KR100892770B1 - Preparation of adsorption-selective activated carbon hollow fiber membranes - Google Patents

Preparation of adsorption-selective activated carbon hollow fiber membranes Download PDF

Info

Publication number
KR100892770B1
KR100892770B1 KR1020070098194A KR20070098194A KR100892770B1 KR 100892770 B1 KR100892770 B1 KR 100892770B1 KR 1020070098194 A KR1020070098194 A KR 1020070098194A KR 20070098194 A KR20070098194 A KR 20070098194A KR 100892770 B1 KR100892770 B1 KR 100892770B1
Authority
KR
South Korea
Prior art keywords
hollow fiber
organic solvent
fiber membrane
activated carbon
hours
Prior art date
Application number
KR1020070098194A
Other languages
Korean (ko)
Other versions
KR20090032728A (en
Inventor
박유인
김범식
서정권
이정민
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020070098194A priority Critical patent/KR100892770B1/en
Publication of KR20090032728A publication Critical patent/KR20090032728A/en
Application granted granted Critical
Publication of KR100892770B1 publication Critical patent/KR100892770B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0067Inorganic membrane manufacture by carbonisation or pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • B01D69/0871Fibre guidance after spinning through the manufacturing apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • B01D71/421Polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • B01D71/643Polyether-imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/24Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation

Abstract

본 발명은 흡착-선택성을 갖는 활성탄소 중공사막의 제조방법에 관한 것으로서, 더욱 상세하게는 분리막의 표면 및 열린 기공벽에 흡착제와 같이 흡착성능을 갖는 미세기공을 갖는 탄소소재의 중공사막을 제조함으로써 대기환경오염의 주범인 휘발성 유기화합물(VOCs, Volatile Organic Compounds), 이산화탄소 및 메탄 등의 응축성 기체들에 대해 높은 투과도와 함께 높은 선택도를 갖는 우수한 활성탄소 중공사막의 제조방법에 관한 것이다.The present invention relates to a method for producing an activated carbon hollow fiber membrane having adsorption-selectivity, and more particularly, by preparing a hollow fiber membrane of a carbon material having fine pores having adsorption performance, such as an adsorbent, on the surface of the separator and the open pore wall. The present invention relates to a method for producing an activated carbon hollow fiber membrane having high selectivity and high permeability for condensable gases such as volatile organic compounds (VOCs), carbon dioxide and methane, which are the main causes of air pollution.

흡착-선택성, 활성탄소 중공사막 Adsorption-Selective, Activated Carbon Hollow Fiber Membrane

Description

흡착-선택성을 갖는 활성탄소 중공사막의 제조방벙{Preparation of adsorption-selective activated carbon hollow fiber membranes}Preparation of adsorption-selective activated carbon hollow fiber membranes

본 발명은 흡착-선택성을 갖는 활성탄소 중공사막의 제조방법에 관한 것이다.The present invention relates to a method for producing activated carbon hollow fiber membranes having adsorption-selectivity.

일반적으로 막분리법에 의한 혼합기체 중 특정 기체 성분을 분리하는 공정에서 열적 안정성 및 내화학성을 가지고 있는 탄소분자체막 등이 많은 관심과 주목을 받고 있다. 탄소분자체막은 폴리아크릴로니트릴, 폴리이미드, 폴리비닐리덴 클로라이드, 폴리퍼플로 알코올 및 페놀수지 등을 전구체로 하여 열분해를 통해 얻어진다. In general, a carbon molecular film having thermal stability and chemical resistance in a process of separating a specific gas component from a mixed gas by a membrane separation method has attracted much attention and attention. The carbon molecular film is obtained through pyrolysis using polyacrylonitrile, polyimide, polyvinylidene chloride, polyperflow alcohol and phenol resin as precursors.

탄소분자체막(MSCM, molecular sieve carbon membranes)은 3 ~ 5 옴스트롱(Å) 범위의 균일한 미세 기공으로 이루어진 탄소 분리막으로 특정크기의 분자만 투과시키는, 즉 분자체기구(molecular sieving mechanism)로 인해 매우 높은 선택도를 얻을 수 있다는 장점을 갖고 있다. 그러나, 탄소분자체막의 특정 크기의 기공 제어를 위해 여러 단계의 코팅과 탄화과정의 반복이 필요하며 기계적 강도를 위한 복합막화가 요구되어진다. 따라서, 탄소분자체막의 이러한 복잡한 제막공 정과 그로 인한 막 크기의 제한성 등이 상용화에 걸림돌이 되고 있다. 또한, 자체적으로 기계적 강도를 갖으며 특정, 특히 응축성/비응축성 혼합기체에 대해 높은 분리성능과 우수한 내화학성 및 열적 안정성을 갖는 분리막으로 제막공정이 비교적 단순화된 탄소막이 요구되어지고 있다. Molecular sieve carbon membranes (MSCM) are carbon membranes made of uniform micropores ranging from 3 to 5 ohms long, allowing only a specific size of molecule to permeate, ie, due to a molecular sieve mechanism. It has the advantage that very high selectivity can be obtained. However, in order to control the pore of a specific size of the carbon molecular film, several steps of coating and carbonization process need to be repeated, and a complex film for mechanical strength is required. Therefore, the complicated film forming process of the carbon molecular film and the resulting limitation of the film size are obstacles to commercialization. In addition, a carbon film having a mechanical strength of its own and having a high separation performance, excellent chemical resistance and thermal stability to a specific, particularly condensable / non-condensable mixed gas, has been required to have a relatively simple film forming process.

따라서, 본 발명에서는 이러한 문제점을 해결하는 방안으로 자체적 기계적 강도를 가지면서 흡착-선택성기구(adsorption-selective mechanism)를 이용해 응축성/비응축 혼합기체를 효율적으로 분리할 수 있는 중공사 형태의 활성탄소막을 제조하는데 그 목적이 있다. Therefore, in the present invention, an activated carbon membrane having a hollow fiber type which can efficiently separate a condensable / non-condensable mixed gas by using an adsorption-selective mechanism while having its own mechanical strength as a solution to this problem. The purpose is to prepare.

흡착-선택성 기구라 함은 위와 같은 응축성 기체들과 비응축성 즉, 상대적으로 응축성이 낮은 산소, 질소를 비롯한 공기 등의 혼합기체에서 i) 먼저, 위의 응축성 기체의 특성상 분리막의 공급부(feed side)의 막 표면 및 기공벽에서 물리-화학적 흡착이 일어나고, ii) 이와 같은 응축성 기체의 흡착이 연속적으로 일어나 결국 막의 열린 기공을 완전히 막게 되어 마치 유체와 같은 거동을 보이며 분리막의 열린 기공을 통해 투과부(permeate side)로 확산되어 최종적으로 분리막의 투과부에서 진공조작에 의해 탈착되어지는 분리기구라 할 수 있다. 이때 비응축성 기체들의 경우 응축성 기체에 기공이 막혀 상대적으로 투과가 어렵게 됨에 따라 높은 선택도를 얻을 수 있다.The adsorption-selective mechanism is used in the mixture of condensable gases such as above and non-condensable, that is, relatively low condensable oxygen, air including nitrogen, and i). Physico-chemical adsorption occurs at the membrane surface and the pore wall of the feed side, and ii) adsorption of such condensable gas occurs continuously to completely block the open pores of the membrane, thus acting as if it is fluid-like, It can be said to be a separation mechanism that is diffused through the permeate side and finally detached by vacuum operation at the permeate side of the membrane. In this case, non-condensable gases may have high selectivity as pores are blocked in the condensable gas and thus relatively difficult to permeate.

본 발명은 흡착-선택성을 갖는 활성탄소 중공사막의 제조에 관한 것으로, 더욱 상세하게 설명하면 응축성 기체들과 비응축성 즉, 상대적으로 응축성이 낮은 산소, 질소를 비롯한 공기 등의 혼합기체에서 i) 먼저, 위의 응축성 기체의 특성상 분리막의 공급부(feed side)의 막 표면 및 기공벽에서 물리-화학적 흡착이 일어나고 ii) 이와 같은 응축성 기체의 흡착이 연속적으로 일어나 결국 막의 열린 기공을 완전히 막게 되어 마치 유체와 같은 거동을 보이며 분리막의 열린 기공을 통해 투과부(permeate side)로 확산되어 최종적으로 분리막의 투과부에서 진공조작에 의해 탈착되어지는 특징을 적용하였다.The present invention relates to the preparation of activated carbon hollow fiber membranes having adsorption-selectivity, and more particularly, in a mixed gas such as oxygen, nitrogen, and other condensable gases and non-condensable, that is, relatively low condensability, i. First, due to the nature of the above condensable gas, physico-chemical adsorption occurs at the membrane surface and the pore wall of the feed side of the membrane, and ii) the adsorption of such condensable gas occurs continuously to completely block open pores of the membrane. As a result of fluid-like behavior, the membrane was diffused to the permeate side through open pores of the membrane and finally detached by vacuum operation at the permeate side of the membrane.

따라서, 본 발명의 목적은 저농도의 응축성 기체에 대한 높은 투과도와 함께 높은 선택도를 지닐 뿐 아니라, 탄화 시 활성탄소 중공사막을 일정 속도로 회전을 통해 이방성(anisotropic) 구조를 형성시킴으로써 높은 기계적 강도를 가지게 하는 활성탄소 중공사막의 제조방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is not only to have high selectivity with high permeability to low concentration of condensable gas, but also to form high anisotropic structure by rotating an activated carbon hollow fiber membrane at a constant speed during carbonization. Its purpose is to provide a method for producing an activated carbon hollow fiber membrane having a.

상기 목적을 달성하기 위한 본 발명은The present invention for achieving the above object

1) 폴리아크릴로니트릴(polyacrylonitrile)을 포함하는 고분자 수지 5 ~ 30 중량%와 핏치(pitch) 5 ~ 30 중량%를 유기용매 60 ~ 90 중량%로 80 ~ 120 ℃에서 3 ~ 7 시간 용해시켜 방사용액을 제조하는 단계;1) Dissolve 5-30% by weight of the polymer resin containing polyacrylonitrile and 5-30% by weight of the organic solvent by dissolving 60-90% by weight of the organic solvent at 80-120 ° C. for 3-7 hours. Preparing a use solution;

2) 상기 방사용액을 응고제로 물 또는 물과 유기용매의 혼합물을 사용한 습식방사공정을 통해 중공사막을 제조하는 단계;2) preparing a hollow fiber membrane through a wet spinning process using water or a mixture of water and an organic solvent as a coagulant to the spinning solution;

3) 상기 중공사막을 60 ~ 80 ℃, 5 ~ 7 시간동안 열수 처리하여 유기용매로 추출 후, 1 ~ 5 ℃/분의 승온속도로 200 ~ 400 ℃까지 승온시키고 2 ~ 3 시간동안 산화시키는 단계3) the hollow fiber membrane 60 ~ 80 ℃, hydrothermal treatment for 5 to 7 hours and extracted with an organic solvent, the temperature is raised to 200 ~ 400 ℃ at a temperature increase rate of 1 ~ 5 ℃ / min and oxidized for 2 to 3 hours

4) 1 ~ 5 ℃/분의 승온속도로 500 ~ 1000 ℃까지 승온시키고 30분 ~ 1시간 동안 튜브 로(tube furnace)의 회전속도 5 ~ 1,000 rpm으로 탄화시키는 단계; 및4) raising the temperature to 500 to 1000 ° C. at a heating rate of 1 to 5 ° C./min and carbonizing at a rotation speed of 5 to 1,000 rpm of the tube furnace for 30 minutes to 1 hour; And

5) 1 ~ 5 ℃/분의 승온속도로 900 ~ 1,000 ℃까지 승온시키고 30분 ~ 5시간 동안 질소기체를 사용하여 10 ~ 500 ㎤/분의 유속으로 수증기 공급하고, 튜브 로(tube furnace)의 회전속도로 1 ~ 1,000 rpm으로 활성화시키는 단계5) The temperature is raised to 900 ~ 1,000 ℃ at a temperature increase rate of 1 ~ 5 ℃ / min and supplied with steam at a flow rate of 10 ~ 500 cm 3 / min using nitrogen gas for 30 minutes to 5 hours, the tube furnace Activation at 1 ~ 1,000 rpm at rotation speed

를 포함하여 이루어진 활성탄소 중공사막의 제조방법을 그 특징으로 한다.Characterized in that the method for producing an activated carbon hollow fiber membrane comprising a.

본 발명을 통해 개발하고자 하는 활성탄소 중공사막은 저농도의 응축성 기체에 대한 높은 투과도와 함께 높은 선택도를 기대할 수 있다. 또한, 낮은 압력으로 운전이 가능함에 따라 에너지 효율 역시 매우 우수하고 기계적 강도도 우수한 특징을 가지고 있다.The activated carbon hollow fiber membrane to be developed through the present invention can be expected to have high selectivity with high permeability to a low concentration of condensable gas. In addition, as it can be operated at a lower pressure, the energy efficiency is also very good and the mechanical strength is excellent.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

본 발명은 분리막의 표면 및 열린 기공 벽에 흡착제와 같이 흡착성능을 갖는 미세기공을 갖는 탄소소재의 중공사막을 제조함으로써 대기환경오염의 주범인 휘발성 유기화합물(VOCs, Volatile Organic Compounds), 이산화탄소 및 메탄 등의 응축 성 기체들에 대해 높은 투과도와 함께 높은 선택도를 갖는 우수한 활성탄소 중공사막의 제조방법에 관한 것이다.The present invention is to prepare a hollow fiber membrane of carbon material having fine pores with adsorption performance such as adsorbent on the surface of the membrane and the open pore wall of volatile organic compounds (VOCs, Volatile Organic Compounds), carbon dioxide and methane The present invention relates to a method for producing an excellent activated carbon hollow fiber membrane having high selectivity with high permeability to condensable gases such as.

먼저, 폴리아크릴로니트릴(polyacrylonitrile)을 포함하는 고분자 수지 5 ~ 30 중량%와 핏치(pitch) 5 ~ 30 중량%를 유기용매 60 ~ 90 중량%로 80 ~ 120 ℃에서 3 ~ 7 시간 용해시켜 방사용액을 제조한다.First, 5-30 wt% of a polymer resin containing polyacrylonitrile and 5-30 wt% of a pitch are dissolved in 60-90 wt% of an organic solvent at 80-120 ° C. for 3-7 hours. Prepare the use solution.

이때, 전구체로 사용되는 핏치(pitch)는 연화점이 200 ℃ 이상(200 ~ 250 ℃)의 것으로 상기의 유기용제에 완전히 용해될 수 있는 것이면 등방성 및 이방성, 석탄계 및 석유계를 불문하고 사용될 수 있으며, 상기 고분자 수지로는 폴리아크릴로니트릴(polyacrylonitrile) 외에 열가소성 고분자 수지인 폴리이미드(polyimide), 폴리이서이미드(polyetherimide), 폴리비닐리덴 클로라이드(poly vinylidene fluorolide), 폴리퍼플로 알코올(poly furfuryl alcohol) 및 페놀수지(phenolic resin) 또는 폴리이미드(polyimide) 등을 포함하여 열경화성 고분자 수지인 폐놀 수지 등을 추가로 사용 가능하며, 중량평균 분자량은 50,000 ~ 300,000 범위를 가지면 어느 것이나 사용될 수 있다. 상기 유기용매로는 N-메틸피롤리돈(NMP), 에틸렌 카보네이트(ethylene carbonate), 디메틸 포름아미드(dimethyl formamide), 디메틸 아세트아미드(dimethyl acetamide)가 바람직하며, 핏치(pitch)와 폴리아크릴로니트릴(polyacrylo- nitrile)을 동시에 녹일 수 있는 것이라면 어느 것이나 사용될 수 있다. In this case, the pitch used as the precursor is a softening point of 200 ° C. or more (200 to 250 ° C.), and may be used regardless of isotropic and anisotropy, coal-based and petroleum-based, as long as the softening point is completely soluble in the organic solvent. The polymer resin may be a thermoplastic polymer resin in addition to polyacrylonitrile (polyimide), polyimide (polyetherimide), poly vinylidene fluorolide, poly furfuryl alcohol (poly furfuryl alcohol) and Phenol resin, such as a phenolic resin (polyphenol) or polyimide (polyimide) can be used additionally, such as phenolic resin, phenolic resin, etc., the weight average molecular weight can be used if it has a range of 50,000 ~ 300,000. The organic solvent is preferably N-methylpyrrolidone (NMP), ethylene carbonate (ethylene carbonate), dimethyl formamide, dimethyl acetamide, pitch and polyacrylonitrile. Any material that can dissolve (polyacrylonitrile) at the same time can be used.

두 번째 단계는 상기 방사용액을 응고제로 물 또는 물과 유기용매의 혼합물을 사용한 습식 방사공정을 통해 핏치/폴리아크릴로니트릴(polyacrylonitrile)계 중공사막을 제조하는 단계이다.The second step is to prepare a pitch / polyacrylonitrile-based hollow fiber membrane through a wet spinning process using water or a mixture of water and an organic solvent as a coagulant.

즉, 제조된 방사용액을 튜브 인 올리피스(tube-in-orifice) 형태의 노즐을 이용한 습식 방사공정을 통해 핏치/폴리아크릴로니트릴(polyacrylonitrile)계 중공사막을 제조하는데, 내부응고제와 외부응고제로 물 또는 물/유기용매(=1/99 ~99/1 중량비)를 사용하고 기어펌프를 사용하여 중공사막의 방사속도를 제어될 수 있다. 상기 유기용매로는 에탄올, 메탄올, 이소프로필알코올 등의 알코올계, N-메틸피롤리돈, 에틸렌 카보네이트, 디메틸포름아미드 또는 디메틸 사에트아미드 등을 포함한 극성 유기용매가 바람직하다.That is, to produce a pitch / polyacrylonitrile-based hollow fiber membrane through a wet spinning process using a nozzle of the tube-in-orifice type, the spinning solution prepared as an internal coagulant and an external coagulant The spinning speed of the hollow fiber membranes can be controlled using water or water / organic solvents (= 1/99 to 99/1 weight ratio) and gear pumps. The organic solvent is preferably a polar organic solvent including alcohols such as ethanol, methanol, isopropyl alcohol, N-methylpyrrolidone, ethylene carbonate, dimethylformamide, or dimethyl tetraamide.

세 번째 단계는 상기 중공사막을 60 ~ 80 ℃, 5 ~ 7 시간동안 열수 처리하여 유기용매로 추출 후, 1 ~ 5 ℃/분의 승온속도로 200 ~ 400 ℃까지 승온시키고 2 ~ 3 시간 동안 산화시키는 단계이다In the third step, the hollow fiber membrane is hydrothermally treated at 60 to 80 ° C. for 5 to 7 hours, extracted with an organic solvent, and then heated up to 200 to 400 ° C. at a temperature rising rate of 1 to 5 ° C./min and oxidized for 2 to 3 hours. It's a step

제조된 중공사막은 60 ~ 80 ℃의 열수를 이용하여 5 ~ 7 시간 동안 열수 처리를 통해 막 내부에 잔존하고 있는 유기용매를 추출한 다음 상온에서 1 ~ 3일간 건조시킨다. The manufactured hollow fiber membrane is extracted with an organic solvent remaining inside the membrane by hydrothermal treatment for 5 to 7 hours using hot water at 60 to 80 ℃ and dried at room temperature for 1 to 3 days.

상기한 제조된 중공사막은 열처리 도중에 용융되어 덩어리지거나 타는 것을 방지하기 위해서 산화과정을 거치게 된다. 열적 안정성을 부여하기 위한 산화과정은 액상 산화 및 기상 산화로 구분된다. 일반적으로 액상 산화는 질산, 황산, 염산, 과망간산칼륨, 중크롬산칼륨 등의 산의 수용액에 침지하는 과정으로 구성되고, 기상 산화는 공기, 이산화질소, 산소 기류 하에서 200 ~ 400 ℃ 온도를 유지하는 과정으로 구성된다. The manufactured hollow fiber membrane is subjected to an oxidation process to prevent agglomeration or burning by melting during heat treatment. Oxidation processes for imparting thermal stability are divided into liquid phase oxidation and gas phase oxidation. In general, liquid phase oxidation consists of immersion in an aqueous solution of acid such as nitric acid, sulfuric acid, hydrochloric acid, potassium permanganate, potassium dichromate, and gas phase oxidation, which consists of maintaining a temperature of 200 to 400 ° C under air, nitrogen dioxide, and oxygen airflow. do.

본 발명에 따른 산화 과정에서는 상기한 기상 산화법을 이용하였다. 먼저, 건조된 중공사막을 튜브 로(tube furnace) 내에 넣고 튜브 로(tube furnace) 내에 공기를 0.5 L/min 정도의 유량으로 흘리면서 1 ~ 5 ℃/분의 승온속도로 온도를 200 ~ 250 ℃까지 상승시키고 2 ~ 3시간동안 산화시킨다. 온도 범위를 200 ~ 250 ℃로 한정하는 이유는 중공사막을 구성하고 있는 여러 성분(탄소, 산소, 질소) 중에서 탄소 이외의 성분을 제거하기 위한 공정으로서 200 ~ 250 ℃에서의 중공사막의 중축합 반응조건이 최적이기 때문이다. 200 ℃ 보다 낮은 온도에서는 중축합 반응이 제대로 일어나지 못하여 탄소 이외의 다른 성분들을 여전히 함유할 가능성이 있으며, 250 ℃ 보다 높은 온도에서는 중공사막 공기 중의 산소와 반응하여 완전 연소가 일어나게 되어 전소하게 될 가능성이 있다. In the oxidation process according to the present invention, the above-described gas phase oxidation method was used. First, the dried hollow fiber membrane is placed in a tube furnace and the air is flowed into the tube furnace at a flow rate of about 0.5 L / min, and the temperature is increased to 200 to 250 ° C. at a temperature increase rate of 1 to 5 ° C./min. Raise and oxidize for 2-3 hours. The reason for limiting the temperature range to 200 to 250 ° C. is a process for removing components other than carbon from various components (carbon, oxygen, and nitrogen) constituting the hollow fiber membrane, and polycondensation reaction of the hollow fiber membrane at 200 to 250 ° C. This is because the condition is optimal. At temperatures below 200 ° C, the polycondensation reactions do not occur properly and may still contain components other than carbon. At temperatures above 250 ° C, the reaction may occur with combustion of oxygen in the air of the hollow fiber membranes, resulting in complete combustion. have.

또한, 열처리 시간을 2 ~ 3시간으로 한정하는 이유는, 열처리 시간이 2시간 보다 짧은 경우에는 중축합 반응이 제대로 일어나지 못하여 탄소 이외의 성분을 여전히 함유할 가능성이 있고, 3시간을 초과하더라도 열처리한 중공사막의 탄소 함량은 크게 변동되지 않으므로 불필요한 열처리 시간 유지로 인해 경제성이 감소될 우려가 있기 때문이다. In addition, the reason for limiting the heat treatment time to 2 to 3 hours is that, if the heat treatment time is shorter than 2 hours, the polycondensation reaction may not occur properly, and it may still contain components other than carbon. This is because the carbon content of the hollow fiber membrane is not greatly changed, and thus economic efficiency may decrease due to unnecessary heat treatment time maintenance.

네 번째 단계는 1 ~ 5 ℃/분의 승온속도로 500 ~ 1000 ℃까지 승온시키고 30분 ~ 1시간 동안 튜브 로(tube furnace)의 회전속도 5 ~ 1,000 rpm으로 탄화시킨다.The fourth step is to heat up to 500 ~ 1000 ℃ at a temperature increase rate of 1 ~ 5 ℃ / min and carbonized at a rotation speed of 5 ~ 1,000 rpm of the tube furnace (30 minutes ~ 1 hour).

탄화처리 온도가 1000 ℃를 초과할 경우에는 핏치의 결정화가 진행되어 활성화를 저해하며, 500 ℃ 미만에서는 탄화시간을 오래 유지시켜도 탄화의 효과가 적 으므로 바람직하지 않다. 또한, 기계적 물성을 높이기 위해 탄화공정에서 튜브 로(tube furnace)를 회전시켰으며 이때 회전속도(rolling speed)는 5 ~ 1,000 rpm으로 회전시킨다.If the carbonization temperature exceeds 1000 ℃, the crystallization of the pitch progresses to inhibit the activation, and below 500 ℃ is not preferable because the effect of carbonization is small even if the carbonization time is maintained for a long time. In addition, in order to increase mechanical properties, the tube furnace was rotated in the carbonization process, and the rolling speed was rotated at 5 to 1,000 rpm.

마지막으로 1 ~ 5 ℃/분의 승온속도로 900~1,000 ℃까지 승온시키고 30분~5시간 동안 질소기체를 사용하여 10 ~ 500 ㎤/분의 유속으로 수증기 공급하고, 튜브 로(tube furnace)의 회전속도로 1 ~ 1,000 rpm으로 활성화시킨다. 이때, 수증기의 공급 유속이 낮을 경우에는 활성화 정도가 낮아지며, 공급 유속이 높으면 과도한 활성화로 활성탄소 중고사막의 기계적 물성을 저해시킬 수 있으므로 바람직하지 않다. 또한, 활성화 단계에서 기계적 물성을 높이기 위해서 튜브 로(tube furnace)를 회전시키며, 이때 회전속도는 5 ~ 1,000 rpm으로 하는 것이 바람직하다. Finally, the temperature is raised to 900-1,000 ° C. at a heating rate of 1-5 ° C./min, and steam is supplied at a flow rate of 10-500 cm 3 / min using nitrogen gas for 30 minutes to 5 hours, Activate at 1 to 1,000 rpm at rotation speed. At this time, when the supply flow rate of the water vapor is low, the activation degree is lowered, and if the supply flow rate is high, excessive activation may inhibit the mechanical properties of the activated carbon used sand desert is not preferable. In addition, to increase the mechanical properties in the activation step to rotate the tube furnace (tube furnace), the rotation speed is preferably 5 ~ 1,000 rpm.

상기한 바와 같이, 본 발명에 따른 제조방법에 의하여 흡착-선택성을 갖는 활성탄소 중공사막을 제조할 수 있으며, 본 발명의 방법에 의하여 제조된 활성탄소 중공사막은 우수한 선택성과 투과성을 가지며 기계적 강도 또한 향상되었다.As described above, the activated carbon hollow fiber membrane having adsorption-selectivity can be prepared by the production method according to the present invention, and the activated carbon hollow fiber membrane prepared by the method of the present invention has excellent selectivity and permeability and also has mechanical strength. Improved.

이하, 본 발명의 바람직한 실시예를 기재한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로서 본 발명이 하기의 실시예에 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention are described. However, the following examples are intended to illustrate the present invention and the present invention is not limited to the following examples.

실시예Example 1 One

연화점이 220 ℃인 석탄계 핏치(pitch) 10 중량%와 폴리아크릴로니트릴(polyacrylonitrile)[중량평균 분자량 : 150,000] 7.5 중량%, N-메틸피롤리돈(NMP) 82.5 중량%에 100 ℃에서 5시간 정도 용해과정을 걸쳐 방사용액을 제조하였다. 제조된 방사용액을 튜브인올리피스(tube-in-orifice) 형태의 노즐을 이용한 습식 방사공정을 통해 Pitch/PAN 중공사막을 제조하였다. 이때, 내부응고제와 외부응고제로는 비용매인 물을 사용하였다. 제조된 Pitch/PAN 중공사막은 상온에서 2일간 물속에 보관한 후 80 ℃의 열수를 이용하여 6시간동안 열수 처리하여 막 내부에 잔존하고 있는 유기용매를 추출한 후 상온에서 2시간동안 건조시켰다. 이러한 후처리 공정을 거친 Pitch/PAN 중공사막을 전기로에 넣고 공기분위기 하에서 3 ℃/분의 승온속도로 250 ℃까지 승온시킨 다음 2시간동안 산화시켰다. 다음으로 질소분위기하에서 3 ℃/분의 승온속도로 800 ℃까지 승온시킨 다음 30분 동안 탄화시켰다. 이때, 튜브 로(tube furnace)의 회전속도는 5 rpm으로 하였으며, 마지막으로 3 ℃/분의 승온속도로 950 ℃까지 승온시킨 다음 3시간동안 질소기체를 사용하여 300 ㎤/분의 유속으로 100 ℃의 수증기 공급하여 활성화시켰다. 이때, 튜브 로(tube furnace)의 회전속도는 5 rpm으로 하여 Pitch/PAN 활성탄소 중공사막을 제조하였다. 10 wt% of a coal pitch with a softening point of 220 ° C., 7.5 wt% of polyacrylonitrile [weight average molecular weight: 150,000], and 82.5 wt% of N-methylpyrrolidone (NMP) at 100 ° C. for 5 hours. The spinning solution was prepared through the dissolution process. Pitch / PAN hollow fiber membrane was prepared by a wet spinning process using a nozzle of the tube-in-orifice type of the prepared spinning solution. At this time, non-solvent water was used as the internal coagulant and the external coagulant. The prepared Pitch / PAN hollow fiber membrane was stored in water at room temperature for 2 days, and then treated with hot water for 6 hours using hot water at 80 ° C. to extract the organic solvent remaining in the membrane, and then dried at room temperature for 2 hours. The Pitch / PAN hollow fiber membrane subjected to this post-treatment process was put in an electric furnace and heated to 250 ° C. at a temperature increase rate of 3 ° C./min under an air atmosphere, and then oxidized for 2 hours. Next, the temperature was raised to 800 ° C. under a nitrogen atmosphere at a rate of 3 ° C./min, and carbonized for 30 minutes. At this time, the rotation speed of the tube furnace was 5 rpm. Finally, the temperature was raised to 950 ° C. at a heating rate of 3 ° C./min, and then 100 ° C. at a flow rate of 300 cm 3 / min using nitrogen gas for 3 hours. Activated by steam supply. At this time, the rotation speed of the tube furnace was 5 rpm to prepare a Pitch / PAN activated carbon hollow fiber membrane.

실시예 2Example 2

탄화와 활성화 단계에서 튜브 로(tube furnace)의 회전속도를 10 rpm으로 한 것 외에는 모든 실험조건을 실시예 1과 같이 하여 Pitch/PAN 활성탄소 중공사막을 제조하였다.Pitch / PAN activated carbon hollow fiber membranes were prepared under the same conditions as in Example 1 except that the rotation speed of the tube furnace was set to 10 rpm in the carbonization and activation step.

실시예 3Example 3

탄화와 활성화 단계에서 튜브 로(tube furnace)의 회전속도를 20 rpm으로 한 것 외에는 모든 실험조건을 실시예 1과 같이 하여 Pitch/PAN 활성탄소 중공사막을 제조하였다.Pitch / PAN activated carbon hollow fiber membranes were prepared in the same manner as in Example 1 except that the rotation speed of the tube furnace was 20 rpm in the carbonization and activation step.

실시예 4Example 4

습식 방사공정시 내ㆍ외부 응고제를 물/에탄올(=1:1 중량비) 혼합물을 사용하고 산화 및 활성화단계에서 튜브 로(tube furnace)의 회전속도를 20 rpm으로 한 것 외에는 모든 실험조건을 실시예 1과 같이 하여 Pitch/PAN 활성탄소 중공사막을 제조하였다.All experimental conditions were used except that the internal and external coagulant was mixed with water / ethanol (= 1: 1 weight ratio) in the wet spinning process and the rotation speed of the tube furnace was 20 rpm during the oxidation and activation steps. Pitch / PAN activated carbon hollow fiber membranes were prepared in the same manner as in Example 1.

실시예 5Example 5

습식 방사공정시 내ㆍ외부 응고제를 물/에탄올(=1:2 중량비) 혼합물을 사용하고 산화 및 활성화단계에서 튜브 로(tube furnace)의 회전속도를 20 rpm으로 한 것 외에는 모든 실험조건을 실시예 1과 같이 하여 Pitch/PAN 활성탄소 중공사막을 제조하였다.All experimental conditions were used except that the internal and external coagulant was mixed with water / ethanol (= 1: 2 weight ratio) in the wet spinning process and the rotation speed of the tube furnace was 20 rpm during the oxidation and activation steps. Pitch / PAN activated carbon hollow fiber membranes were prepared in the same manner as in Example 1.

비교예 1Comparative Example 1

튜브 로(tube furnace)의 회전속도는 0 rpm으로 한 것 외에는 모든 실험조건을 실시예 1과 같이 하여 Pitch/PAN 활성탄소 중공사막을 제조하였다.Pitch / PAN activated carbon hollow fiber membranes were prepared under the same conditions as in Example 1 except that the rotation speed of the tube furnace was 0 rpm.

시험예Test Example

상기한 실시예 1 ~ 5와 비교예 1에서 제조된 활성탄소 중공사막에 대한 기체투과도와 기계적 물성을 알아보았으며, 그 결과를 다음 표 1에 제시하였다. 투과실험방법은 다음과 같다. 기체 투과실험은 실험용으로 제작한 모듈을 이용하여 막의 투과부는 진공을 사용하여 전체 압력차를 15 psi로 유지하며 측정하였다. [표 1]Gas permeability and mechanical properties of the activated carbon hollow fiber membranes prepared in Examples 1 to 5 and Comparative Example 1 were examined, and the results are shown in Table 1 below. Permeation test method is as follows. In the gas permeation experiment, the permeation part of the membrane was measured using a module manufactured for experiment, while maintaining the total pressure difference at 15 psi using vacuum. TABLE 1

Figure 112007070201450-pat00001
Figure 112007070201450-pat00001

상기 표 1에서 보는 바와 같이, 실시예 1 ~ 5의 중고사막은 비교예 보다 이산화탄소 및 질소의 투과도는 약간 낮으나 이산화탄소/질소의 선택도는 매우 높게 나타났다. 또한, 탄화 및 활성화단계에서 튜브 로(tube furnace)의 회전속도가 증가함에 따라 선택도 역시 증가하였으며, 특히 내ㆍ외부 응고제를 물/알코올 혼합물을 사용하였을 높은 선택도를 나타내었다.As shown in Table 1, the medium-to-dead deserts of Examples 1 to 5 were slightly lower in permeability of carbon dioxide and nitrogen than in Comparative Examples, but the selectivity of carbon dioxide / nitrogen was very high. In addition, the selectivity also increased as the rotation speed of the tube furnace increased in the carbonization and activation step. In particular, the internal / external coagulant showed high selectivity using water / alcohol mixture.

따라서, 탄화 및 활성화단계에서 튜브 로(tube furnace)를 회전시키지 않았을 때에 비해 회전시켰을 때 특히 회전속도를 일정범위 내에서 증가시켰을 때 높은 기계적 강도와 함께 우수한 투과 선택성을 나타내었다.Therefore, when the tube furnace was rotated in the carbonization and activation step, especially when the rotation speed was increased within a certain range, it showed excellent permeation selectivity with high mechanical strength.

도 1은 실시예 1에서 제조된 중공사막을 나타낸 사진이다.1 is a photograph showing a hollow fiber membrane prepared in Example # 1.

Claims (5)

1) 폴리아크릴로니트릴(polyacrylonitrile)을 포함하는 고분자 수지 5 ~ 30 중량%와 핏치(pitch) 5 ~ 30 중량%를 유기용매 60 ~ 90 중량%로 80 ~ 120 ℃에서 3 ~ 7 시간 용해시켜 방사용액을 제조하는 단계;1) Dissolve 5-30% by weight of the polymer resin containing polyacrylonitrile and 5-30% by weight of the organic solvent by dissolving 60-90% by weight of the organic solvent at 80-120 ° C. for 3-7 hours. Preparing a use solution; 2) 상기 방사용액을 응고제로 물 또는 물과 유기용매의 혼합물을 사용한 습식방사공정을 통해 중공사막을 제조하는 단계;2) preparing a hollow fiber membrane through a wet spinning process using water or a mixture of water and an organic solvent as a coagulant to the spinning solution; 3) 상기 중공사막을 60 ~ 80 ℃, 5 ~ 7 시간 동안 열수 처리하여 유기용매로 추출 후, 1 ~ 5 ℃/분의 승온속도로 200 ~ 400 ℃까지 승온시키고 2 ~ 3 시간 동안 산화시키는 단계3) the hollow fiber membrane 60 ~ 80 ℃, hydrothermal treatment for 5 to 7 hours and extracted with an organic solvent, the temperature is raised to 200 ~ 400 ℃ at a temperature increase rate of 1 ~ 5 ℃ / min and oxidized for 2 to 3 hours 4) 1 ~ 5 ℃/분의 승온속도로 500 ~ 1000 ℃까지 승온시키고 30분 ~ 1시간 동안 튜브 로(tube furnace)의 회전속도 5 ~ 1,000 rpm으로 탄화시키는 단계; 및4) raising the temperature to 500 to 1000 ° C. at a heating rate of 1 to 5 ° C./min and carbonizing at a rotation speed of 5 to 1,000 rpm of the tube furnace for 30 minutes to 1 hour; And 5) 1 ~ 5 ℃/분의 승온속도로 900 ~ 1,000 ℃까지 승온시키고 30분 ~ 5시간 동안 질소기체를 사용하여 10 ~ 500 ㎤/분의 유속으로 수증기 공급하고, 튜브 로(tube furnace)의 회전속도로 1 ~ 1,000 rpm으로 활성화시키는 단계5) The temperature is raised to 900 ~ 1,000 ℃ at a temperature increase rate of 1 ~ 5 ℃ / min and supplied with steam at a flow rate of 10 ~ 500 cm 3 / min using nitrogen gas for 30 minutes to 5 hours, the tube furnace Activation at 1 ~ 1,000 rpm at rotation speed 를 포함하여 이루어진 것을 특징으로 하는 활성탄소 중공사막의 제조방법.Method for producing an activated carbon hollow fiber membrane, characterized in that consisting of. 제 1 항에 있어서, 상기 고분자 수지는 폴리아크릴로니트릴(polyacrylonitrile) 외에 폴리설폰(polysulfone), 폴리이서설 폰(polyethersulfone), 폴리이서이미드(polyetherimide), 폴리이미드(polyimide), 폐놀 수지를 추가로 사용하며, 상기 고분자 수지는 중량평균 분자량은 50,000 ~ 300,000인 것을 특징으로 하는 제조방법. The method of claim 1, wherein the polymer resin is polyacrylonitrile, in addition to polysulfone (polysulfone), polyethersulfone (polyethersulfone), polyetherimide (polyetherimide), polyimide (polyimide), further used phenols The polymer resin has a weight average molecular weight of 50,000 to 300,000. 제 1 항에 있어서, 상기 핏치(pitch)는 연화점이 200 ~ 250 ℃인 것을 특징으로 하는 제조방법.The method of claim 1, wherein the pitch is a softening point of 200 ~ 250 ℃ characterized in that the manufacturing method. 제 1 항에 있어서, 상기 1) 단계에서의 유기용매는 N-메틸피롤리돈, 에틸렌 카보네이트, 디메틸포름아미드 또는 디메틸 사에트아미드인 것을 특징으로 하는 제조방법.The method according to claim 1, wherein the organic solvent in step 1) is N-methylpyrrolidone, ethylene carbonate, dimethylformamide, or dimethyl saetamide. 제 1 항에 있어서, 상기 2) 단계에서의 유기용매는 에탄올, 메탄올, 이소프로필알코올, N-메틸피롤리돈, 에틸렌 카보네이트, 디메틸포름아미드 또는 디메틸 사에트아미드인 것을 특징으로 하는 제조방법.The method according to claim 1, wherein the organic solvent in step 2) is ethanol, methanol, isopropyl alcohol, N-methylpyrrolidone, ethylene carbonate, dimethylformamide or dimethyl saetamide.
KR1020070098194A 2007-09-28 2007-09-28 Preparation of adsorption-selective activated carbon hollow fiber membranes KR100892770B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070098194A KR100892770B1 (en) 2007-09-28 2007-09-28 Preparation of adsorption-selective activated carbon hollow fiber membranes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070098194A KR100892770B1 (en) 2007-09-28 2007-09-28 Preparation of adsorption-selective activated carbon hollow fiber membranes

Publications (2)

Publication Number Publication Date
KR20090032728A KR20090032728A (en) 2009-04-01
KR100892770B1 true KR100892770B1 (en) 2009-04-15

Family

ID=40759478

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070098194A KR100892770B1 (en) 2007-09-28 2007-09-28 Preparation of adsorption-selective activated carbon hollow fiber membranes

Country Status (1)

Country Link
KR (1) KR100892770B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101479280B1 (en) * 2012-06-14 2015-01-06 한국화학연구원 Preparation method of aluminium-based porous hollow fiber membrane, and the straight porous aluminium-based hollow fiber membrane improved selective permeability and mechanical strength fabricated by the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9901880B2 (en) 2015-10-29 2018-02-27 Korea Institute Of Science And Technology Carbon molecular sieve membranes based on fluorine-containing polymer/polysilsesquioxane blending precursors and method for fabricating the same
KR101948212B1 (en) * 2017-06-20 2019-04-30 한국화학연구원 Apparatus for concentrating VOCs and preparing method thereof and analyzing method using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089135A (en) 1988-01-20 1992-02-18 Mitsubishi Rayon Co., Ltd. Carbon based porous hollow fiber membrane and method for producing same
KR960010384B1 (en) * 1991-09-03 1996-07-31 고지마 아끼로오 Permselective polyacrylonitrile copolymer and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089135A (en) 1988-01-20 1992-02-18 Mitsubishi Rayon Co., Ltd. Carbon based porous hollow fiber membrane and method for producing same
KR960010384B1 (en) * 1991-09-03 1996-07-31 고지마 아끼로오 Permselective polyacrylonitrile copolymer and production thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
저널:Songklanakarin J.Sci.Technol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101479280B1 (en) * 2012-06-14 2015-01-06 한국화학연구원 Preparation method of aluminium-based porous hollow fiber membrane, and the straight porous aluminium-based hollow fiber membrane improved selective permeability and mechanical strength fabricated by the same

Also Published As

Publication number Publication date
KR20090032728A (en) 2009-04-01

Similar Documents

Publication Publication Date Title
Salleh et al. Carbon hollow fiber membranes derived from PEI/PVP for gas separation
Salleh et al. Fabrication and characterization of PEI/PVP‐based carbon hollow fiber membranes for CO2/CH4 and CO2/N2 separation
Yoshimune et al. Carbon molecular sieve membranes derived from trimethylsilyl substituted poly (phenylene oxide) for gas separation
US8394175B2 (en) Carbon membranes from cellulose esters
JP4911417B2 (en) Hollow fiber carbon membrane introduced with metal ions and dehydration method of aqueous alcohol solution using the same
AU2007337586B2 (en) Separation membrane and method for production thereof
Torres et al. Review on the preparation of carbon membranes derived from phenolic resins for gas separation: from petrochemical precursors to bioresources
CN100506363C (en) Preparation method of polyether sulphone ketone base gas separation carbon membrane
WO2007017650A1 (en) Carbon membranes
Lee et al. Gas permeation properties of carbon molecular sieving membranes derived from the polymer blend of polyphenylene oxide (PPO)/polyvinylpyrrolidone (PVP)
Zhang et al. Structure and morphology of microporous carbon membrane materials derived from poly (phthalazinone ether sulfone ketone)
KR100892770B1 (en) Preparation of adsorption-selective activated carbon hollow fiber membranes
Wang et al. Effects of sulfone/ketone in poly (phthalazinone ether sulfone ketone) on the gas permeation of their derived carbon membranes
Lee et al. Gas permeation properties for the post-oxidized polyphenylene oxide (PPO) derived carbon membranes: Effect of the oxidation temperature
JP5289790B2 (en) Method for producing separation membrane element comprising carbon membrane
Lee et al. Characterization of the post-oxidized carbon membranes derived from poly (2, 4-dimethyl-1, 4-phenylene oxide) and their gas permeation properties
Sazali The influence of carbonization temperature and heating rate towards carbon membrane performance: a review
Zainal et al. Controlled Carbonization Heating Rate for Enhancing CO2 Separation Based on Single Gas Studies
Salleh et al. 1.13 Preparation of Carbon Membranes for Gas Separation
KR100638323B1 (en) Silica/porous hollow fiber carbonmolecular sieve membrane for hydrogen gas separation and preparation method thereof
Sazali et al. PI/NCC carbon membrane: effect of additives loading towards hydrogen separation
Huda et al. A comparison of carbon molecular sieve (CMS) membranes with polymer blend CMS membranes for gas permeation applications
Jaya et al. Enhancing CO2/CH4 Separation Using Ppo-derived Hollow Fiber Carbon Membrane
Sazali et al. CO2 Selective Carbon Tubular Membrane: The Effect of Stabilization Temperature on BTDA-TDI/MDI P84 co-polyimide
CN112337321B (en) Carbon molecular sieve membrane structure remodeling method

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120305

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130329

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160401

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180403

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 11