KR100996189B1 - Autocatalytic-type electroless Ni-P-Co plating solution and method for producing thereof - Google Patents

Autocatalytic-type electroless Ni-P-Co plating solution and method for producing thereof Download PDF

Info

Publication number
KR100996189B1
KR100996189B1 KR1020080001476A KR20080001476A KR100996189B1 KR 100996189 B1 KR100996189 B1 KR 100996189B1 KR 1020080001476 A KR1020080001476 A KR 1020080001476A KR 20080001476 A KR20080001476 A KR 20080001476A KR 100996189 B1 KR100996189 B1 KR 100996189B1
Authority
KR
South Korea
Prior art keywords
plating
plating solution
nickel
cobalt
phosphorus
Prior art date
Application number
KR1020080001476A
Other languages
Korean (ko)
Other versions
KR20090075571A (en
Inventor
이홍기
전준미
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020080001476A priority Critical patent/KR100996189B1/en
Publication of KR20090075571A publication Critical patent/KR20090075571A/en
Application granted granted Critical
Publication of KR100996189B1 publication Critical patent/KR100996189B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76874Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for electroless plating

Abstract

본 발명은 무전해 니켈-인-코발트(Ni-P-Co) 도금액에 관한 것으로, 상세하게는 니켈 염으로 황산 니켈, 환원제로 차아인산나트륨 및 코발트염으로 황산코발트를 포함하는, 활성화 처리 공정 없이 자기촉매 반응에 의하여 도금 가능한 선택적 무전해 니켈-인-코발트(Ni-P-Co) 삼원합금 도금액 및 이를 이용한 도금 방법에 관한 것이다.The present invention relates to an electroless nickel-phosphorus cobalt (Ni-P-Co) plating solution, in particular, without an activation treatment process comprising nickel sulfate as the nickel salt, sodium hypophosphite as the reducing agent and cobalt sulfate as the cobalt salt. The present invention relates to a selective electroless nickel-phosphorus cobalt (Ni-P-Co) ternary alloy plating solution capable of plating by autocatalytic reaction and a plating method using the same.

본 발명에 따른 도금액을 사용하여 구리 배선 등의 다양한 반도체 소재를 도금하는 경우, 환원력이 높은 보란을 환원제로 사용한 니켈-보란-코발트 도금액의 단점인 높은 응력에 의한 밀착성이 저하된 피막이 제조되는 단점을 개선하였을 뿐만 아니라, 종래 필수적으로 요구되는 팔라듐과 같은 귀금속을 이용한 활성화 처리 공정을 거칠 필요 없이 자기촉매반응을 이용하여 직접 환원되어 도금이 가능하기 때문에, 활성화 전처리 공정에서 발생할 수 있는 오염 문제를 개선할 수 있다는 뛰어난 장점을 가진다.In the case of plating various semiconductor materials such as copper wiring using the plating solution according to the present invention, a disadvantage in that a film having reduced adhesion due to high stress, which is a disadvantage of the nickel-borane-cobalt plating solution using borane having high reducing power as a reducing agent, is produced. In addition to the improvement, the plating can be directly reduced using autocatalytic reaction without the need for the activating treatment process using a precious metal such as palladium. It has an excellent advantage.

니켈-인-코발트(Ni-P-Co) 도금액, 자기 촉매, 활성화 공정 Nickel-P-Co Plating Solution, Self Catalysis, Activation Process

Description

자기 촉매형 무전해 니켈-인-코발트 도금액 및 그의 제조방법{Autocatalytic-type electroless Ni-P-Co plating solution and method for producing thereof} Autocatalytic-type electroless Ni-P-Co plating solution and method for producing etc.

본 발명은 자기 촉매형 무전해 도금액에 관한 것으로, 보다 자세하게는 구리 소지 위에 활성화 처리 없이 자기촉매 반응에 의하여 도금 가능한 선택적 무전해 니켈-인-코발트(Ni-P-Co) 삼원합금 도금액에 관한 것이다.The present invention relates to a self-catalyzed electroless plating solution, and more particularly, to a selective electroless nickel-in-cobalt (Ni-P-Co) tertiary alloy plating solution that can be plated by autocatalytic reaction without activation on a copper substrate. .

반도체 및 전자부품의 고집적화에 따라 금속배선의 선폭이 미세화되고 전류밀도는 급격히 증가하는 추세에 있어, 이로 인한 전자영동(Electro migration)현상에 대한 문제가 대두 되고 있다. Due to the high integration of semiconductors and electronic components, the line width of metal wirings is becoming finer and the current density is rapidly increasing, which causes a problem of electromigration phenomenon.

반도체 배선재료에서는 하드마스크(hardmask) 타입의 SiCN 및 SiN 등으로 매우 얇은 피복층(Capping layer)을 형성하게 하여 이런 문제를 해결하기도 하나, 향후 좁아지는 선폭으로 인해 층간 전기적 저항이 증가하는 것을 막고, 절연체의 low-k값을 더욱 낮출 수 있으면서, EM(electro migration) 혹은 SM(stress migration)으로 인한 힐락의 발생을 기계적으로 최대한 억제할 수 있는 무전해 금 속 피복층 형성기술을 사용하는 추세에 있다.In semiconductor wiring materials, this problem can be solved by forming a very thin capping layer using hard mask-type SiCN and SiN, but it prevents an increase in the interlayer electrical resistance due to the narrower line width in the future. The trend is to use an electroless metal cladding technology that can further reduce the low-k value of, while mechanically suppressing the occurrence of hillocks due to EM (stress migration) or stress migration (SM).

EM 현상을 억제시키는 특성을 향상시킬 수 있는 무전해 합금 피복층 중 니켈-보란 합금은 상기 합금의 환원력이 강하기 때문에 구리 소지 위에 니켈 합금 도금을 할 경우 활성화 처리 없이 구리 소지 위에 직접 도금이 가능하나, 독성이 강하고 안정성에 좋지 않으며 도금된 피막이 높은 응력으로 인해 깨지는 특성을 가지고 있다. 따라서, 이러한 단점을 개선하기 위하여, 차아인산나트륨을 환원제로 한 도금액을 개발하였는데, 이와 같이 차아인산 나트륨을 이용할 경우 환원력이 보란화합물에 비해 떨어지기 때문에 구리소재에 활성화 처리를 하는 전처리 공정이 필요하다. Nickel-borane alloys in the electroless alloy coating layer that can improve the characteristics of suppressing EM phenomena have strong reducing power of the alloys. Therefore, when nickel alloy plating on copper base is possible, plating is possible directly on copper base without activation treatment. This strong, poor stability and the plated coating has the property of breaking due to high stress. Therefore, in order to remedy these disadvantages, a plating solution using sodium hypophosphite as a reducing agent has been developed. Thus, when sodium hypophosphite is used, a pretreatment process for activating a copper material is required because the reducing power is lower than that of borane compounds. .

즉, 구리는 무전해 니켈 반응의 촉매로써 작용하지 않으므로 화학적 활성화 처리가 선행되어야 하는데, 이러한 무전해 표면금속피복층(Surface Metal capping Layer) 형성기술은 전처리 공정에서 귀금속 촉매 활성화처리에 의해 배선 외의 다른 부위, 즉 스페이스(Space)에 잔유물을 남겨 표면을 오염시키거나, 국부적으로 코팅이 되기도 하여 오염문제를 야기하게 한다. In other words, copper does not act as a catalyst for the electroless nickel reaction, so a chemical activation process must be preceded. Such a surface metal capping layer formation technique is a site other than wiring by a precious metal catalyst activation process in a pretreatment process. That is, the residue is left in the space to contaminate the surface, or may be locally coated to cause contamination problems.

따라서, 미세 선폭의 배선 위에 선택적으로 피복층을 형성하는, 전처리 공정을 배제한 무전해 합금도금기술의 개발이 시장에서 요구되고 있다. 이러한 기술을 소위 자기 정렬(self-aligned) 무전해 도금법 이라 하며 45nm급의 초미세 구조에서도 성공적으로 피복층을 형성시킬 수 있다. Therefore, there is a need in the market for the development of an electroless alloy plating technique that eliminates the pretreatment process, which selectively forms a coating layer on a fine line width wiring. This technique is called self-aligned electroless plating, and it is possible to form a coating layer successfully even at a 45nm ultrafine structure.

이와 같은 배경 하에, 본 발명자는 EM 특성향상 및 저항 감소를 위하여 선택적으로 금속표면소재에 무전해 피복층을 형성시키기 위한 방법으로 환원반응이 강하나 독성 및 안정성에 문제점을 가지고 있는 보란 화합물을 환원제로 사용하는 니켈-붕소-코발트(Ni-B-Co) 합금대신 니켈-인-코발트(Ni-P-Co) 삼원합금 도금액을 개발하였으며, 이러한 도금액을 사용하는 경우 팔라듐 등의 귀금속 촉매 활성화 전처리 공정을 생략하고 직접 구리 표면에 선택적으로 도금하여 우수한 품질의 도금된 소재를 얻을 수 있음을 확인하여 본 발명을 완성하였다. Under this background, the present inventors use borane compounds having strong reduction reactions but problems in toxicity and stability as reducing agents in order to selectively form an electroless coating layer on a metal surface material for improving EM properties and decreasing resistance. Instead of nickel-boron-cobalt (Ni-B-Co) alloys, we developed nickel-in-cobalt (Ni-P-Co) ternary alloy plating solutions, and in case of using such plating solutions, the pretreatment process for noble metal catalyst activation such as palladium is omitted. The present invention was completed by confirming that a plated material of excellent quality could be obtained by selectively plating a copper surface directly.

본 발명의 목적은 귀금속 촉매 활성화 전처리 공정을 생략하고 직접 구리 표면에 선택적으로 도금이 가능한 무전해 니켈-인-코발트 도금액을 제공하는 것이다.It is an object of the present invention to provide an electroless nickel- phosphorus-cobalt plating solution which is capable of selectively plating a copper surface directly, omitting the precious metal catalyst activation pretreatment process.

본 발명의 또 다른 목적은 상기 도금액을 이용하여 도금하는 방법을 제공하는 것이다.Still another object of the present invention is to provide a method for plating using the plating solution.

상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 니켈염으로 황산니켈, 환원제로 차아황산나트륨 및 코발트염으로서 황산코발트를 포함하는 무전해 니켈-인-코발트 도금액에 관한 것이다.As one aspect for achieving the above object, the present invention relates to an electroless nickel- phosphorus-cobalt plating solution containing nickel sulfate as the nickel salt, sodium hyposulfite as the reducing agent and cobalt sulfate as the cobalt salt.

상기 니켈염으로 사용되는 황산니켈은 22 내지 30g/l를 사용하는 것이 바람직하다. 만약 황산니켈의 농도가 22g/l 이하이면 도금 속도가 저하되고, 30g/l 이상이면 도금 속도는 증가하지만 도금액의 분해가 일어나기 쉽다.Nickel sulfate used as the nickel salt is preferably used 22 to 30g / l. If the concentration of nickel sulfate is 22 g / l or less, the plating rate is lowered. If it is 30 g / l or more, the plating rate is increased but decomposition of the plating liquid is likely to occur.

또한, 상기 환원제는 니켈 이온을 환원시키기 위한 것으로, 일반적으로 환원제로 사용될 수 있는 물질로는 차아인산나트륨, 수소화붕소나트륨, 디메틸아민보란, 디에틸아민보란 및 히드라진 등이 있으나 본 발명에서는 차아인산나트륨을 사용한다. 바람직한 일 양태에서, 차아인산나트륨은 20 내지 50g/l를 사용한다.In addition, the reducing agent is for reducing nickel ions, and generally, materials which may be used as reducing agents include sodium hypophosphite, sodium borohydride, dimethylamine borane, diethylamine borane and hydrazine, but in the present invention, sodium hypophosphite Use In a preferred embodiment, sodium hypophosphite is used at 20-50 g / l.

또한, 본 발명에서는 코발트염으로서 황산코발트를 사용하며, 5 내지 10g/l 를 사용하는 것이 바람직하다.In the present invention, cobalt sulfate is used as the cobalt salt, and 5 to 10 g / l is preferably used.

바람직한 일 양태에서, 본 발명의 도금액은 착화제를 추가적으로 포함할 수 있다. 착화제란 도금속도를 조절하며, 도금이 자발적으로 분해되는 것을 방지하는 것으로, 본 발명에서는 아디핀산, 락트산, 말린산 및 이들의 둘 이상의 혼합물 중에서 선택되는 물질을 착화제로서 포함한다. 이들 착화제의 사용량은 아디핀산의 경우 5 내지 20g/l이고, 락트산의 경우 5 내지 25g/l이다. In a preferred embodiment, the plating liquid of the present invention may further include a complexing agent. The complexing agent controls the plating speed and prevents spontaneous decomposition of the plating. In the present invention, a complexing agent includes a material selected from adipic acid, lactic acid, dried acid and a mixture of two or more thereof. The amount of these complexing agents used is 5-20 g / l for adipic acid and 5-25 g / l for lactic acid.

또 다른 바람직한 일 양태에서, 본 발명의 도금액은 이온화된 팔라듐을 추가적으로 포함할 수 있다. 상기 이온화된 팔라듐은 용매 100ml 당 1g 내지 5g으로 포함되는 것이 바람직하다. 또한, 본 발명에서 촉매로서 팔라듐을 첨가시에 염화 팔라듐을 사용할 수 있으며, 이때 염화팔라듐을 도금액에 직접 첨가할 경우 도금액이 자기 분해되기 쉬우므로 상기 염화팔라듐을 용매에 용해시킨 후 이온 형태로 도금액에 첨가한다. 구체적인 일 실시예에서, 본 발명자는 1g의 염화팔라듐을 100ml의 증류수에 용해시킨 후 도금액에 첨가하였다.In another preferred embodiment, the plating liquid of the present invention may further include ionized palladium. The ionized palladium is preferably contained in 1g to 5g per 100ml of solvent. In addition, palladium chloride may be used when palladium is added as a catalyst in the present invention. In this case, when palladium chloride is directly added to the plating liquid, the plating liquid is liable to self-decompose, so that the palladium chloride is dissolved in a solvent and then added to the plating liquid in ionic form. Add. In one specific embodiment, the inventors dissolved 1 g of palladium chloride in 100 ml of distilled water and added it to the plating solution.

본 발명에 따른 니켈-인-코발트 도금액은 암모니아수로 적정하였을 때 약 pH 5.5 내지 6.5를 나타내고, 도금 시 80 내지 95℃의 온도에서 작용하며, 자기 분해 없이 안정하다. The nickel-phosphorus cobalt plating liquid according to the present invention exhibits a pH of about 5.5 to 6.5 when titrated with ammonia water, and functions at a temperature of 80 to 95 ° C. during plating, and is stable without self decomposition.

또한 본 발명에 따른 도금액을 사용하여 도금을 하는 경우, 팔라듐 활성화 처리가 없이도 직접 도금될 수 있어 구리 소지 등의 위에 미세한 결정립을 형성하 는 것이 가능하게 하는바, 본 발명의 니켈-인-코발트 도금액은 환원력이 높은 보란을 환원제로 사용한 니켈-보란-코발트 도금액의 단점인 높은 응력에 의한 밀착성이 저하된 피막이 제조되는 단점을 개선하였을 뿐만 아니라, 종래 필수적으로 요구되는 팔라듐과 같은 귀금속을 이용한 활성화 처리 공정을 거칠 필요 없이 자기촉매반응을 이용하여 직접 환원되어 도금이 가능하기 때문에, 활성화 전처리 공정에서 발생할 수 있는 오염 문제를 개선할 수 있다는 뛰어난 장점을 가진다.In addition, when plating using the plating solution according to the present invention, it can be plated directly without a palladium activation treatment to enable the formation of fine crystal grains on a copper base, etc., the nickel-in-cobalt plating solution of the present invention In addition to improving the disadvantage that a film having poor adhesion due to high stress, which is a disadvantage of a nickel-borane-cobalt plating solution using a borane having a high reducing power, was used, an activation treatment process using a precious metal such as palladium, which is required in the past, is required. Since it is possible to directly reduce the plating using the autocatalytic reaction without going through, it is possible to improve the contamination problem that may occur in the activation pretreatment process.

본 발명의 니켈-인-코발트 도금액은 상기 구성 요소 외에, 필요에 따라 도금 피막의 광택을 위한 광택제 및 pH 조절제와 같은 첨가제 등을 포함할 수 있다.The nickel-phosphorus cobalt plating liquid of the present invention may include, in addition to the above components, additives such as a brightening agent and a pH adjusting agent for gloss of the plating film, if necessary.

또 다른 하나의 양태에서, 본 발명은 상기 도금액을 이용한 도금 방법에 관한 것이다. 본 발명에 따른 도금 방법은 공지된 차아인산나트륨을 사용하는 무전해 니켈 도금욕의 공정을 사용할 수 있으나, 이들 공정 중에서 팔라듐 등의 귀금속을 이용한 활성화 전처리 공정은 제거되는 것을 특징으로 한다.In another aspect, the present invention relates to a plating method using the plating liquid. The plating method according to the present invention may use a process of an electroless nickel plating bath using known sodium hypophosphite, but an activation pretreatment process using a noble metal such as palladium is removed from these processes.

이하, 실시예에 의해 본 발명의 내용을 보다 상세하게 설명한다. 그러나, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 본 발명은 이러한 실시예에 의해 제한되는 것은 아니다.Hereinafter, the content of the present invention will be described in more detail with reference to Examples. However, the following examples are merely provided to more easily understand the present invention, and the present invention is not limited by these examples.

실시예Example : 본 발명에 따른  : According to the present invention 무전해Electroless 니켈-인-코발트 도금액의 제조 및 기존 도금액들과의 도금 성능 비교 Preparation of Nickel-In-Cobalt Plating Solution and Comparison of Plating Performance with Conventional Plating Solutions

(1) 본 발명에 따른 (1) according to the present invention 무전해Electroless 니켈-인-코발트 도금액의 제조 Preparation of Nickel-In-Cobalt Plating Solution

본 발명에 따른 무전해 니켈 도금액은 니켈염으로 황산니켈 22 내지 30g/l, 환원제로 차아인산나트륨을 20 내지 50g/l, 및 코발트 염으로 황산코발트 5 내지 10g/l, 착화제로 아디핀산 5 내지 20g/l 및 락트산 5 내지 25g/l을 혼합하여 무전해 니켈 도금용액이 자발적으로 분해되는 것을 방지하고 선택적 표면에서만 환원 반응이 일어나도록 반응을 조절하고자 하였다. 또한 도금 피막의 광택 및 높은 조도를 위해 첨가제(본 실시예에서는 탈륨)를 일정량 혼합하였다. 뿐만 아니라, 도금액에서 자기 촉매 반응을 일으키기 위한 촉매로서 팔라듐을 염화팔라듐의 형태로서 일정량 도금액에 첨가하여 도금액을 제조하였으며, 이때 염화팔라듐을 도금액에 직접 첨가할 경우 도금액이 자기 분해되기 쉬우므로 1g의 염화팔라듐을 100ml의 증류수에 용해시켜 이온 형태로 만든 후 도금액에 첨가하였다. 이때 도금액의 온도는 75 내지 90℃로 조절하였으며, 도금액의 pH는 5.0 내지 7.0으로 일정하게 유지시켰다. 상기 무전해 니켈-인-코발트 도금액의 조성 및 공정 조건을 표 1에 나타내었다.The electroless nickel plating solution according to the present invention includes nickel sulfate 22-30 g / l as a nickel salt, 20-50 g / l sodium hypophosphite as a reducing agent, cobalt sulfate 5-10 g / l as a cobalt salt, and adipic acid 5-5 as a complexing agent. 20 g / l and 5 to 25 g / l lactic acid were mixed to prevent spontaneous decomposition of the electroless nickel plating solution and to control the reaction so that a reduction reaction occurred only on selective surfaces. In addition, a certain amount of additives (thallium in this embodiment) was mixed for the gloss and high roughness of the plating film. In addition, a plating solution was prepared by adding palladium as a catalyst for causing a self-catalytic reaction in the plating solution to a plating solution in the form of palladium chloride, and when palladium chloride was directly added to the plating solution, the plating solution was easily decomposed by 1 g of chloride. Palladium was dissolved in 100 ml of distilled water to make an ionic form and then added to the plating solution. At this time, the temperature of the plating liquid was adjusted to 75 to 90 ℃, the pH of the plating liquid was kept constant at 5.0 to 7.0. Table 1 shows the composition and process conditions of the electroless nickel-phosphorus-cobalt plating solution.

도금액 Plating amount 금속염Metal salt 황산니켈 (NiSO4)Nickel Sulfate (NiSO 4 ) 22~30g/ℓ22 ~ 30g / ℓ 황산코발트 (CoSO4)Cobalt Sulfate (CoSO 4 ) 5~10g/ℓ5 ~ 10g / ℓ 환원제reducing agent 차아인산나트륨 (NaH2PO2)Sodium hypophosphite (NaH 2 PO 2 ) 25~50g/ℓ25-50g / ℓ 착화제Complexing agent 아디핀산 (Adipic acid)Adipic acid 5~20g/ℓ5 ~ 20g / ℓ 락트산 (Lactic acid)Lactic acid 5~25g/ℓ5 ~ 25g / ℓ 첨가제additive TlTl 0.5~5ppm0.5 ~ 5ppm 촉매catalyst PdPd 0.1~0.5ppm0.1 ~ 0.5ppm 온도Temperature 75~90℃75 ~ 90 ℃ pHpH 5.0~7.05.0 ~ 7.0

(2) 본 발명에 따른 도금액 및 기존 도금액의 도금 성능 비교(2) Comparison of Plating Performance of Plating Solution and Existing Plating Solution According to the Present Invention

본 발명에 따른 도금액과 기존 시판 도금액을 비롯한 다양한 도금액과의 도금 성능을 살펴보기 위하여 본 발명의 도금액 및 기존 시판 중인 니켈-보란 도금액 등을 사용하여 팔라듐 활성화 처리를 하거나 또는 이를 배제하여 하기와 같은 도금 공정을 실시하였다.In order to examine the plating performance of the plating solution according to the present invention and various plating solutions including the conventional commercial plating solution, palladium activation treatment using the plating solution of the present invention and the existing commercially available nickel-borane plating solution or the like is excluded or the plating is performed as follows. The process was carried out.

1. 산탈지 - 40 내지 50℃, 3 내지 5분1.Skim degreasing-40 to 50 ℃, 3 to 5 minutes

2. 소프트 에칭 - 20 내지 30℃, 1 내지 2분2. Soft etching-20-30 degreeC, 1-2 minutes

3. 침적탈지 - 20 내지 30℃, 30 내지 60초3. Degreasing-20 to 30 ℃, 30 to 60 seconds

4. 산탈지 - 25 내지 35℃, 1 내지 3분4. Degreasing-25-35 ° C., 1-3 minutes

(각 공정 사이에서 증류수(순수)로 두 번의 세정 공정을 거쳤다.(Two washing processes were performed with distilled water (pure water) between each process.

이러한 도금 공정에 의해 수득한 도금물에 대하여 하기와 같이 평가하여 표 2에 나타내었다.The plating obtained by this plating process was evaluated as follows and shown in Table 2.

표 2의 1은 시판중인 Ni-B 도금액을 이용하여 얻어진 도금 두께 및 도금 피막에 석출된 보란의 석출량을 나타내었으며 2번은 시판중인 Ni-B 도금액에 코발트 염으로 황산코발트를 5~10g/ℓ 첨가한 용액을 이용하여 얻은 도금두께 및 석출된 보란과 코발트의 함량을 나타낸 것이다. 또한 표 2의 3번은 표 1에 나타낸 도금액 조성 중 코발트 염으로 첨가된 황산 코발트를 첨가하지 않고 합성한 도금액을 이용하여 얻은 결과를 나타낸 것이며 표 2의 4번의 경우 표 1의 도금액 조성을 이용하여 얻은 도금 두께 및 도금 피막에 석출된 인 및 코발트의 석출량을 나타낸 것이다.Table 1 shows the plating thickness obtained by using a commercially available Ni-B plating solution and the amount of borane deposited on the coating film, and the second time was 5-10 g / l cobalt sulfate as a cobalt salt in the commercial Ni-B plating solution. The plating thickness obtained using the added solution and the content of precipitated borane and cobalt are shown. In addition, No. 3 in Table 2 shows the results obtained by using a plating solution synthesized without adding cobalt sulfate added as a cobalt salt in the plating solution compositions shown in Table 1, and in case of No. 4 in Table 2, plating obtained using the plating solution composition in Table 1 It shows thickness and the amount of precipitated phosphorus and cobalt deposited on the plating film.

1.(Ni-B)1. (Ni-B) 2.(Ni-B-Co)2. (Ni-B-Co) 3.(Ni-P)3. (Ni-P) 4.(Ni-P-Co)4. (Ni-P-Co) 도금속도(㎛/h)Plating speed (㎛ / h) 8.38.3 10.710.7 2727 32.832.8 P or B %(wt.%)P or B% (wt.%) 3.83.8 4.54.5 5.25.2 6.756.75 Co %(wt.%)Co% (wt.%) 3.43.4 2.2 2.2

석출된 도금두께는 도금된 시편의 단면을 FE-SEM(전계 방사 주사현미경, Field emission-scanning electomicroscope)을 이용하여 관찰하였으며 도금된 피막의 형상 또한 FE-SEM을 이용하여 ×5,000배 확대하여 관찰하였으며, 이를 도 1 내지 도 8에 나타내었다.The deposited plating thickness was observed by FE-SEM (Field emission-scanning electomicroscope) and the plated film was also magnified × 5,000 times by FE-SEM. This is illustrated in FIGS. 1 to 8.

도 1의 경우 시판되고 있는 니켈-보란 도금액을 이용하여 30분 동안 도금하여 얻어진 도금 피막을 나타낸 것이며, SEM 측정결과 니켈-보란의 결정입자가 도금된 피막에 형성된 것을 관찰할 수 있었으며 이 도금액에 황산 코발트를 첨가하여 얻은 니켈-보란-코발트 삼원합금 도금 피막을 관찰한 결과에서도 이와 유사한 도금 피막을 관찰할 수 있었다.1 shows a plated film obtained by plating for 30 minutes using a commercially available nickel-borane plating solution. As a result of SEM measurement, it was observed that crystal particles of nickel-borane were formed on the plated film. A similar plating film was also observed in the nickel-borane-cobalt tertiary alloy plating film obtained by adding cobalt.

도 3의 경우 무전해 니켈-인(Ni-P) 합금액을 이용하여 얻어진 피막의 SEM사진으로 팔라듐 활성화 처리 없이 도금액에 직접 팔라듐 이온을 첨가하여 도금할 경우 니켈-보란 합금액과는 다르게 결정립이 거의 형성되지 않음을 관찰할 수 있었으며 결정립이 형성되더라도 그 결정의 크기가 미세한 것을 확인할 수 있었다.In the case of Figure 3 is a SEM image of the film obtained by using an electroless nickel-phosphorus (Ni-P) alloy liquid when the palladium ions are added directly to the plating solution without the palladium activation treatment, the crystal grains are different from the nickel-borane alloy liquid Almost no formation was observed, and even though the grains were formed, the size of the crystals was found to be fine.

도 4는 무전해 니켈-인 합금액에 황산코발트를 첨가하여 표 1의 조성으로 제조한 삼원합금 도금액으로부터 얻어진 도금 피막의 SEM 사진을 나타내었으며 이 실험에서도 팔라듐 활성화 처리 없이 도금액에 직접 팔라듐 이온을 첨가하여 선택적으로 니켈-인-코발트 삼원합금 도금이 되게 하였으며 이 실험결과에서도 도금 피막에 결정립이 거의 형성되지 않았다. FIG. 4 shows a SEM photograph of a plating film obtained from a three-alloy plating solution prepared by adding cobalt sulfate to an electroless nickel-phosphorus alloy solution. In this experiment, palladium ions were added directly to the plating solution without palladium activation. The nickel-phosphorus cobalt ternary alloy was selectively plated, and crystal grains were hardly formed in the plating film.

도 5는 팔라듐 처리 후 무전해 니켈-인 도금한 시편으로 구리가 노출된 부분에 니켈-인 도금이 되어 있는 것을 관찰할 수 있었다.FIG. 5 shows that the electroless nickel-phosphorus plated specimens were subjected to nickel-phosphorus plating on the exposed portions of copper after palladium treatment.

도 6은 팔라듐 처리 후 무전해 니켈-인 도금한 시편 중 구리가 노출되어 있지 않은 부분으로 도금이 되지 않았어야 하나 팔라듐 활성화 처리를 할 경우 전처리 과정에서 팔라듐이 모두 제거되지 않아 이 부분에도 니켈이 도금되었다.6 shows that the electroless nickel-phosphorus plated specimens after palladium treatment should not be plated with no exposed copper. However, when palladium activation was performed, all palladium was not removed during the pretreatment process. .

도 7은 본 발명의 도금액을 이용하여 얻은 도금 시편으로 팔라듐 활성화 처리를 하지 않고 무전해 니켈 도금을 하였을 경우를 나타낸 것으로 구리 노출 부분에만 니켈-인 도금이 된 것을 관찰할 수 있었다.FIG. 7 shows a case where electroless nickel plating was performed without a palladium activation treatment with a plating sample obtained by using the plating solution of the present invention, and it was observed that nickel-phosphorus plating was performed only on the copper exposed portion.

도 8은 팔라듐 활성화 처리를 하지 않고 무전해 니켈 도금을 수행한 경우 중 구리가 노출되지 않은 부분을 ×10,000배 확대한 도면으로 도금이 되지 않아 소재 부분이 나타났다.FIG. 8 is a view in which the copper is not exposed in the case where electroless nickel plating is performed without the palladium activation treatment, and the material part is not plated by a magnification of 10,000 ×.

본 발명에 따른 도금액을 사용하여 구리 배선 등의 다양한 반도체 소재를 도금하는 경우, 환원력이 높은 보란을 환원제로 사용한 니켈-보란-코발트 도금액의 단점인 높은 응력에 의한 밀착성이 저하된 피막이 제조되는 단점을 개선하였을 뿐만 아니라, 종래 필수적으로 요구되는 팔라듐과 같은 귀금속을 이용한 활성화 처리 공정을 거칠 필요 없이 자기촉매반응을 이용하여 직접 환원되어 도금이 가능하기 때문에, 활성화 전처리 공정에서 발생할 수 있는 오염 문제를 개선할 수 있다는 뛰어난 장점을 가진다.In the case of plating various semiconductor materials such as copper wiring using the plating solution according to the present invention, a disadvantage in that a film having reduced adhesion due to high stress, which is a disadvantage of the nickel-borane-cobalt plating solution using borane having high reducing power as a reducing agent, is produced. In addition to the improvement, the plating can be directly reduced using autocatalytic reaction without the need for the activating treatment process using a precious metal such as palladium. It has an excellent advantage.

도 1은 기존의 시판중인 Ni-B 도금액을 이용하여 팔라듐 활성화 처리 없이 도금하고자 하는 소지에 선택적으로 도금된 피막을 관찰한 도이다.FIG. 1 is a view illustrating a film selectively plated on a substrate to be plated without a palladium activation process using a conventional commercial Ni-B plating solution.

도 2는 시판중인 Ni-B 도금액에 황산코발트를 5~10g/ℓ첨가하여 팔라듐 활성화 처리 없이 얻어진 도금피막의 SEM(Scanning electron microscope) 사진이다.FIG. 2 is a scanning electron microscope (SEM) photograph of a plating film obtained by adding 5-10 g / l of cobalt sulfate to a commercial Ni-B plating solution without a palladium activation treatment.

도 3은 개발된 무전해 니켈 도금액, 즉 Ni-P 도금액을 이용하여 팔라듐 활성화 처리 없이 구리 소지 위에 도금된 피막의 SEM 사진이다.FIG. 3 is an SEM image of a coating plated on a copper substrate without a palladium activation treatment using the developed electroless nickel plating solution, that is, Ni-P plating solution.

도 4는 개발된 무전해 니켈 도금액에 코발트 염으로 황산 코발트를 5~10g/ℓ혼합하여 팔라듐 활성화 처리 없이 도금된 피막의 SEM 사진이다.FIG. 4 is a SEM photograph of the coating film without palladium activation by mixing 5-10 g / l of cobalt sulfate with a cobalt salt in the developed electroless nickel plating solution.

도 5는 무전해 니켈 도금액을 이용하여 팔라듐 활성화 처리 후 도금하여 얻은 SEM 사진이다.5 is a SEM photograph obtained by plating after palladium activation using an electroless nickel plating solution.

도 6은 도 5를 확대한 도면으로서, 구리가 노출되지 않은 부분이다.FIG. 6 is an enlarged view of FIG. 5, where copper is not exposed.

도 7은 개발된 무전해 니켈 도금액을 이용하여 팔라듐 처리 없이 도금하여 얻은 SEM 사진이다.7 is a SEM photograph obtained by plating without palladium treatment using the developed electroless nickel plating solution.

도 8은 도 7을 확대한 도면으로서, 구리가 노출되지 않은 부분이다. FIG. 8 is an enlarged view of FIG. 7 and is a portion where copper is not exposed.

Claims (6)

무전해 니켈-인-코발트 도금액에 있어서, In the electroless nickel- phosphorus-cobalt plating solution, 니켈 염으로 26 내지 30g/l의 농도 범위의 황산 니켈, 환원제로 차아인산나트륨 및 코발트 염으로 황산코발트를 포함하며, 그리고 착화제로서 아디핀산 및 락트산을 포함하며, Nickel sulfate in a concentration range of 26-30 g / l as a nickel salt, sodium hypophosphite as a reducing agent and cobalt sulfate as a cobalt salt, and adipic acid and lactic acid as complexing agents, 상기 무전해 니켈-인-코발트 도금액은 이온 형태의 팔라듐을 더 포함하며, The electroless nickel-phosphorus-cobalt plating solution further includes palladium in ionic form, 상기 이온 형태의 팔라듐은 0.1 내지 0.5ppm 첨가되는 것을 특징으로 하는, Palladium in the ionic form is characterized in that the addition of 0.1 to 0.5ppm, 무전해 니켈-인-코발트 도금액.Electroless nickel-phosphorus-cobalt plating solution. 제1항에 있어서, The method of claim 1, 상기 차아인산나트륨은 20 내지 50g/l 및 상기 황산코발트는 5 내지 10g/l로 포함되며, 상기 아디핀산은 5 내지 20g/l 및 상기 락트산은 5 내지 25g/l로 포함되는 것을 특징으로 하는, The sodium hypophosphite is 20 to 50g / l and the cobalt sulfate is contained in 5 to 10g / l, the adipic acid is characterized in that 5 to 20g / l and the lactic acid is contained in 5 to 25g / l, 무전해 니켈-인-코발트 도금액.Electroless nickel-phosphorus-cobalt plating solution. 제2항에 있어서, The method of claim 2, 상기 무전해 니켈-인-코발트 도금액은 탈륨(Tl)을 0.5 내지 5ppm 포함하는 것을 특징으로 하는, The electroless nickel-phosphorus-cobalt plating solution is characterized in that it contains 0.5 to 5 ppm of thallium (Tl), 무전해 니켈-인-코발트 도금액.Electroless nickel-phosphorus-cobalt plating solution. 제1항 내지 제3항 중 어느 한 항에 따른 무전해 니켈-인-코발트 도금액을 사용한, 팔라듐 활성화 처리과정이 없는 것을 특징으로 하는,Characterized in that there is no palladium activation process using the electroless nickel-phosphorus cobalt plating liquid according to any one of claims 1 to 3, 무전해 도금 공정.Electroless Plating Process. 제4항에 있어서, The method of claim 4, wherein 상기 무전해 도금 공정은 5.0 내지 7.0의 pH 범위 및 75 내지 90℃의 온도 범위에서 수행되는 것을 특징으로 하는,The electroless plating process is characterized in that carried out at a pH range of 5.0 to 7.0 and a temperature range of 75 to 90 ℃, 무전해 도금 공정.Electroless Plating Process. 삭제delete
KR1020080001476A 2008-01-04 2008-01-04 Autocatalytic-type electroless Ni-P-Co plating solution and method for producing thereof KR100996189B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080001476A KR100996189B1 (en) 2008-01-04 2008-01-04 Autocatalytic-type electroless Ni-P-Co plating solution and method for producing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080001476A KR100996189B1 (en) 2008-01-04 2008-01-04 Autocatalytic-type electroless Ni-P-Co plating solution and method for producing thereof

Publications (2)

Publication Number Publication Date
KR20090075571A KR20090075571A (en) 2009-07-08
KR100996189B1 true KR100996189B1 (en) 2010-11-24

Family

ID=41332760

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080001476A KR100996189B1 (en) 2008-01-04 2008-01-04 Autocatalytic-type electroless Ni-P-Co plating solution and method for producing thereof

Country Status (1)

Country Link
KR (1) KR100996189B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101197723B1 (en) 2010-08-18 2012-11-05 인하대학교 산학협력단 Manufacturing process of nickel-plated carbon fibers by non-electroplating method
KR101199305B1 (en) * 2010-07-02 2012-11-12 인하대학교 산학협력단 Manufacturing Method of Highly Electro-conductive Carbon Fibers Using Cobalt Based Reducing Agent
KR20150111426A (en) * 2014-03-21 2015-10-06 (주)쎄론트 Plating solution having improved discoloration

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103397360A (en) * 2010-06-25 2013-11-20 杨红宇 Brush plating solution

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100240213B1 (en) * 1995-06-06 2000-01-15 리차드 피. 뮐러 Electroless nickel cobalt phosphorous composition and plating process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100240213B1 (en) * 1995-06-06 2000-01-15 리차드 피. 뮐러 Electroless nickel cobalt phosphorous composition and plating process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101199305B1 (en) * 2010-07-02 2012-11-12 인하대학교 산학협력단 Manufacturing Method of Highly Electro-conductive Carbon Fibers Using Cobalt Based Reducing Agent
KR101197723B1 (en) 2010-08-18 2012-11-05 인하대학교 산학협력단 Manufacturing process of nickel-plated carbon fibers by non-electroplating method
KR20150111426A (en) * 2014-03-21 2015-10-06 (주)쎄론트 Plating solution having improved discoloration
KR101583913B1 (en) 2014-03-21 2016-01-11 (주)쎄론트 Plating solution having improved discoloration

Also Published As

Publication number Publication date
KR20090075571A (en) 2009-07-08

Similar Documents

Publication Publication Date Title
US20040035316A1 (en) Electroless plating bath composition and method of using
JP4376959B2 (en) Plating object in which metal thin film is formed by electroless plating and manufacturing method thereof
TWI431153B (en) Plated article having a metallic thin film form by electroless plating and method for making such plated article
JPH05202484A (en) Controlled electroless plating
JP2008223100A (en) Seed layer forming method for damascene copper wire, and semi-conductor wafer forming damascene copper wire using the method
KR100996189B1 (en) Autocatalytic-type electroless Ni-P-Co plating solution and method for producing thereof
KR101375291B1 (en) Autocatalytic-type electroless Ni-P-Co plating solution comprising dimethylamine borane in extremely small quantities and method for producing thereof
EP4086368A1 (en) Electroless nickel strike plating solution and method for forming nickel film
JP2016539244A (en) Method and copper plating bath for depositing a copper seed layer on a barrier layer
KR20100128865A (en) A composition of eletroless chemical copper plating for nano scale device interconnection
JP7335280B2 (en) Electroless copper or copper alloy plating bath and plating method
DE10347809A1 (en) Compositions for electroless deposition of ternary materials for the semiconductor industry
KR101224208B1 (en) Electroless copper plating solution including anionic surfactant for wiring and copper coating layer prepared by the same
JP3393190B2 (en) Method for selectively activating copper pattern and activator used therefor
US6046107A (en) Electroless copper employing hypophosphite as a reducing agent
JP7441263B2 (en) Electroless Co-W plating film and electroless Co-W plating solution
KR101261563B1 (en) Autocatalytic-type Co-P plating solution, electroless plating method using the same and Co-P alloys coating layer prepared by the same
WO2023120318A1 (en) Electroless plating solution and method for manufacturing wiring substrate
KR100752504B1 (en) Fabrication Method of Metal Interconnection by Electroless Plating
US11718916B2 (en) Electroless Co—W plating film
JP2770639B2 (en) Electroless tin or tin-lead alloy plating method
WO2023194802A1 (en) Electrolyte comprising an accelerator agent for bottom-up copper electroplating
EP0070061B1 (en) A solution for the electroless deposition of gold-alloys onto a substrate
KR101224207B1 (en) Electroless copper plating solution including cationic surfactant for wiring and copper coating layer prepared by the same
JP2873751B2 (en) Electroless tin or tin-lead alloy plating solution and electroless tin or tin-lead alloy plating method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140704

Year of fee payment: 4

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20141110

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20151113

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20161107

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170927

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20181002

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190925

Year of fee payment: 10