KR101191310B1 - Liquid additive for coolant of engine - Google Patents

Liquid additive for coolant of engine Download PDF

Info

Publication number
KR101191310B1
KR101191310B1 KR1020120079933A KR20120079933A KR101191310B1 KR 101191310 B1 KR101191310 B1 KR 101191310B1 KR 1020120079933 A KR1020120079933 A KR 1020120079933A KR 20120079933 A KR20120079933 A KR 20120079933A KR 101191310 B1 KR101191310 B1 KR 101191310B1
Authority
KR
South Korea
Prior art keywords
weight
cooling water
engine
cooling
micro powder
Prior art date
Application number
KR1020120079933A
Other languages
Korean (ko)
Inventor
박성규
변복수
신재옥
Original Assignee
박성규
신재옥
변복수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박성규, 신재옥, 변복수 filed Critical 박성규
Priority to KR1020120079933A priority Critical patent/KR101191310B1/en
Application granted granted Critical
Publication of KR101191310B1 publication Critical patent/KR101191310B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/20Antifreeze additives therefor, e.g. for radiator liquids

Abstract

PURPOSE: A liquefied additives for engine cooling water are provided to improve combustion efficiency and power of an engine by improving cooling efficiency of a coolant, thereby capable of improving fuel efficiency. CONSTITUTION: In a liquefied additives for cooling engine in which a micro powder type silicon compound is mixed, the liquefied additives comprises 50-70 weight% of silicon emulsion, 10-30 weight% of micro powder type silicon compound, 15-25 weight% of micro powder type calcium carbonate, and 1-5 weight% of ethylene glycol. The micro powder type silicon compound consists of 60-70 weight% of micro powder type silicon carbonate, and 30-40 weight% of micro powder type silicon dioxide.

Description

엔진 냉각수용 액상 첨가제{LIQUID ADDITIVE FOR COOLANT OF ENGINE}LIQUID ADDITIVE FOR COOLANT OF ENGINE}

본 발명은 미세 분말상의 광물 입자가 포함된 엔진 냉각수용 첨가제에 관한 것으로, 미세 분말상의 규소화합물과 탄산칼슘으로 구성되는 광물 입자로 첨가제를 형성하되, 이들 광물 입자를 실리콘에멀전 및 에틸렌글리콜과 혼합하여 액상의 첨가제를 구성함으로써, 첨가제내 광물 입자의 양호한 분산상태를 유지함과 동시에, 광물 입자 상호간 및 광물입자와 기타 첨가제간 불요(不要) 반응을 억제하고, 기포 형성 및 스케일 침착을 방지함은 물론 엔진의 냉각계통 관로의 부식을 억제할 수 있도록 한 것이다.
The present invention relates to an additive for engine cooling water containing fine powdery mineral particles, wherein the additive is formed from mineral powders consisting of fine powdery silicon compound and calcium carbonate, and these mineral particles are mixed with silicone emulsion and ethylene glycol. By constituting the liquid additive, it is possible to maintain a good dispersion state of the mineral particles in the additive, to suppress unwanted reactions between the mineral particles and the mineral particles and other additives, and to prevent bubble formation and scale deposition, as well as the engine It is to prevent corrosion of cooling system pipe.

내연기관의 냉각효율은 내연기관의 출력, 연비 및 오염물질 배출에 심대한 영향을 미치는 요소로서, 과소 냉각으로 인한 과열시 내연기관 구성 부품의 열팽창 및 반복적인 열변형으로 인한 피로파괴의 가능성이 높아질 뿐 아니라, 실린더링 및 개스킷 등 기밀부품의 변형 및 파괴를 유발할 수 있으며, 작동 행정간 폭발시점의 부조화로 인하여 출력이 저하되는 등 심각한 문제를 유발할 수 있다.The cooling efficiency of internal combustion engines has a profound effect on the power output, fuel efficiency and pollutant emissions of internal combustion engines, and it only increases the possibility of fatigue failure due to thermal expansion and repeated thermal deformation of internal combustion engine components during overheating due to undercooling. In addition, deformation and destruction of the airtight parts such as cylinders and gaskets may be caused, and serious problems may occur, such as a decrease in output due to incompatibility at the time of explosion between operation strokes.

또한 과도한 냉각으로 인하여 내연기관의 작동 온도가 저하되는 경우에도 연료의 연소특성이 악화되어 다량의 오염물질이 배출될 뿐 아니라, 출력이 저하되는 등의 심각한 문제를 야기한다.In addition, even when the operating temperature of the internal combustion engine is lowered due to excessive cooling, the combustion characteristics of the fuel are deteriorated, so that a large amount of pollutants are emitted and a serious problem such as a decrease in power is caused.

이렇듯 내연기관은 작동 중 적정 냉각상태를 유지함으로써 출력, 연비 및 오염물질 배출 특성이 최적으로 유지될 수 있는 바, 비교적 비열이 높아 냉각 온도의 유지 특성이 우수하고, 자동차 엔진 등 통상적인 내연기관의 작동환경에서 액체 상태가 유지되는 물을 냉매로 사용하는 수냉식 냉각이 일반적으로 적용되고 있다.
As such, the internal combustion engine can maintain the output, fuel efficiency and pollutant emission characteristics optimally by maintaining an appropriate cooling state during operation. Since the specific heat is relatively high, the internal combustion engine has excellent cooling temperature retention characteristics, and Water-cooled cooling is generally applied using water which is kept in a liquid state as a refrigerant in an operating environment.

수냉식 엔진에 있어서, 냉매인 물은 엔진 주위에 설치된 냉각수 관로를 따라 순환되면서 엔진의 열을 흡수하고 냉각수 관로와 연결된 라디에이터(radiator)로 유입되어 열을 방출하게 되는데, 순환과정에서 엔진의 열을 흡수한 냉각수는 비등점에 육박하는 온도로 수온이 상승되는 바, 고온 고압의 냉각수가 엔진 및 라디에이터를 지속적으로 순환하게 된다.In water-cooled engines, water, which is a refrigerant, circulates along the cooling water pipes installed around the engine, absorbs heat from the engine, and radiates heat by entering a radiator connected to the cooling water pipe. One coolant is heated to a temperature close to its boiling point, so that the hot and high pressure coolant continuously circulates through the engine and radiator.

수냉식 엔진에 있어서의 냉각효과는 냉매의 총량은 물론 엔진 및 라디에이터에 구성된 냉각수관로의 연장 및 설치형태, 냉각수의 순환유량 등에 의하여 지배된다고 할 수 있으므로, 냉각수관로를 조밀하게 구성하고 냉각수의 총량 및 순환유량을 극대화할 경우 최대한의 냉각효율을 확보할 수 있으나, 이 경우 냉각계통 장치 규모가 확대될 수 밖에 없다.The cooling effect in the water-cooled engine is governed not only by the total amount of refrigerant but also by the extension and installation of the cooling water pipes formed in the engine and the radiator, the circulation flow rate of the cooling water, and so on. If the flow rate is maximized, the maximum cooling efficiency can be secured, but in this case, the scale of the cooling system is inevitably expanded.

따라서, 수냉식 엔진의 주요 수요처가 자동차임을 감안하면 냉각계통 장치의 규모에 제한이 있을 수 밖에 없으므로, 제한된 냉각수 순환유량의 조건 하에서 최대한의 냉각효율을 획득하기 위한 시도가 계속되고 있다.Therefore, considering that the main demand for the water-cooled engine is an automobile, there is no limit to the size of the cooling system apparatus, and thus, attempts to obtain the maximum cooling efficiency under the condition of the limited cooling water circulation flow rate continue.

수냉식 엔진의 냉각효율 개선 방안은 냉각계통 장치의 기계적, 열유체역학적 특성을 구조적으로 개선하는 방안과 냉각수에 첨가제를 투입하여 냉매 자체의 물성을 개선하는 방안으로 구분될 수 있는데, 이중 냉매 자체의 물성을 개선하는 방안으로서 분말상의 광물 입자를 적용하여 냉각수 비열을 저하시키고 열전달 특성을 개선하며, 가열된 광물 입자에 발산되는 원적외선을 통하여 냉각수의 물분자 클러스터(cluster)를 분할함으로써 냉각수의 신속한 열 흡수 및 방출은 물론 원활한 순환이 가능하도록 한 냉각수용 첨가제가 개발된 바 있다.The improvement of cooling efficiency of water-cooled engine can be divided into structural improvement of mechanical and thermo-hydrodynamic characteristics of the cooling system and improvement of physical properties of the refrigerant by adding additives to the cooling water. By applying powdery mineral particles to reduce the cooling water specific heat and improving the heat transfer characteristics, and by dividing the water molecule cluster of the cooling water through the far-infrared rays emitted to the heated mineral particles, Coolant additives have been developed that allow for smooth circulation as well as release.

이러한 종래의 광물 분말 함유 냉각수용 첨가제로서, 특허 제684370호 및 특허 제771190호를 들 수 있다.As such conventional mineral powder-containing cooling water additives, there are patents 684370 and 771190.

특허 제684370호는 분말상의 흑연, 염화칼슘, 질산염 및 물을 혼합한 냉각수용 첨가제로서, 분말상 광물 입자의 냉각수내 혼합을 통하여 냉각수의 비열을 저감하고 있으나, 흑연의 냉각수내 분산상태를 유지하기 어려울 뿐 아니라, 냉각수에 부동(不凍)효과를 부여하는 염화칼슘으로 인하여 냉각계통 장치가 부식되는 문제점이 발생된다.Patent No. 684370 is an additive for cooling water in which powdery graphite, calcium chloride, nitrate and water are mixed, and the specific heat of the cooling water is reduced by mixing the powdery mineral particles in the cooling water, but it is difficult to maintain the dispersed state of the cooling water in the graphite. In addition, a problem arises in that the cooling system is corroded due to calcium chloride which imparts a floating effect on the cooling water.

특허 제771190호는 액상의 규산염, 분말상의 토르말린 및 기타 맥반석 등의 천연석 분말이 혼합된 냉각수용 첨가제로서, 이 역시 광물 입자를 통한 냉각수 비열 저감 및 원적외선 방출 효과를 의도하고 있으나, 맥반석 등 천연석 분말내 함유된 화합물의 조성이 특정되지 않은 바, 이들 불특정 화합물간 상호 반응은 물론 첨가제의 주재료인 액상의 규산염과 기타 첨가물간 반응을 통하여 첨가제 자체의 물성이 변화될 수 있는 문제점이 있다.Patent No. 771190 is an additive for cooling water in which natural stone powders such as liquid silicate, powdered tourmaline and other elvan stones are mixed, and this also intends to reduce the cooling water specific heat and release far infrared rays through mineral particles. Since the composition of the compound is not specified, there is a problem that the physical properties of the additive itself can be changed through the reaction between these unspecified compounds and the reaction between the liquid silicate and other additives, which are the main ingredients of the additive.

또한 알루미늄 광물의 일종인 토르말린은 장기간 사용시 동질의 소재로 구성된 냉각계통 장치내 침착되어 냉각수 순환에 악영향을 미칠 수 있다.In addition, tourmaline, a kind of aluminum mineral, may be deposited in a cooling system device composed of homogeneous materials for long-term use, which may adversely affect the cooling water circulation.

특히 상기 특허 제684370호 및 특허 제771190호는 미세 분말상의 고형물은 물론 액상의 화공약품이 함유된 것인 바, 냉각수에 첨가시 냉각수의 순환과정에서 다량의 기포가 발생될 가능성이 있음에도 불구하고, 이에 대한 대비책이 전혀 강구되지 않은 문제점이 있다.Particularly, Patent No. 684370 and Patent No. 771190 include fine powdery solids, as well as liquid chemicals. Despite the possibility that a large amount of bubbles are generated during the circulation of the cooling water when added to the cooling water, There is a problem that no measures have been taken for this.

전술한 바와 같이, 수냉식 내연기관의 냉각수는 고온, 고압 상태에서 지속적으로 순환하게 되므로, 냉각수내 기포의 형성시 냉각효율이 저하됨은 물론, 기포가 생성 및 소멸되는 과정에서 관로내 압력이 급변하게 되므로 냉각계통 장치의 내구성에 심각한 악영향을 미칠 뿐 아니라, 냉각수의 과팽창으로 인한 냉각계통 장치의 파손 및 냉각수 누출의 위험이 상존하는 심각한 문제점이 있다.
As described above, since the cooling water of the water-cooled internal combustion engine continuously circulates at high temperature and high pressure, the cooling efficiency decreases when bubbles are formed in the cooling water, and the pressure in the pipeline suddenly changes in the process of generating and dissipating bubbles. Not only have a serious adverse effect on the durability of the cooling system device, there is a serious problem that the risk of breakdown of the cooling system device and the leakage of the cooling water due to the expansion of the cooling water is present.

본 발명은 전술한 문제점을 감안하여 창안한 것으로, 화학적으로 안정한 특성을 가지는 탄산칼슘 및 탄화규소 등의 규소화합물을 미세 분말상으로 혼합하되,실리콘에멀전을 다량 혼합하여 미세 분말상 규소화합물의 냉각수내 규일한 분산을 유도하고 기포의 형성을 억제할 수 있도록 한 것이다.The present invention has been made in view of the above-described problems, and mixed silicon compounds such as calcium carbonate and silicon carbide having chemically stable characteristics in a fine powder form, but mixing a large amount of a silicone emulsion in the cooling water of the fine powder silicon compound It is to induce dispersion and to suppress the formation of bubbles.

즉, 본 발명은 상기의 목적을 달성하기 위한 것으로, 미세 분말상의 규소화합물이 혼합된 엔진 냉각수용 액상 첨가제에 있어서, 실리콘에멀전 50중량% 내지 70중량%와, 미세 분말상의 규소화합물 10중량% 내지 30중량%와, 미세 분말상의 탄산칼슘 15중량% 내지 20중량%와, 에틸렌글리콜 1중량% 내지 5중량%가 혼합되어 구성됨을 특징으로 하는 엔진 냉각수용 액상 첨가제이다.That is, the present invention is to achieve the above object, in the liquid additive for engine cooling water mixed with a fine powder silicon compound, 50% by weight to 70% by weight of the silicone emulsion and 10% by weight to the fine powder silicon compound 30% by weight, 15% by weight to 20% by weight of fine powdered calcium carbonate, and 1% by weight to 5% by weight of ethylene glycol are mixed liquid additives for engine cooling water.

또한 상기 미세 분말상의 규소화합물은 미세 분말상의 탄화규소 60중량% 내지 70중량%와, 미세 분말상의 이산화규소 30중량% 내지 40중량%가 혼합되어 구성됨을 특징으로 하는 엔진 냉각수용 액상 첨가제이다.
In addition, the fine powder silicon compound is a liquid additive for the engine coolant, characterized in that 60% to 70% by weight of fine powder silicon carbide and 30% to 40% by weight of fine silicon dioxide mixed.

본 발명을 통하여, 냉각수의 냉각 효율을 향상시킴으로써, 엔진의 연소효율 및 출력을 제고하는 효과를 얻을 수 있으며, 이로써 연비를 향상시키고 매연발생을 억제하는 효과를 얻을 수 있다.Through the present invention, by improving the cooling efficiency of the cooling water, it is possible to obtain the effect of improving the combustion efficiency and output of the engine, thereby improving the fuel efficiency and suppress the generation of smoke.

또한, 종래 광물 분말 함유 냉각수 첨가제에서 발생될 수 있는 광물 입자 상호간 불요(不要) 반응 및 광물 입자와 기타 첨가제 성분 물질간 불요 반응을 효과적으로 억제함으로써, 냉각수의 물성 변화는 물론 냉각수 순환계통 관로의 부식 및 스케일 침착을 근본적으로 방지할 수 있으며, 이로써 냉각수의 순환 효율을 제고하고 엔진의 내구성을 확보하는 효과를 얻을 수 있다.
In addition, by effectively inhibiting the unwanted reaction between the mineral particles and the unwanted reaction between the mineral particles and other additive component materials that can occur in the conventional mineral powder-containing cooling water additive, it is possible to change the properties of the cooling water, as well as corrosion of the cooling water circulation line. It is possible to fundamentally prevent scale deposition, thereby improving the circulation efficiency of the coolant and ensuring the durability of the engine.

본 발명의 상세한 구성 및 작용을 설명하면 다음과 같다.The detailed configuration and operation of the present invention are as follows.

우선 본 발명은 광물이 고체 입자 형태로 함유된 첨가제인 동시에, 그 성상이 액상으로 형성되어 냉각계통 관로에 투입시 기존 냉각수와 신속하고 균일하게 혼합될 뿐 아니라, 냉각수의 순환과정에서 미세 광물 입자가 냉각수내 균일한 분산상태를 유지하고, 기포의 형성이 억제되며, 부동(不凍)효과 또한 발현할 수 있도록 구성된 것이다.First of all, the present invention is an additive containing minerals in the form of solid particles, and at the same time, its shape is formed in a liquid phase, and when it is added to a cooling system pipeline, it is not only quickly and uniformly mixed with existing cooling water, It is configured to maintain a uniform dispersion state in the cooling water, to suppress the formation of bubbles, and to express a floating effect.

이러한 본 발명은 실리콘에멀전(silicon emulsion) 50중량% 내지 70중량%와, 미세 분말상의 규소화합물 10중량% 내지 30중량%와, 미세 분말상의 탄산칼슘(CaCO3) 15중량% 내지 20중량%와, 에틸렌글리콜(ethylene glycol) 1중량% 내지 5중량%가 혼합되어 구성되며, 각 구성요소 중 고형물인 규소화합물 및 탄산칼슘은 가급적 작은 입경을 가지도록 미세하게 분쇄되어 적용되는 것이 바람직하다.The present invention is 50% to 70% by weight of a silicone emulsion, 10% to 30% by weight of a fine powder silicon compound, 15% to 20% by weight of fine powder calcium carbonate (CaCO 3 ) and , 1 wt% to 5 wt% of ethylene glycol is mixed, and the silicon compound and calcium carbonate, which are solids, are preferably finely pulverized so as to have a small particle size.

본 발명의 미세 분말상 규소화합물은 화학적으로 안정한 탄화규소(SiC)를 주로 혼합하되 비교적 입수가 용이한 이산화규소(SiO2)를 첨가하여 구성할 수 있으며, 이들 탄화규소 및 이산화규소의 미세 분말상 규소화합물내 혼합비는 탄화규소 60중량% 내지 70중량%와 이산화규소 30중량% 내지 40중량%로 설정하는 것이 바람직하다.The fine powdered silicon compound of the present invention can be composed mainly by adding chemically stable silicon carbide (SiC), but by adding relatively easy to obtain silicon dioxide (SiO 2 ), these fine powdered silicon compound of silicon carbide and silicon dioxide The mixing ratio is preferably set to 60 wt% to 70 wt% of silicon carbide and 30 wt% to 40 wt% of silicon dioxide.

본 발명의 실리콘에멀전은 친수성으로서 냉각수와의 혼합특성이 우수할 뿐 아니라, 미세 분말상 규소화합물과의 혼합 특성 또한 우수하고, 미세 분말상 규소화합물의 냉각수내 분산을 촉진하는 역할도 수행하게 된다.The silicone emulsion of the present invention is not only excellent in mixing properties with cooling water as hydrophilicity, but also excellent in mixing properties with fine powdery silicon compounds, and also serves to promote dispersion in the cooling water of fine powdery silicon compounds.

또한, 실리콘에멀전은 우수한 소포(消泡) 효과를 발현하게 되므로, 본 발명의 첨가제가 첨가된 냉각수의 순환과정에서 기포가 발생되는 현상을 억제하게 된다.In addition, since the silicone emulsion exhibits an excellent antifoaming effect, bubbles in the circulation of the cooling water to which the additive of the present invention is added are suppressed.

본 발명의 에틸렌글리콜은 미량으로도 우수한 부동효과을 나타내어, 동절기 냉각수의 동결로 인한 냉각계통 장치의 파손을 방지한다.Ethylene glycol of the present invention shows an excellent antifreezing effect even in a small amount, to prevent damage to the cooling system device due to freezing of the cooling water in winter.

이러한 본 발명의 냉각수용 첨가제는 첨가제의 투입시 냉각수내 균일하게 분산되는 미세 분말상 규소화합물 및 탄산칼슘 입자를 통하여 다량의 원적외선을 방출함으로써 냉각수의 열전달 특성을 개선할 뿐 아니라, 냉각수의 순환과정에서 기포의 형성을 억제할 수 있으므로 냉각효율을 배가하고 냉각계통 장치의 수명을 연장하는 효과를 얻을 수 있다.Such additives for cooling water of the present invention not only improve the heat transfer characteristics of the cooling water by releasing a large amount of far infrared rays through the fine powder silicon compound and calcium carbonate particles uniformly dispersed in the cooling water when the additive is added, and also bubbles in the cooling water circulation process. The formation of can be suppressed, thereby increasing the cooling efficiency and extending the life of the cooling system device.

따라서, 본 발명의 첨가제를 자동차용 엔진에 적용할 시, 우수한 냉각효율을 확보할 수 있으며, 이로써 자동차의 연비를 개선할 수 있을 뿐 아니라, 연소특성을 개선하여 배출가스내 오염물을 저감하는 효과를 얻을 수 있다.Therefore, when the additive of the present invention is applied to an automobile engine, it is possible to secure excellent cooling efficiency, thereby not only improving fuel economy of the automobile, but also improving the combustion characteristics to reduce the pollutants in the exhaust gas. You can get it.

이러한 본 발명의 효과를 확인하기 위하여 본 발명 첨가제의 냉각수내 투입 전, 후의 자동차 연비 및 배출가스를 검사하였으며, 그 결과는 다음의 표 1 및 표 2와 같다.In order to confirm the effects of the present invention, the vehicle fuel economy and exhaust gas before and after the addition of the present invention into the cooling water was examined, and the results are shown in Tables 1 and 2 below.

시험에 적용된 본 발명의 실시예는 실리콘에멀전 60중량%, 미세 분말상의 규소화합물 20중량%, 탄산칼슘 17중량% 및 에틸렌글리콜 3중량%가 혼합된 것으로, 여기서 미세 분말상의 규소화합물은 미세 분말상의 탄화규소 65중량% 와 이산화규소 35중량%가 혼합되어 적용되었으며, 이렇듯 구성된 본 발명의 첨가제는 자동차 냉각수 총 체적의 5% 비율로 투입되었다.
Example of the present invention applied to the test is 60% by weight of the silicone emulsion, 20% by weight of the fine powder silicon compound, 17% by weight of calcium carbonate and 3% by weight of ethylene glycol, wherein the fine powder silicon compound is fine powdery 65% by weight of silicon carbide and 35% by weight of silicon dioxide were mixed and applied, and the additive of the present invention thus configured was introduced at a rate of 5% of the total volume of the automotive cooling water.

차종별 연비 측정 결과Fuel economy measurement result by car model 차종Car type 연식Year 사용전 연비
(km/ℓ)
Fuel efficiency before use
(km / ℓ)
사용후 연비
(km/ℓ)
Fuel efficiency after use
(km / ℓ)
연비 향상율
(%)
Fuel economy improvement rate
(%)
기아 쏘렌토 2.5Kia Sorento 2.5 20022002 8.58.5 10.810.8 2727 현대 아반떼 1.5 린번Hyundai Avante 1.5 Linburn 19981998 17.717.7 19.119.1 88 기아 스펙트라 1.5 MRKia Spectra 1.5 MR 20012001 13.213.2 14.414.4 99 현대 아반떼 1.5 오토Hyundai Avante 1.5 Otto 19961996 10.810.8 12.312.3 1414

배출가스 검사 결과(시험차량 1996년식 엘란트라)Emission test results (test vehicle 1996 Elantra) 검사항목Inspection items 사용전Before use 사용후after use 절감율Savings rate 일산화탄소carbon monoxide 0.50%0.50% 0.28%0.28% 44%44% 탄화수소hydrocarbon 217ppm217 ppm 88ppm88 ppm 60%60% 질소산화물Nitrogen oxide 616ppm616 ppm 301ppm301 ppm 51%51%

상기 표 1 및 표 2를 통하여 확인할 수 있는 바와 같이, 본 발명의 첨가제를 통하여 자동차의 연비를 개선할 수 있을 뿐 아니라, 배출가스내 오염물 또한 저감할 수 있다.As can be seen through Table 1 and Table 2, the additive of the present invention can not only improve the fuel economy of the vehicle, but also reduce the pollutants in the exhaust gas.

Claims (2)

미세 분말상의 규소화합물이 혼합된 엔진 냉각수용 액상 첨가제에 있어서,
실리콘에멀전 50중량% 내지 70중량%와;
미세 분말상의 규소화합물 10중량% 내지 30중량%와;
미세 분말상의 탄산칼슘 15중량% 내지 20중량%와;
에틸렌글리콜 1중량% 내지 5중량%가 혼합되어 구성됨을 특징으로 하는 엔진 냉각수용 액상 첨가제.
In the liquid additive for engine coolant mixed with fine silicon powder,
50% to 70% by weight of the silicone emulsion;
10 to 30 wt% of the fine powder silicon compound;
15% to 20% by weight of fine powdered calcium carbonate;
1 wt% to 5 wt% of ethylene glycol is mixed, the liquid additive for engine cooling water, characterized in that the composition.
청구항 1에 있어서, 미세 분말상의 규소화합물은
미세 분말상의 탄화규소 60중량% 내지 70중량%와;
미세 분말상의 이산화규소 30중량% 내지 40중량%가 혼합되어 구성됨을 특징으로 하는 엔진 냉각수용 액상 첨가제.
The method of claim 1, wherein the fine powder silicon compound
60% to 70% by weight of fine powder silicon carbide;
Liquid additive for engine coolant, characterized in that the fine powder of silicon dioxide 30% to 40% by weight is mixed.
KR1020120079933A 2012-07-23 2012-07-23 Liquid additive for coolant of engine KR101191310B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120079933A KR101191310B1 (en) 2012-07-23 2012-07-23 Liquid additive for coolant of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120079933A KR101191310B1 (en) 2012-07-23 2012-07-23 Liquid additive for coolant of engine

Publications (1)

Publication Number Publication Date
KR101191310B1 true KR101191310B1 (en) 2012-10-16

Family

ID=47288039

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120079933A KR101191310B1 (en) 2012-07-23 2012-07-23 Liquid additive for coolant of engine

Country Status (1)

Country Link
KR (1) KR101191310B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101740971B1 (en) * 2016-08-05 2017-05-29 김지영 Engine oil additive
KR101815015B1 (en) 2017-02-23 2018-01-08 김재수 Composition for soot-particle reduction
KR102144659B1 (en) 2019-10-31 2020-08-14 주식회사 엘씨그린텍 Cooling water supplements for engine
KR102148209B1 (en) 2019-05-03 2020-08-26 김동완 Cooling water additives for vehicle and manufacturing method thereof
KR20210115659A (en) * 2020-03-16 2021-09-27 한진호 the cooling water manufacturing method of the internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167630A (en) 2004-12-16 2006-06-29 Kurita Water Ind Ltd Cooling water treatment method
KR100942412B1 (en) 2007-03-14 2010-02-17 김운학 Cooling water additive in car
KR101047886B1 (en) 2010-12-09 2011-07-08 그린액월드 주식회사 Functional antifreezing liquid for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167630A (en) 2004-12-16 2006-06-29 Kurita Water Ind Ltd Cooling water treatment method
KR100942412B1 (en) 2007-03-14 2010-02-17 김운학 Cooling water additive in car
KR101047886B1 (en) 2010-12-09 2011-07-08 그린액월드 주식회사 Functional antifreezing liquid for internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101740971B1 (en) * 2016-08-05 2017-05-29 김지영 Engine oil additive
KR101815015B1 (en) 2017-02-23 2018-01-08 김재수 Composition for soot-particle reduction
KR102148209B1 (en) 2019-05-03 2020-08-26 김동완 Cooling water additives for vehicle and manufacturing method thereof
KR102144659B1 (en) 2019-10-31 2020-08-14 주식회사 엘씨그린텍 Cooling water supplements for engine
KR20210115659A (en) * 2020-03-16 2021-09-27 한진호 the cooling water manufacturing method of the internal combustion engine
KR102499536B1 (en) 2020-03-16 2023-02-13 한진호 the cooling water manufacturing method of the internal combustion engine

Similar Documents

Publication Publication Date Title
KR101191310B1 (en) Liquid additive for coolant of engine
US8695540B2 (en) Fuel-cracking diesel engine system
KR101558381B1 (en) Cylinder head for engine
KR101534715B1 (en) Thermal insulation coating composition and thermal insulation coating layer
KR100771190B1 (en) Addition matter for cooling water of engine
KR101815015B1 (en) Composition for soot-particle reduction
US7963271B2 (en) System and method for heating viscous fuel supplied to diesel engines
KR101047886B1 (en) Functional antifreezing liquid for internal combustion engine
KR100889941B1 (en) Additive of antifreezing liquid for atuomobile and method for using it
KR20130058143A (en) Improved perfomance matterial for vehicle
CN103694512A (en) Butadiene-acrylonitrile rubber and fluororubber composite sealing gasket material and preparation method thereof
KR100561906B1 (en) Cooling water in radiator for vehicle
WO2022057653A1 (en) Use of bilayer composition of silicon nitride ceramic material and glass material in engine
George et al. An experimental analysis on synergetic effect of multiple nanoparticle blended diesel fuel on CI engine
CN103184460A (en) Preparation method for cleaning agent for high-temperature carbon deposit in combustion chamber of all- aluminium engine
KR102499536B1 (en) the cooling water manufacturing method of the internal combustion engine
US7374698B2 (en) Nanometer heat-conducting water solution for use in car cooling system
KR101610222B1 (en) Cooling water additives for automobile and preparation method thereof
KR101664905B1 (en) Antifreeze Composition For Internal Combustion Engine And Method Of Injecting The Same
KR101566743B1 (en) Exhaust valve for engine
MX341562B (en) Heat exchange medium.
KR101759500B1 (en) Engine oil additive and engine lubrication method
KR101210037B1 (en) Manufacturing method of fuel additive for internal combustion engines
Mishra et al. Application and future of nanofluids in automobiles: an overview on current research
KR100684370B1 (en) A coolant additive

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150930

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161007

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee