same, negative electrode structure and secondary battery comprising same, and method for manufacturing same
KR101504709B1 (en) Lithium secondary battery having improved electrochemical property and preparation method thereof
KR102382433B1 (en) Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
KR20190065172A (en) Anode and Lithium Secondary Battery Comprising the Same
KR20130139804A (en) Negative electrode meterial for non-aqueous electrolyte secondary battery and manufacturing method thereof
KR101972187B1 (en) Structurally stable active material for battery electrodes
JP6612507B2 (en) Non-aqueous electrolyte secondary battery carbonaceous material, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
KR102444796B1 (en) Anode Active Material, Manufacturing Method Thereof, And Lithium Secondary Battery Comprising the Same
KR101574623B1 (en) Negative active material, lithium secondary battery comprising the negative active material and manufacturing method thereof
JP2015179666A (en) Carbonaceous material for nonaqueous electrolyte secondary battery, method of manufacturing the same, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
EP3179542A1 (en) Method for manufacturing carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery, and carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery
JP2018163762A (en) Electrode material for lithium ion secondary battery, method for manufacturing the same, electrode for lithium ion secondary battery and lithium ion secondary battery
KR101219171B1 (en) Negative electrode material for lithium rechargeable battery and manufacturing method thereof
Narsimulu et al. High capacity electrospun MgFe2O4–C composite nanofibers as an anode material for lithium ion batteries
WO2016140368A1 (en) Method for manufacturing mixed negative-electrode material for non-aqueous electrolyte secondary battery and mixed negative-electrode material for non-aqueous electrolyte secondary battery obtained by same manufacturing method
Chang et al. Electrically and thermally conductive Al2O3/C nanofiber membrane filled with organosilicon as a multifunctional integrated interlayer for lithium-sulfur batteries under lean-electrolyte and thermal gradient
CN102050438A (en) Method for preparing carbon composite material
JP2016152225A (en) Carbonaceous material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR20150113314A (en) Negative active material, Lithium secondary battery comprising the negative active material and manufacturing method thereof
JP2005200276A (en) Method for producing graphite-amorphous carbon composite material, graphite-amorphous carbon composite material, negative electrode for battery, and battery
KR101673171B1 (en) Negative electrode active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
Yang et al. Uniform Li Deposition through the Graphene-Based Ion-Flux Regulator for High-Rate Li Metal Batteries
JP7190252B2 (en) Non-graphitizable carbonaceous materials for non-aqueous electrolyte secondary batteries, negative electrodes for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary batteries
KR101368366B1 (en) Amorphose carbon contained electrode active materials for lithium secondary batteries, the electrodes, and lithium secondary batteries containing the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151021

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161104

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171123

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181204

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191202

Year of fee payment: 8