KR101072301B1 - manufacturing method of porous CNT electrode - Google Patents

manufacturing method of porous CNT electrode Download PDF

Info

Publication number
KR101072301B1
KR101072301B1 KR1020080114635A KR20080114635A KR101072301B1 KR 101072301 B1 KR101072301 B1 KR 101072301B1 KR 1020080114635 A KR1020080114635 A KR 1020080114635A KR 20080114635 A KR20080114635 A KR 20080114635A KR 101072301 B1 KR101072301 B1 KR 101072301B1
Authority
KR
South Korea
Prior art keywords
carbon nanotube
electrode
delete delete
emulsion
membrane
Prior art date
Application number
KR1020080114635A
Other languages
Korean (ko)
Other versions
KR20100055766A (en
Inventor
차승일
이동윤
서선희
구보근
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020080114635A priority Critical patent/KR101072301B1/en
Publication of KR20100055766A publication Critical patent/KR20100055766A/en
Application granted granted Critical
Publication of KR101072301B1 publication Critical patent/KR101072301B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)

Abstract

본 발명은 염료감응형 태양전지의 상대전극 및 전기화학 전극에 이용되는 탄소나노튜브 막의 형상을 다공성으로 형성시킴으로써 탄소나노튜브 막의 전기전도 이방성을 감소시켜 외부로 연결되는 전극 혹은 기판과 전기화학 반응이 발생하는 표면부 사이의 전하 이동의 방해를 최소화 하고 탄소나노튜브 전극과 전해질의 반응 면적을 최대화하여 에너지 변환효율을 향상시킬 수 있는 다공성 탄소나노튜브 막을 이용한 탄소나노튜브 전극의 제조방법 및 이에 의해 제조된 탄소나노튜브 전극에 관한 것이다. 이를 위해 본 발명은 탄소나노튜브를 용매에 분산시키는 제1단계와; 상기 제1단계의 결과물에 상기 용매에 용해되지 않는 제 2의 액상을 혼합하고 유화제를 혼합하여 탄소나노튜브 분산액을 제조하는 제2단계와; 상기 제2단계의 탄소나노튜브 분산액과 탄소나노튜브가 포함되지 않는 에멀젼을 혼합하여 탄소나노튜브 에멀젼 혼합액을 제조하는 제3단계와; 상기 제3단계의 탄소나노튜브 에멀젼 혼합액을 전도성 기판 위에 도포하여 탄소나노튜브 막을 형성하는 제4단계와; 상기 제4단계의 결과물에 존재하는 용매, 그리고 에멀젼을 형성한 액체를 차례로 증발시켜 다공성 탄소나노튜브 막을 형성하는 제5단계;를 포함하여 이루어지는 것을 특징으로 하는 다공성 탄소나노튜브 막을 이용한 탄소나노튜브 전극의 제조방법을 기술적 요지로 한다. 이에 의해 다공성 탄소나노튜브 전극은 연속막 형상의 탄소나노튜브 전극에 비하여 반응저항이 작고 반응양이 증가하여 염료감응형 태양전지를 포함한 전기화학 에너지 변환 장치에서 에너지 변환 효율을 증가시킬 수 있는 이점이 있다.The present invention reduces the electrical conductivity anisotropy of the carbon nanotube film by forming a porous carbon nanotube film used for the counter electrode and the electrochemical electrode of the dye-sensitized solar cell, thereby electrochemically reacting with an electrode or a substrate connected to the outside. Method for manufacturing carbon nanotube electrode using porous carbon nanotube membrane which can minimize the disturbance of charge transfer between surface parts and maximize the reaction area between carbon nanotube electrode and electrolyte and improve energy conversion efficiency It relates to a carbon nanotube electrode. To this end, the present invention comprises the first step of dispersing carbon nanotubes in a solvent; A second step of preparing a carbon nanotube dispersion by mixing a second liquid phase not dissolved in the solvent with the resultant of the first step and mixing an emulsifier; A third step of preparing a carbon nanotube emulsion mixture liquid by mixing the carbon nanotube dispersion liquid of the second step and the emulsion not containing carbon nanotubes; A fourth step of forming a carbon nanotube film by applying the third carbon nanotube emulsion mixture on the conductive substrate; A fifth step of forming a porous carbon nanotube membrane by sequentially evaporating the solvent and the liquid in which the emulsion is formed in the result of the fourth step, and forming the porous carbon nanotube membrane. The manufacturing method of this is made into a technical summary. As a result, the porous carbon nanotube electrode has an advantage of increasing the energy conversion efficiency in an electrochemical energy conversion device including a dye-sensitized solar cell because the reaction resistance is small and the reaction amount is increased compared to the carbon nanotube electrode having a continuous membrane shape. have.

다공성 탄소나노튜브 전극 염료감응형 태양전지 상대전극 Porous Carbon Nanotube Electrode Dye-Sensitized Solar Cell Counter Electrode

Description

다공성 탄소나노튜브 막을 이용한 탄소나노튜브 전극의 제조방법{manufacturing method of porous CNT electrode}Manufacturing method of carbon nanotube electrode using porous carbon nanotube membrane

본 발명은 탄소나노튜브 전극의 제조방법에 관한 것으로서, 특히 탄소나노튜브 막의 형상을 다공성으로 형성시킴으로써 탄소나노튜브 막의 전기전도 이방성을 감소시키고 비표면적을 증가시켜 에너지 변환효율을 향상시킬 수 있는 다공성 탄소나노튜브 막을 이용한 탄소나노튜브 전극의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a carbon nanotube electrode, and in particular, by forming a carbon nanotube membrane in a porous form, the porous carbon which can reduce the electrical conductivity anisotropy of the carbon nanotube membrane and increase the specific surface area to improve energy conversion efficiency. A method of manufacturing a carbon nanotube electrode using a nanotube membrane.

일반적으로, 탄소나노튜브는 금속에 버금가는 전기전도도를 가지고 있으며, 비표면적이 높고 화학적 기계적으로 안정하며, 전기화학 반응용 전극으로 사용되는 경우 촉매 역할을 수행하기 때문에 염료감응형 태양전지의 상대전극으로 기존에 사용되던 고가의 백금 전극을 대체할 수 있을 것으로 기대되고 있다. 또한 기타 전지, 슈퍼캐패서터 등에 이용되는 전기화학 전극으로 활용이 가능하다.In general, carbon nanotubes have an electrical conductivity comparable to that of metal, have a high specific surface area, are chemically and mechanically stable, and act as a catalyst when used as an electrode for electrochemical reactions. As such, it is expected to be able to replace the expensive platinum electrode used previously. In addition, it can be used as an electrochemical electrode used in other batteries, supercapacitors.

상기 염료감응형 태양전지의 경우를 고려하면, 염료감응형 태양전지는 태양광을 이용하여 전자가 여기되는 염료가 여기된 전자를 흡수하여 전극으로 이동시키 는 투명한 다공성 n형 반도체 산화물막 표면에 흡착되어 있으며, 전해질 층에서 여기된 전자를 n형 반도체 산화물 층으로 흡수당한 염료에 전자를 산화환원 반응으로 공급해주는 이온이 상대전극에서 전극반응을 통해 환원되어 계속적으로 태양광 에너지를 전기에너지로 변환하게 된다. Considering the case of the dye-sensitized solar cell, the dye-sensitized solar cell is absorbed on the surface of the transparent porous n-type semiconductor oxide film that absorbs the excited electrons and moves them to the electrode using sunlight. The ion that supplies electrons to the dye absorbed by the n-type semiconductor oxide layer in the electrolyte layer by redox reaction is reduced through the electrode reaction at the counter electrode to continuously convert solar energy into electrical energy. do.

이때 상대전극은 촉매 특성을 유지하며 전기전도도가 높아 전해질 내 이온의 환원 반응 속도를 높이고 전자의 전달에 있어서 손실을 최소한으로 유지하는 것이 중요하다. 이러한 요구사항에 부합되는 소재로 종래에는 백금이나 팔라듐과 같은 귀금속이 사용되고 있으나, 고가이거나 매장량에 한계가 있으며, 장시간 사용시 강한 산성의 전해질 내에서 화학적 안정성에 의문이 제기되고 있다.In this case, it is important that the counter electrode maintains catalytic properties, has high electrical conductivity, speeds up the reduction reaction of ions in the electrolyte, and maintains a minimum loss of electrons. Conventionally, precious metals such as platinum and palladium are used as materials that meet these requirements, but they are expensive or have limited reserves, and have been questioned about their chemical stability in strong acidic electrolytes when used for a long time.

이와 같은 문제를 해결하기 위하여 비교적 가격이 저렴하고 전해질 내에서 화학적 안정성이 우수한 탄소나노튜브를 상대전극으로 활용하는 기술이 개발되었다. 탄소나노튜브 상대전극은 탄소나노튜브를 고분자 바인더와 혼합하여 제조된 페이스트(paste)를 스크린 프린팅 및 스프레이 공정을 이용하여 기판에 도포하는 방식으로 제조되며, 열처리를 통하여 바인더를 제거하거나 바인더의 접착 능력을 변화시키는 후공정이 포함되어 있다.In order to solve such a problem, a technology of utilizing carbon nanotubes as a counter electrode having relatively low cost and excellent chemical stability in an electrolyte has been developed. The carbon nanotube counter electrode is manufactured by applying a paste prepared by mixing carbon nanotubes with a polymer binder to a substrate by using a screen printing and spraying process, and removing the binder through heat treatment or bonding ability of the binder. A post-process to change the temperature is included.

상대전극으로 탄소나노튜브를 사용하는 경우, 가격이 상대적으로 저렴하고 화학적 안정성이 우수한 장점이 있지만, 탄소나노튜브가 갖는 1차원적인 선형 구조로 인해 전기전도도의 이방성이 발생하고, 일부 전해질과의 젖음성이 좋지 못한 경우, 탄소나노튜브 사이의 작은 기공으로 전해질이 침투하지 못해 실제적인 전기화학 반응 비표면적이 감소하게 되는 문제점이 있다.When carbon nanotubes are used as counter electrodes, they are relatively inexpensive and have excellent chemical stability. However, due to the one-dimensional linear structure of carbon nanotubes, anisotropy of electrical conductivity occurs and wettability with some electrolytes. If this is not good, there is a problem that the specific surface area of the actual electrochemical reaction is reduced because the electrolyte does not penetrate into the small pores between the carbon nanotubes.

본 발명은 상기 필요성에 의해 안출된 것으로서, 탄소나노튜브 막의 형상을 다공성으로 형성시킴으로써 탄소나노튜브 막의 전기전도 이방성을 감소시키고 비표면적을 증가시키고 에너지 변환효율을 극대화하기 위한 다공성 탄소나노튜브 막을 이용한 탄소나노튜브 전극의 제조방법의 제공을 그 목적으로 한다.The present invention has been made in accordance with the necessity, by forming a carbon nanotube membrane in a porous form of carbon using a porous carbon nanotube membrane for reducing the electrical conductivity anisotropy of the carbon nanotube membrane, increasing the specific surface area and maximizing energy conversion efficiency It is an object of the present invention to provide a method for producing a nanotube electrode.

상기 목적을 달성하기 위해 본 발명은, 탄소나노튜브를 용매에 분산시키는 제1단계와; 상기 제1단계의 결과물에 상기 용매에 용해되지 않는 제 2의 액상을 혼합하고 유화제를 혼합하여 탄소나노튜브 분산액을 제조하는 제2단계와; 상기 제2단계의 탄소나노튜브 분산액과 탄소나노튜브가 포함되지 않는 에멀젼을 혼합하여 탄소나노튜브 에멀젼 혼합액을 제조하는 제3단계와; 상기 제3단계의 탄소나노튜브 에멀젼 혼합액을 전도성 기판 위에 도포하여 탄소나노튜브 막을 형성하는 제4단계와; 상기 제4단계의 결과물에 존재하는 용매, 그리고 에멀젼을 형성한 액체를 차례로 증발시켜 다공성 탄소나노튜브 막을 형성하는 제5단계;를 포함하여 이루어지는 것을 특징으로 하는 다공성 탄소나노튜브 막을 이용한 탄소나노튜브 전극의 제조방법을 기술적 요지로 한다.
또한, 상기 제2단계의 상기 탄소나노튜브 분산액에 계면활성제를 혼합하고, 상기 제3단계의 탄소나노튜브 에멀젼 혼합액 내에 공기, 질소 및 아르곤 중 어느 하나 또는 이들의 혼합 기체를 이용하여 기포를 형성시키는 것이 바람직하다.
또한, 상기 탄소나노튜브 막은, 닥터 블레이드, 스크린 프린팅, 스핀코팅 및 스프레이법 중에 어느 하나의 방법에 의해 전도성 기판 위에 도포되어 형성되는 것이 바람직하다.
The present invention to achieve the above object, the first step of dispersing carbon nanotubes in a solvent; A second step of preparing a carbon nanotube dispersion by mixing a second liquid phase not dissolved in the solvent with the resultant of the first step and mixing an emulsifier; A third step of preparing a carbon nanotube emulsion mixture liquid by mixing the carbon nanotube dispersion liquid of the second step and the emulsion not containing carbon nanotubes; A fourth step of forming a carbon nanotube film by applying the third carbon nanotube emulsion mixture on the conductive substrate; A fifth step of forming a porous carbon nanotube membrane by sequentially evaporating the solvent and the liquid in which the emulsion is formed in the result of the fourth step, and forming the porous carbon nanotube membrane. The manufacturing method of this is made into a technical summary.
In addition, a surfactant is mixed with the carbon nanotube dispersion liquid of the second step, and bubbles are formed in the carbon nanotube emulsion mixture liquid of the third step by using any one of air, nitrogen, and argon or a mixture thereof. It is preferable.
In addition, the carbon nanotube film is preferably formed on the conductive substrate by any one of a doctor blade, screen printing, spin coating and spray method.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

상기 발명은 탄소나노튜브 전기화학 전극에 있어서 전극 반응 효율을 증가시킴으로써, 염료감응형 태양전지를 포함하는 에너지 변환 장치에서 변환 효율을 증가시킬 수 있다. 특히, 다공성 탄소나노튜브 전극을 사용하는 경우 다음과 같은 장점과 효과를 기대할 수 있다.The present invention can increase the conversion efficiency in the energy conversion device including a dye-sensitized solar cell by increasing the electrode reaction efficiency in the carbon nanotube electrochemical electrode. In particular, when using a porous carbon nanotube electrode can be expected the following advantages and effects.

첫째, 연속막 탄소나노튜브 전극의 경우 일반적으로 탄소나노튜브가 횡으로 배열됨으로써 탄소나노튜브의 축방향으로만 전기전도가 원활하게 진행되기 때문에 발생하는 전기전도 이방성으로 인해 기판과 전해질 사이에 전기저항이 커진다. 그러나 본 발명에 의한 다공성 탄소나노튜브 전극은 탄소나노튜브가 3차원적으로 배열됨으로써 전기전도도의 이방성을 감소시킴으로써 기판과 전해질 사이의 전기저항을 감소하여 결과적으로 에너지 변화시 발생할 수 있는 손실을 최소화할 수 있는 효과를 갖는다.First, in the case of the continuous film carbon nanotube electrode, the electrical resistance between the substrate and the electrolyte is due to the electrical conduction anisotropy, which occurs because the carbon nanotubes are generally arranged horizontally so that the electrical conduction proceeds smoothly only in the axial direction of the carbon nanotubes. Will grow. However, the porous carbon nanotube electrode according to the present invention reduces the electrical resistance between the substrate and the electrolyte by reducing the anisotropy of electrical conductivity by arranging the carbon nanotubes in three dimensions, thereby minimizing the loss that may occur during energy change. Has the effect.

둘째, 연속막 탄소나노튜브 전극의 경우 탄소나노튜브 사이에 1~100nm 수준의 기공이 존재하지만, 액체 전해질과 탄소나노튜브의 젖음성이 완벽하지 않은 경우, 이 기공으로 전해질이 침투할 수 없기 때문에 연속막 탄소나노튜브 전극의 표면부에서만 전기화학적 변환반응이 발생하게 된다. 다공성 탄소나노튜브 전극을 사용하는 경우 1~50㎛ 수준의 기공이 탄소나노튜브 전극에 생성되어 결과적으로 전기화학 반응에 동원되는 탄소나노튜브 전극의 표면적을 증가시킴으로써 에너지 변환 효율을 증가시킬 수 있다.Second, in the case of continuous membrane carbon nanotube electrodes, pores of 1-100 nm level exist between the carbon nanotubes, but when the wettability of the liquid electrolyte and the carbon nanotubes is not perfect, the electrolyte cannot penetrate into the pores. The electrochemical conversion reaction occurs only at the surface portion of the membrane carbon nanotube electrode. In the case of using a porous carbon nanotube electrode, pores having a level of 1 to 50 μm are generated in the carbon nanotube electrode, thereby increasing energy conversion efficiency by increasing the surface area of the carbon nanotube electrode mobilized for electrochemical reaction.

본 발명은 전도성 기판 위에 탄소나노튜브 에멀젼 혼합액을 도포하여 탄소나노튜브 막을 형성하여 전기화학 전극, 특히 염료감응형 태양전지에서 상대전극으로 사용하기 위한 것으로, 본 발명에 따른 제조방법에 의해 1~100㎛ 두께의 탄소나노튜브 막 내부에 1~50㎛ 크기의 기공을 형성시켜, 탄소나노튜브 막을 다공성을 띄도록 하여 전극 반응 효율을 향상시킨 것이다.The present invention is to use as a counter electrode in an electrochemical electrode, especially a dye-sensitized solar cell by applying a carbon nanotube emulsion mixture on a conductive substrate to form a carbon nanotube film, 1 ~ 100 by the manufacturing method according to the present invention Pores having a size of 1 to 50 µm are formed in the carbon nanotube membrane having a thickness of µm, thereby improving the electrode reaction efficiency by making the carbon nanotube membrane porous.

이하 첨부된 도면을 참고하여, 본 발명에 따른 다공성 탄소나노튜브 막을 이용한 탄소나노튜브 전극의 제조방법에 대해 설명하고자 한다.Hereinafter, a method of manufacturing a carbon nanotube electrode using a porous carbon nanotube membrane according to the present invention will be described with reference to the accompanying drawings.

먼저, 탄소나노튜브를 용매에 분산시키고, 상기 용매에 용해되지 않는 제 2의 액상을 혼합하고 유화제를 혼합하여 탄소나노튜브 분산액을 제조한 후 여기에 탄소나노튜브가 포함되지 않는 에멀젼을 혼합하여 탄소나노튜브 에멀젼 혼합액을 제조하여 이를 전도성 기판 위에 도포하여 탄소나노튜브 막을 형성하고, 상기 탄소나노튜브 막에 존재하는 용매, 그리고 에멀젼을 형성한 액체를 차례로 증발시켜 다공성 탄소나노튜브 막을 형성하여, 탄소나노튜브 전극을 제조하는 것이다.First, carbon nanotubes are dispersed in a solvent, a second liquid phase not dissolved in the solvent is mixed, an emulsifier is mixed to prepare a carbon nanotube dispersion, and then an carbon-free emulsion mixture is mixed with carbon. A nanotube emulsion mixture was prepared and coated on a conductive substrate to form a carbon nanotube film. The solvent and the liquid in which the emulsion was formed were sequentially evaporated to form a porous carbon nanotube film to form a carbon nanotube. To make a tube electrode.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

또한, 상기 탄소나노튜브 분산액에 계면활성제를 혼합하고, 상기 탄소나노튜브 에멀젼 혼합액 내에 공기, 질소 및 아르곤 중 어느 하나 또는 이들의 혼합 기체를 이용하여 기포를 형성시켜, 이를 전도성 기판 위에 도포 후 기포의 제거 작업에 의해 다공성 탄소나노튜브 전극을 제조할 수도 있다.
또한, 상기 탄소나노튜브 에멀젼 혼합액의 전도성 기판 위에 도포 방법은 닥터 블레이드, 스크린 프린팅, 스핀코팅 및 스프레이법 중에 어느 하나의 방법에 의해 이루어진다.
In addition, a surfactant is mixed with the carbon nanotube dispersion liquid, and bubbles are formed in the carbon nanotube emulsion liquid mixture using one of air, nitrogen, and argon or a mixture thereof, and then coated on the conductive substrate to form a bubble. Porous carbon nanotube electrodes may be produced by the removal operation.
In addition, the coating method on the conductive substrate of the carbon nanotube emulsion mixture liquid is made by any one of a doctor blade, screen printing, spin coating and spray method.

도 4는 탄소나노튜브를 분산시킨 용액에 상기 용액에 포함된 용매와 용해되지 않는 제 2의 액상 및 유화제를 혼합하여 탄소나노튜브 분산액을 제조하고, 계면 활성제를 첨가함으로써 탄소나노튜브 분산액 내에 마이크로 에멀젼이 형성된 탄소나노튜브 에멀젼 혼합액을 형성시키고, 이를 도포한 후 각각의 용매를 증발시킴으로써 제조한 다공성 탄소나노튜브 전극 제조공정의 모식도로써, 마이크로 에멀젼에 의해 탄소나노튜브 전극 내에 기공을 형성하게 된다.Figure 4 is a carbon nanotube dispersion by preparing a carbon nanotube dispersion by mixing a solvent contained in the solution and a second liquid and emulsifier that is not dissolved in a solution in which the carbon nanotubes are dispersed, and adding a surfactant to the microemulsion in the carbon nanotube dispersion The formed carbon nanotube emulsion mixed solution is formed, and after coating, the pores are formed in the carbon nanotube electrode by a microemulsion as a schematic diagram of a porous carbon nanotube electrode manufacturing process prepared by evaporating each solvent.

도 5는 탄소나노튜브와 CMC를 중량비 9:1로 용매인 물에 초음파 분산을 통해 분산시킨 후, 올레인산(oleic acid)을 분산액에 부피비 10:1로 혼합하여 마이크로 에멀젼이 포함된 탄소나노튜브 에멀젼 혼합액을 제조한 후, 닥터 블레이드법으로 도포하고 물과 올레인산을 증발을 통해 차례로 제거하여 얻어진 다공성 탄소나노튜브 전극의 표면 사진이다. 올레인산과 물에 의해 마이크로 에멀젼이 형성되며, 바인더로 포함된 CMC에 의해 에멀젼이 안정화되는데, 이과정에서 용매와 에멀젼을 형성시킬 수 있는 조합이 다양하고, 에멀젼을 안정화시키기 위한 유화제의 종류가 다양하기 때문에 다양한 조합으로 다공성 탄소나노튜브 전극을 제조할 수 있다.5 is a carbon nanotube emulsion containing microemulsion by dispersing carbon nanotubes and CMC in a weight ratio of 9: 1 through ultrasonic dispersion in a solvent of water, and then mixing oleic acid in a volume ratio of 10: 1. After the mixed solution is prepared, it is applied by a doctor blade method and photographed the surface of the porous carbon nanotube electrode obtained by sequentially removing water and oleic acid through evaporation. The microemulsion is formed by oleic acid and water, and the emulsion is stabilized by the CMC included as a binder. In this process, various combinations that can form a solvent and an emulsion, and various kinds of emulsifiers to stabilize the emulsion Therefore, porous carbon nanotube electrodes can be manufactured in various combinations.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

이상의 실시 예를 통하여 염료감응형 태양전지를 포함한 전기화학 변환 장치에서 탄소나노튜브 전극을 이용하는 경우, 탄소나노튜브 전극의 형상을 다공성으로 제조함으로써 전기전도의 이방성을 감소시키고, 비표면적을 증가시킴으로써 전극의 성능을 향상시킬 수 있었다.In the above embodiment, when the carbon nanotube electrode is used in an electrochemical conversion device including a dye-sensitized solar cell, the anisotropy of electrical conductivity is reduced by increasing the shape of the carbon nanotube electrode and the electrode is increased by increasing the specific surface area. It could improve the performance.

도 4 - 본 발명에 따른 에멀젼을 이용한 방법에 의해 제조된 탄소나노튜브 막에 기공이 형성되는 원리를 나타낸 모식도.Figure 4 is a schematic diagram showing the principle that the pores are formed in the carbon nanotube membrane prepared by the method using the emulsion according to the present invention.

삭제delete

삭제delete

삭제delete

도 5 - 본 발명에 따른 에멀젼을 이용한 방법에 의해 제조된 다공성 탄소나노튜브 전극의 표면 사진을 나타낸 도.5 is a view showing a surface photograph of a porous carbon nanotube electrode prepared by the method using an emulsion according to the present invention.

삭제delete

삭제delete

삭제delete

Claims (16)

삭제delete 삭제delete 삭제delete 삭제delete 탄소나노튜브를 용매에 분산시키는 제1단계와;Dispersing carbon nanotubes in a solvent; 상기 제1단계의 결과물에 상기 용매에 용해되지 않는 제 2의 액상을 혼합하고 유화제를 혼합하여 탄소나노튜브 분산액을 제조하는 제2단계와;A second step of preparing a carbon nanotube dispersion by mixing a second liquid phase not dissolved in the solvent with the resultant of the first step and mixing an emulsifier; 상기 제2단계의 탄소나노튜브 분산액과 탄소나노튜브가 포함되지 않는 에멀젼을 혼합하여 탄소나노튜브 에멀젼 혼합액을 제조하는 제3단계와;A third step of preparing a carbon nanotube emulsion mixture liquid by mixing the carbon nanotube dispersion liquid of the second step and the emulsion not containing carbon nanotubes; 상기 제3단계의 탄소나노튜브 에멀젼 혼합액을 전도성 기판 위에 도포하여 탄소나노튜브 막을 형성하는 제4단계와;A fourth step of forming a carbon nanotube film by applying the third carbon nanotube emulsion mixture on the conductive substrate; 상기 제4단계의 결과물에 존재하는 용매, 그리고 에멀젼을 형성한 액체를 차례로 증발시켜 다공성 탄소나노튜브 막을 형성하는 제5단계;를 포함하여 이루어지는 것을 특징으로 하는 다공성 탄소나노튜브 막을 이용한 탄소나노튜브 전극의 제조방법.A fifth step of forming a porous carbon nanotube membrane by sequentially evaporating the solvent and the liquid in which the emulsion is formed in the result of the fourth step, and forming the porous carbon nanotube membrane. Manufacturing method. 제 5항에 있어서, 상기 제2단계의 상기 탄소나노튜브 분산액에 계면활성제를 혼합하고, 상기 제3단계의 탄소나노튜브 에멀젼 혼합액 내에 공기, 질소 및 아르곤 중 어느 하나 또는 이들의 혼합 기체를 이용하여 기포를 형성시키는 것을 특징으로 하는 다공성 탄소나노튜브 막을 이용한 탄소나노튜브 전극의 제조방법.The method of claim 5, wherein a surfactant is mixed with the carbon nanotube dispersion of the second step, and any one of air, nitrogen, and argon or a mixed gas thereof is used in the carbon nanotube emulsion mixture of the third step. Method for producing a carbon nanotube electrode using a porous carbon nanotube membrane, characterized in that the bubble is formed. 삭제delete 제 5항에 있어서, 탄소나노튜브 막은,The method of claim 5, wherein the carbon nanotube film, 닥터 블레이드, 스크린 프린팅, 스핀코팅 및 스프레이법 중에 어느 하나의 방법에 의해 전도성 기판 위에 도포되어 형성되는 것을 특징으로 하는 다공성 탄소나노튜브 막을 이용한 탄소나노튜브 전극의 제조방법.A method of manufacturing a carbon nanotube electrode using a porous carbon nanotube membrane, characterized in that the coating is formed on the conductive substrate by any one of a doctor blade, screen printing, spin coating and spray method. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020080114635A 2008-11-18 2008-11-18 manufacturing method of porous CNT electrode KR101072301B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080114635A KR101072301B1 (en) 2008-11-18 2008-11-18 manufacturing method of porous CNT electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080114635A KR101072301B1 (en) 2008-11-18 2008-11-18 manufacturing method of porous CNT electrode

Publications (2)

Publication Number Publication Date
KR20100055766A KR20100055766A (en) 2010-05-27
KR101072301B1 true KR101072301B1 (en) 2011-10-11

Family

ID=42280043

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080114635A KR101072301B1 (en) 2008-11-18 2008-11-18 manufacturing method of porous CNT electrode

Country Status (1)

Country Link
KR (1) KR101072301B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101901385B1 (en) * 2011-12-15 2018-10-01 한국생산기술연구원 Method for Casting the Heat Dissipating Materials using a Porous Network Structure Made of Carbon Nano Particles
KR101431381B1 (en) * 2013-05-10 2014-08-19 엘에스전선 주식회사 Conductive filler, conductive or semiconductive compound comprising the same, and method for preparing the same
US10090078B2 (en) 2015-10-07 2018-10-02 King Fahd University Of Petroleum And Minerals Nanocomposite films and methods of preparation thereof
KR102126679B1 (en) * 2016-08-18 2020-06-25 주식회사 엘지화학 Method for manufacturing conductor with network structure
CN107369770B (en) * 2017-07-14 2020-01-21 南京航空航天大学 Preparation method of carbon electrode layer for low-temperature carbon-based perovskite solar cell
WO2024016055A1 (en) * 2022-07-20 2024-01-25 Allegro Energy Pty Ltd Electrode slurry

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100766960B1 (en) 2006-11-27 2007-10-15 삼성에스디아이 주식회사 Electrode for fuel cell, membrane-electrode assembly comprising the same, fuel cell system comprising the same, and method for preparing the same
KR100783766B1 (en) 2006-07-21 2007-12-07 한국전기연구원 Carbon nanotube electrode, its manufacturing method and its application for dye sensitized solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100783766B1 (en) 2006-07-21 2007-12-07 한국전기연구원 Carbon nanotube electrode, its manufacturing method and its application for dye sensitized solar cell
KR100766960B1 (en) 2006-11-27 2007-10-15 삼성에스디아이 주식회사 Electrode for fuel cell, membrane-electrode assembly comprising the same, fuel cell system comprising the same, and method for preparing the same

Also Published As

Publication number Publication date
KR20100055766A (en) 2010-05-27

Similar Documents

Publication Publication Date Title
Zhang et al. Silver‐quantum‐dot‐modified MoO3 and MnO2 paper‐like freestanding films for flexible solid‐state asymmetric supercapacitors
Hu et al. Binder-free bonding of modularized MXene thin films into thick film electrodes for on-chip micro-supercapacitors with enhanced areal performance metrics
KR101072301B1 (en) manufacturing method of porous CNT electrode
US20080213644A1 (en) Solid polyelectrolyte type fuel cell and method of producing the same
Shinde et al. Chemical synthesis of flower-like hybrid Cu (OH) 2/CuO electrode: application of polyvinyl alcohol and triton X-100 to enhance supercapacitor performance
Liu et al. Nitrogen-doped multi-scale porous carbon for high voltage aqueous supercapacitors
CN111082147B (en) Preparation method of photonic crystal lithium sulfur battery based on large-area thick film controllable texture
CN103855408B (en) A kind of membrane electrode improving anode of proton exchange membrane fuel cell water management
US20210247692A1 (en) Lignin based laser lithography process for fabricating 3d graphene electrode and method
CN106935813A (en) Graphene-based flexible combination electrode material and its preparation method and application
US20090130514A1 (en) Membrane electrode assembly for fuel cell, method of producing same, and fuel cell
Qiao et al. Pt catalyst configuration by a new plating process for a micro tubular DMFC cathode
Jing et al. Improvement of the battery performance of vanadium flow battery by enhancing the specific surface area of the carbon felt electrodes: II. digging effect
CN104538596A (en) Carbon material/covalent organic two-dimensional gird composite electrode material as well as preparation method and application thereof
CN109351364A (en) A kind of preparation method and applications of graphene/class graphite phase carbon nitride/Pd nano particle multi-level nano-structure composite material
Li et al. In situ preparation of chromium carbide–modified carbon nanofibers as functional electrocatalyst for polysulfide reduction in lithium/sulfur batteries
CN108110261B (en) A kind of fuel cell metallic-liquid metal catalyst and preparation method
Cui et al. A self-assembled and flexible supercapacitor based on redox-active lignin-based nitrogen-doped activated carbon functionalized graphene hydrogels
KR20110018735A (en) Manufacturing mathod of cnt micro-ball, the cnt micro-ball thereby and electrode using the cnt micro-ball
JP5109323B2 (en) Electrode for electrochemical device, method for producing the same, and electrochemical device
Yin et al. Integration of ruthenium oxide-carbon nanotube composites with three-dimensional interdigitated microelectrodes for the creation of on-chip supercapacitors
Yin et al. Facile fabrication of Cu 2 O/Cu columnar array electrode through dealloying and in situ oxidation for supercapacitor applications
Wang et al. High areal energy density micro-supercapacitors from structure-engineered graphene electrodes via self-sacrificing template
Xie et al. Metal-free N, P-codoped porous carbon fibers for oxygen reduction reactions
CN109036861A (en) Flexible solid paper base supercapacitor and forming method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant