KR100987070B1 - A composite of graphite oxide with nano structure and polymer and a method for the preparation thereof - Google Patents

A composite of graphite oxide with nano structure and polymer and a method for the preparation thereof Download PDF

Info

Publication number
KR100987070B1
KR100987070B1 KR1020080013859A KR20080013859A KR100987070B1 KR 100987070 B1 KR100987070 B1 KR 100987070B1 KR 1020080013859 A KR1020080013859 A KR 1020080013859A KR 20080013859 A KR20080013859 A KR 20080013859A KR 100987070 B1 KR100987070 B1 KR 100987070B1
Authority
KR
South Korea
Prior art keywords
graphite oxide
parts
polymer
composite material
graphite
Prior art date
Application number
KR1020080013859A
Other languages
Korean (ko)
Other versions
KR20090088530A (en
Inventor
정한모
장진영
김두희
박원형
신철민
Original Assignee
엔바로테크 주식회사
울산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엔바로테크 주식회사, 울산대학교 산학협력단 filed Critical 엔바로테크 주식회사
Priority to KR1020080013859A priority Critical patent/KR100987070B1/en
Publication of KR20090088530A publication Critical patent/KR20090088530A/en
Application granted granted Critical
Publication of KR100987070B1 publication Critical patent/KR100987070B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/23Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Abstract

본 발명은 나노구조 산화흑연이 분산된 고분자 복합재료 및 이의 제조방법 에 관한 것으로 비닐계 단량체 100부; 산화흑연 분말 0.1 내지 50 부; 및 친수성 라디칼 중합개시제 0.01 내지 20부로 이루어진 단량체 혼합물을 중합하여 얻어지는 산화흑연이 분산된 고분자 복합재료를 제공한다. The present invention relates to a polymer composite material in which nanostructured graphite oxide is dispersed and a method of manufacturing the same, 100 parts of vinyl monomers; 0.1 to 50 parts of graphite oxide powder; And a graphite oxide obtained by polymerizing a monomer mixture comprising 0.01 to 20 parts of a hydrophilic radical polymerization initiator.

본 발명에 의하여 산화흑연을 고분자 메트릭스에 효과적으로 분산시킴으로서 분산된 산화흑연에 의한 전도도, 기계적 물성, 난연성 등의 물성이 향상된 고분자 복합재료를 제조할 수 있다.According to the present invention, by effectively dispersing graphite oxide in a polymer matrix, a polymer composite material having improved physical properties such as conductivity, mechanical properties, and flame retardancy due to dispersed graphite oxide can be prepared.

산화흑연, 고분자, 나노구조, 박리 Graphite oxide, polymer, nanostructure, exfoliation

Description

나노구조 산화흑연이 분산된 고분자 복합재료 및 이의 제조방법 {A composite of graphite oxide with nano structure and polymer and a method for the preparation thereof}A composite of graphite oxide with nano structure and polymer and a method for the preparation

층상 구조를 가진 흑연 분말을 질산/KClO3 등과 같은 산화제로 산화시키면, 흑연의 각 층이 산화되어 층상 구조가 유지된 채로 히드록실기, 카르복실산기, 에폭시기 등이 생성 부착된 산화흑연 분말이 얻어진다. 흑연 분말은 구성 층간 거리가 3.4 Å 전후이나, 산화반응에 의해 히드록실기, 카르복실산기, 에폭시기 등의 관능기가 각 층에 생성되므로 층간 거리 7 Å 전후로 팽창되며, 이 층간 거리는 산화정도, 수분 흡수 정도에 따라 달라져 10 Å 이상의 값을 가지기도 한다. 산화흑연 분말 중 탄소/산소 수의 비는 보통 2~5/1 범위이나 그 산화정도에 따라 이보다 크거나 작은 값을 가질 수도 있다. 산화흑연 분말을 고분자와 섞으면 고분자의 난연성이 증대하며, 기계적 강도를 향상시킬 수도 있다. 또 산화 정도가 작아 전도도가 높은 산화흑연 분말을 고분자와 섞으면 재료의 전도도가 증가하므로 전기전도성이 낮은 고분자 재료에 대전 방지, 정전기 분산, 전자파 차폐 기능을 부여할 수 있다.When the graphite powder having a layered structure is oxidized with an oxidizing agent such as nitric acid / KClO 3 or the like, each layer of graphite is oxidized to obtain a graphite oxide powder in which hydroxyl groups, carboxylic acid groups, and epoxy groups are formed and attached while maintaining the layered structure. Lose. Graphite powder has a distance of 3.4 Å between layers, but functional groups such as hydroxyl groups, carboxylic acid groups, and epoxy groups are formed in each layer by oxidation, so it expands around 7 층 between layers. Depending on the degree, it may have a value of 10 Å or more. The ratio of carbon / oxygen number in graphite oxide powder is usually in the range of 2 to 5/1, but may be larger or smaller than this depending on the degree of oxidation. When the graphite oxide powder is mixed with the polymer, the flame retardancy of the polymer is increased and mechanical strength may be improved. In addition, when the graphite oxide powder having high conductivity is mixed with the polymer due to its low degree of oxidation, the conductivity of the material increases, thereby providing antistatic, electrostatic dispersion, and electromagnetic shielding functions to the polymer material having low electrical conductivity.

고분자 재료에 층상 구조를 갖는 흑연 분말, 산화흑연 분말 등과 같은 층상 구조를 갖는 충진제의 각 층이 박리 (exfoliation) 되어 분산되는 경우 고분자 재료와 충진제가 접촉하는 계면적이 극대화되면서 충진제에 의한 물성향상, 즉 기계적 물성과 전도도 향상 등이 극대화될 수 있다.When each layer of the layered filler having a layered structure such as graphite powder and graphite oxide powder is exfoliated and dispersed in the polymer material, the physical properties of the filler are improved while the interface area between the polymer material and the filler is maximized. Mechanical properties and conductivity improvement can be maximized.

그러나 산화흑연 분말의 표면에는 극성기들이 존재하여 친수성을 가지므로 소수성의 고분자 메트릭스에 산화흑연 분말의 각 층을 박리하여 분산시키는 것은 쉽지 않아 산화흑연 분말의 첨가에 의한 물성향상 효과를 극대화하기가 쉽지 않다.However, since polar groups exist on the surface of the graphite oxide powder to have hydrophilicity, it is not easy to separate and disperse each layer of graphite oxide powder in a hydrophobic polymer matrix, and thus it is not easy to maximize the effect of improving the physical properties by adding graphite oxide powder. .

본 발명은 고분자 메트릭스에 산화흑연 분말을 효과적으로 분산시켜 전도도와 난연성과 같은 물성을 향상시킨 고분자 복합재료를 제공하기 위한 것이다.An object of the present invention is to provide a polymer composite material in which physical properties such as conductivity and flame retardance are improved by effectively dispersing graphite oxide powder in a polymer matrix.

본 발명은 고분자 메트릭스에 산화흑연 분말을 효과적으로 박리하거나 층간 확장에 의하여 고도로 분산시켜 산화흑연 분말의 첨가에 의한 고분자 재료의 물성 향상, 즉 전도도, 기계적 물성, 난연성 등의 향상을 극대화한 복합재료를 제공하기 위한 것이다.The present invention provides a composite material in which the graphite oxide powder is effectively exfoliated in the polymer matrix or highly dispersed by interlayer expansion, thereby maximizing the improvement of the physical properties of the polymer material by the addition of the graphite oxide powder, that is, the improvement of conductivity, mechanical properties, flame retardancy, and the like. It is to.

본 발명은, 또한, 고분자 메트릭스에 산화흑연 분말을 효과적으로 박리하거나 층간 확장에 의하여 고도로 분산시켜 나노구조 산화흑연 분말이 분산된 고분자 복합재료의 제조방법을 제공하기 위한 것이다.The present invention also provides a method for producing a polymer composite material in which the nanostructured graphite oxide powder is dispersed by effectively peeling the graphite oxide powder into the polymer matrix or highly dispersing it by interlayer expansion.

본 발명에 의하여, 비닐계 단량체 100부; 산화흑연 분말 0.1 내지 50 부; 및 라디칼 중합개시제 0.01 내지 30부로 이루어진 단량체 혼합물을 중합하여 얻어지는 산화흑연이 분산된 고분자 복합재료가 제공된다. According to the present invention, 100 parts of a vinyl monomer; 0.1 to 50 parts of graphite oxide powder; And a graphite composite obtained by polymerizing a monomer mixture comprising 0.01 to 30 parts of a radical polymerization initiator.

또한, 본 발명에 의하여, 1) 흑연분말에 산화제를 가하여 반응시킨 후에 세척 건조하여 산화흑연 분말을 준비하는 단계; 2) 비닐계 단량체 100부를 기준하여 상기 산화흑연 분말 0.1 내지 50 부에 라디칼 중합개시제 0.01 내지 30부를 혼합하는 단계; 및 3)비닐계 단량체 100부를 가하여 혼합하고 가열 중합하는 단계로 이루어진 산화흑연이 분산된 고분자 복합재료의 제조방법이 제공된다. In addition, according to the present invention, 1) adding an oxidizing agent to the graphite powder and reacting, washing and drying to prepare a graphite oxide powder; 2) mixing 0.01 to 30 parts of the radical polymerization initiator with 0.1 to 50 parts of the graphite oxide powder based on 100 parts of the vinyl monomer; And 3) adding 100 parts of a vinyl monomer to mix and heat polymerization to provide a method for producing a polymer composite having graphite oxide dispersed therein.

상기 산화흑연의 함량은 상기 비닐계 단량체 100부에 대해 바람직하게는 0.5 내지 20 부이며, 더욱 바람직하게는 1 내지 10 부이다. 상기 라디칼 중합개시제의 함량은 상기 비닐계 단량체 100부에 대해 바람직하게는 0.03 내지 10 부이며, 더욱 바람직하게는 0.5 내지 5 부이다. The content of the graphite oxide is preferably 0.5 to 20 parts, more preferably 1 to 10 parts with respect to 100 parts of the vinyl monomer. The content of the radical polymerization initiator is preferably 0.03 to 10 parts, more preferably 0.5 to 5 parts based on 100 parts of the vinyl monomer.

상기 라디칼 중합개시제는 바람직하게는 산화흑연 분말과 친화성이 좋은 친수성기와 라디칼 중합을 개시할 수 있는 개시점을 동시에 가진 것을 사용한다. 구체적으로는 다음 구조식에 나타낸 바와 같이 친수성인 폴리에틸렌글리콜 세그먼트와 아조기를 가진 마크로아조 개시제를 예로들 수 있다. 이 개시제는 폴리에틸렌글리콜과 4,4'-아조비스(4-시아노펜타노익 에시드)를 중합하여 제조한 마크로아조 개시제로, 폴리에틸렌글리콜의 분자량은 100 내지 100,000 범위의 것을 사용할 수 있다. 이 예시와 같이 친수성을 가져 산화흑연의 층 사이에 쉽게 삽입될 수 있는 세그먼트, 예를 들면 폴리비닐알코올, 폴리피롤, 폴리(디아릴디메틸암모니움클로라이드) 세그먼트 등과 라디칼 중합을 개시할 수 있는 아조 혹은 페록사이드기를 동시에 갖는 마크로 개시제들을 본 발명에 사용할 수 있다.The radical polymerization initiator is preferably one having a starting point capable of initiating radical polymerization with a hydrophilic group having good affinity with a graphite oxide powder. Specifically, macroazo initiators having an azo group and a hydrophilic polyethylene glycol segment may be exemplified as shown in the following structural formulae. This initiator is a macroazo initiator prepared by polymerizing polyethylene glycol and 4,4'-azobis (4-cyanopentanoic acid). The molecular weight of polyethylene glycol may be in the range of 100 to 100,000. As shown in this example, azo or perox, which has hydrophilicity and can be easily inserted between layers of graphite oxide, for example, polyvinyl alcohol, polypyrrole, poly (diaryldimethylammonium chloride) segments and the like, can initiate radical polymerization. Macro initiators having side groups simultaneously can be used in the present invention.

Figure 112008011425791-pat00001
Figure 112008011425791-pat00001

산화흑연과의 상용성이 좋은 친수성 라디칼 중합개시제를 사용하여 미리 산화흑연 분말의 층간에 라디칼 중합개시제를 삽입하여 중합하면 산화흑연은 박리되거나, 산화흑연의 층 사이에 고분자 사슬이 삽입되어 층간 확장이 되는 나노구조를 가지면서 산화흑연이 고분자 매트릭스 내에서 고도로 분산되어 물성이 극대화된다. 여기서 나노구조라 함은 산화흑연이 완전히 박리되어 나노크기를 갖거나 층간확장에 의하여 부분적으로 나노크기로 분리되는 것을 말한다.If a polymer is inserted into a layer of a graphite oxide powder in advance using a hydrophilic radical polymerization initiator having good compatibility with graphite oxide, the graphite oxide is peeled off, or a polymer chain is inserted between the layers of graphite oxide, thereby expanding the interlayer expansion. Graphite oxide is highly dispersed in the polymer matrix while having nanostructures to maximize physical properties. Here, the nanostructure means that the graphite oxide is completely peeled off to have a nano size or partially separated into nano size by interlayer expansion.

또한, 본 발명에 있어서, 제 3의 성분으로 고분자를 녹이는 용매 혹은 고분자를 분산시킬 수 있는 분산매를 더 포함하는 재료를 제조할 수도 있다. 구체적으로는 테트라하이드로푸란, 아세톤, 에틸아세테이트, 물 등을 예시할 수 있다.Moreover, in this invention, the material which further contains the solvent which melt | dissolves a polymer by a 3rd component, or the dispersion medium which can disperse a polymer can also be manufactured. Specifically, tetrahydrofuran, acetone, ethyl acetate, water, etc. can be illustrated.

비닐계 단량체는 이중결합을 가져 라디칼 중합이 가능한 모든 것들을 단독 혹은 혼합하여 사용할 수 있다. 구체적으로는 메타크릴산메틸, 아크릴산메틸 등과 같은 아크릴계 단량체, 스티렌, 알파메틸스티렌 등과 같은 스티렌계 단량체들을 예시할 수 있다.The vinyl monomers may have a double bond and all or a mixture of those capable of radical polymerization may be used. Specifically, acrylic monomers, such as methyl methacrylate and methyl acrylate, styrene monomers, such as styrene and alphamethylstyrene, can be illustrated.

산화흑연 분말은 흑연 분말을 질산, NaClO3, KClO3, KMnO4, 혹은 기타 산화제들을 단독 혹은 조합하여 사용하여 산화하여 제조하며, 전기화학적 방법으로 산화시켜 제조할 수도 있다. 산화흑연 분말 중 탄소/산소의 수의 비는 2~5/1 범위이나 산화정도에 따라 이보다 작거나 큰 값을 가질 수도 있다. 산화흑연 분말은 보통 층간 거리가 7Å 전후이므로 광각 X-선 분석에서 2θ=12.7° 주위에서 피크를 나타내나, 산화정도와 수분의 흡수 정도에 따라 그 값들은 달라질 수 있다.The graphite oxide powder is prepared by oxidizing graphite powder using nitric acid, NaClO 3 , KClO 3 , KMnO 4 , or other oxidizing agents alone or in combination, and may be prepared by oxidizing by electrochemical method. The ratio of the number of carbon / oxygen in the graphite oxide powder may be in the range of 2 to 5/1 but may be smaller or larger than this depending on the degree of oxidation. Graphite oxide powder usually has peaks around 2θ = 12.7 ° in wide-angle X-ray analysis because the distance between layers is about 7Å, but the values may vary depending on the degree of oxidation and absorption of moisture.

본 발명의 고분자 복합재료의 제조방법에서 중합 개시제는 산화흑연의 층 사이에 일부 혹은 전부를 미리 삽입한 상태에서 사용하는 것이 효과적이나, 단순히 물리적으로 섞어서 사용하거나, 별도로 반응조에 투입하여 사용할 수도 있다. 이 때 초음파를 가하여 혼합을 더욱 세밀하게 할 수 있다. 또한 분산매나 용매를 별도로 가할 수 있다. In the method for producing a polymer composite material of the present invention, it is effective to use a polymerization initiator in a state in which some or all of the graphite oxide is inserted in advance, but it may be used by simply physically mixing or separately added to a reactor. At this time, ultrasonic wave may be added to further refine the mixing. In addition, a dispersion medium or a solvent can be added separately.

본 발명에 의하여 산화흑연을 고분자 메트릭스에 효과적으로 분산시킴으로서 분산된 산화흑연에 의한 전도도, 기계적 물성, 난연성 등의 물성이 향상된 고분자 복합재료를 제조할 수 있다.According to the present invention, by effectively dispersing graphite oxide in a polymer matrix, a polymer composite material having improved physical properties such as conductivity, mechanical properties, and flame retardancy due to dispersed graphite oxide can be prepared.

하기의 실시 예에 의하여 본 발명을 예시하여 상세히 설명한다. 다만, 본 발명의 범위가 이러한 실시 예에 한정되는 것으로 해석되어서는 아니된다.By the following examples illustrate the invention in detail. However, the scope of the present invention should not be construed as being limited to these examples.

산화흑연 분말의 제조Preparation of Graphite Oxide Powder

500 mL 플라스크에 진한 황산 110 mL와 천연 흑연분말 (현대코마사 HC-598, 평균 입자크기 11 μm) 10 g을 넣고, 얼음물에 담가 냉각한 후 15 g의 KMnO4를 온도가 20 ℃를 넘지 않도록 서서히 가하고, 이어서 30 ℃에서 30분간 교반하였다. 반응물의 온도가 90 ℃를 넘지 않도록 230 mL의 물을 서서히 가한 후, 90 ℃에서 30분간 교반하였다. 여분의 KMnO4를 환원시키기 위해 추가로 물 250 mL와 30% H2O2 20 mL를 순차적으로 가하여 반응을 종결시켰다. 얻어진 산화흑연 분말을 거르고 5% HCl 수용액으로 수차례 세척한 뒤, 증류수로 중성이 될 때가지 세척하고 50 ℃ 진공 오븐에서 24시간 건조하였다. 원소분석결과 실험식은 C1 .00O0 .23H0 . 13 이었다.500 mL of concentrated sulfuric acid 110 mL and natural graphite powder in a flask (Modern komasa HC-598, average particle size 11 μm) 10 g was placed, so that after immersion in ice water cooling is the KMnO 4 15 g of temperature at 20 ℃ slowly Then, it stirred at 30 degreeC for 30 minutes. 230 mL of water was slowly added so that the temperature of the reaction did not exceed 90 ° C., and then stirred at 90 ° C. for 30 minutes. The reaction was terminated by further addition of 250 mL of water and 20 mL of 30% H 2 O 2 in order to reduce excess KMnO 4 . The obtained graphite oxide powder was filtered, washed several times with 5% aqueous HCl solution, washed with distilled water until neutral and dried in a 50 ° C. vacuum oven for 24 hours. Elemental analysis confirmed that the empirical formula is C 1 .00 O 0 .23 H 0 . 13 was.

실시예 1~5Examples 1-5

표 1에 나타낸 조성비로 단량체인 메타크릴산메틸, 라디칼 중합개시제인 2,2'-아조비스이소부티로니트릴 (AIBN), 산화흑연 분말을 반응조에 투입하고, 질소 분위기, 65 ℃에서 2시간 동안 마그네틱 바로 교반하면서 중합하였다. 중합물은 잘게 부순 뒤 60 ℃, 진공에서 24 시간 동안 건조하였다. 성분 투입량은 표 1에 정리하였다.Methyl methacrylate as a monomer, 2,2'-azobisisobutyronitrile (AIBN) as a radical polymerization initiator, and graphite oxide powder were added to a reaction tank at the composition ratio shown in Table 1, and the mixture was put in a nitrogen atmosphere at 65 ° C. for 2 hours. The polymerization was carried out while stirring with a magnetic bar. The polymer was crushed and dried at 60 ° C. in vacuo for 24 hours. The component dosage is summarized in Table 1.

실시예 6~12Examples 6-12

0.1 g의 마크로아조 개시제를 아세토니트릴/메탄올 (부피비 1/1) 혼합용매 100 mL에 녹인 뒤, 산화흑연 분말 0.5 g을 투입하여 섞은 후, 초음파를 30분간 조사하고, 25 ℃ 진공에서 용매를 날려보내, 산화흑연 분말의 층 사이에 마크로아조 개시제가 삽입된 물질을 얻었다. 얻어진 물질을 반응조에 투입하고 100배의 물을 가하고 마그네틱 바로 교반한 뒤, 교반을 계속하면서 상온에서 메타크릴산메틸에 산화흑연 분말을 분산시킨 것을 천천히 반응조로 투입하였다. 이 불균일계 혼합물을 질소 분위기에서 65 ℃로 가열하면서 5 시간 동안 교반하면서 중합한 뒤, 다시 추가로 개시제인 AIBN을 투입한 뒤 65 ℃에서 1 시간 더 중합시켰다 (중합 조성은 표 1 참조). 얻어진 중합물은 잘게 부순 뒤 60 ℃, 진공에서 24 시간 동안 건조하였다. 성분 투입량은 표 1에 정리하였다.0.1 g of macroazo initiator was dissolved in 100 mL of acetonitrile / methanol (volume ratio 1/1) mixed solvent, 0.5 g of graphite oxide powder was added and mixed, and the ultrasonic wave was irradiated for 30 minutes, and the solvent was blown off at 25 ° C. in vacuum. It sent and obtained the substance which inserted the macroazo initiator between layers of graphite oxide powder. The obtained material was added to a reaction tank, 100 times of water was added thereto, stirred with a magnetic bar, and the mixture of graphite oxide powder dispersed in methyl methacrylate at room temperature was slowly introduced into the reactor while stirring was continued. The heterogeneous mixture was polymerized with stirring for 5 hours while heating to 65 ° C. in a nitrogen atmosphere, and then further added with an initiator AIBN, followed by further polymerization at 65 ° C. for 1 hour (see Table 1 for polymerization composition). The resulting polymer was crushed and dried at 60 ° C. in vacuo for 24 hours. The component dosage is summarized in Table 1.

분석analysis

X-선 회절분석은 X-선 회절분석기 (일본 리가쿠사, RAD-3C)로 Cu Kα (파장; 1.54Å)을 사용하여, 회절각을 2°로부터 1.2°/분 속도로 증가시키면서 행하였다. X-ray diffraction analysis was performed using an X-ray diffractometer (RAD-3C, Nippon Rigaku Co., Ltd.) using Cu Kα (wavelength; 1.54 kHz) while increasing the diffraction angle from 2 ° to 1.2 ° / min.

고분자 메트릭스에 산화흑연 분말이 분산되어 있는 모양은 투과전자현미경 (히타치사 H-8100)으로 가속전압 200 kV로 관찰하였다. 시료는 240 ℃에서 섬유상으로 압출한 뒤 섬유 축 방향과 수직으로 얇게 잘라 제조하였다.The graphite oxide powder dispersed in the polymer matrix was observed with a transmission electron microscope (Hitachi H-8100) at an acceleration voltage of 200 kV. Samples were extruded into a fibrous shape at 240 ° C and then cut into thin slices perpendicular to the fiber axis direction.

시료를 190 ℃에 압축성형하여 필름상으로 만든 후, 두께 방향으로의 전도도를 측정하였다. 그 결과를 표 1에 표시하였다.The sample was compression molded at 190 ° C. to form a film, and then the conductivity in the thickness direction was measured. The results are shown in Table 1.

분석 결과Analysis

표 2의 (a)에서 천연흑연 분말은 2θ=26.5°에서 예리한 X-선 회절 피크를 가짐을 볼 있는데, 이것은 천연흑연 분말의 층간 거리가 3.35 Å임을 보여준다. 산화흑연 분말은 표 2(b)에서 보는 바와 같이 2θ=13.8° 부근에서 피크를 가지는데, 이것은 산화흑연 분말의 (001) 면의 회절에 의한 피크로 산화흑연 분말의 층간 거리가 산화에 의해 새로운 관능기들이 생성되면서 6.4 Å로 팽창되었음을 보여준다. 표2(b)에서 2θ=26° 부근에서 관찰되는 작고 폭이 넓은 피크는 천연흑연 분말의 결정구조가 미세한 산화에 의해 변형이 생긴 상태로 일부 남아 있음을 보여준다.In Table 2 (a) it can be seen that the natural graphite powder has a sharp X-ray diffraction peak at 2θ = 26.5 °, which shows that the interlayer distance of the natural graphite powder is 3.35 Å. The graphite oxide powder has a peak near 2θ = 13.8 ° as shown in Table 2 (b), which is a peak by diffraction of the (001) plane of the graphite oxide powder. As the functional groups are formed, they show expansion to 6.4 kPa. In Table 2 (b), small and wide peaks observed near 2θ = 26 ° show that the crystal structure of the natural graphite powder remains partially deformed by fine oxidation.

마크로아조 개시제가 삽입된 산화흑연 분말은 표 2의(c)에서 보는 바와 같이 2θ=9.5°와 2θ=19.2°에서 피크를 가지는데, 이것은 각각 (001) 면과 (002) 면의 회절에 의한 피크들로 산화흑연 분말에 마크로아조 개시제가 삽입된 새로운 구조물이 형성되었으며, 여기서 층간 거리는 9.3 Å으로 증가하였음을 보여준다.Graphite oxide powder containing macroazo initiator has peaks at 2θ = 9.5 ° and 2θ = 19.2 °, as shown in (c) of Table 2, which is caused by diffraction of (001) plane and (002) plane, respectively. The peaks formed a new structure in which the macroazo initiator was inserted in the graphite oxide powder, showing that the interlayer distance increased to 9.3 kPa.

실시예 3과 실시예 5로 제조한 시료들의 X-선 회절 결과를 표 2의 (e)와 (f)에 각각 나타내었는데, 모두 2θ=11° 부근에서 피크를 가짐을 볼 수 있다. 이것은 애초 산화흑연 분말에서 층간 거리가 6.4 Å이던 것이 중합된 고분자 사슬이 층 사이에 삽입되어 8.0 Å으로 증대되었음을 보여 주며, 피크 모양이 넓은 것은 삽입 정도가 다양한 것들이 혼합되어 존재함을 보여준다.X-ray diffraction results of the samples prepared in Example 3 and Example 5 are shown in Table 2 (e) and (f), respectively, and it can be seen that both have peaks around 2θ = 11 °. This shows that the distance between the layers in the graphite oxide powder was 6.4 kPa, indicating that the polymerized polymer chain was intercalated between the layers and increased to 8.0 kPa. The broad peak shape indicates the presence of a mixture of various insertion degrees.

실시 예 8과 실시 예 12로 제조한 시료들의 X-선 회절 결과를 표 2의 (g)와 (h)에 나타내었는데, 피크 모양이 실시예 1 (표 2의(d))과 동일하여 산화흑연에 의한 회절 피크가 나타나지 않음을 볼 수 있다. 이러한 결과는 이들 실시 예에서 산화흑연의 각 층들은 박리되어 존재하므로 2θ>2° 범위에서 X-선 회절 피크를 가지지 않음을 보여준다.X-ray diffraction results of the samples prepared in Example 8 and Example 12 are shown in Table 2 (g) and (h), but the peak shape is the same as that of Example 1 (table 2 (d)) and oxidized. It can be seen that the diffraction peaks due to graphite do not appear. These results show that in these examples each layer of graphite oxide is exfoliated and does not have an X-ray diffraction peak in the 2θ> 2 ° range.

첨부된 도 1에 실시예 5로 제조한 시료를 투과 전자현미경으로 관찰한 결과를 나타내었는데 얇고 주름진 산화흑연이 분산되어 있는 모양을 볼 수 있는데, 일 부 두께가 두꺼워 검게 나타난 곳들이 있음을 볼 수 있다. 이에 반해 실시 예 12로 제조한 시료는 첨부된 도 2에서 보는 바와 같이 잠자리 날개 처럼 반투명한 얇은 두께의 산화흑연이 골고루 분산되어 있음을 볼 수 있다. 이것은 실시 예 12에 의해 만들어진 시료에서 산화흑연의 각 층이 박리되어 존재함을 보여준다.In the accompanying FIG. 1, a sample prepared in Example 5 was observed with a transmission electron microscope, showing that thin, corrugated graphite oxide was dispersed, and some thick portions were found to be black. have. On the contrary, the sample prepared in Example 12 can be seen that the graphite oxide having a thin translucent thickness like a dragonfly wing is uniformly dispersed as shown in FIG. 2. This shows that each layer of graphite oxide is peeled off and present in the sample made by Example 12.

표 1에 전도도 측정 결과를 나타내었는데, 동일한 양의 산화흑연을 사용한 경우 실시예 1-5에 비해 실시예6-12의 전도도가 좋음을 볼 수 있다. 예를 들면 실시예 3의 전도도에 비해 비슷한 양의 산화흑연을 사용한 실시예 8의 전도도가 50 배 정도 좋음을 볼 수 있다.The conductivity measurement results are shown in Table 1, but when the same amount of graphite oxide is used, the conductivity of Example 6-12 is better than that of Example 1-5. For example, the conductivity of Example 8 using a similar amount of graphite oxide compared to that of Example 3 can be seen that about 50 times better.

표1Table 1

Figure 112008011425791-pat00002
Figure 112008011425791-pat00002

표2(X선회절)Table 2 (X-ray Diffraction)

Figure 112008011425791-pat00003
Figure 112008011425791-pat00003

(a) 흑연, (b) 산화흑연, (c) 마크로아조개시제/산화흑연, (d) 실시예1, (e) 실시예3, (f) 실시예5, (g) 실시예8, (h) 실시예12.(a) graphite, (b) graphite oxide, (c) macroazo initiator / graphite oxide, (d) Example 1, (e) Example 3, (f) Example 5, (g) Example 8, ( h) Example 12.

도 1 ; 실시예5의 고분자 복합재료를 투과 전자 현미경으로 관찰한 형상1; Shape of the polymer composite material of Example 5 as observed by transmission electron microscope

도 2 ; 실시예12의 고분자 복합재료를 투과 전자 현미경으로 관찰한 형상 2; A shape observed with the transmission electron microscope of the polymer composite material of Example 12

Claims (12)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 비닐계 단량체 100중량부, 산화흑연 분말 0.5 내지 20중량부; 폴리에틸렌글리콜 세그먼트와 아조기를 가지는 라디칼 중합개시제 0.03 내지 10중량부로 이루어진 단량체 혼합물을 중합하여 얻어지는 산화흑연이 분산된 고분자 복합재료100 parts by weight of a vinyl monomer, 0.5 to 20 parts by weight of graphite oxide powder; Graphite oxide dispersed polymer composite material obtained by polymerizing a monomer mixture consisting of 0.03 to 10 parts by weight of a radical polymerization initiator having a polyethylene glycol segment and an azo group 제8항에 있어서, 상기 라디칼 중합개시제는 마크로아조 개시제인 고분자 복합재료The polymer composite material of claim 8, wherein the radical polymerization initiator is a macroazo initiator. 1) 흑연분말에 산화제를 가하여 반응시킨 후에 세척 건조하여 산화흑연 분말을 준비하는 단계; 2) 비닐계 단량체 100중량부를 기준하여 상기 산화흑연 분말 0.1 내지 50중량부에 라디칼 중합개시제 0.01 내지 30중량부를 혼합하는 단계; 및 3) 비닐계 단량체 100중량부를 가하여 혼합하고 가열 중합하는 단계로 이루어진 산화흑연이 분산된 고분자 복합재료의 제조방법1) preparing an graphite powder by washing and drying after adding an oxidizing agent to the graphite powder; 2) mixing 0.01 to 30 parts by weight of the radical polymerization initiator with 0.1 to 50 parts by weight of the graphite oxide powder based on 100 parts by weight of the vinyl monomer; And 3) adding 100 parts by weight of a vinyl monomer to mix and heat-polymerize the graphite oxide dispersed polymer composite material. 제10항에 있어서, 상기 1) 단계에서 초음파를 가하는 고분자 복합재료의 제 조방법The method of manufacturing a polymer composite material according to claim 10, wherein an ultrasonic wave is applied in the step 1). 제10항에 있어서, 상기 라디칼 중합개시제가 친수성기를 가지는 고분자 복합재료의 제조방법The method of manufacturing a polymer composite material according to claim 10, wherein the radical polymerization initiator has a hydrophilic group.
KR1020080013859A 2008-02-15 2008-02-15 A composite of graphite oxide with nano structure and polymer and a method for the preparation thereof KR100987070B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080013859A KR100987070B1 (en) 2008-02-15 2008-02-15 A composite of graphite oxide with nano structure and polymer and a method for the preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080013859A KR100987070B1 (en) 2008-02-15 2008-02-15 A composite of graphite oxide with nano structure and polymer and a method for the preparation thereof

Publications (2)

Publication Number Publication Date
KR20090088530A KR20090088530A (en) 2009-08-20
KR100987070B1 true KR100987070B1 (en) 2010-10-11

Family

ID=41207114

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080013859A KR100987070B1 (en) 2008-02-15 2008-02-15 A composite of graphite oxide with nano structure and polymer and a method for the preparation thereof

Country Status (1)

Country Link
KR (1) KR100987070B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100976175B1 (en) * 2010-04-12 2010-08-16 박기호 Flame-retardant agent for resin composition
KR101084069B1 (en) 2010-06-17 2011-11-16 삼성에스디아이 주식회사 Crystalline carbonaceous material with controlled interlayer spacing and method of preparing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978206A (en) * 1982-10-28 1984-05-07 Kao Corp Polymerization of vinyl monomer
JPH09235308A (en) * 1995-12-27 1997-09-09 Japan Energy Corp Production of encapsulated material of inorganic powder with styrene
KR20010112557A (en) * 2000-06-09 2001-12-20 방대신 System and method offering lottery-page of search-site

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978206A (en) * 1982-10-28 1984-05-07 Kao Corp Polymerization of vinyl monomer
JPH09235308A (en) * 1995-12-27 1997-09-09 Japan Energy Corp Production of encapsulated material of inorganic powder with styrene
KR20010112557A (en) * 2000-06-09 2001-12-20 방대신 System and method offering lottery-page of search-site

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Polymer Engineering and Science, Volume 44 Issue 12, Pages 2335 - 2339, Published Online: 24 Nov 2004

Also Published As

Publication number Publication date
KR20090088530A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
Wei et al. π-π stacking interface design for improving the strength and electromagnetic interference shielding of ultrathin and flexible water-borne polymer/sulfonated graphene composites
Gong et al. MXene as emerging nanofillers for high-performance polymer composites: A review
US11355259B2 (en) Boron nitride polymer composite foam derived from emulsions stabilized by boron nitride kinetic trapping
Zhang et al. Flexible, stretchable and conductive PVA/PEDOT: PSS composite hydrogels prepared by SIPN strategy
Song et al. Bioinspired graphene oxide/polymer nanocomposite paper with high strength, toughness, and dielectric constant
Cheng et al. Flexible and lightweight MXene/silver nanowire/polyurethane composite foam films for highly efficient electromagnetic interference shielding and photothermal conversion
Zhang et al. Leather solid waste/poly (vinyl alcohol)/polyaniline aerogel with mechanical robustness, flame retardancy, and enhanced electromagnetic interference shielding
KR20100031981A (en) A composite of graphene and polymer and a method for preparation thereof
KR101348865B1 (en) Manufacturing method of nano-structured composites using gelation materials
Hu et al. A facile construction of quaternized polymer brush-grafted graphene modified polysulfone based composite anion exchange membranes with enhanced performance
Zheng et al. Surface functionalization of graphene with polymers for enhanced properties
Ding et al. Low-cost mass manufacturing technique for the shutdown-functionalized lithium-ion battery separator based on Al2O3 coating online construction during the β-iPP cavitation process
CN113929927A (en) Polyvinyl alcohol-modified graphene oxide nano composite aqueous dispersion and preparation method thereof
Zhao et al. Enhanced performance of poly (ether sulfone) based composite proton exchange membranes with sulfonated polymer brush functionalized graphene oxide
Wen‐Ping et al. Preparation and characterization of poly (methyl methacrylate)‐intercalated graphite oxide/poly (methyl methacrylate) nanocomposite
KR101590706B1 (en) Graphenepolymer composite and preparation method thereof
KR100987070B1 (en) A composite of graphite oxide with nano structure and polymer and a method for the preparation thereof
Mai et al. A versatile bottom-up interface self-assembly strategy to hairy nanoparticle-based 2D monolayered composite and functional nanosheets
Ma et al. POSS-pendanted in epoxy chain inorganic-organic hybrid for highly thermo-mechanical, permeable and hydrothermal-resistant coatings
KR101029734B1 (en) The method of preparing electroconductive polymer composite containing oxyfluorinated grahene
CN103554909A (en) Polymer-silicon dioxide coated carbon nanotube composite material, preparation method thereof, prepreg and copper-clad substrate
Wang et al. Build a rigid–flexible graphene/silicone interface by embedding SiO2 for adhesive application
KR101973895B1 (en) Graphene Polymer Composite Fiber structure as thermoelectric materials and Fabrication and manufacturing method thereof
KR100879755B1 (en) Method for preparing polycarbonate spherical particles and polycarbonate/carbon nanotube composite particles
KR101462037B1 (en) Hybrid solutions of poly(3, 4-ethylenedioxythiophene) and process for producing

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee