KR101124146B1 - Shape-controlled Pd catalysts and method of it for fuel cell - Google Patents

Shape-controlled Pd catalysts and method of it for fuel cell Download PDF

Info

Publication number
KR101124146B1
KR101124146B1 KR1020090050995A KR20090050995A KR101124146B1 KR 101124146 B1 KR101124146 B1 KR 101124146B1 KR 1020090050995 A KR1020090050995 A KR 1020090050995A KR 20090050995 A KR20090050995 A KR 20090050995A KR 101124146 B1 KR101124146 B1 KR 101124146B1
Authority
KR
South Korea
Prior art keywords
catalyst
fuel cell
nano
electrode
present
Prior art date
Application number
KR1020090050995A
Other languages
Korean (ko)
Other versions
KR20100132266A (en
Inventor
박경원
이영우
한상범
이종민
오제경
이진규
김현수
Original Assignee
숭실대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교산학협력단 filed Critical 숭실대학교산학협력단
Priority to KR1020090050995A priority Critical patent/KR101124146B1/en
Publication of KR20100132266A publication Critical patent/KR20100132266A/en
Application granted granted Critical
Publication of KR101124146B1 publication Critical patent/KR101124146B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

본 발명은 연료전지용 촉매전극에 나노 형상 조절을 통한 Pd/C 촉매 구조의 제조방법에 관한 것이다. 더욱 상세하게는 탄소 지지체와 Pd을 동시에 폴리올 합성과정에 따라 합성함으로써, 기존의 형상조절을 통한 Pd 나노입자를 만든 후 지지체에 올리는 방법이 아닌 합성과정 중의 담지함으로서 공정을 단축시키고, 나노 형상 조절을 통한 메탄올 산화반응에 활성을 높이고, 내구성을 향상시키는 전극구조를 개발할 수 있도록 한 연료전지용 촉매 전극 및 제조 방법에 관한 것이다.The present invention relates to a method for producing a Pd / C catalyst structure by controlling the nano-shape on the catalyst electrode for fuel cells. More specifically, by simultaneously synthesizing a carbon support and Pd according to the polyol synthesis process, shorten the process by making the Pd nanoparticles through the conventional shape control and then supporting them during the synthesis process rather than placing them on the support, and control the nano shape control The present invention relates to a catalyst electrode for a fuel cell and a method for manufacturing the electrode structure, which increase the activity in methanol oxidation reaction and improve durability.

이를 위해, 본 발명은 폴리올 합성과정을 통해 나노 형상 조절된 Pd/C 촉매를 통한 전기화학적 특성을 가지는 연료전지용 촉매전극을 제공한다.To this end, the present invention provides a catalyst electrode for a fuel cell having electrochemical characteristics through the nano-shaped Pd / C catalyst through a polyol synthesis process.

연료전지, 나노형상조절, Pd, 메탄올 산화 반응, 전기화학 특성 Fuel Cell, Nano-Shape Control, Pd, Methanol Oxidation, Electrochemical Properties

Description

연료전지용 전극을 위한 나노 형상 조절된 피디/씨 촉매 및 그 제조방법{Shape-controlled Pd catalysts and method of it for fuel cell}Nano-Shaped PD / C Catalysts for Fuel Cell Electrodes and Manufacturing Method Thereof {Shape-controlled Pd catalysts and method of it for fuel cell}

본 발명은 연료전지용 촉매전극에 나노 형상 조절을 통한 Pd/C 촉매 구조의 제조방법에 관한 것이다. 더욱 상세하게는 탄소 지지체와 Pd을 동시에 폴리올 합성과정에 따라 합성함으로써, 기존의 형상조절을 통한 Pd 나노입자를 만든 후 지지체에 올리는 방법이 아닌 합성과정 중의 담지함으로서 공정을 단축시키고, 나노 형상 조절을 통한 메탄올 산화반응에 활성을 높이고, 내구성을 향상시키는 전극구조를 개발할 수 있도록 한 연료전지용 촉매 전극 및 제조 방법에 관한 것이다.The present invention relates to a method for producing a Pd / C catalyst structure by controlling the nano-shape on the catalyst electrode for fuel cells. More specifically, by simultaneously synthesizing a carbon support and Pd according to the polyol synthesis process, shorten the process by making the Pd nanoparticles through the conventional shape control and then supporting them during the synthesis process rather than placing them on the support, and control the nano shape control The present invention relates to a catalyst electrode for a fuel cell and a method for manufacturing the electrode structure, which increase the activity in methanol oxidation reaction and improve durability.

연료전지에 있어서 전해질에 따라 크게 알칼리 전해질 연료전지와 산 전해질 연료전지로 나뉜다. 연료전지는 탄소계-촉매 전극구조를 일반적으로 이용하고 있는데 음극에 연료가스(수소, 메탄올 등)와 양극에 산화제(산소, 공기)를 공급하여 전기 화학 반응을 통해 발생되는 에너지를 직접 전기에너지로 변화시키고 친환경적인 그린 에너지 발전 시스템이다.In the fuel cell, depending on the electrolyte, it is largely divided into an alkaline electrolyte fuel cell and an acid electrolyte fuel cell. Fuel cells generally use a carbon-catalyst electrode structure, which supplies fuel gas (hydrogen, methanol, etc.) to the cathode and oxidants (oxygen, air) to the anode to directly convert the energy generated through electrochemical reactions into electrical energy. It is a changing and eco-friendly green energy generation system.

본 발명은 상기와 같은 점을 감안하여 안출한 것으로서, 알칼리 전해질 연료전지에 있어서 백금을 대체할 팔라듐 금속을 이용하여 비백금 촉매를 만들어 알칼리 전해질 연료전지에 있어서 사용될 것으로 기대하고 있다. 폴리올 합성과정에 의해 기존의 촉매 제조와 탄소지지체 위의 담지의 두 공정을 하나의 공정을 이용하여 합성함으로써, 기존의 방법에 비해 합성방법이 간단해 지고, 기존 팔라듐의 입자를 구조제어를 통해 나노 형상 조절을 하여 탄소 지지체 위에 담지함으로써 촉매 전극구조를 개발 할 수 있고, 메탄올 산화 반응을 증대시키고 산화환원반응에 대한 내구성을 향상시킴으로써, 직접 메탄올 연료전지의 효율 및 내구성을 향상시킬 수 있도록 한 연료전지용 전극 촉매 및 그 제조방법을 제공하는데 그 목적이 있다.The present invention has been devised in view of the above, and it is expected that a non-platinum catalyst will be used in the alkali electrolyte fuel cell using palladium metal to replace platinum in the alkaline electrolyte fuel cell. By synthesizing two processes of preparing a catalyst and supporting on a carbon support using a single process by the polyol synthesis process, the synthesis method is simplified compared to the existing method, and nanoparticles through the structure control of the particles of palladium It is possible to develop a catalytic electrode structure by supporting the shape of carbon on the carbon support, and to improve the efficiency and durability of the direct methanol fuel cell by increasing the methanol oxidation reaction and improving the durability of the redox reaction. It is an object to provide an electrode catalyst and a method for producing the same.

상기한 목적을 달성하기 위한 본 발명은 연료전지용 촉매전극에 있어서, 폴리올 합성과정을 통해 나노 형상 조절된 팔라듐 입자와 그 팔라듐 입자를 탄소 지지체 위에 담지한 촉매로 사용되는 것을 특징으로 한다.The present invention for achieving the above object is characterized in that the catalyst electrode for fuel cell, characterized in that it is used as a catalyst supporting nano-shaped palladium particles and the palladium particles on the carbon support through the polyol synthesis process.

바람직한 구현 예로서, 상기 선구물질 나노 형상 조절된 Pd/C 촉매는 직접 메탄올 연료전지의 양극과 음극에서 금속 촉매로 사용되는 것을 특징으로 한다.As a preferred embodiment, the precursor nano-shaped Pd / C catalyst is characterized in that it is used as a metal catalyst in the anode and cathode of a direct methanol fuel cell.

더욱 바람직한 구현예로서, 상기 나노 형상 조절된 Pd/C 촉매 입자를 에틸렌 글리콜을 환원제로 사용하여 질산 이온과 PVP를 이용한 폴리올 합성과정을 통해 250℃에서 합성된 것을 특징으로 한다.In a more preferred embodiment, the nano-shaped Pd / C catalyst particles are synthesized at 250 ° C. through polyol synthesis using nitrate ions and PVP using ethylene glycol as a reducing agent.

본 발명의 다른 측면은 연료전지용 촉매전극의 제조방법에 있어서,Another aspect of the present invention is a method of manufacturing a catalyst electrode for a fuel cell,

팔라듐 염을 에틸렌 글리콜이 담긴 둥근 플라스크에 넣고 상온에서 용해시키는 단계; 상기 용액에 계면활성제역할(PVP), NaNO3와 FeCl3을 넣고 용해시키는 단계; 상기 용액에 탄소를 넣어 최대한으로 분산시켜주는 단계; 상기 용액을 상온에서 250℃까지 2 ℃/분으로 가열시켜주는 단계; 및 상기 설정온도에서 일정시간 유지시켜 나노 형상 조절된 Pd/C가 이루어지는 단계; 및 250℃에서 상온까지 2 ℃/min으로 냉각시켜 주는 것을 특징으로 한다.Placing the palladium salt in a round flask containing ethylene glycol and dissolving at room temperature; Adding and dissolving a surfactant role (PVP), NaNO 3 and FeCl 3 in the solution; Putting carbon into the solution to disperse it to the maximum; Heating the solution at room temperature to 250 ° C. at 2 ° C./min; And maintaining a predetermined time at the set temperature to form nano-shaped Pd / C; And it is characterized in that cooled to 2 ℃ / min from 250 ℃ to room temperature.

바람직한 구현예로서, 상기 설정온도는 250℃이고, 상기 설정온도에서 유지하는 시간은 3시간인 것을 특징으로 한다.In a preferred embodiment, the set temperature is 250 ° C, and the time maintained at the set temperature is characterized in that 3 hours.

이에 따라 본 발명에 따른 알칼리 전해질 연료전지용 촉매전극을 위한 나노 형상 조절된 Pd/C의 촉매 및 그 제조방법에 의하면, 폴리올 합성과정에 의해 나노 형상 조절이 된 다면체 Pd/C 촉매의 경우 특정 면의 표면이 들어나게 되어 구조적 특징이 나타나 촉매적 활성이 향상되는 장점을 가지고 있다. 특히 메탄올 산화반응을 통해 기존 상용화된 Pd/C 촉매(E-TEK)보다 합성된 다면체의 Pd/C가 메탄올 분해 반응에 있어서 더 효과적인 장점을 가지고 있고, 내구성 또한 강화된다는 장점을 가지고 있다.Accordingly, according to the catalyst of the nano-shaped Pd / C for the catalyst electrode for alkali electrolyte fuel cell according to the present invention and a method of manufacturing the same, in the case of a polyhedral Pd / C catalyst nano-adjusted by the polyol synthesis process The surface is lifted up and the structural characteristics appear to have the advantage of improving the catalytic activity. In particular, Pd / C of polyhedron synthesized by methanol oxidation is more effective in methanol decomposition than commercially available Pd / C catalyst (E-TEK).

이런 장점을 이용하여 다면체 Pd/C 촉매를 음극과 양극에서의 연료전지 테스트를 통해 촉매 활성과 산화 환원 특성이 향상되었고, 특히 메탄올 산화반응에서 음극에서의 향상되는 것을 확인할 수 있고, 안정성 역시 확보할 수 있다.By utilizing these advantages, the catalytic activity and redox characteristics of the polyhedral Pd / C catalysts were improved at the anode and cathode through the fuel cell test. Can be.

이하, 본 발명의 바람직한 실시예를 첨부도면을 참조로 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 다면체 Pd/C 촉매전극을 기본으로 상용화된 Pd/C 촉매(E-TEK)와 비교하여 촉매적 특성 및 그 촉매를 사용하는 직접 메탄올 연료전지 전극의 제조방법을 제공한다.The present invention provides catalytic properties and a method for producing a direct methanol fuel cell electrode using the catalyst as compared to a commercially available Pd / C catalyst (E-TEK) based on a polyhedral Pd / C catalyst electrode.

먼저, 에틸렌글리콜을 둥근 플라스크게 50 ml을 넣고 교반을 시켜준다. 여기서 에틸렌글리콜은 Pd 이온상태를 환원시켜주는 환원제 역할을 한다.First, 50 ml of ethylene glycol is added to a round flask and stirred. Ethylene glycol serves as a reducing agent to reduce the Pd ion state.

그리고 Na2PdCl4 2mM, NaNO3 10 mM, FeCl3 20 μM, PVP 1 g/L을 순서대로 용액 속에 넣고 상온에서 30분간 교반후 30분간 sonication을 시켜 완전히 용해시킨다.And Na 2 PdCl 4 2mM, NaNO 3 10 mM, FeCl 3 20 μM, PVP 1 g / L in order into the solution and stirred for 30 minutes at room temperature and sonication for 30 minutes to completely dissolve.

그리고 20wt% Pd을 계산하여 탄소 지지체(Vulcan XC-72R)을 넣고(0. 0426g), 용액 속에서 분산되도록 상온에서 10분간 교반후 20분간 sonication을 시켜 용액 내에 분산되도록 한다.And calculate the 20wt% Pd and put the carbon support (Vulcan XC-72R) (0.0426g), and after 20 minutes stirring at room temperature to disperse in solution so that 20 minutes sonication to be dispersed in the solution.

그리고 둥근 플라스크를 가열기(heating mantle)을 사용하여 상온에서 250 ℃까지 2 ℃/min의 속도로 증가시키며 가열을 시킨 후 일정온도 250 ℃에서 3시간동안 합성 후, 다시 상온까지 2 ℃/min으로 냉각한다.The round flask was heated at a rate of 2 ° C./min from room temperature to 250 ° C. using a heating mantle, heated and synthesized at a constant temperature of 250 ° C. for 3 hours, and then cooled back to room temperature to 2 ° C./min. do.

그리고 합성된 다면체 Pd/C는 남아있는 에틸렌글리콜과 첨가제(NaNO3, FeCl3), 계면활성제(PVP) 등을 제거하기 위해 에탄올 3회 증류수 1회를 통해 필터링 및 세척 후 다면체 Pd/C 촉매 물질을 제조하였다.In addition, the synthesized polyhedral Pd / C prepared a polyhedral Pd / C catalyst material after filtering and washing with ethanol three times distilled water once to remove the remaining ethylene glycol, additives (NaNO3, FeCl3), surfactant (PVP), etc. It was.

실험예 1 : X선회절 분석Experimental Example 1: X-ray diffraction analysis

본 발명에 따라 제조된 250℃에서 3시간동안 합성된 20 wt% 다면체 Pd/C와 상용화된 20 wt% Pd/C(E-TEK)의 촉매의 구조를 확인하기 위하여 X-선 회절 (XRD) 분석을 θ값이 20 ~80o까지 수행하였으며, 그 결과를 도 1에 나타내었다.X-ray diffraction (XRD) to confirm the structure of the catalyst of 20 wt% Pd / C (E-TEK) commercialized with 20 wt% polyhedral Pd / C synthesized for 3 hours at 250 ° C. prepared according to the invention. Analysis of θ values from 20 to 80 o It carried out, and the result is shown in FIG.

도 1에 나타낸 바와 같이 폴리올 합성과정을 통해 합성된 다면체 Pd/C 촉매가 상용화된 Pd/C 촉매와 같은 영역에서의 Vulcan 탄소 지지체 픽(Peak)과 Pd의 픽(Peak)을 확인되었다.As shown in FIG. 1, a polyol Pd / C catalyst synthesized through polyol synthesis was identified as a peak of a Vulcan carbon support peak and a peak of Pd in the same region as a commercially available Pd / C catalyst.

상용화된 Pd/C 촉매와 비교하였을 경우 합성된 다면체 Pd/C 촉매의 각각의 면에서의 intensity(경도)을 확인하였을 경우 합성도니 다면체의 Pd/C 촉매가 보다 (111)면이 많이 들어나는 것을 확인할 수 있다. 또한, 팔라듐의 (220)면이 나타나는 full width at half maxium (FWHM)을 이용하여 Scherrer equation을 통해 팔라듐 입자의 크기를 확인하였을 경우 다면체의 팔라듐 입자가 더 큰 것을 확인할 수 있다.(표1)Compared with commercially available Pd / C catalysts, when the intensity (hardness) of each of the synthesized polyhedral Pd / C catalysts was confirmed, it was found that the Pd / C catalysts of the synthetic polyhedron had more (111) planes. You can check it. In addition, when the size of the palladium particles was determined using the Scherrer equation using the full width at half maxium (FWHM) where the (220) plane of palladium appears, it can be seen that the palladium particles of the polyhedron are larger (Table 1).

실험예 2 : 전자투과현미경 (TEM) 관찰Experimental Example 2 Observation of the Electronic Transmission Microscope (TEM)

상기에서 본 발명에 따라 제조된 직접 메탄올 연료전지용 전극의 다면체 Pd/C과 상용화된 Pd/C 촉매의 나노 입자 형성 구조를 확인하기 위하여 전자투과현미경(TEM) 관찰을 수행하였으며, 그 결과를 도 2에 나타내었다.Electron transmission microscope (TEM) observation was performed to confirm the nanoparticle formation structure of the Pd / C catalyst commercialized with the polyhedral Pd / C of the electrode for direct methanol fuel cell manufactured according to the present invention, and the results are shown in FIG. 2. Shown in

도 2a 내지 도 2b에 나타낸 바와 같이 상기에서 제조된 다면체 Pd/C 촉매는 나노크기의 다면체 Pd이 형성된 탄소 지지체 위에 담지된 형태의 구조를 갖는 것을 확인할 수 있었다. 나노 입자의 다면체 Pd는 평균 크기는 48.15 나노의 크기를 갖는 것을 확인할 수 있었다(표1). 대다수의 Pd의 나노입자는 10면체 구조나 삼격형, 육각형의 판형 형태를 갖는 것을 확인할 수 있었다.2A to 2B, the polyhedral Pd / C catalyst prepared above was confirmed to have a structure supported on a carbon support on which nano-sized polyhedral Pd was formed. Polyhedron Pd of the nanoparticles was found to have an average size of 48.15 nanometers (Table 1). The majority of Pd nanoparticles were found to have a dodecahedral structure, a triangular shape, and a hexagonal plate shape.

그리고 도 2e에 나타난 바와 같이 상용화된 Pd/C는 구형의 Pd 나노 입자들이 탄소 지지체 위에 담지된 형태의 구조를 갖는 것을 확인 할 수 있었다. 나노 입자의 Pd는 평균 크기는 4.18 나노의 크기를 갖는 것을 확인할 수 있었다.(표1)As shown in FIG. 2E, the commercialized Pd / C was confirmed to have a structure in which spherical Pd nanoparticles were supported on a carbon support. Pd of the nanoparticles was found to have an average size of 4.18 nanometers (Table 1).

표 1TABLE 1

Figure 112009034824217-pat00001
Figure 112009034824217-pat00001

그리고 도 2d에서 나타난 바와 같이 상기에서 제조된 다면체 Pd/C 촉매를 안정성 평가 후(3600 초) 촉매의 모양 변화와 소결현상이 없는 것을 확인할 수 있었다.As shown in FIG. 2D, the polyhedral Pd / C catalyst prepared above was found to have no change in shape and no sintering phenomenon after the stability evaluation (3600 seconds).

그리고 도 2f에서 나타난 바와 같이 상용화된 Pd/C 촉매를 안정성 평가 후(3600 초) 촉매의 변화를 확인한 것으로 Pd 나노 입자들이 소결현상을 확인할 수 있었다.As shown in FIG. 2F, after the stability evaluation of the commercialized Pd / C catalyst (3600 seconds), the change of the catalyst was confirmed, and the sintering phenomenon of the Pd nanoparticles was confirmed.

실험예 3 : 고배율 전자투과현미경 (HRTEM) 관찰Experimental Example 3 Observation of High Magnification Electron Transmission Microscope (HRTEM)

상기에서 본 발명에 따라 제조된 직접 메탄올 연료전지용 전극의 다면체 Pd/C과 상용화된 Pd/C 촉매의 나노 입자 형성 구조를 확인하기 위하여 전자투과현미경(TEM) 관찰을 수행하였으며, 그 결과를 도 2c에 나타내었다.Electron transmission microscope (TEM) observation was performed to confirm the nanoparticle-forming structure of the Pd / C catalyst commercialized with the polyhedral Pd / C of the electrode for direct methanol fuel cell manufactured according to the present invention, and the result is shown in FIG. 2C. Shown in

도 3c에 나타낸 바와 같이 탄소 지지체 위에 올라간 Pd 입자가 다면체인 것을 확인 할 수 있었으며, 금속 입자의 결정구조를 잘 보여주는 격자면을 확인 할 수 있었다. 이는 본 발명에 의한 다면체 Pd/C 촉매의 구조를 보여주는 결과이다.As shown in FIG. 3C, it could be confirmed that the Pd particles on the carbon support were polyhedral, and the lattice plane showing the crystal structure of the metal particles was well identified. This is the result showing the structure of the polyhedral Pd / C catalyst according to the present invention.

실험예 4 : 전압에 따른 메탄올 산화 전류밀도 측정Experimental Example 4 Measurement of Methanol Oxide Current Density According to Voltage

상기 본 발명에 따라 제조된 다면체 Pd/C 촉매와 상용화된 Pd/C 촉매에 대한 전압변화에 따른 수산화나트륨 수용액에서 산화환원 전류밀도의 변화를 일반적인 전기화학적 방법(3극 셀)으로 측정하였다. 이때, 상기에서 제조된 전극을 작업전극으로 하였고, 백금선과 Ag/AgCl를 각각 상대전극과 기준전극으로 하여 0.1 몰의 수산화나트륨 수용액 하에서 촉매적 활성을 비교하였다. 또한 메탄올에서 산화 전류밀도의 변화를 일반적인 전기화학적 방법으로 측정하였고 0.1 몰의 수산화나트륨과 2몰의 메탄올이 혼합된 수용액 하에서 촉매적 활성을 비교하였다.The change in the redox current density in the sodium hydroxide aqueous solution according to the voltage change of the polyhedral Pd / C catalyst and the Pd / C catalyst commercialized according to the present invention was measured by a general electrochemical method (three-pole cell). In this case, the electrode prepared above was used as a working electrode, and catalytic activity was compared under 0.1 mol of sodium hydroxide aqueous solution using platinum wire and Ag / AgCl as counter electrode and reference electrode, respectively. In addition, the change of oxidation current density in methanol was measured by a general electrochemical method, and catalytic activity was compared in an aqueous solution of 0.1 mol of sodium hydroxide and 2 mol of methanol.

그 결과를 도 3에 나타내었으며, 이를 통하여 본 발명에 따라 제조된 다면체 Pd/C 촉매가 상용화된 Pd/C 촉매와 비교해 보았을 때 전체적인 촉매 활성부분에서 상대적으로 활성이 좋고 산소 흡착영역에서의 활성이 매우 크게 나타나는 것을 확인할 수 있었다. 또한, 내부 그래프에서 보듯이 Pd(111) 면에 특징 짓는 산소 흡착 영역에서의 2 픽(Peak)이 나타나는 것을 볼 수 있다.The results are shown in FIG. 3, whereby the polyhedral Pd / C catalyst prepared according to the present invention has a relatively good activity in the overall catalytic active part and a good activity in the oxygen adsorption region when compared with the commercially available Pd / C catalyst. It was confirmed that it appeared very large. In addition, as shown in the internal graph, it can be seen that two peaks appear in the oxygen adsorption region characterized by the Pd (111) plane.

또한, 도 4에 나타낸 바와 같이 메탄올에서의 산화 전류밀도를 상용화된 Pd/C 촉매와 비교해 보았을 때 본 발명에 따라 제조된 다면체 Pd/C 촉매가 보다 높 은 산화 전류 밀도를 가지고 있다는 것을 확인한 결과 촉매적 활성이 수소 및 메탄올 등의 연료에 대한 산화력이 더 강한 것을 알 수 있으며, 기존의 상용화된 Pd/C 촉매보다 본 발명에 따른 다면체 Pd/C 촉매의 활성 능력 향상의 가능성을 보여주었다. 또한, 이와 같은 연료를 산화시키기 위한 전극으로도 이용할 수 있음을 확인할 수 있었다. 또한, 메탄올 산화반응에서 상대적인 촉매 오염현상이 상용화된 Pd/C 촉매보다 제조된 다면체 Pd/C 촉매가 적은 것을 알 수 있었다.In addition, as shown in FIG. 4, when the oxidation current density in methanol is compared with the commercially available Pd / C catalyst, it was confirmed that the polyhedral Pd / C catalyst prepared according to the present invention had a higher oxidation current density. It can be seen that the active activity is more oxidizing power to the fuel such as hydrogen and methanol, and showed the possibility of improving the active capacity of the polyhedral Pd / C catalyst according to the present invention than the conventional commercialized Pd / C catalyst. It was also confirmed that it can be used as an electrode for oxidizing such fuel. In addition, it was found that the polyhedral Pd / C catalyst produced by methanol oxidation was less than the commercially available Pd / C catalyst.

실험예 5 : 일정 전압에서의 촉매 안정성 측정Experimental Example 5 Measurement of Catalyst Stability at Constant Voltage

상기 본 발명에 따라 제조된 다면체 Pd/C 촉매와 상용화된 Pd/C 촉매에 대한 일정 전압변화에서의 촉매 안정성 측정은 일반적인 전기화학적 방법(3극 셀)으로 측정하였다. 이때, 상기에서 제조된 전극을 작업전극으로 하였고, 백금선과 Ag/AgCl를 각각 상대전극과 기준전극으로 하여 0.1 몰의 수산화나트륨과 2몰의 메탄올이 혼합된 수용액 하에서 -0.2 V영역에서 장기간 실험을 하여 촉매적 안정성을 비교하였다.The catalyst stability measurement at constant voltage change for the Pd / C catalyst commercialized with the polyhedral Pd / C catalyst prepared according to the present invention was measured by a general electrochemical method (3-pole cell). In this case, the electrode prepared above was used as a working electrode, and the platinum electrode and Ag / AgCl were used as the counter electrode and the reference electrode, respectively, and a long-term experiment was performed at -0.2 V in an aqueous solution of 0.1 mol of sodium hydroxide and 2 mol of methanol. Catalytic stability was compared.

도 5에 나타낸 바와 같이 상기 본 발명에 따라 제조된 다면체 Pd/C 촉매와 상용화된 Pd/C 촉매에 대한 안정성 평가를 하였을 때, 다면체 Pd/C 촉매가 보다 높은 전류값을 가지며 전류의 변화량도 상용화된 Pd/C 촉매와 비교하였을 경우 상대적으로 그 변화가 적어 안정성이 향상된 것을 알 수 있다. 이는 다면체 Pd/C 촉매의 전류값이 약 29 % 감소한 반면 상용화된 Pd/C 촉매는 약 50 %가 감소한 것을 통해 알 수 있다.As shown in FIG. 5, when the stability evaluation for the Pd / C catalyst commercialized with the polyhedral Pd / C catalyst prepared according to the present invention is performed, the polyhedral Pd / C catalyst has a higher current value and the amount of change in the current is also commercialized. Compared with the Pd / C catalyst, the change is relatively small, and the stability is improved. This can be seen that the current value of the polyhedral Pd / C catalyst was reduced by about 29% while the commercialized Pd / C catalyst was reduced by about 50%.

이상에서는 본 발명을 특정의 바람직한 실시예에 대하여 도시하고 설명하였 으나, 본 발명은 이러한 실시예에 한정되지 않으며, 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 특허청구범위에서 청구하는 본 발명의 기술적 사상을 벗어나지 않는 범위내에서 실시할 수 있는 다양한 형태의 실시예들을 모두 포함한다.Although the present invention has been illustrated and described with respect to specific preferred embodiments, the invention is not limited to these embodiments, and the invention is claimed in the claims by one of ordinary skill in the art to which the invention pertains. It includes all embodiments of the various forms that can be carried out without departing from the spirit of the invention.

도 1은 본 발명에 따라 제조된 다면체 Pd/C 촉매와 상용화된 Pd/C 촉매의 XRD 그래프.1 is an XRD graph of a Pd / C catalyst compatible with a polyhedral Pd / C catalyst prepared according to the present invention.

도 2a 내지 도 2c는 본 발명에 따라 제조된 직접 메탄올 연료전지용 전극의 다면체 Pd/C 촉매의 나노입자를 나타내는 전자투과현미경 사진.2A to 2C are electron transmission micrographs showing nanoparticles of a polyhedral Pd / C catalyst of an electrode for a direct methanol fuel cell prepared according to the present invention.

도 2d는 본 발명에 따라 제조된 직접 메탄올 연료전지용 전극의 다면체 Pd/C 촉매의 안정성 실험 후 나노입자를 나타내는 전자투과현미경 사진.Figure 2d is an electron transmission micrograph showing the nanoparticles after the stability test of the polyhedral Pd / C catalyst of the electrode for direct methanol fuel cell prepared according to the present invention.

도 2e는 상용화된 Pd/C 촉매의 나노입자를 나타내는 전자투과현미경 사진.Figure 2e is an electron transmission micrograph showing the nanoparticles of a commercially available Pd / C catalyst.

도 2f는 직접 메탄올 연료전지용 전극의 상용화된 Pd/C 촉매의 안정성 실험 후 나노입자를 나타내는 전자투과현미경 사진.Figure 2f is an electron transmission micrograph showing the nanoparticles after the stability test of the commercialized Pd / C catalyst of the electrode for direct methanol fuel cell.

도 3은 본 발명에 따라 제조된 다면체 Pd/C 촉매와 상용화된 Pd/C 촉매의 산화환원 전류를 비교하기 위한 그래프.Figure 3 is a graph for comparing the redox current of a polyhedral Pd / C catalyst and a commercialized Pd / C catalyst prepared according to the present invention.

도 4은 본 발명에 따라 제조된 다면체 Pd/C 촉매와 상용화된 Pd/C 촉매의 메탄올 산화 전류를 비교하기 위한 그래프.4 is a graph for comparing the methanol oxidation current of the polyhedral Pd / C catalyst and the commercialized Pd / C catalyst prepared according to the present invention.

도 5은 본 발명에 따라 제조된 다면체 Pd/C 촉매와 상용화된 Pd/C 촉매의 일정 전압에서의 촉매 안정성 평가를 위한 메탄올 산화 반응에 대한 안정성 비교하기 위한 그래프.Figure 5 is a graph for comparing the stability for the methanol oxidation reaction for the evaluation of the catalyst stability at a constant voltage of the polyhedral Pd / C catalyst and the commercialized Pd / C catalyst prepared according to the present invention.

Claims (6)

삭제delete 삭제delete 삭제delete 삭제delete 연료전지용 촉매전극의 제조방법에 있어서,In the method for producing a catalyst electrode for a fuel cell, (a) 팔라듐 염을 에틸렌 글리콜이 담긴 둥근 플라스크에 넣고 상온에서 용해시키는 단계; (b) 상기 팔라듐 염을 포함하는 에틸렌 글리콜 용액에 PVP(poly(vinyl pyrrolidone), NaNO3와 FeCl3을 넣고 용해시키는 단계; (c) 상기 용액에 탄소지지체를 넣어 분산시키는 단계; (d) 상기 용액을 상온에서 250℃까지 2℃/분으로 가열시키는 단계; 및 (e) 상기 설정온도에서 일정시간 유지시켜 나노 형상 조절된 Pd/C를 형성시키는 단계; 및 (f) 250℃에서 상온까지 2℃/분으로 냉각시켜 Pd/C를 제조하는 단계를 포함하는 것을 특징으로 하는 연료전지용 촉매전극의 제조방법.(a) placing the palladium salt in a round flask containing ethylene glycol and dissolving at room temperature; (b) adding and dissolving poly (vinyl pyrrolidone), NaNO 3 and FeCl 3 in an ethylene glycol solution containing the palladium salt; (c) dispersing a carbon support in the solution; Heating the solution at room temperature to 250 ° C. at 2 ° C./min, and (e) maintaining a predetermined time at the set temperature to form nano-shaped Pd / C; and (f) from 250 ° C. to room temperature 2 Method for producing a catalyst electrode for a fuel cell comprising the step of producing Pd / C by cooling to ℃ / min. 청구항 5항에 있어서,The method according to claim 5, 상기 방법은 50 ㎖ 에틸렌글리콜에 Na2PdCl4 2mM, NaNO3 10 mM, FeCl3 20 μM, PVP 1 g/L 및 0. 0426 g 탄소 지지체를 첨가하는 단계를 포함하는 것을 특징으로 하는 연료전지용 촉매전극의 제조방법.The method comprises adding to a 50 ml ethylene glycol Na 2 PdCl 4 2 mM, NaNO 3 10 mM, FeCl 3 20 μM, PVP 1 g / L and 0.0426 g carbon support. Method for producing an electrode.
KR1020090050995A 2009-06-09 2009-06-09 Shape-controlled Pd catalysts and method of it for fuel cell KR101124146B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090050995A KR101124146B1 (en) 2009-06-09 2009-06-09 Shape-controlled Pd catalysts and method of it for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090050995A KR101124146B1 (en) 2009-06-09 2009-06-09 Shape-controlled Pd catalysts and method of it for fuel cell

Publications (2)

Publication Number Publication Date
KR20100132266A KR20100132266A (en) 2010-12-17
KR101124146B1 true KR101124146B1 (en) 2012-03-21

Family

ID=43507976

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090050995A KR101124146B1 (en) 2009-06-09 2009-06-09 Shape-controlled Pd catalysts and method of it for fuel cell

Country Status (1)

Country Link
KR (1) KR101124146B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101359766B1 (en) * 2011-12-21 2014-02-07 한국과학기술원 Method for preparing Pt-Pd bimetallic hollow catalyst, and catalyst and PEMFC using the same
KR20180072422A (en) 2016-12-21 2018-06-29 희성금속 주식회사 PREPARATION METHOD OF Pd/C CATALYST AND Pd/C CATALYST PREPARATEDUSING THE METHOD
KR20190070202A (en) 2017-12-12 2019-06-20 엘티메탈 주식회사 PREPARATION METHOD OF Pd/C CATALYST AND Pd/C CATALYST PREPARATED USING THE METHOD

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040054815A (en) * 2001-12-03 2004-06-25 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Supported Nanoparticle Catalyst
KR20090051648A (en) * 2007-11-19 2009-05-22 주식회사 동진쎄미켐 Method for preparing supported catalyst for fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040054815A (en) * 2001-12-03 2004-06-25 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Supported Nanoparticle Catalyst
KR20090051648A (en) * 2007-11-19 2009-05-22 주식회사 동진쎄미켐 Method for preparing supported catalyst for fuel cell

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Journal of American Chemical Society, Vol. 127, pp. 17118-17127*
Journal of Power Sources, Vol. 172, pp. 641-649*

Also Published As

Publication number Publication date
KR20100132266A (en) 2010-12-17

Similar Documents

Publication Publication Date Title
Goswami et al. Transition metal oxide nanocatalysts for oxygen reduction reaction
KR101113632B1 (en) Synthesis methods of Nano-sized transition metal catalyst on a Carbon support
Pan et al. Metal-free porous nitrogen-doped carbon nanotubes for enhanced oxygen reduction and evolution reactions
Sun et al. Ternary PdNi-based nanocrystals supported on nitrogen-doped reduced graphene oxide as highly active electrocatalysts for the oxygen reduction reaction
JP6352955B2 (en) Fuel cell electrode catalyst and method for producing fuel cell electrode catalyst
JP4934799B2 (en) Platinum-carbon composite comprising sponge-like platinum nanosheet supported on carbon and method for producing the same
JP2007514520A (en) Noble metal oxide catalysts for water electrolysis
JP2008511098A (en) Platinum / ruthenium catalysts for direct methanol fuel cells
US20160099473A1 (en) Catalyst particle, support-type catalyst particle, and uses thereof
KR101488827B1 (en) Method and process of metal catalyst for fuel cell using a complex compound, and fuel cell electrode adopting the catalyst and fuel cell comprising the electrode
KR101484188B1 (en) Method for preparing Pt catalyst, the Pt catalyst for oxygen reduction reaction prepared therefrom, and PEMFC including the Pt catalyst
Martins et al. PtNi supported on binary metal oxides: Potential bifunctional electrocatalysts for low-temperature fuel cells?
Xie et al. Effect of mesoporous carbon on oxygen reduction reaction activity as cathode catalyst support for proton exchange membrane fuel cell
Martins et al. PdNi alloy nanoparticles assembled on cobalt ferrite-carbon black composite as a fuel cell catalyst
KR101688524B1 (en) Electrode catalyst for fuel cell, membrane electrode assembly and fuel cell including the same, and method of preparing electrode catalyst for fuel cell
KR101124146B1 (en) Shape-controlled Pd catalysts and method of it for fuel cell
KR101678943B1 (en) Method of Manufacturing Intermetallic FePt Nanotubes for Cathode Catalysts in Polymer electrolyte membrane fuel cell
Ahn et al. Sequential galvanic replacement mediated Pd-doped hollow Ru–Te nanorods for enhanced hydrogen evolution reaction mass activity in alkaline media
JP2008173524A (en) Manufacturing method of noble metal supported electrode catalyst and noble metal supported electrode catalyst obtained thereby
KR101013600B1 (en) Colloidal-Imprinted carbon structure, Preparing method thereof and ?? carbon supported catalysts for electrodes of fuel cell using thereof
Mao et al. Facile preparation of Cu@ Pt/rGO hybrids and their electrocatalytic activities for methanol oxidation
JP2008041498A (en) Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
Armstrong et al. Nanoscale titania ceramic composite supports for PEM fuel cells
KR20190011210A (en) Preparation Method for Gdot-Pd Hybrid with Nanosponge Structure and Gdot-Pd Hybrid Catalyst
Chen et al. Surfactant-free platinum nanocubes with greatly enhanced activity towards methanol/ethanol electrooxidation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150108

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170117

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee