KR101015492B1 - Cobalt-based catalyst for Fischer-Tropsch synthesis and method for preparing the same - Google Patents

Cobalt-based catalyst for Fischer-Tropsch synthesis and method for preparing the same Download PDF

Info

Publication number
KR101015492B1
KR101015492B1 KR1020080041737A KR20080041737A KR101015492B1 KR 101015492 B1 KR101015492 B1 KR 101015492B1 KR 1020080041737 A KR1020080041737 A KR 1020080041737A KR 20080041737 A KR20080041737 A KR 20080041737A KR 101015492 B1 KR101015492 B1 KR 101015492B1
Authority
KR
South Korea
Prior art keywords
cobalt
catalyst
fischer
tropsch synthesis
based catalyst
Prior art date
Application number
KR1020080041737A
Other languages
Korean (ko)
Other versions
KR20090116054A (en
Inventor
전기원
이윤조
배종욱
박조용
Original Assignee
한국화학연구원
에스케이이노베이션 주식회사
한국가스공사
현대엔지니어링 주식회사
한국석유공사
대림산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원, 에스케이이노베이션 주식회사, 한국가스공사, 현대엔지니어링 주식회사, 한국석유공사, 대림산업 주식회사 filed Critical 한국화학연구원
Priority to KR1020080041737A priority Critical patent/KR101015492B1/en
Priority to PCT/KR2009/002329 priority patent/WO2009136711A2/en
Publication of KR20090116054A publication Critical patent/KR20090116054A/en
Application granted granted Critical
Publication of KR101015492B1 publication Critical patent/KR101015492B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • B01J35/23
    • B01J35/393
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Abstract

본 발명은 피셔-트롭쉬(Fischer-Tropsch, F-T) 합성용 코발트계 촉매 및 이의 제조 방법에 관한 것으로서, 구체적으로는 미리 피셔-트롭쉬 반응에 활성이 있는 코발트계 촉매성분을 포함하는 나노입자를 제조한 후 이들을 촉매 지지체에 담지하여 제조되는, 일산화탄소의 높은 전환율, 액체탄화수소로의 선택성 및 촉매 안전성을 갖는 피셔-트롭쉬 합성용 코발트계 촉매 및 이의 제조 방법에 관한 것이다.The present invention relates to a cobalt-based catalyst for Fischer-Tropsch (FT) synthesis and a method for preparing the same, and specifically, to a nanoparticle including a cobalt-based catalyst component active in Fischer-Tropsch reaction in advance. The present invention relates to a cobalt-based catalyst for Fischer-Tropsch synthesis having a high conversion rate of carbon monoxide, prepared by supporting them on a catalyst support, selectivity to liquid hydrocarbons, and catalyst safety, and a method for preparing the same.

피셔-트롭쉬 반응, 나노입자, 코발트계 촉매 Fischer-Tropsch reaction, nanoparticles, cobalt based catalyst

Description

피셔-트롭쉬 합성용 코발트계 촉매 및 이의 제조방법{Cobalt-based catalyst for Fischer-Tropsch synthesis and method for preparing the same}Cobalt-based catalyst for Fischer-Tropsch synthesis and method for preparing the same}

본 발명은 천연가스, 석탄 또는 바이오매스 등의 가스화에 의하여 생성되는 합성가스(syngas)를 이용하여 액체탄화수소를 제조하기 위한 피셔-트롭쉬(Fischer-Tropsch, F-T) 합성용 코발트계 촉매 및 이의 제조방법에 관한 것이다.The present invention provides a cobalt-based catalyst for synthesis of Fischer-Tropsch (FT) for producing liquid hydrocarbons using syngas produced by gasification of natural gas, coal, or biomass, and the like. It is about a method.

최근의 급변하는 유가 상승 문제에 대처하기 위한 대안책으로서 각광 받고 있는 GTL 기술의 개발에 있어서 F-T 합성용 촉매의 개선은 GTL 기술의 경쟁력 향상과 직결되고 있다. 특히, F-T 반응용 촉매의 개선에 따라서 GTL 공정의 열효율 및 카본 활용 효율을 향상할 수 있으며 F-T 반응 공정을 최적화하여 설계할 수도 있게 된다. 이와 같은 F-T 반응을 위해서는 철 및 코발트 계열 등의 촉매가 주로 사용되는데, 코발트 계열 촉매의 특징은 코발트계 촉매에 비해 200 배 이상 고가인 단점이 있으나, 높은 활성과 긴 수명 그리고 CO2 생성이 낮으면서 액체 파라핀계 탄화수 소의 생성 수율이 높은 장점을 지니고 있다. 또한, 고온에서는 CH4을 다량 생산하는 문제가 있어 저온 촉매로만 사용이 가능하며, 고가의 코발트를 사용하기 때문에 알루미나, 실리카, 티타니아 등의 고표면적의 안정적인 지지체 위에 잘 분산시켜야 하며 소량의 Pt, Ru, Re 등의 귀금속 조촉매가 추가로 첨가된 형태로 사용되고 있는 실정이다. 철 계열 촉매의 특징은 F-T 촉매 중 가장 저가이고, 고온에서 메탄 생성이 낮고, 탄화수소 중 올레핀의 선택성이 높고, 제품은 연료로의 용도 이외에 경질 올레핀이나 알파올레핀으로서 화학 산업 원료로 사용되며, 탄화수소 이외에도 알코올, 알데히드, 케톤 등의 부산물이 많이 생성된다.In the development of GTL technology, which is in the spotlight as an alternative to cope with the recent rapidly changing oil price problem, the improvement of the catalyst for FT synthesis is directly related to the competitiveness of GTL technology. In particular, according to the improvement of the catalyst for FT reaction, the thermal efficiency and carbon utilization efficiency of the GTL process can be improved, and the FT reaction process can be optimized and designed. Iron and cobalt-based catalysts are mainly used for the FT reaction, but the characteristics of the cobalt-based catalysts are 200 times more expensive than cobalt-based catalysts, but have high activity, long life, and low CO 2 generation. The production yield of liquid paraffinic hydrocarbons is high. In addition, there is a problem of producing a large amount of CH 4 at high temperatures, it can be used only as a low-temperature catalyst, and because expensive cobalt is used, it must be well dispersed on a high surface area stable support such as alumina, silica, titania, and a small amount of Pt, Ru It is a situation that is used in the form of addition of a noble metal promoter, such as, Re. Iron-based catalysts feature the lowest cost of FT catalysts, low methane production at high temperatures, high selectivity of olefins in hydrocarbons, and products are used as raw materials for the chemical industry as light olefins or alpha olefins in addition to their use as fuels. Many by-products such as alcohols, aldehydes and ketones are produced.

GTL 공정은 천연가스의 개질(reforming) 반응, 합성가스의 F-T 합성반응 및 생성물의 개질 반응과 같이 3단계의 주요 공정으로 구성되어 있으며, 이 중에서 철 및 코발트를 촉매로 사용하여 200 ∼ 350 ℃의 반응 온도와 10 ∼ 30 기압의 압력에서 수행되는 F-T 반응은 다음과 같이 4개의 주요 반응으로 설명될 수 있다.The GTL process consists of three main processes: reforming reaction of natural gas, FT synthesis reaction of synthesis gas and reforming reaction of product. Among them, iron and cobalt are used as catalysts. The FT reaction carried out at reaction temperature and pressure of 10 to 30 atm can be explained as four main reactions as follows.

(a) 사슬성장 F-T 합성(Chain growth in F-T synthesis)(a) Chain growth in F-T synthesis

CO + 2H2 → -CH2- + H2O △H(227 ℃) = -165 kJ/molCO + 2H 2 → -CH 2- + H 2 O ΔH (227 ° C) = -165 kJ / mol

(b) 메탄화(Methanation)(b) Methanation

CO + 3H2 → CH4 + H2O △H(227 ℃) = -215 kJ/molCO + 3H 2 ≧ CH 4 + H 2 O ΔH (227 ° C.) = − 215 kJ / mol

(c) 수성가스 전환반응(Water gas shift reaction)(c) Water gas shift reaction

CO + H2O → CO2 + H2 △H(227 ℃) = -40 kJ/molCO + H 2 O → CO 2 + H 2 ΔH (227 ° C) = -40 kJ / mol

(d) 부다 반응(Boudouard reaction)(d) Boudouard reaction

2CO → C + CO2 △H(227 ℃) = -134 kJ/mol2CO → C + CO 2 ΔH (227 ° C.) = − 134 kJ / mol

주요 생성물인 직쇄형 탄화수소(straight-chain hydrocarbons)의 생성 메커니즘(mechanism)은 주로 Schulz-Flory의 중합 동역학 과정(polymerization kinetic scheme)으로 설명되고 있으며, F-T 공정에서는 60% 이상이 경유보다 고비점인 생성물이 1차로 합성되므로 수소화분해(hydrocracking)의 후속 공정을 거쳐서 경유를 추가로 생산하고, 탈납(dewaxing) 공정을 거쳐서 왁스 성분은 고품질의 윤활유로 전환된다.The mechanism of the formation of straight-chain hydrocarbons, the main product, is mainly described by Schulz-Flory's polymerization kinetic scheme, where more than 60% of the FT process has a higher boiling point than diesel. Since this is synthesized firstly, the diesel fuel is further produced through a subsequent process of hydrocracking, and the wax component is converted into a high quality lubricant through a dewaxing process.

일반적으로 피셔-트롭쉬 합성용 촉매는 크게 세가지 방법으로 제조한다. 첫 번째는 함침법(impregnation)으로서, 촉매 전구체를 녹인 용액을 표면적이 큰 알루미나, 실리카, 티타니아와 같은 촉매지지체에 함침시킨 후 건조와 소성 과정을 거친 후 촉매를 제조한다. 함침법중 초기습식함침법(incipient wetness impregnation)은 가장 널리 사용되는 방법으로서 촉매 지지체의 세공 부피에 해당하는 함침 용액을 담지하여 제조하며 방법이 간단한 장점이 있다. 두 번째는 공침법(coprecipitaion)으로서 촉매, 증진제(promoter) 및 지지체 전구체가 함께 녹아 있는 용액에 침전체 용액을 가하여 촉매성분과 지지체를 공침시키는 것으로 침전제로는 암모니아나 가성소다(NaOH)와 같은 염기성 용액 또는 탄산암모늄, 탄산나트륨 등과 같은 탄산염을 사용한다. 이 방법은 주로 피셔-트롭쉬 합성용 코발트계 촉매 제조시 사용하고 있다. 세 번째는 졸-겔법(sol-gel)으로서 촉매 전구체를 비교적 끓는점이 높은 유기 용매에 녹인 후 여기에 지지체 성분의 알콕사이드를 섞은 다음 이를 천천히 가수분해 시킴으로서 분산도가 우수한 촉매를 제조할 수 있다. In general, the Fischer-Tropsch synthesis catalyst is largely prepared by three methods. The first method is impregnation. The catalyst is prepared by impregnating a solution in which the catalyst precursor is dissolved into a catalyst support such as alumina, silica, and titania having a large surface area, followed by drying and calcining. Among the impregnation methods, incipient wetness impregnation is the most widely used method and is prepared by supporting an impregnation solution corresponding to the pore volume of the catalyst support. The second is coprecipitaion, in which a precipitant solution is added to a solution in which a catalyst, a promoter, and a support precursor are dissolved together, and the catalyst component and the support are co-precipitated. As a precipitant, basic agents such as ammonia or sodium hydroxide (NaOH) are used. Solution or carbonates such as ammonium carbonate, sodium carbonate and the like. This method is mainly used in the manufacture of cobalt-based catalysts for Fischer-Tropsch synthesis. The third is a sol-gel method, in which a catalyst precursor is dissolved in an organic solvent having a relatively high boiling point, mixed with an alkoxide of a support component, and then slowly hydrolyzed to prepare a catalyst having excellent dispersion.

하지만 위와 같은 방법으로 피셔-트롭쉬 합성용 코발트계 촉매를 제조할 경우 다음과 같은 문제가 있다.However, when preparing a cobalt-based catalyst for Fischer-Tropsch synthesis in the same manner as described above has the following problems.

첫째, 피셔-트롭쉬 반응은 산화금속이 아닌 환원된 상태의 금속 촉매에서 일어나며 위의 고전적인 방법으로 담지촉매를 제조할 경우 촉매지지체와 상호작용하는 부분(산화물 지지체의 산소 브릿지(bridge)와 결합하는 촉매 부분)이 많으며 이들 부분은 환원이 쉽지 않아 촉매로서 기여하지 못하게 되므로 촉매가 활성을 갖기 위해서는 촉매 담지량이 많아야 하는 문제점이 있다.First, the Fischer-Tropsch reaction occurs on a metal catalyst in a reduced state, not on a metal oxide, and when the supported catalyst is prepared by the classical method described above, it is combined with an oxygen bridge of an oxide support. Since there are many catalyst parts) and these parts are not easy to reduce, they do not contribute as catalysts, so there is a problem in that the amount of supported catalyst must be large in order for the catalyst to have activity.

둘째, 일반적으로 합성가스로부터 액체탄화수소를 제조하기 위한 피셔-트롭쉬 합성용 촉매의 활성과 생성물의 선택도는 촉매입자의 크기에 크게 의존한다. 일반적으로 합성가스로부터 액체탄화수소를 제조하기 위한 피셔-트롭쉬 촉매의 활성과 생성물의 선택도는 촉매입자의 크기에 크게 의존한다. 코발트 촉매의 경우 코발트 입자크기가 6~8 nm 정도에서 활성이 가장 우수하며 입자 크기가 그보다 작을 경우 활성과 C5+의 선택도가 떨어지며 그보다 클 경우 전체적인 활성도는 떨어진다[Journal of the American Chemical Society, 128 (2006) 3956]. 따라서 코발트 촉매 입자를 최적의 크기로 균일하게 제조하는 것은 촉매의 활성과 액체탄화수소의 선택도 면에서 유리하다. 한편 기존의 함침법, 공침법 및 졸-겔법과 같은 피셔-트롭쉬 합성용 촉매의 제조 방법은 촉매입자를 최적크기로 균일하게 제조하는 것이 어려워 촉매의 활성이 상대적으로 적고 선택도를 조절하기가 어려우며 또한 촉매 입자가 너무 작을 경우 촉매지지체와 상호작용에 의해 피셔-트롭쉬 반응 활성점인 금속으로 환원이 어려워 촉매로서 활성이 없으며 반대로 입자 크기가 너무 클 경우 촉매 표면적에 비해 벌크 부피가 커져 촉매 작용점인 표면적이 상대적으로 작아져 촉매 활성이 줄어들게 된다.Second, in general, the activity of the Fischer-Tropsch synthesis catalyst for producing liquid hydrocarbons from the synthesis gas and the selectivity of the product largely depend on the size of the catalyst particles. In general, the activity of the Fischer-Tropsch catalyst and the product selectivity for producing liquid hydrocarbons from syngas are highly dependent on the size of the catalyst particles. In the case of cobalt catalysts, the cobalt particles have the highest activity at a particle size of about 6 to 8 nm. The smaller the particle size, the lower the activity and selectivity of C5 + , and when larger, the overall activity decreases. [Journal of the American Chemical Society, 128 (2006) 3956]. Therefore, uniformly producing cobalt catalyst particles in an optimal size is advantageous in terms of catalyst activity and selectivity of liquid hydrocarbons. On the other hand, conventional methods for preparing Fischer-Tropsch synthesis catalysts, such as impregnation method, coprecipitation method and sol-gel method, make it difficult to uniformly prepare catalyst particles in an optimal size, so that the activity of the catalyst is relatively small and the selectivity is difficult to control. It is difficult and it is difficult to reduce to the metal of Fischer-Tropsch reaction active point by interaction with the catalyst support when the catalyst particles are too small, and it is inactive as a catalyst. The surface area of phosphorus is relatively small resulting in reduced catalytic activity.

셋째, 피셔-트롭쉬 합성용 촉매는 조촉매를 사용하는 경우가 많으며 이때 조촉매는 주촉매와 밀접히 붙어 있어야 보다 효과적인데, 고전적인 방법으로 이를 제조하게 되면 조촉매가 주촉매와 상호작용을 하기도 하지만 지지체와도 상호작용을 하게 되어 조촉매는 주촉매와 밀접히 결합된 상태로 제조하기 어려운 문제점이 있다.Third, the Fischer-Tropsch synthesis catalyst often uses a cocatalyst, which is more effective when the cocatalyst is in close contact with the main catalyst. However, there is a problem in that the co-catalyst is difficult to manufacture in a state in which the co-catalyst is closely coupled with the main catalyst.

이에, 본 발명자들은 촉매활성과 액체탄화수소의 선택도에 최적화된 코발트계 촉매성분을 포함하는 나노입자를 미리 제조하여, 이를 촉매 지지체에 담지하여 피셔-트롭쉬 합성용 촉매를 제조함으로서, 기존 제조방법에 비해 촉매의 활용도가 높아져 촉매 담지양을 적게 하더라도 뛰어난 촉매 특성을 보일뿐만 아니라 나노입자 촉매 제조시 조촉매 성분을 혼합하여 제조함으로서 조촉매 성분이 촉매성분과 보다 밀접하게 결합함으로서 촉매 성능 조절이 가능하다는 것을 알아내고 본 발명을 완성하였다.Accordingly, the present inventors prepared nanoparticles containing a cobalt-based catalyst component optimized for catalytic activity and liquid hydrocarbon selectivity in advance, and supported on the catalyst support to prepare a catalyst for Fischer-Tropsch synthesis, the existing production method Compared to other catalysts, the utilization of the catalyst is higher than that of the catalyst, and the catalyst performance is not only excellent, but also the catalyst component is prepared by mixing the catalyst component in the preparation of the nanoparticle catalyst. It was found that the present invention was completed.

본 발명의 목적은 적은 촉매 담지양을 적게 하더라도 피셔-트롭쉬 반응에 대한 활성과 액체탄화수소로의 선택성이 우수하며, 촉매 안정성이 증대되고, 일산화탄소의 높은 전환율을 가지는 피셔-트롭쉬 합성용 코발트계 촉매 및 이의 제조방법을 제공하는데 있다.An object of the present invention is a cobalt-based system for Fischer-Tropsch synthesis, which has excellent activity against Fischer-Tropsch reaction and selectivity to liquid hydrocarbons, increased catalyst stability, and high conversion rate of carbon monoxide, even if a small amount of catalyst is supported. It is to provide a catalyst and a method for producing the same.

상기 목적을 달성하기 위하여, 본 발명은 미리 피셔-트롭쉬 반응에 활성이 있는 코발트계 촉매성분을 포함하는 나노입자를 최적의 크기로 제조한 후 이들을 촉매 지지체에 담지하여 제조되는, 촉매 담지양을 적게 하더라도 뛰어난 촉매 특성을 보일뿐만 아니라 일산화탄소의 높은 전환율, 우수한 액체탄화수소로의 선택성 및 촉매 안전성을 갖는 피셔-트롭쉬 합성용 코발트계 촉매 및 이의 제조 방법을 제공한다.In order to achieve the above object, the present invention is prepared by preparing the nanoparticles containing the cobalt-based catalyst component active in the Fischer-Tropsch reaction in an optimal size, and then supporting them on a catalyst support, The present invention provides a cobalt-based catalyst for Fischer-Tropsch synthesis and a method for producing the same, which exhibits excellent catalytic properties at low, but also high conversion of carbon monoxide, excellent selectivity to liquid hydrocarbons, and catalyst safety.

본 발명에 따르면, 피셔-트롭쉬 반응에 촉매 활성과 선택도에서 최적인 크기의 코발트계 촉매 성분을 최적의 크기로 미리 제조한 후 이를 촉매 지지체에 담지하는 방법으로 피셔-트롭쉬 코발트계 촉매를 제조함으로서, 촉매 담지양을 적게 하더라도 뛰어난 촉매 특성을 보일뿐만 아니라 일산화탄소의 높은 전환율과 액체탄화수소로의 안정적인 선택성 및 촉매의 비활성화를 억제할 수 있어 경쟁력 있는 GTL 공정의 개발이 가능하다.According to the present invention, the Fischer-Tropsch cobalt-based catalyst is prepared by preparing a cobalt-based catalyst component having an optimal size in terms of catalytic activity and selectivity in the Fischer-Tropsch reaction in an optimal size and then supporting the catalyst on a catalyst support. By producing the catalyst, it is possible to develop a competitive GTL process by not only showing excellent catalyst properties but also suppressing high conversion of carbon monoxide, stable selectivity to liquid hydrocarbons, and deactivation of the catalyst.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 피셔-트롭쉬 반응에 활성이 있는 코발트계 촉매성분을 포함하는 나노입자를 제조하는 단계(단계 1); 및 상기 단계 1에서 제조한 나노입자를 촉매 지지체에 담지하여 촉매를 제조하는 단계(단계 2)를 포함하는 피셔-트롭쉬 합성용 코발트계 촉매 및 이의 제조방법을 제공한다.The present invention comprises the steps of preparing a nanoparticle comprising a cobalt-based catalyst component active in the Fischer-Tropsch reaction (step 1); And it provides a cobalt-based catalyst for Fischer-Tropsch synthesis and preparation method comprising the step of preparing a catalyst by supporting the nanoparticles prepared in step 1 on a catalyst support (step 2).

상기 코발트계 촉매성분을 포함하는 나노입자를 제조하는 단계 1은 하기의 단계를 포함하여 이루어진다:Step 1 of preparing a nanoparticle comprising the cobalt-based catalyst component comprises the following steps:

코발트계 촉매 전구체 또는 코발트계 촉매 전구체와 조촉매의 혼합물의 수용액; 및 염기성 화합물 수용액을 반응시켜 코발트화합물 침전물을 형성한 후 이를 세척하는 단계(단계 a1);An aqueous solution of a cobalt catalyst precursor or a mixture of cobalt catalyst precursor and a promoter; And reacting the basic compound aqueous solution to form a cobalt compound precipitate and washing it (step a1);

상기 단계 a1에서 얻은 세척된 코발트침전물 수용액 슬러리를 캡핑(capping)분자 및 비극성 유기 용매와 혼합한 후 가열하여 표면이 캡핑된 콜로이드 상의 비정질 코발트수산화물 나노입자를 제조하는 단계(단계 a2);Mixing the washed cobalt precipitate aqueous solution slurry obtained in step a1 with a capping molecule and a nonpolar organic solvent and heating to prepare amorphous cobalt hydroxide nanoparticles on a surface capped colloid (step a2);

상기 단계 a2에서 제조된 콜로이드상의 비정질 코발트수산화물 나노입자를 유기층과 수용액층으로 분리하여 수용액층을 제거하고, 상기 유기층에 잔류하는 미량의 물은 감압증류하여 제거한 후 유기층을 가열하여 나노입자 결정을 형성하는 단계(단계 a3); 및The colloidal amorphous cobalt hydroxide nanoparticles prepared in step a2 are separated into an organic layer and an aqueous solution layer to remove an aqueous solution layer, and trace water remaining in the organic layer is removed by distillation under reduced pressure, followed by heating the organic layer to form nanoparticle crystals. (Step a3); And

상기 단계 a3에서 형성된 나노입자 결정을 포함하는 용액에 극성 유기용매를 혼합하여 캡핑된 나노입자를 침전시켜 추출한 후 이를 건조하는 단계(단계 a4).Mixing the polar organic solvent in the solution containing the nanoparticle crystals formed in step a3 to precipitate and extract the capped nanoparticles, and then drying them (step a4).

이하, 본 발명의 코발트계 촉매성분을 포함하는 나노입자를 제조하는 단계 1을 단계별로 상세히 설명한다.Hereinafter, step 1 of preparing a nanoparticle including a cobalt-based catalyst component of the present invention will be described in detail step by step.

본 발명에 따른 피셔-트롭쉬 합성용 코발트계 촉매의 제조 방법에 있어서, 코발트계 촉매성분을 포함하는 나노입자를 제조하는 단계 1 중 단계 a1은 코발트계 촉매 전구체 또는 코발트계 촉매 전구체와 조촉매의 혼합물의 수용액; 및 염기성 화합물 수용액을 반응시켜 코발트화합물 침전물을 형성한 후 이를 세척하는 단계이다.In the method for preparing a cobalt-based catalyst for Fischer-Tropsch synthesis according to the present invention, step a1 of step 1 of preparing nanoparticles containing a cobalt-based catalyst component is performed using a cobalt-based catalyst precursor or a cobalt-based catalyst precursor and a cocatalyst. Aqueous solution of the mixture; And reacting the basic compound aqueous solution to form a cobalt compound precipitate and then washing it.

상기 단계 a1의 코발트계 촉매 전구체는 질산코발트(Co(NO3)2xH2O), 염화코발트(CoCl2xH2O), 황산코발트(CoSO4), 초산코발트(Co(AC)2) 등을 단독 또는 2종 이상을 혼합하여 사용할 수 있으나, 이에 특별히 한정되지 않는다.Cobalt-containing catalyst precursor in said step a1 is cobalt nitrate (Co (NO 3) 2 xH 2 O), cobalt chloride (CoCl 2 xH 2 O), cobalt sulfate (CoSO 4), acetic acid cobalt (Co (AC) 2), etc. May be used alone or in combination of two or more, but is not particularly limited thereto.

본 발명의 단계 a1에서 나노입자를 제조하는 경우, 코발트계 촉매 전구체에 조촉매 성분을 혼합하여 제조함으로서 조촉매 성분이 촉매성분과 보다 밀접하게 결합함으로서 촉매 성능을 용이하게 조절할 수 있다. 상기 코발트계 촉매 전구체와 혼합될 수 있는 조촉매 성분으로는 루테늄(Ru), 레늄(Re), 백금, 팔라듐(Pd), 철, 망간, 니켈, 아연 등을 단독 또는 2종 이상을 혼합하여 사용할 수 있으나, 이들의 전구체는 본 발명의 분야에서 일반적으로 사용되는 것으로 특별히 한정되지 않는 다. 상기 조촉매 성분은 사용되는 코발트계 촉매 전구체 1 몰에 대하여 0.001 ~ 0.999 몰비를 유지하는 것이 바람직하다.When the nanoparticles are prepared in step a1 of the present invention, the cocatalyst component is more closely combined with the catalyst component by preparing the cobalt catalyst precursor by mixing the cocatalyst component, thereby easily controlling the catalyst performance. As a cocatalyst component that may be mixed with the cobalt catalyst precursor, ruthenium (Ru), rhenium (Re), platinum, palladium (Pd), iron, manganese, nickel, zinc, or the like may be used alone or in combination of two or more thereof. However, these precursors are not particularly limited to those generally used in the field of the present invention. The cocatalyst component preferably maintains a molar ratio of 0.001 to 0.999 with respect to 1 mol of the cobalt catalyst precursor used.

단계 a1의 염기성 화합물 수용액은 수용액에 녹인 코발트계 촉매 전구체 또는 코발트계 촉매 전구체와 조촉매의 혼합물을 공침하기 위해 사용한다. 상기 염기성 화합물은 암모니아수, 수산화나트륨, 수산화칼륨, 수산화마그네슘, 수산화칼슘, 수산화암모늄(NH4OH), 탄산암모늄(NH4HCO3 또는 (NH4)2CO3), 탄산나트륨(NaHCO3 또는 Na2CO3), 탄산칼륨(KHCO3 또는 K2CO3) 등을 단독 또는 2종 이상을 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 상기 염기성 화합물은 코발트계 촉매 전구체 또는 코발트계 촉매 전구체와 조촉매의 혼합물의 1 당량에 대하여 0.9 ~ 1.1 당량비 범위로 사용한다. 상기 염기성 화합물의 사용량이 0.9 당량비 미만이면 촉매성분의 침전이 완전하지 않으며, 1.1 당량비를 초과하는 경우에는 침전된 촉매성분이 다시 녹거나 용액의 pH가 너무 올라가는 문제가 발생한다. 또한 상기 염기성 화합물 수용액의 pH는 6 ~ 10 범위를 유지하는 것이 바람직하다.The basic compound aqueous solution of step a1 is used to co-precipitate a cobalt-based catalyst precursor or a mixture of cobalt-based catalyst precursor and a cocatalyst dissolved in an aqueous solution. The basic compound is ammonia water, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, ammonium hydroxide (NH 4 OH), ammonium carbonate (NH 4 HCO 3 or (NH 4 ) 2 CO 3 ), sodium carbonate (NaHCO 3 or Na 2 CO 3 ), potassium carbonate (KHCO 3 or K 2 CO 3 ) and the like may be used alone or in combination of two or more, but is not limited thereto. The basic compound is used in the range of 0.9 to 1.1 equivalents relative to 1 equivalent of the cobalt catalyst precursor or the mixture of the cobalt catalyst precursor and the promoter. If the amount of the basic compound is less than 0.9 equivalent ratio, the precipitation of the catalyst component is not complete, and if it exceeds 1.1 equivalent ratio, the precipitated catalyst component is dissolved again or the pH of the solution is too high. In addition, the pH of the basic compound aqueous solution is preferably maintained in the range of 6 to 10.

상기 코발트계 촉매 전구체 또는 코발트계 촉매 전구체와 조촉매의 혼합물의 수용액; 및 염기성 화합물 수용액을 반응시켜 생성된 코발트침전물 수용액 슬러리는 탈이온수를 사용하여 본 발명의 분야에서 일반적으로 사용하는 방법(필터, 원심분리 등)에 의해 세척한다.An aqueous solution of the cobalt catalyst precursor or a mixture of cobalt catalyst precursor and a promoter; And a cobalt precipitate aqueous solution slurry produced by reacting an aqueous basic compound solution with deionized water is washed by a method (filter, centrifugation, etc.) generally used in the field of the present invention.

본 발명에 따른 피셔-트롭쉬 합성용 코발트계 촉매의 제조 방법에 있어서, 코발트계 촉매성분을 포함하는 나노입자를 제조하는 단계 1 중 단계 a2는 상기 단계 a1에서 얻은 세척된 코발트침전물 수용액 슬러리를 캡핑(capping)분자 및 비극성 유기 용매와 혼합한 후 가열하여 표면이 캡핑된 콜로이드 상의 비정질 코발트수산화물 나노입자를 제조하는 단계이다.In the method for preparing a cobalt-based catalyst for Fischer-Tropsch synthesis according to the present invention, step a2 of preparing a nanoparticle containing a cobalt-based catalyst component caps the slurry of the washed cobalt precipitate solution obtained in step a1. It is a step of preparing amorphous cobalt hydroxide nanoparticles on a colloidal surface of which a surface is capped and mixed with a molecule and a nonpolar organic solvent.

단계 a1에서 얻은 세척된 코발트침전물 수용액 슬러리에 캡핑(capping) 분자와 비극성 유기용매를 섞어 교반 가열하면, 무기물 촉매성분이 캡핑분자와 반응하여 비극성 유기 용매로 녹아들게 되어 수용액층과 분리된다. 캡핑 반응온도는 40 ~ 100 ℃ 범위에서 수행되며 반응온도가 40 ℃ 미만이면 유기산에 의한 촉매성분의 캡핑이 완전히 이루어지지 않아서 촉매성분이 수용액층에서 유기용매층으로 분리가 효과적으로 일어나지 않고 반응온도가 100 ℃를 초과하는 경우에는 반응온도가 물의 끓는점보다 높아 제조가 어려운 문제가 발생하므로 상기 범위를 유지하는 것이 바람직하다.When the capping molecule and the nonpolar organic solvent are mixed and stirred in the washed cobalt precipitate aqueous solution slurry obtained in step a1, the inorganic catalyst component reacts with the capping molecule to be dissolved in the nonpolar organic solvent and is separated from the aqueous solution layer. Capping reaction temperature is carried out in the range of 40 ~ 100 ℃ and if the reaction temperature is less than 40 ℃ because the capping of the catalyst component by the organic acid is not completely made, the catalyst component is not effectively separated from the aqueous solution layer to the organic solvent layer and the reaction temperature is 100 In the case where the reaction temperature is exceeded, the reaction temperature is higher than the boiling point of water, which makes it difficult to manufacture, so it is preferable to maintain the above range.

상기 단계 a2에서 사용되는 캡핑 분자로서는 C6 ~ C30인 포화 또는 불포화 유기산 또는 지방산으로서, 특별히 한정되지는 않으나 구체적으로는 2-에틸헥사노익산(2-ethylhexanoic acid), 스테아린산(stearic acid), 라우린산(lauric acid), 리놀레산(linoleic acid), 팔미틴산(palmitic acid), 올레산(oleic acid), 다중산(polyacid), 이들의 유도체 등을 단독 또는 2종 이상을 혼합하여 사용할 수 있다. 상기 캡핑 분자는 코발트계 촉매 전구체 또는 코발트계 촉매 전구체와 조촉매의 혼합물을 포함하는 전체 금속 1 몰에 대하여 0.1 ~ 2.5 몰비의 범위로 사용되는 것이 바람직하다. 상기 캡핑 분자의 사용량이 0.1 몰비 미만이면 완전한 캡핑이 이루어지지 않아 분산성이 떨어지고 수용액 중의 촉매성분이 남아 이의 손실이 발생할 수 있으며, 2.5 몰비를 초과하는 경우에는 캡핑된 촉매성분의 콜로이드용액의 유동성이 떨어지므로 상기 범위를 유지하는 것이 바람직하다. The capping molecule used in step a2 is a C 6 to C 30 saturated or unsaturated organic acid or fatty acid, but is not particularly limited, but specifically 2-ethylhexanoic acid, stearic acid, Lauric acid, linoleic acid, palmitic acid, oleic acid, oleic acid, polyacid, and derivatives thereof may be used alone or in combination of two or more thereof. The capping molecule is preferably used in the range of 0.1 to 2.5 molar ratio with respect to 1 mole of the total metal including the cobalt-based catalyst precursor or a mixture of the cobalt-based catalyst precursor and the promoter. When the amount of the capping molecule is less than 0.1 molar ratio, complete capping is not performed, so that dispersibility is reduced, and the catalyst component in the aqueous solution remains and loss thereof may occur. When the capping molecule exceeds 2.5 molar ratio, the fluidity of the colloidal solution of the capped catalyst component may be reduced. It is preferable to maintain the above range because it falls.

상기 유기산과 함께 사용되는 비극성 유기 용매는 표면처리에 적합한 반응온도를 유지하기 위해서 비점이 70 ℃ 이상이고 녹는점이 30 ℃ 미만인 것으로 구체적으로는 톨루엔, 자일렌, 파라핀, 1-헥사데칸 뿐만 아니라 등유, 경유 또는 중유와 같은 일반적인 석유계 용제 중에서 선택 사용할 수 있다. 상기 비점이 70 ℃ 미만이면 캡핑 반응 또는 보다 고온이 요구되는 결정화 반응시 반응 온도를 올리기 어렵고, 녹는점이 30 ℃ 이상이면 상온에서 고형화되어 다루기가 어려우므로 상기 특성을 유지하는 것이 바람직하다. 이러한 비극성 유기 용매는 사용되는 전체 코발트계 촉매 전구체 1 중량비에 대하여 0.2 ~ 10 중량비의 범위로 사용하는 것이 바람직하다. 상기 비극성 유기 용매의 사용량이 0.2 중량비 미만이면 제조시 교반이 어려우며 촉매성분 콜로이드용액의 유동성이 떨어지고, 10 중량비를 초과하는 경우에는 용액 내에 포함되는 촉매성분의 함량이 적어지는 문제가 발생한다.The non-polar organic solvent used with the organic acid has a boiling point of 70 ° C. or higher and a melting point of less than 30 ° C. in order to maintain a reaction temperature suitable for surface treatment. Specifically, toluene, xylene, paraffin, 1-hexadecane as well as kerosene, It can be selected from common petroleum solvents such as light oil or heavy oil. If the boiling point is less than 70 ° C it is difficult to raise the reaction temperature during the capping reaction or a crystallization reaction that requires a higher temperature, and if the melting point is 30 ° C or more solidified at room temperature is difficult to handle, it is preferable to maintain the above characteristics. It is preferable to use such a nonpolar organic solvent in the range of 0.2-10 weight ratio with respect to 1 weight ratio of all the cobalt catalyst precursors used. If the amount of the non-polar organic solvent is less than 0.2% by weight, it is difficult to stir during preparation and the fluidity of the catalyst component colloidal solution is lowered, and when the amount of the nonpolar organic solvent exceeds 10% by weight, there is a problem that the content of the catalyst component contained in the solution is reduced.

본 발명에 따른 피셔-트롭쉬 합성용 코발트계 촉매의 제조 방법에 있어서, 코발트계 촉매성분을 포함하는 나노입자를 제조하는 단계 1 중 단계 a3는 상기 단계 a2에서 제조된 콜로이드상의 비정질 코발트수산화물 나노입자를 유기층과 수용액층으로 분리하여 수용액층을 제거하고, 상기 유기층에 잔류하는 미량의 물은 감 압증류하여 제거한 후 유기층을 교반하며 가열하여 나노입자 결정을 형성하는 단계이다.In the method for preparing a cobalt-based catalyst for Fischer-Tropsch synthesis according to the present invention, step a3 of step 1 of preparing a nanoparticle comprising a cobalt-based catalyst component is the colloidal amorphous cobalt hydroxide nanoparticles prepared in step a2. The organic layer is separated into an aqueous layer and an aqueous layer to remove the aqueous layer, and a small amount of water remaining in the organic layer is reduced by distillation under reduced pressure, followed by stirring and heating the organic layer to form nanoparticle crystals.

상기 캡핑 반응에 의해 분리된 수용액층은 제거하며 촉매성분이 있는 비극성 용매에 미량 남아있는 물은 가열하거나 감압-가열에 의해 제거한다. 이후 촉매성분을 나노미터 크기를 결정으로 결정화를 위해 상기 유기용매에서 캡핑된 촉매성분을 120 ∼ 300 ℃ 범위, 바람직하게는 150 ∼ 250 ℃ 범위에서 교반하며 가열한다. 상기 온도가 120 ℃ 미만이면 결정화 반응이 약해 결정의 크기가 너무 작은 문제가 있고 반응온도가 300 ℃를 초과하는 경우에는 나노 촉매의 크기가 너무 커져 나노촉매로 적합하지 않는 문제가 발생하므로 상기 범위를 유지하는 것이 바람직하다.The aqueous solution layer separated by the capping reaction is removed and water remaining in trace amounts in the nonpolar solvent with the catalyst component is removed by heating or decompression-heating. Thereafter, the catalyst component capped in the organic solvent is crystallized in a range of 120 to 300 ° C., preferably in the range of 150 to 250 ° C., for crystallization to a nanometer size crystal. If the temperature is less than 120 ℃, the crystallization reaction is weak, there is a problem that the size of the crystal is too small, if the reaction temperature exceeds 300 ℃ the size of the nano-catalyst is too large to cause a problem that is not suitable as a nano-catalyst occurs It is desirable to maintain.

상기에서 제조한 나노입자의 결정 크기는 5 ∼ 40 ㎚ 범위가 되도록 제조하며, 나노입자의 결정 크기가 5 nm 미만이면 촉매지지체와 상호작용에 의해 피셔-트롭쉬 반응 활성점인 금속으로 환원이 어려워 촉매로서 활성이 작고 활용도가 높은 액체탄화수소로의 선택도가 낮은 반면 부산물인 메탄의 생성이 많아지는 문제가 있고 결정의 크기가 40 nm 초과이면 촉매 표면적에 비해 벌크 부피가 커져 촉매 작용점인 표면적이 상대적으로 작아져 촉매 활성이 줄어드는 문제가 발생하므로 상기 범위를 유지하는 것이 바람직하다.The crystal size of the nanoparticles prepared above is in the range of 5 to 40 nm, and when the crystal size of the nanoparticles is less than 5 nm, it is difficult to reduce the metal to Fischer-Tropsch reaction active point by interaction with the catalyst support. It has a problem of low selectivity to liquid hydrocarbons with low activity and high utilization as a catalyst, but high production of by-product methane. If the crystal size is more than 40 nm, the bulk volume is increased compared to the surface area of the catalyst, so that the surface area, which is a catalytic action point, is relatively high. It is desirable to maintain the above range because of the problem that the catalyst activity decreases due to the decrease in size.

본 발명에 따른 피셔-트롭쉬 합성용 코발트계 촉매의 제조 방법에 있어서, 코발트계 촉매성분을 포함하는 나노입자를 제조하는 단계 1 중 단계 a4는 상기 단계 a3에서 형성된 나노입자 결정을 포함하는 용액에 극성 유기용매를 혼합하여 캡 핑된 나노입자를 침전시켜 추출한 후 이를 건조하는 단계이다.In the method for preparing a cobalt-based catalyst for Fischer-Tropsch synthesis according to the present invention, step a4 of preparing a nanoparticle comprising a cobalt-based catalyst component is carried out in a solution containing the nanoparticle crystal formed in step a3. Extracting the precipitated capped nanoparticles by mixing polar organic solvents and then drying them.

상기 단계 a4에서 사용되는 극성 유기용매로는 메탄올, 에탄올, 아세톤, 아세토나이트릴(acetonitrile) 등을 단독 또는 2종 이상을 혼합하여 사용할 수 있다.As the polar organic solvent used in step a4, methanol, ethanol, acetone, acetonitrile, and the like may be used alone or in combination of two or more thereof.

상기 단계 1에서 제조한 코발트계 촉매성분을 포함하는 나노입자를 제조한 후, 촉매 지지체에 담지하여 촉매를 제조하는 단계 2를 수행한다.After preparing nanoparticles including the cobalt-based catalyst component prepared in step 1, it is carried out step 2 of preparing a catalyst by supporting the catalyst support.

상기 단계 1에서 제조한 코발트계 촉매성분을 포함하는 나노입자를 촉매 지지체에 담지하여 촉매를 제조하는 단계 2는 하기의 단계를 포함하여 이루어진다:Step 2 of preparing a catalyst by supporting nanoparticles comprising the cobalt-based catalyst component prepared in step 1 on a catalyst support includes the following steps:

상기 단계 1에서 제조한 나노입자를 끓는점이 낮은 비극성 용매에 재분산한 후 촉매지지체에 함침시켜 담지 촉매를 형성하는 단계(단계 b1);Redispersing the nanoparticles prepared in step 1 in a non-polar solvent having a low boiling point and then impregnating the catalyst support to form a supported catalyst (step b1);

상기 단계 b1의 비극성 용매를 상온 ~ 70 ℃에서 제거하고, 담지 촉매를 100 ~ 120 ℃에서 건조하는 단계(단계 b2); 및Removing the nonpolar solvent of step b1 at room temperature to 70 ° C., and drying the supported catalyst at 100 to 120 ° C. (step b2); And

상기 단계 b2에서 건조된 담지 촉매를 소성하여 최종 피셔-트롭쉬 합성용 코발트계 촉매를 제조하는 단계(단계 b3).Calcining the supported catalyst dried in step b2 to produce a final Fischer-Tropsch synthesis cobalt-based catalyst (step b3).

이하에서, 본 발명의 단계 1에서 제조한 코발트계 촉매성분을 포함하는 나노입자를 촉매 지지체에 담지하여 촉매를 제조하는 단계 2를 단계별로 설명한다.Hereinafter, step 2 of preparing a catalyst by supporting nanoparticles including the cobalt-based catalyst component prepared in step 1 of the present invention on a catalyst support will be described step by step.

본 발명에 따른 피셔-트롭쉬 합성용 코발트계 촉매의 제조 방법에 있어서, 단계 1에서 제조한 나노입자를 촉매 지지체에 담지하여 촉매를 제조하는 단계 2 중 단계 b1은 상기 단계 1에서 제조한 나노입자를 끓는점이 낮은 비극성 용매에 재분 산한 후 촉매지지체에 함침시켜 담지 촉매를 형성하는 단계이다. In the method for preparing a cobalt-based catalyst for Fischer-Tropsch synthesis according to the present invention, step b1 of step 2 of preparing the catalyst by supporting the nanoparticles prepared in step 1 on the catalyst support is the nanoparticles prepared in step 1 It is a step of redispersing in a non-polar solvent having a low boiling point to impregnate the catalyst support to form a supported catalyst.

상기 단계 1에서 제조한 나노입자를 촉매지지체에 직접 담지할 수 있으나 비점이 높은 용매가 있는 콜로이드 용액은 촉매지지체에 함침할 경우 함침 후 용매를 제거하기 위해 고온이나 감압건조를 해야 하므로 촉매에 영향을 줄 수 있어 이 용매를 비점이 낮은 용매로 치환할 필요가 있다. 따라서 상기 단계 1에서 제조한 나노입자를 다시 헥산과 같이 비점이 낮은 비극성 용매에 재분산시킴으로서 촉매담지 후 건조가 쉽게 되도록 한다.상기의 비점이 낮은 비극성 용매는 특별히 한정되지는 않으나 헥산 이외에도 펜탄, 헵탄, 옥탄, 사이크로헥산, 벤젠, 톨루엔, 및 이들의 이성질체 등을 단독 또는 2종 이상을 혼합하여 사용할 수 있다. 상기 단계 1에서 제조한 나노입자를 다시 헥산과 같이 비점이 낮은 비극성 용매에 재분산시킨 후, 이를 촉매지지체에 함침시켜 담지 촉매를 형성한다. 단계 b1에서 제조된 나노입자를 촉매지지체에 담지시키는 방법은 함침법에 의해 수행되는 것이 바람직하다.The nanoparticles prepared in step 1 may be directly supported on the catalyst support, but the colloidal solution having a high boiling point solvent may be affected by the high temperature or reduced pressure drying to remove the solvent after impregnation when the catalyst support is impregnated. It is necessary to replace this solvent with a solvent having a low boiling point. Accordingly, the nanoparticles prepared in step 1 are redispersed again in a non-polar solvent having a low boiling point such as hexane to facilitate drying after supporting the catalyst. The non-polar solvent having a low boiling point is not particularly limited, but pentane and heptane are not particularly limited. , Octane, cyclohexane, benzene, toluene, and isomers thereof may be used alone or in combination of two or more thereof. The nanoparticles prepared in step 1 are redispersed again in a non-polar solvent having a low boiling point such as hexane, and then impregnated in the catalyst support to form a supported catalyst. The method of supporting the nanoparticles prepared in step b1 on the catalyst support is preferably performed by impregnation.

상기 촉매 지지체로는 알루미나, 실리카, 감마-알루미나, 지르코니아, 티타니아, 실리카-알루미나 등을 단독 또는 2종 이상을 혼합하여 사용하거나 이들의 개질된(modified) 지지체를 사용할 수 있다. 개질된 지지체는 지지체의 물리-화학적 성능을 개선하거나 촉매의 분산도를 개선하고 촉매 안정성을 증진하는 효과를 나타내며, 예를 들면 실리카나 알루미나 지지체에 지르코니아를 처리함으로서 촉매활성이 크게 증진된다. 상기 촉매지지체에 담지되는 나노입자의 함량은 전체 촉매지지체 중량의 1 ~ 60 중량%이며, 3 ~ 40 중량%인 것이 바람직하다. 상기 촉매지지체에 담지되는 나노입자의 함량이 1 중량% 미만이면 F-T 반응성을 나타내기에 충분한 활 성 성분이 존재하지 못하여 반응성이 감소하는 문제가 있으며, 60 중량%를 초과하는 경우에는 촉매 제조비용의 증가에 따른 경제성이 떨어지는 문제점과 촉매의 입자크기 증가 및 촉매의 비표면적 감소에 의한 F-T 활성이 감소하는 문제가 발생되므로 상기 범위를 유지하는 것이 바람직하다.As the catalyst support, alumina, silica, gamma-alumina, zirconia, titania, silica-alumina, or the like may be used alone or in combination of two or more thereof, or modified supports thereof may be used. The modified support has the effect of improving the physico-chemical performance of the support or improving the dispersion of the catalyst and enhancing the catalyst stability. For example, the catalytic activity is greatly enhanced by treating zirconia on silica or alumina support. The content of the nanoparticles supported on the catalyst support is 1 to 60% by weight of the total catalyst support, preferably 3 to 40% by weight. If the content of the nanoparticles supported on the catalyst support is less than 1% by weight, there is a problem in that the reactivity decreases because there is not enough active ingredient to show FT reactivity, and when the content exceeds 60% by weight, the catalyst manufacturing cost increases. It is desirable to maintain the above range because of the problem of low economical efficiency and the problem of decreasing the FT activity due to the increase in particle size of the catalyst and the reduction of the specific surface area of the catalyst.

본 발명에 따른 피셔-트롭쉬 합성용 코발트계 촉매의 제조 방법에 있어서, 단계 1에서 제조한 나노입자를 촉매 지지체에 담지하여 촉매를 제조하는 단계 2 중 단계 b2은 상기 단계 b1의 비극성 용매를 상온 ~ 70 ℃에서 제거하고, 담지 촉매를 100 ~ 120 ℃에서 건조하는 단계이다.In the method for preparing a cobalt-based catalyst for Fischer-Tropsch synthesis according to the present invention, step b2 of step 2 of preparing the catalyst by supporting the nanoparticles prepared in step 1 on the catalyst support is carried out at room temperature Removing at ~ 70 ℃, drying the supported catalyst at 100 ~ 120 ℃.

본 발명에 따른 피셔-트롭쉬 합성용 코발트계 촉매의 제조 방법에 있어서, 단계 1에서 제조한 나노입자를 촉매 지지체에 담지하여 촉매를 제조하는 단계 2 중 단계 b3은 상기 단계 b2에서 건조된 담지 촉매를 소성하여 최종 피셔-트롭쉬 합성용 코발트계 촉매를 제조하는 단계이다.In the method for preparing a cobalt-based catalyst for Fischer-Tropsch synthesis according to the present invention, step b3 of step 2 of preparing a catalyst by supporting the nanoparticles prepared in step 1 on a catalyst support is the supported catalyst dried in step b2. It is calcined to prepare a cobalt-based catalyst for the final Fischer-Tropsch synthesis.

상기 단계 b2에서 건조된 담지 촉매는 300 ~ 700 ℃ 범위, 바람직하게는 350 ~ 600 ℃ 범위에서 소성한다. 상기 소성온도가 300 ℃ 미만이면 제조 과정에 사용된 용매 및 유기 불순물이 소성에 의해 완전히 제거하기가 어려울 뿐만 아니라 촉매입자와 촉매지지체와 상호작용 세기가 약해 촉매 환원처리시 촉매성분의 응김(agglomeration)현상이 생길 수 있고, 700 ℃를 초과할 경우 촉매 활성성분의 소결(sintering) 현상에 의한 촉매성분의 비표면적을 감소시켜 촉매활성을 저하시키 는 문제가 발생하므로 상기 범위를 유지하는 것이 바람직하다.The supported catalyst dried in the step b2 is calcined in the range of 300 to 700 ° C, preferably 350 to 600 ° C. When the calcination temperature is less than 300 ° C., the solvent and organic impurities used in the manufacturing process are difficult to completely remove by calcination, and the interaction strength between the catalyst particles and the catalyst support is weak, and thus the agglomeration of the catalyst component during the catalytic reduction treatment is performed. The phenomenon may occur, and when the temperature exceeds 700 ° C., it is preferable to maintain the above range because a problem of lowering the specific surface area of the catalyst component due to the sintering phenomenon of the catalyst active component is reduced.

본 발명은 피셔-트롭쉬 반응에 활성이 있는 코발트계 촉매성분을 포함하는 나노입자를 제조하는 단계 1 및 상기 단계 1에서 제조한 나노입자를 촉매 지지체에 담지하여 촉매를 제조하는 단계 2를 포함하는 피셔-트롭쉬 합성용 코발트계 촉매의 제조방법에 관한 것으로, 피셔-트롭쉬 반응에 활성이 있는 코발트계 촉매성분을 포함하는 나노입자를 제조하는 방법은 상기 단계 1에 한정되지 않고 본 발명의 분야에서 공지된 나노입자 제조방법을 사용할 수 있다.The present invention includes a step 1 of preparing a nanoparticle comprising a cobalt-based catalyst component active in the Fischer-Tropsch reaction and a step 2 of preparing a catalyst by supporting the nanoparticles prepared in step 1 on a catalyst support The present invention relates to a method for preparing a cobalt-based catalyst for Fischer-Tropsch synthesis, wherein the method for preparing nanoparticles containing the cobalt-based catalyst component active in the Fischer-Tropsch reaction is not limited to step 1, but is in the field of the present invention. Nanoparticles known in the art can be used.

또한, 본 발명은 상기에서 상술한 피셔-트롭쉬 합성용 촉매의 제조방법에 따라 제조된 피셔-트롭쉬 합성용 코발트계 촉매를 제공한다.The present invention also provides a cobalt-based catalyst for Fischer-Tropsch synthesis prepared according to the above-described method for preparing a catalyst for Fischer-Tropsch synthesis.

본 발명에 따라 제조된 촉매하에서, 합성가스를 피셔 트롭쉬(Fischer-Tropsch) 반응하여 액체 탄화수소를 제조한다. 상기 F-T 반응은 본 발명의 분야에서 일반적으로 사용되는 것으로 특별히 한정하지는 않으나, 본 발명의 촉매를 고정층, 유동층 및 슬러리 반응기에서 200 ∼ 600 ℃의 온도 범위의 수소 분위기에서 환원한 후에 반응에 활용한다.Under the catalyst prepared according to the invention, the synthesis gas is subjected to a Fischer-Tropsch reaction to produce a liquid hydrocarbon. The F-T reaction is generally used in the field of the present invention, but is not particularly limited, but the catalyst of the present invention is used for the reaction after the catalyst of the present invention is reduced in a hydrogen atmosphere in a temperature range of 200 to 600 ° C. in a fixed bed, a fluidized bed, and a slurry reactor.

상기 환원된 F-T 반응용 촉매는 본 발명의 분야에서 일반적으로 F-T 반응 조건에서 수행되는 바, 구체적으로 반응 온도는 200 ∼ 350 ℃, 반응 압력은 5 ∼ 30 kg/㎠와 공간속도는 1000 ∼ 10000 h-1에서 수행하는 것이 바람직하다.The reduced catalyst for the FT reaction is generally carried out in the FT reaction conditions in the field of the present invention, specifically, the reaction temperature is 200 ~ 350 ℃, the reaction pressure is 5 ~ 30 kg / ㎠ and space velocity is 1000 ~ 10000 h Preferably at -1 .

상기의 방법으로 제조된 촉매 상에서 220 ℃, 20 기압 및 2000 h-1의 공간속도의 반응 조건에서 F-T 반응의 전환율은 29 ∼ 90 카본 몰%이고, C5이상인 탄화수소, 구체적으로 나프타, 디젤, 중간 유분, 중유 및 왁스 등의 수율이 72 ∼ 88 카본 몰% 범위를 나타낸다.The conversion of the FT reaction is 29 to 90 carbon mole% and the C 5 or more hydrocarbons, specifically naphtha, diesel, medium, at the reaction conditions of 220 ° C., 20 atm and 2000 h −1 on the catalyst prepared by the above method. Yields of oil, heavy oil and wax are in the range of 72 to 88 carbon mole%.

이하, 본 발명을 다음의 실시예에 의거하여 구체적으로 설명하는바, 본 발명이 다음 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following examples, but the present invention is not limited by the following examples.

<< 실시예Example 1> 염화코발트를 촉매성분으로 사용한 피셔- 1> Fischer using cobalt chloride as a catalyst component- 트롭쉬Tropsch 합성용 코발트계 촉매의 제조 Preparation of Synthetic Cobalt-Based Catalysts

28%의 수산화암모늄(NH4OH) 15.3 g과 100 mL의 3차 증류수가 섞인 용액을 30 g의 염화코발트(CoCl26H2O)를 200 mL의 3차 증류수에 녹인 용액에 격렬한 교반하에서 첨가하여 침전 슬러리를 교반한 후, 생성된 침전물을 필터하고 증류수 1500 mL로 여러 번 나누어 세척한다. 생성된 수산화코발트 케이크를 증류수에 분산하여 수산화코발트 슬러리(수산화코발트 기준 함량, 10%)를 얻는다.A solution of 15.3 g of 28% ammonium hydroxide (NH 4 OH) and 100 mL of tertiary distilled water was added to a solution of 30 g of cobalt chloride (CoCl 2 6H 2 O) in 200 mL of tertiary distilled water under vigorous stirring. After stirring the precipitate slurry, the resulting precipitate is filtered and washed several times with 1500 mL of distilled water. The resulting cobalt hydroxide cake is dispersed in distilled water to obtain a cobalt hydroxide slurry (cobalt hydroxide reference content, 10%).

상기에서 제조된 수산화코발트 슬러리, 1-헥사데칸 19.0 g, 올레인산 7.1 g 을 혼합하고 100 ℃에서 30 분 동안 교반하였다. 이때 수산화코발트는 올레산과 반응하여 표면이 올레산으로 캡핑이 되어 비극성 용매인 1-헥사데칸에 녹아들어 깨끗한 수용액층과 오일층으로 분리되었다. 유기용매에 코발트 함량이 높을 경우 오일층은 수용액층 아래로 분리된다. 상층의 수용액층은 단순 분리 제거하여 캡핑된 코발트가 함유된 오일층을 회수한 후 여기에 남아있는 미량의 수분을 감압증류를 통해 제거하였다. 상기 용액을 230 ℃에서 3 시간 가열하여 산화코발트(Co3O4) 나노결정을 제조하였다. 상기에서 제조된 산화코발트 나노입자 용액에 메탄올 100 mL을 혼합하여 산화코발트 나노입자 응집-침전시킨 후 1-헥사데칸 용매로부터 분리한 후 여기에 헥산을 혼합하여 코발트 나노입자의 농도가 5 중량%인 콜로이드 용액을 만든다. Cobalt hydroxide slurry prepared above, 19.0 g of 1-hexadecane, 7.1 g of oleic acid were mixed and stirred at 100 ° C. for 30 minutes. At this time, the cobalt hydroxide reacted with oleic acid, the surface was capped with oleic acid, dissolved in 1-hexadecane, a nonpolar solvent, and separated into a clean aqueous layer and an oil layer. If the organic solvent has a high cobalt content, the oil layer is separated under the aqueous layer. The aqueous solution layer of the upper layer was simply separated and recovered to recover the oil layer containing the capped cobalt, and the trace amount remaining therein was removed by distillation under reduced pressure. The solution was heated at 230 ° C. for 3 hours to prepare cobalt oxide (Co 3 O 4 ) nanocrystals. The cobalt oxide nanoparticle solution prepared above was mixed with 100 mL of methanol to coagulate-precipitate cobalt oxide nanoparticles, separated from a 1-hexadecane solvent, and then mixed with hexane. The concentration of cobalt nanoparticles was 5% by weight. Make a colloidal solution.

상기에서 제조된 5 중량% 나노 산화코발트 용액 10 g을 취하여 촉매지지체인 감마-알루미나 10 g에 함침시킨 후 50 ℃에서 헥산 용매를 증발시킨 후 100 ℃ 오븐에서 건조한다. 건조된 시료는 500 ℃에서 공기 중에서 5 시간 소성함으로서 코발트 나노입자에 담지된 촉매를 제조한다.10 g of the 5 wt% nano cobalt oxide solution prepared above was taken and impregnated into 10 g of gamma-alumina, which is a catalyst support, followed by evaporation of the hexane solvent at 50 ° C., followed by drying in an oven at 100 ° C. The dried sample is calcined in air at 500 ° C. for 5 hours to prepare a catalyst supported on cobalt nanoparticles.

상기에서 제조된 산화코발트 나노입자의 투과 전자현미경(TEM) 사진과 X-선 회절분석(XRD)를 도 1의 (a)와 도 2에 각각 나타내었다. 도 1의 (a)의 TEM 사진으로 나타난 산화코발트 입자의 평균 크기는 10.0 ㎚이며, 도 2의 XRD 패턴으로 스피넬(spinel) 결정구조를 갖는 산화코발트(Co3O4)라는 것을 확인할 수 있었다. 또한, 디바이-셰러(Debye-Sherrer)식을 사용하여 계산된 산화코발트의 평균 크기도 TEM의 결과와 유사한 10.7 ㎚인 것을 확인할 수 있었다. 상기 디바이-셰러(Debye-Sherrer)식은 D=Kλ/(βCOSθ)으로서 K는 Sherrer 상수값이며 여기서는 0.89이며, λ는 사용한 X-ray의 파장으로서 여기서는 0.15406 nm이며, β는 피크 높이의 절반에서의 피크폭이며, θ는 Bragg 회절각이며 여기서는 2θ=35.7도의 피크를 사용하였다. 상기에서 제조된 산화코발트 나노입자가 담지된 촉매의 TEM 사진과 X-선 회절분석(XRD)은 각각 도 3의 (a)와 도 4에 나타내었다.Transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD) of the cobalt oxide nanoparticles prepared above are shown in FIGS. 1A and 2, respectively. The average size of the cobalt oxide particles shown in the TEM photograph of FIG. 1 (a) was 10.0 nm, and it was confirmed that the cobalt oxide (Co 3 O 4 ) having a spinel crystal structure in the XRD pattern of FIG. 2. In addition, it was confirmed that the average size of cobalt oxide calculated using the Debye-Sherrer equation was 10.7 nm similar to that of the TEM. The Debye-Sherrer equation is D = Kλ / (βCOSθ) where K is Sherrer constant value and here is 0.89, λ is the wavelength of X-ray used, and here is 0.15406 nm and β is at half the peak height. The peak width, θ is the Bragg diffraction angle, and a peak of 2θ = 35.7 degrees is used here. The TEM photograph and X-ray diffraction analysis (XRD) of the cobalt oxide nanoparticle-supported catalyst prepared above are shown in FIGS. 3A and 4, respectively.

<< 실시예Example 2>  2> 질산코발트를Cobalt nitrate 촉매성분으로 사용한 피셔- Fischer used as catalyst component 트롭쉬Tropsch 합성용 코발트계 촉매의 제조 Preparation of Synthetic Cobalt-Based Catalysts

코발트 촉매전구체로서 질산코발트(Co(NO3)2xH2O)를, 침전제로서로서 탄산암모늄((NH4)2CO3)을 이용하고, 250 ℃로 가열하여 산화코발트 나노결정을 제조한 것 이외에는 실시예 1과 동일하게 실시하였다. 이후 담지 촉매의 제조는 상기 실시예 1과 동일하게 실시하였다.Cobalt oxide nanocrystals were prepared by heating to 250 ° C. using cobalt nitrate (Co (NO 3 ) 2 × H 2 O) as the cobalt catalyst precursor and ammonium carbonate ((NH 4 ) 2 CO 3 ) as the precipitant. The same procedure as in Example 1 was followed. Since the supported catalyst was prepared in the same manner as in Example 1.

상기에서 제조된 산화코발트 나노입자의 투과 전자현미경(TEM) 사진과 X-선 회절분석(XRD)를 각각 도 1의 (b)와 도 2에 나타내었다. 도 1의 (b)의 TEM 사진으로 나타난 산화코발트 입자의 평균 크기는 12.4 ㎚이며, 도 2의 XRD 패턴으로 스피넬(spinel) 결정구조를 갖는 산화코발트(Co3O4)라는 것을 확인할 수 있었다. 또한, 디바이-셰러(Debye-Sherrer)식을 사용하여 계산된 산화코발트의 평균 크기도 TEM의 결과와 유사한 12.8 ㎚인 것을 확인할 수 있었다. 상기에서 제조된 산화코발트 나 노입자가 담지된 촉매의 X-선 회절분석(XRD)를 도 4에 나타내었다.Transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD) of the cobalt oxide nanoparticles prepared above are shown in FIGS. 1B and 2, respectively. The average size of the cobalt oxide particles shown in the TEM photograph of FIG. 1 (b) was 12.4 nm, and the cobalt oxide (Co 3 O 4 ) having a spinel crystal structure in the XRD pattern of FIG. 2 was confirmed. In addition, it was confirmed that the average size of cobalt oxide calculated using the Debye-Sherrer equation was 12.8 nm similar to that of the TEM. 4 shows X-ray diffraction analysis (XRD) of the catalyst on which cobalt oxide nanoparticles were prepared.

<< 실시예Example 3> 염화코발트를 촉매성분으로 사용한 피셔- 3> Fischer using cobalt chloride as a catalyst component- 트롭쉬Tropsch 합성용 코발트계 촉매의 제조 Preparation of Synthetic Cobalt-Based Catalysts

200 ℃로 가열하여 산화코발트 나노결정을 제조하고 나노코발트 촉매의 담지량이 10 중량%인 것 이외에는 실시예 1과 동일하게 실시하였다.Cobalt oxide nanocrystals were prepared by heating to 200 ° C., and were carried out in the same manner as in Example 1 except that the supported amount of the nanocobalt catalyst was 10% by weight.

상기에서 제조된 산화코발트 나노입자의 TEM 사진과 X-선 회절분석(XRD)를 도 1의 (c)와 도 2에 각각 나타내었다. 도 1의 (c)의 TEM 사진으로 나타난 산화코발트 입자의 평균 크기는 13.8 ㎚이며, 도 2의 XRD 패턴에서 상기 디바이-셰러(Debye-Sherrer)식으로 계산된 산화코발트의 크기는 14.2 ㎚인 것을 확인할 수 있었다. 상기에서 제조된 산화코발트 나노입자가 담지된 촉매의 TEM 사진과 X-선 회절분석(XRD)은 각각 도 3의 (b)와 도 4에 나타내었다.TEM images and X-ray diffraction analysis (XRD) of the cobalt oxide nanoparticles prepared above are shown in FIGS. 1C and 2, respectively. The average size of cobalt oxide particles shown in the TEM photograph of FIG. 1 (c) is 13.8 nm, and the size of cobalt oxide calculated by the Debye-Sherrer equation in the XRD pattern of FIG. 2 is 14.2 nm. I could confirm it. TEM photographs and X-ray diffraction analysis (XRD) of the cobalt oxide nanoparticle-supported catalyst prepared above are shown in FIGS. 3B and 4, respectively.

<< 실시예Example 4> 염화코발트를 촉매성분으로 사용한 피셔- 4> Fischer using cobalt chloride as a catalyst component- 트롭쉬Tropsch 합성용 코발트계 촉매의 제조 Preparation of Synthetic Cobalt-Based Catalysts

담지촉매의 제조시 촉매 지지체로서 감마 알루미나 대신 실리카를 사용한 것 이외에는 실시예 1과 동일하게 실시하였다. 상기에서 제조된 산화코발트 나노입자와 나노입자가 담지된 촉매의 XRD 패턴은 각각 도 2와 도 4에 나타내었다.The preparation of the supported catalyst was carried out in the same manner as in Example 1 except that silica was used instead of gamma alumina as a catalyst support. The XRD patterns of the cobalt oxide nanoparticles prepared above and the catalyst on which the nanoparticles are supported are shown in FIGS. 2 and 4, respectively.

<< 실시예Example 5> 염화코발트를 촉매성분으로 사용한 피셔- 5> Fischer using cobalt chloride as a catalyst component- 트롭쉬Tropsch 합성용 코발트계 촉매 의 제조 Preparation of Synthetic Cobalt-Based Catalysts

루테늄 조촉매 전구체로서 루테튬나이트로실나이트레이트(Ru(NO)(NO3)3)를 코발트 1 몰에 대하여 0.002 몰비로 사용하여 루테늄-코발트 나노입자를 제조한 것 이외에는 실시예 1과 동일하게 실시하였다. 이후 담지 촉매의 제조는 상기 실시예 1과 동일하게 실시하였다. 상기에서 제조된 나노입자와 상기 나노입자가 담지된 촉매의 X-선 회절분석(XRD)를 각각 도 2와 도 4에 나타내었다.Ruthenium-cobalt nanoparticles were prepared in the same manner as in Example 1 except that ruthetium nitrosylnitrate (Ru (NO) (NO 3 ) 3 ) was used at a 0.002 molar ratio with respect to 1 mol of cobalt as a ruthenium promoter. It was. Since the supported catalyst was prepared in the same manner as in Example 1. X-ray diffraction analysis (XRD) of the nanoparticles prepared above and the catalyst on which the nanoparticles are supported are shown in FIGS. 2 and 4, respectively.

<< 비교예Comparative example 1> 종래의  1> conventional 함침법에Impregnation method 의한 피셔- By Fisher- 트롭쉬Tropsch 합성용 코발트계 촉매의 제조 Preparation of Synthetic Cobalt-Based Catalysts

코발트 촉매전구체로서 질산코발트(Co(NO3)2 6H2O) 14 g과 20 mL의 3차 증류수가 섞인 용액을 감마-알루미나 26.9 g을 섞는다. 상기 슬러리를 10 ℃에서 12 시간 이상 건조한 후에 500 ℃의 공기 분위기에서 5 시간 동안 소성 처리하여 10 중량% 코발트/알루미나 촉매를 제조하였다. 상기에서 제조된 담지 촉매의 X-선 회절분석(XRD)를 도 4에 나타내었다.As a cobalt catalyst precursor, 26.9 g of gamma-alumina is mixed with 14 g of cobalt nitrate (Co (NO 3 ) 2 6H 2 O) and 20 mL of tertiary distilled water. The slurry was dried at 10 ° C. for at least 12 hours, and then calcined in an air atmosphere at 500 ° C. for 5 hours to prepare a 10 wt% cobalt / alumina catalyst. X-ray diffraction analysis (XRD) of the supported catalyst prepared above is shown in FIG. 4.

<< 비교예Comparative example 2> 종래의  2> conventional 공침법에On copulation 의한 피셔- By Fisher- 트롭쉬Tropsch 합성용 코발트계 촉매의 제조 Preparation of Synthetic Cobalt-Based Catalysts

28%의 수산화암모늄(NH4OH) 2.9 g과 20 mL의 3차 증류수가 섞인 용액을 질산코발트(Co(NO3)2 6H2O) 7 g과 50 mL의 3차 증류수 및 감마-알루미나 26.9 g가 섞인 슬러리에 격렬한 교반 하에서 첨가하여 침전된 수산화코발트-알루미나 슬러리를 제조하고 이를 필터하고 증류수 500 mL로 여러 번 나누어 세척한다. 상기 슬러리를 10 ℃에서 12 시간 이상 건조한 후에 500 ℃의 공기 분위기에서 5 시간 동안 소성 처리하여 5 중량% 코발트/알루미나 촉매를 제조하였다. 상기에서 제조된 담지 촉매의 X-선 회절분석(XRD)를 도 4에 나타내었다.A solution of 2.9 g of 28% ammonium hydroxide (NH 4 OH) and 20 mL of distilled water was mixed with 7 g of cobalt nitrate (Co (NO 3 ) 2 6H 2 O) and 50 mL of tertiary distilled water and gamma-alumina 26.9. The precipitated cobalt hydroxide-alumina slurry was added to the slurry mixed with g under vigorous stirring, filtered and washed several times with 500 mL of distilled water. The slurry was dried at 10 ° C. for at least 12 hours, and then calcined in an air atmosphere at 500 ° C. for 5 hours to prepare a 5 wt% cobalt / alumina catalyst. X-ray diffraction analysis (XRD) of the supported catalyst prepared above is shown in FIG. 4.

<< 비교예Comparative example 3> 낮은 온도에서 생성된 나노입자 결정을 사용한 피셔- 3> Fischer using nanoparticle crystals produced at low temperatures 트롭쉬Tropsch 합성용 코발트계 촉매의 제조 Preparation of Synthetic Cobalt-Based Catalysts

코발트 촉매전구체로서 질산코발트(Co(NO3)2xH2O)를 이용하고, 나노결정 형성 단계(단계 a3)에서 100℃로 가열하여 산화코발트 나노결정을 제조한 것 이외에는 실시예 1과 동일하게 실시하였다. 이후 담지 촉매의 제조는 상기 실시예 1과 동일하게 실시하였다. 상기에서 제조된 산화코발트 나노입자의 TEM 사진과 X-선 회절분석(XRD)를 각각 도 1의 (d)와 도 2에 각각 나타내었다. 도 1의 (d)의 TEM 사진으로 나타난 산화코발트 입자의 평균 크기는 3.5 ㎚이며, 산화코발트 나노입자가 담지된 촉매의 XRD 패턴은 도 4에 나타내었다.As cobalt catalyst precursor, cobalt nitrate (Co (NO 3 ) 2 x H 2 O) was used, and cobalt oxide nanocrystals were prepared by heating to 100 ° C. in the nanocrystal formation step (step a3). Was carried out. Since the supported catalyst was prepared in the same manner as in Example 1. TEM images and X-ray diffraction analysis (XRD) of the cobalt oxide nanoparticles prepared above are shown in FIGS. 1D and 2, respectively. The average size of the cobalt oxide particles represented by the TEM photograph of FIG. 1 (d) is 3.5 nm, and the XRD pattern of the catalyst on which the cobalt oxide nanoparticles are supported is shown in FIG. 4.

<< 실험예Experimental Example 1>  1> 실시예Example  And 비교예에서In the comparative example 제조된 촉매를 사용한 피셔- Fischer- using prepared catalyst 트롭쉬Tropsch 반응 reaction

피셔-트롭쉬 반응을 시작하기 전에 1/2인치 스테인레스 고정층 반응기에 0.5 g의 실시예 및 비교예에서 제조된 촉매를 장입하고, 400 ℃의 수소(5 부피% H2/He)분위기 하에서 12 시간 환원 처리한 후에, 반응온도 240 ℃ 반응압력 10 kg/㎠, 공간속도 6000 L/kgcat/hr의 조건에서 반응물인 일산화탄소 : 수소 : 아르곤(내부 표 준물질)의 몰비를 63.2 : 31.3 : 5.5의 비율로 고정하여 반응기로의 주입하여 피셔-트롭쉬 반응을 수행하였다. 반응 결과는 촉매의 활성이 안정화되어 유지되는 반응시간 60 시간 이후에 10 시간의 평균값을 사용하여 다음 표 1에 나타내었다.Before starting the Fischer-Tropsch reaction, charge 0.5 g of the catalyst prepared in the Examples and Comparative Examples into a 1/2 inch stainless fixed bed reactor and run for 12 hours under an atmosphere of hydrogen (5 vol% H 2 / He) at 400 ° C. After the reduction treatment, the molar ratio of carbon monoxide: hydrogen: argon (internal standard), which is a reactant at a reaction temperature of 240 ° C. at a reaction pressure of 10 kg / cm 2 and a space velocity of 6000 L / kgcat / hr, is 63.2: 31.3: 5.5. The Fischer-Tropsch reaction was carried out by injection into the reactor by fixation. The reaction results are shown in the following Table 1 using an average value of 10 hours after the reaction time of 60 hours in which the activity of the catalyst is stabilized and maintained.

구 분division 촉매catalyst 나노입자 크기(nm)Nanoparticle size (nm) CO 전환율
(카본몰%)
CO conversion rate
(Carbon Mall%)
카본 선택도
C1/C2~C4/C5 이상
(카본몰%)
Carbon selectivity
C 1 / C 2 to C 4 / C 5 More than
(Carbon Mall%)
C5 이상
수율(%)
C 5 or higher
yield(%)
실시예 1Example 1 nano Co/γ-Al2O3 nano Co / γ-Al 2 O 3 10.010.0 65.265.2 13.8/12.7/73.513.8 / 12.7 / 73.5 47.947.9 실시예 2Example 2 nano Co/γ-Al2O3 nano Co / γ-Al 2 O 3 12.412.4 30.130.1 16.6/12.9/70.516.6 / 12.9 / 70.5 21.221.2 실시예 3Example 3 nano Co/γ-Al2O3 nano Co / γ-Al 2 O 3 10.010.0 81.181.1 19.5/16.3/64.219.5 / 16.3 / 64.2 52.052.0 실시예 4Example 4 nano Co/SiO2 nano Co / SiO 2 10.010.0 55.355.3 11.3/15.5/73.211.3 / 15.5 / 73.2 40.440.4 실시예 5Example 5 nano
Co-Ru/γ-Al2O3
nano
Co-Ru / γ-Al 2 O 3
8.78.7 87.387.3 10.1/14.3/75.610.1 / 14.3 / 75.6 65.965.9
비교예 1Comparative Example 1 Co/γ-Al2O3 Co / γ-Al 2 O 3 < 4<4 8.38.3 20.1/18.0/61.920.1 / 18.0 / 61.9 5.135.13 비교예 2Comparative Example 2 Co/γ-Al2O3 Co / γ-Al 2 O 3 < 5<5 8.28.2 22.4/17.2/60.422.4 / 17.2 / 60.4 4.94.9 비교예 3Comparative Example 3 nano Co/γ-Al2O3 nano Co / γ-Al 2 O 3 < 5<5 9.39.3 18.5/20.1/61.418.5 / 20.1 / 61.4 5.75.7

상기 표 1에 기재된 바와 같이, 본 발명에 따라 나노입자를 먼저 제조한 후 이를 담지하여 제조한 촉매를 사용한 실시예 1 내지 5는 비교예 1 내지 3에 비해 피셔-트롭쉬 반응에서 CO의 전환율과 액체탄화수소(C5 이상)로의 수율이 우수함을 알 수 있다. 한편 비교예 1 및 2와 같이 고전적인 촉매제조 방법인 함침법 또는 공침법으로 촉매를 제조할 경우, 특히 촉매 담지량이 적을 경우 촉매 입자의 크기가 피셔-트롭쉬 반응을 수행하기에 너무 작아 촉매의 활성이 작을 뿐만 아니라 부산물인 메탄의 선택도가 높고 반면에 액체탄화수소의 선택도가 상대적으로 떨어지는 것을 볼 수 있다. 비교예 3은 실시예와 유사하게 촉매 나노입자를 미리 제조하고 담지하더라도, 낮은 온도에서 나노입자의 결정을 형성한 결과 입자의 크기가 매우 작게 되어 비교예 1 및 2와 마찬가지로 피셔-트롭쉬 합성용 촉매로서 적합하지 않음을 알 수 있다. 즉, 촉매 입자의 크기가 적당한 크기가 되어야 원하는 촉매 특성을 얻을 수 있다. 실시예 5에서 보는 바와 같이 코발트계 촉매에 조촉매 성분이 포함된 나노 합금촉매는 활성이나 선택도에서 개선이 이루어지는 것을 볼 수 있다.As shown in Table 1, Examples 1 to 5 using the catalyst prepared by first preparing the nanoparticles according to the present invention and then carrying it support the conversion of CO in the Fischer-Tropsch reaction compared to Comparative Examples 1 to 3 It can be seen that the yield to the liquid hydrocarbon (C 5 or more) is excellent. On the other hand, when the catalyst is prepared by the impregnation method or the coprecipitation method, which is a conventional catalyst preparation method, as in Comparative Examples 1 and 2, the catalyst particles are too small to carry out the Fischer-Tropsch reaction, especially when the catalyst loading is small. Not only is the activity low, but the selectivity of the by-product methane is high while the selectivity of liquid hydrocarbons is relatively low. In Comparative Example 3, although the catalyst nanoparticles were prepared and supported in advance similarly to the examples, the size of the particles was very small as a result of forming the crystals of the nanoparticles at low temperature, and thus, for the Fischer-Tropsch synthesis as in Comparative Examples 1 and 2 It can be seen that it is not suitable as a catalyst. In other words, the size of the catalyst particles must be a suitable size to obtain the desired catalyst properties. As shown in Example 5, it can be seen that the nanoalloy catalyst including the cocatalyst component in the cobalt-based catalyst is improved in activity or selectivity.

도 1의 (a), (b), (c) 및 (d)는 각각 실시예 1, 실시예 2, 실시예 3 및 비교예 3에서 제조한 산화코발트 나노입자의 투과전자현미경(TEM)의 사진이다.(A), (b), (c) and (d) of FIG. 1 show transmission electron microscope (TEM) of cobalt oxide nanoparticles prepared in Examples 1, 2, 3 and Comparative Example 3, respectively. It is a photograph.

도 2는 실시예 1, 2, 3, 4, 5 및 비교예 3에서 제조한 나노입자의 X-ray 회절패턴(XRD)을 예시한다.Figure 2 illustrates the X-ray diffraction pattern (XRD) of the nanoparticles prepared in Examples 1, 2, 3, 4, 5 and Comparative Example 3.

도 3의 (a)와 (b)는 각각 실시예 1과 실시예 3에서 제조한 산화코발트 나노입자가 감마-알루미나에 담지된 촉매의 투과전자현미경(TEM)의 사진이다.3 (a) and 3 (b) are photographs of transmission electron microscopes (TEM) of a catalyst in which cobalt oxide nanoparticles prepared in Examples 1 and 3 are supported on gamma-alumina, respectively.

도 4는 실시예 1, 2, 3, 4, 5 및 비교예 1, 2, 3에서 제조한 담지촉매의 X-ray 회절패턴(XRD)을 예시한다.FIG. 4 illustrates X-ray diffraction patterns (XRD) of the supported catalysts prepared in Examples 1, 2, 3, 4, 5 and Comparative Examples 1, 2, and 3. FIG.

Claims (25)

피셔-트롭쉬 반응에 활성이 있고 결정크기가 5 ~ 40 ㎚인 산화코발트 나노입자를 제조하는 단계(단계 1); 및Preparing cobalt oxide nanoparticles having an active Fischer-Tropsch reaction and having a crystal size of 5 to 40 nm (step 1); And 상기 단계 1에서 제조한 나노입자를 촉매 지지체에 담지하여 촉매를 제조하는 단계(단계 2);Preparing a catalyst by supporting the nanoparticles prepared in step 1 on a catalyst support (step 2); 를 포함하는 피셔-트롭쉬 합성용 코발트계 촉매의 제조방법.Fischer-Tropsch synthesis method for producing a cobalt-based catalyst comprising a. 제1항에 있어서, 상기 피셔-트롭쉬 반응에 활성이 있고 결정크기가 5 ~ 40 ㎚인 산화코발트 나노입자를 제조하는 단계(단계 1)는,The method of claim 1, wherein the step of preparing cobalt oxide nanoparticles (step 1) that is active in the Fischer-Tropsch reaction and has a crystal size of 5 to 40 nm, 코발트계 촉매 전구체 또는 코발트계 촉매 전구체와 조촉매의 혼합물의 수용액; 및 염기성 화합물 수용액을 반응시켜 코발트화합물 침전물을 형성한 후 이를 세척하는 단계(단계 a1);An aqueous solution of a cobalt catalyst precursor or a mixture of cobalt catalyst precursor and a promoter; And reacting the basic compound aqueous solution to form a cobalt compound precipitate and washing it (step a1); 상기 단계 a1에서 얻은 세척된 코발트침전물 수용액 슬러리를 캡핑(capping)분자 및 비극성 유기 용매와 혼합한 후 가열하여 표면이 캡핑된 콜로이드 상의 비정질 코발트수산화물 나노입자를 제조하는 단계(단계 a2);Mixing the washed cobalt precipitate aqueous solution slurry obtained in step a1 with a capping molecule and a nonpolar organic solvent and heating to prepare amorphous cobalt hydroxide nanoparticles on a surface capped colloid (step a2); 상기 단계 a2에서 제조된 콜로이드상의 비정질 코발트수산화물 나노입자를 유기층과 수용액층으로 분리하여 수용액층을 제거하고, 상기 유기층에 잔류하는 미량의 물은 감압증류하여 제거한 후 유기층을 교반하며 가열하여 산화코발트 나노입자 결정을 형성하는 단계(단계 a3); 및The colloidal amorphous cobalt hydroxide nanoparticles prepared in step a2 are separated into an organic layer and an aqueous solution layer to remove an aqueous solution layer, and trace water remaining in the organic layer is removed by distillation under reduced pressure, followed by stirring and heating the organic layer to cobalt oxide oxide. Forming particle crystals (step a3); And 상기 단계 a3에서 형성된 나노입자 결정을 포함하는 용액에 극성 유기용매를 혼합하여 캡핑된 산화코발트 나노입자를 침전시켜 추출한 후 이를 건조하는 단계(단계 a4);Mixing a polar organic solvent in a solution containing the nanoparticle crystals formed in step a3 to precipitate and extract capped cobalt oxide nanoparticles, and then drying the capped cobalt oxide nanoparticles (step a4); 를 포함하는 것을 특징으로 하는 피셔-트롭쉬 합성용 코발트계 촉매의 제조방법.Fischer-Tropsch synthesis method for producing a cobalt-based catalyst comprising a. 제2항에 있어서, 상기 단계 a1의 코발트계 촉매 전구체는 질산코발트(Co(NO3)2xH2O), 염화코발트(CoCl2xH2O), 황산코발트(CoSO4) 및 초산코발트(Co(AC)2)로 이루어진 군으로부터 선택된 1종의 단일화합물 또는 2종 이상의 혼합물인 것을 특징으로 하는 피셔-트롭쉬 합성용 코발트계 촉매의 제조방법.The method of claim 2, wherein the cobalt-containing catalyst precursor in said step a1 is cobalt nitrate (Co (NO 3) 2 xH 2 O), cobalt chloride (CoCl 2 xH 2 O), cobalt sulfate (CoSO 4) and acetate cobalt (Co (AC) A method for producing a cobalt-based catalyst for Fischer-Tropsch synthesis, characterized in that it is a single compound or a mixture of two or more selected from the group consisting of 2 ). 제2항에 있어서, 상기 단계 a1의 코발트계 촉매 전구체와 혼합될 수 있는 조촉매 성분은 루테늄(Ru), 레늄(Re), 백금, 팔라듐(Pd), 철, 망간, 니켈 및 아연으로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물인 것을 특징으로 하는 피셔-트롭쉬 합성용 코발트계 촉매의 제조방법.According to claim 2, wherein the cocatalyst component that can be mixed with the cobalt-based catalyst precursor of step a1 is a group consisting of ruthenium (Ru), rhenium (Re), platinum, palladium (Pd), iron, manganese, nickel and zinc Fischer-Tropsch synthesis method for producing a cobalt-based catalyst, characterized in that one or two or more selected from. 제4항에 있어서, 상기 조촉매 성분은 사용되는 코발트계 촉매 전구체 1 몰에 대하여 0.001 ~ 0.999 몰비를 사용하는 것을 특징으로 하는 피셔-트롭쉬 합성용 코발트계 촉매의 제조방법.5. The method of claim 4, wherein the cocatalyst component is used in an amount of 0.001 to 0.999 mole ratio with respect to 1 mole of the cobalt catalyst precursor to be used. 6. 제2항에 있어서, 상기 단계 a1의 염기성 화합물은 암모니아수, 수산화나트륨, 수산화칼륨, 수산화마그네슘, 수산화칼슘, 수산화암모늄(NH4OH), 탄산암모늄(NH4HCO3 또는 (NH4)2CO3), 탄산나트륨(NaHCO3 또는 Na2CO3) 및 탄산칼륨(KHCO3 또는 K2CO3)으로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물인 것을 특징으로 하는 피셔-트롭쉬 합성용 코발트계 촉매의 제조방법.According to claim 2, wherein the basic compound of step a1 is ammonia water, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, ammonium hydroxide (NH 4 OH), ammonium carbonate (NH 4 HCO 3 or (NH 4 ) 2 CO 3 ) , Cobalt-based catalyst for Fischer-Tropsch synthesis, characterized in that one or more mixtures selected from the group consisting of sodium carbonate (NaHCO 3 or Na 2 CO 3 ) and potassium carbonate (KHCO 3 or K 2 CO 3 ). Manufacturing method. 제6항에 있어서, 상기 염기성 화합물은 코발트계 촉매 전구체 또는 코발트계 촉매 전구체와 조촉매의 혼합물의 1 당량에 대하여 0.9 ~ 1.1 당량비 범위로 사용하는 것을 특징으로 하는 피셔-트롭쉬 합성용 코발트계 촉매의 제조방법.The cobalt-based catalyst for Fischer-Tropsch synthesis according to claim 6, wherein the basic compound is used in the range of 0.9 to 1.1 equivalents based on 1 equivalent of the cobalt catalyst precursor or the mixture of the cobalt catalyst precursor and the cocatalyst. Manufacturing method. 제6항에 있어서, 상기 염기성 화합물 수용액은 pH 6 ~ 10 범위인 것을 특징으로 하는 피셔-트롭쉬 합성용 코발트계 촉매의 제조방법.The method of claim 6, wherein the basic compound aqueous solution is in the range of pH 6 to 10 Fischer-Tropsch synthesis method for producing a cobalt-based catalyst. 제2항에 있어서, 상기 단계 a2의 캡핑 분자는 C6 ~ C30인 포화 또는 불포화 유기산 또는 지방산인 것을 특징으로 하는 피셔-트롭쉬 합성용 코발트계 촉매의 제조방법.The method according to claim 2, wherein the capping molecule of step a2 is a C 6 -C 30 saturated or unsaturated organic acid or fatty acid. 제9항에 있어서, 상기 캡핑 분자는 2-에틸헥사노익산(2-ethylhexanoic acid), 스테아린산(stearic acid), 라우린산(lauric acid), 리놀레산(linoleic acid), 팔미틴산(palmitic acid), 올레산(oleic acid), 다중산(polyacid) 및 이들의 유도체로 이루어진 군으로부터 선택되는 1종 또는 2종 이상의 혼합물인 것을 특징으로 하는 피셔-트롭쉬 합성용 코발트계 촉매의 제조방법.The method of claim 9, wherein the capping molecule is 2-ethylhexanoic acid, stearic acid, lauric acid, linoleic acid, palmitic acid, oleic acid (oleic acid), polyacid (polyacid) and a method for producing a cobalt-based catalyst for Fischer-Tropsch synthesis, characterized in that one or two or more selected from the group consisting of derivatives thereof. 제9항에 있어서, 상기 캡핑 분자는 사용되는 전체 금속 1 몰에 대하여 0.1 ~ 2.5 몰비의 범위로 사용하는 것을 특징으로 하는 피셔-트롭쉬 합성용 코발트계 촉매의 제조방법.10. The method of claim 9, wherein the capping molecule is used in a range of 0.1 to 2.5 molar ratios based on 1 mole of the total metal used. 제2항에 있어서, 상기 단계 a2의 비극성 유기 용매는 비점이 70 ℃ 이상이고 녹는점이 30 ℃ 미만인 것을 특징으로 하는 피셔-트롭쉬 합성용 코발트계 촉매의 제조방법.The method of claim 2, wherein the non-polar organic solvent of step a2 has a boiling point of 70 ° C or higher and a melting point of less than 30 ° C. 제12항에 있어서, 상기 비극성 유기 용매는 톨루엔, 자일렌, 파라핀, 1-헥사데칸, 등유, 경유 및 중유로부터 이루어진 군으로부터 선택되는 것을 특징으로 하는 피셔-트롭쉬 합성용 코발트계 촉매의 제조방법.The method of claim 12, wherein the non-polar organic solvent is selected from the group consisting of toluene, xylene, paraffin, 1-hexadecane, kerosene, light oil and heavy oil. . 제12항에 있어서, 상기 비극성 유기 용매는 사용되는 전체 코발트계 촉매 전구체 1 중량비에 대하여 0.2 ~ 10 중량비의 범위로 사용하는 것을 특징으로 하는 피셔-트롭쉬 합성용 코발트계 촉매의 제조방법.The method according to claim 12, wherein the non-polar organic solvent is used in the range of 0.2 to 10 weight ratio based on 1 weight ratio of the total cobalt catalyst precursor to be used. 제2항에 있어서, 상기 단계 a2에서의 캡핑 반응을 위한 가열은 40 ~ 100 ℃ 범위에서 수행되는 것을 특징으로 하는 피셔-트롭쉬 합성용 코발트계 촉매의 제조방법.The method for preparing a cobalt-based catalyst for Fischer-Tropsch synthesis according to claim 2, wherein the heating for the capping reaction in step a2 is performed in a range of 40 to 100 ° C. 제2항에 있어서, 상기 단계 a3에서의 산화코발트 나노입자 결정을 형성하기 위한 가열은 120 ~ 300 ℃ 범위에서 수행되는 것을 특징으로 하는 피셔-트롭쉬 합성용 코발트계 촉매의 제조방법.The method for preparing a cobalt-based catalyst for Fischer-Tropsch synthesis according to claim 2, wherein the heating for forming cobalt oxide nanoparticle crystals in step a3 is performed in a range of 120 to 300 ° C. 제2항에 있어서, 상기 단계 a4에서 사용되는 극성 유기용매는 메탄올, 에탄올, 아세톤 및 아세토나이트릴(acetonitrile)으로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물인 것을 특징으로 하는 피셔-트롭쉬 합성용 코발트계 촉매의 제조방법.3. The Fischer-Tropsch synthesis of claim 2, wherein the polar organic solvent used in step a4 is one or a mixture of two or more selected from the group consisting of methanol, ethanol, acetone and acetonitrile. Process for preparing cobalt based catalyst. 삭제delete 제1항에 있어서, 상기 단계 1에서 제조한 나노입자를 촉매 지지체에 담지하여 촉매를 제조하는 단계(단계 2)는,According to claim 1, The step of preparing a catalyst by supporting the nanoparticles prepared in step 1 on the catalyst support (Step 2), 상기 단계 1에서 제조한 나노입자를 끓는점이 상온 ~ 70 ℃인 비극성 용매에 재분산한 후 촉매지지체에 함침시켜 담지 촉매를 형성하는 단계(단계 b1);Re-dispersing the nanoparticles prepared in step 1 in a nonpolar solvent having a boiling point of room temperature to 70 ° C. and then impregnating the catalyst support to form a supported catalyst (step b1); 상기 단계 b1의 비극성 용매를 상온 ~ 70 ℃에서 제거하고, 담지 촉매를 100 ~ 120 ℃에서 건조하는 단계(단계 b2); 및Removing the nonpolar solvent of step b1 at room temperature to 70 ° C., and drying the supported catalyst at 100 to 120 ° C. (step b2); And 상기 단계 b2에서 건조된 담지 촉매를 소성하여 최종 피셔-트롭쉬 합성용 코발트계 촉매를 제조하는 단계(단계 b3);Calcining the supported catalyst dried in the step b2 to produce a final Fischer-Tropsch synthesis cobalt-based catalyst (step b3); 를 포함하여 이루어지는 것을 특징으로 하는 피셔-트롭쉬 합성용 코발트계 촉매의 제조방법.Fischer-Tropsch synthesis method for producing a cobalt-based catalyst comprising a. 제19항에 있어서, 상기 촉매 지지체는 알루미나, 실리카, 감마-알루미나, 지르코니아, 티타니아 및 실리카-알루미나로부터 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물 또는 이들의 도핑된 지지체인 것을 특징으로 하는 피셔-트롭쉬 합성용 코발트계 촉매의 제조방법.20. The method of claim 19, wherein the catalyst support is a fischer- characterized in that the doped support or one or two or more selected from the group consisting of alumina, silica, gamma-alumina, zirconia, titania and silica-alumina. Process for preparing cobalt based catalyst for Tropsch synthesis. 제19항에 있어서, 상기 단계 b1에서 촉매지지체에 담지되는 나노입자의 함량은 전체 촉매지지체 중량의 1 ~ 60 중량%인 것을 특징으로 하는 피셔-트롭쉬 합성용 코발트계 촉매의 제조방법.20. The method of claim 19, wherein the content of the nanoparticles supported on the catalyst support in step b1 is 1 to 60 wt% of the total weight of the catalyst support. 제19항에 있어서, 상기 단계 b1의 비극성 용매는 헥산, 펜탄, 헵탄, 옥탄, 사이크로헥산, 벤젠, 톨루엔 및 이들의 이성질체로 이루어진 군으로부터 선택되는 1종 또는 2종 이상의 혼합 용액인 것을 특징으로 하는 피셔-트롭쉬 합성용 코발트계 촉매의 제조방법.20. The method of claim 19, wherein the non-polar solvent of step b1 is one or two or more mixed solutions selected from the group consisting of hexane, pentane, heptane, octane, cyclohexane, benzene, toluene and isomers thereof. Fischer-Tropsch synthesis method for producing a cobalt-based catalyst. 제19항에 있어서, 상기 단계 b2에서 건조된 담지 촉매는 300 ~ 700℃ 범위에서 소성되는 것을 특징으로 하는 피셔-트롭쉬 합성용 코발트계 촉매의 제조방법.20. The method of claim 19, wherein the supported catalyst dried in step b2 is calcined in the range of 300 to 700 ° C. 제19항에 있어서, 상기 나노입자를 촉매지지체에 담지시키는 단계 b1은 함침법에 의해 수행되는 것을 특징으로 하는 피셔-트롭쉬 합성용 코발트계 촉매의 제조방법.20. The method for preparing a cobalt-based catalyst for Fischer-Tropsch synthesis according to claim 19, wherein the step b1 of supporting the nanoparticles on the catalyst support is performed by an impregnation method. 제1항 내지 제24항 중 어느 한 항의 제조방법에 의해 제조되는 피셔-트롭쉬 합성용 코발트계 촉매.A cobalt-based catalyst for Fischer-Tropsch synthesis prepared by the process according to any one of claims 1 to 24.
KR1020080041737A 2008-05-06 2008-05-06 Cobalt-based catalyst for Fischer-Tropsch synthesis and method for preparing the same KR101015492B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020080041737A KR101015492B1 (en) 2008-05-06 2008-05-06 Cobalt-based catalyst for Fischer-Tropsch synthesis and method for preparing the same
PCT/KR2009/002329 WO2009136711A2 (en) 2008-05-06 2009-05-01 Cobalt-based catalyst for fischer-tropsch synthesis, and a production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080041737A KR101015492B1 (en) 2008-05-06 2008-05-06 Cobalt-based catalyst for Fischer-Tropsch synthesis and method for preparing the same

Publications (2)

Publication Number Publication Date
KR20090116054A KR20090116054A (en) 2009-11-11
KR101015492B1 true KR101015492B1 (en) 2011-02-22

Family

ID=41265138

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080041737A KR101015492B1 (en) 2008-05-06 2008-05-06 Cobalt-based catalyst for Fischer-Tropsch synthesis and method for preparing the same

Country Status (2)

Country Link
KR (1) KR101015492B1 (en)
WO (1) WO2009136711A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060472A1 (en) 2013-10-22 2015-04-30 한국에너지기술연구원 Cobalt-based catalyst based on metal structure for fischer-tropsch reaction for selective synthetic oil production, preparation method therefor, and selective synthetic oil preparation method using cobalt-based catalyst based on metal structure
KR101578192B1 (en) * 2013-01-30 2015-12-17 한국화학연구원 CoO particle-containing catalyst isolated for fischer-tropsch synthesis and GTL method using the same
KR20190140536A (en) 2018-05-31 2019-12-20 한국화학연구원 Catalytic Structure for Fischer―Tropsch Synthesis

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101412518B1 (en) * 2012-08-29 2014-06-26 한국과학기술연구원 Catalysts for synthesis of liquid hydrocarbons using syngas and preparation methods thereof
CN106938170B (en) * 2017-03-31 2023-02-28 武汉金中石化工程有限公司 Treatment device and treatment method for Fischer-Tropsch synthesis purge gas of cobalt-based fixed bed
CN110876933B (en) * 2018-09-05 2023-03-31 国家能源投资集团有限责任公司 Composite oxide carrier, cobalt-based Fischer-Tropsch synthesis catalyst and preparation method thereof
KR102563207B1 (en) * 2018-10-31 2023-08-02 에스케이이노베이션 주식회사 Cobalt-based Single-atom Dehydrogenation Catalysts and Method for Producing Corresponding Olefins from Paraffins Using the Same
EP3928864A1 (en) 2020-06-25 2021-12-29 SK Innovation Co., Ltd. Cobalt-based single-atom dehydrogenation catalysts having improved thermal stability and method for producing olefins from corresponding paraffins by using the same
CN114377703B (en) * 2020-10-16 2023-09-29 国家能源投资集团有限责任公司 Silicon oxide supported cobalt-based Fischer-Tropsch synthesis catalyst and preparation method and application thereof
CN114717590B (en) * 2022-03-10 2023-08-08 中国科学院海洋研究所 Preparation method of cobalt-based chlorine evolution catalyst electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061306A (en) 1998-08-12 2000-02-29 Inst Fr Petrole Supported catalyst usable in conversion reaction of organic compound
KR20030030728A (en) * 2001-10-12 2003-04-18 주식회사 한국나노기술 Synthesis of Monodisperse and Highly-Crystalline Nanoparticles of Metals, Alloys, Metal Oxides, and Multi-metallic Oxides without a Size-selection Process
US20030211940A1 (en) 2000-06-12 2003-11-13 Sasol Technology (Proprietary) Limited Cobalt catalysts
US20080051474A1 (en) 2004-11-29 2008-02-28 Dogterom Ronald J Catalytic Process For The Conversion Of Co (II)Hydroxide In Co (III)Hydroxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061306A (en) 1998-08-12 2000-02-29 Inst Fr Petrole Supported catalyst usable in conversion reaction of organic compound
US20030211940A1 (en) 2000-06-12 2003-11-13 Sasol Technology (Proprietary) Limited Cobalt catalysts
KR20030030728A (en) * 2001-10-12 2003-04-18 주식회사 한국나노기술 Synthesis of Monodisperse and Highly-Crystalline Nanoparticles of Metals, Alloys, Metal Oxides, and Multi-metallic Oxides without a Size-selection Process
US20080051474A1 (en) 2004-11-29 2008-02-28 Dogterom Ronald J Catalytic Process For The Conversion Of Co (II)Hydroxide In Co (III)Hydroxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101578192B1 (en) * 2013-01-30 2015-12-17 한국화학연구원 CoO particle-containing catalyst isolated for fischer-tropsch synthesis and GTL method using the same
WO2015060472A1 (en) 2013-10-22 2015-04-30 한국에너지기술연구원 Cobalt-based catalyst based on metal structure for fischer-tropsch reaction for selective synthetic oil production, preparation method therefor, and selective synthetic oil preparation method using cobalt-based catalyst based on metal structure
US9586198B2 (en) 2013-10-22 2017-03-07 Korea Institute Of Energy Research Cobalt-based catalyst on metal structure for selective production of synthetic oil via fischer-tropsch reaction, method of preparing the same, and method of selectively producing synthetic oil using the same
KR20190140536A (en) 2018-05-31 2019-12-20 한국화학연구원 Catalytic Structure for Fischer―Tropsch Synthesis

Also Published As

Publication number Publication date
KR20090116054A (en) 2009-11-11
WO2009136711A2 (en) 2009-11-12
WO2009136711A3 (en) 2010-03-04

Similar Documents

Publication Publication Date Title
KR100962181B1 (en) Iron-based catalyst for Fischer-Tropsch synthesis and method for preparing the same
KR101015492B1 (en) Cobalt-based catalyst for Fischer-Tropsch synthesis and method for preparing the same
EP2490989B1 (en) Production of lower olefins from synthesis gas
JP5174890B2 (en) Cobalt / phosphorus-alumina catalyst for Fischer-Tropsch synthesis and method for producing the same
JP5090367B2 (en) Metal nitrate conversion process
US8598066B2 (en) Preparing phosphorus containing alumina support by sol-gel method for fischer-tropsch synthesis and catalyst preparation thereof
EP2740534A1 (en) Core-shell particles with catalytic activity and the proces of their preparation. Method of preparation of Fischer-Tropsch catalyst comprising said paricles.
US8263522B2 (en) Metal nitrate conversion method
MXPA06003360A (en) Titania supports for fisher-tropsch catalysts.
CA3028590A1 (en) A cobalt-containing catalyst composition
KR20140104636A (en) Cobalt catalyst for fischer tropsh synthesis, preparation method of the same, and method of liqiud hydrocarbon using the same
KR101578192B1 (en) CoO particle-containing catalyst isolated for fischer-tropsch synthesis and GTL method using the same
KR100830719B1 (en) Synthetic methods for liquid hydrocarbons from syngas over alumina-silica based catalysts and preparation methods thereof
KR102114538B1 (en) Cobalt-Iron Hybrid Catalyst Having Ordered Mesoporous Channels As a Main Framework for Fischer-Tropsch Synthesis, a Method for Preparing the Same, and a Method for Preparing Hydrocarbons Using the Same
Zabidi Synthesis of nanocatalysts via reverse microemulsion route for Fischer-Tropsch reactions
WO2011027918A1 (en) Iron-based catalyst for fischer-tropsch synthesis and a production method therefor
KR100991012B1 (en) Catalyst for synthesizing filamentous carbons at low temperature and preparation methods thereof
AU2019239617B2 (en) A supported cobalt-containing Fischer-Tropsch catalyst, process for preparing the same and uses thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
N237 Change of applicant [patent]: notification of change of applicant and registration of partial transfer of share of right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140211

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150211

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160202

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee