KR100840997B1 - 폴리우레탄폼 제조용 폴리에테르폴리올의 제조방법 - Google Patents

폴리우레탄폼 제조용 폴리에테르폴리올의 제조방법 Download PDF

Info

Publication number
KR100840997B1
KR100840997B1 KR1020060096996A KR20060096996A KR100840997B1 KR 100840997 B1 KR100840997 B1 KR 100840997B1 KR 1020060096996 A KR1020060096996 A KR 1020060096996A KR 20060096996 A KR20060096996 A KR 20060096996A KR 100840997 B1 KR100840997 B1 KR 100840997B1
Authority
KR
South Korea
Prior art keywords
amine
catalyst
polyol
polyurethane foam
reaction
Prior art date
Application number
KR1020060096996A
Other languages
English (en)
Other versions
KR20080030749A (ko
Inventor
이상현
전영찬
안준태
박창하
박인하
Original Assignee
에스케이씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨 주식회사 filed Critical 에스케이씨 주식회사
Priority to KR1020060096996A priority Critical patent/KR100840997B1/ko
Publication of KR20080030749A publication Critical patent/KR20080030749A/ko
Application granted granted Critical
Publication of KR100840997B1 publication Critical patent/KR100840997B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4244Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups
    • C08G18/4247Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids
    • C08G18/4252Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids derived from polyols containing polyether groups and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

본 발명은 폴리우레탄 폼 제조용 폴리에테르폴리올에 있어서, 2차아민을 할로겐화 에폭시화합물과 반응시켜 2~3개의 아미노기를 갖는 아미노알콜을 얻고 이를 중합개시제로 하여 촉매하에서 에폭시 화합물을 에폭사이드 중합반응시켜 얻어지는 분자내에 2~3개의 아민기를 갖는 폴리에테르폴리올의 제조방법에 관한 것이다.
본 발명의 방법으로 제조된 폴리에테르폴리올은 폴리우레탄폼 제조시 이취와 포깅현상의 발생을 크게 저감시켜 줄 수 있고 아민촉매 사용량도 50~100% 저감시켜 줄 수 있으며 다양한 우레탄 반응속도를 갖는 이점을 갖는다.
폴리우레탄폼, 폴리올, 아민촉매, 에폭시 화합물, 폴리에테르폴리올

Description

폴리우레탄폼 제조용 폴리에테르폴리올의 제조방법{Manufacturing method of Polyetherpolyol for polyurethane foam manufacturing}
본 발명은 폴리우레탄폼 제조용 신규의 폴리에테르폴리올의 제조방법에 관한 것이다. 보다 상세하게는 폴리우레탄폼 제조시 이취와 포깅(fogging)현상의 발생이 저감되는 폴리에테르폴리올의 제조방법에 관한 것이다.
폴리우레탄폼(polyurethane foam)은 자동차용시트, 단열재, 건축용 바닥재, 가구, 침대, 의류 등 광범위한 용도를 갖고 있다.
폴리우레탄폼은 폴리에테르폴리올과 폴리이소시아네이트를 주원료로 하고 여기에 저분자량 사슬연장제와 가교제, 발포제, 계면활성제 등과 함께 다양한 촉매를 사용해서 제조한다.
복수의 하이드록시기를 갖고 있는 중합체를 폴리올(polyol)이라고 하는데 폴리우레탄은 이소시아네이트화합물과 폴리올을 축합반응시켜 제조한다. 이소시아네이트와 폴리올의 반응은 먼저 이소시아네이트와 촉매인 염기와의 부가물을 생성하고 이 부가물이 다시 알콜과 반응하여 폴리우레탄을 형성하는 것으로 알려져 있다.
폴리올과 이소시아네이트가 반응하여 3차원 결합구조를 갖는 우레탄결합을 형성시키는 반응을 우레탄반응이라고 한다.
폴리우레탄 제품에 사용되는 폴리올에서 폴리(옥시프로필렌에테르)폴리올, 폴리(옥시에틸렌-프로필렌에테르)폴리올과 같이 분자구조 내에 에테르 결합을 갖는 폴리올을 폴리에테르폴리올이라 하고 프탈산, 아디핀산과 같은 다염기산과 다가알콜의 반응으로 얻어지는 폴리올을 폴리에스텔폴리올이라고 하는데 본 발명은 폴리에테르폴리올에 관한 것이다.
폴리에테르폴리올은 산화에틸렌이나 산화프로필렌과 같은 탄화수소계 산화물을 알칼리하이드록사이드를 촉매로 하고 중합개시제를 사용하는 에폭사이드 중합반응으로 제조된다.
다음 반응식에서와 같이 에폭시기의 개환(開環) 반응에 의하여 중합체를 생성시키는 중합반응을 에폭사이드 중합반응이라 한다.
Figure 112006072064863-pat00001
이소시아네이트와 폴리올의 우레탄반응에 사용되는 촉매로서는 디메틸에탄올아민, 트리에틸아민, 트리에틸렌디아민, 헥사메틸렌테트라아민, 코발트나프테네이트 등 다양한 염기가 사용되고 있으나 아민계 촉매가 주로 사용되고 있다.
아민계 촉매를 사용하여 제조되는 폴리우레탄폼은 발포시 아민화합물 특유의 암모니아 냄새를 발산하는 문제가 있고, 자동차시트로 사용되는 경우 포 깅(fogging) 현상으로 인해 선바이져(sun viser), 암레스트(arm rest) 자동차내장재를 오염시키며 건축재 등의 제품에서도 오염현상을 야기하는 문제가 있다.
여기에서 포깅현상이라고 하는 것은 우레탄폼 중에 함유되어 있는 미세휘발성 물질들이 천천히 외부로 휘발되어 자동차의 유리나 천정등에 재결정되면서 유리나 섬유등에 얼룩이 져서 오염되는 현상을 말한다.
종래에도 아민계촉매를 사용한 폴리우레탄폼에서 발생되는 이취(異臭)를 저감시키고 포깅현상을 억제하기 위한 다양한 방안이 제안된 바 있다.
폴리우레탄폼에서 발생되는 이취와 포깅현상은 제품에 잔류하는 미반응아민계 촉매에 기인하는 것이므로 아민계촉매를 이소시아네이트화합물과 결합시켜주거나 폴리올에 결합시켜 아민계촉매가 폴리우레탄폼에서 유출되지 않게 하는 방법이 제안된 바 있다.
미국특허 5,143,944호와 미국특허 5,710,191호에서는 아민촉매에 수산기를 도입하여 수산기를 가지는 아민촉매가 이소시아네이트와 반응하여 결합되도록 하는 방법을 제시하고 있다.
이소시아네이트와 결합된 아민은 이취나 포깅현상을 발생시키지 않게 된다.
그러나 이런 촉매는 폴리우레탄 반응중에 아민촉매가 이소시아네이트와 결합되어 아민촉매의 이동성이 저감되어 촉매의 활성이 떨어지기 때문에 촉매사용량을 과량으로 사용해야하는 단점을 나타낸다.
상기와 같은 아민촉매의 이동성이 저하되는 단점을 보완하기 위해 미국특허 5,436,969호, 미국특허 6,060,531호에서는 N,N-디메틸-1,4-디아미노부탄 (N,N- dimethyl-1,4-diaminobutane), N,N-디메틸-1,3-디아미노프로판 (N,N-dimethyl-1,3-diaminopropane), N,N-디메틸디프로필렌(N,N-dimethyldipropylene)과 N,N-디메틸디프로필렌트리아민(N,N-dimethyldipropylene triamine)등을 폴리올과 반응시켜 아민기를 가진 폴리올을 제조하였고, 미국특허 6,762,274호에서는 3,3′-디아미노-N-메틸디프로필아민(3,3′-diamino-N-methydipropylamine), 3,3′-디아미노-N-에틸디프로필아민(3,3′-diamion-N-ethyldipropylamine), 2,2′-디아미노-N-메틸디에틸아민 (2,2′-diamino-N-methyldiethylamine)을 사용하여 아민기를 갖는 폴리올을 제조하였다.
일반적으로 폴리올이 이소시아네이트보다 이동성이 우수하다.
연질 폴리우레탄 폼 제조는 폴리올과 폴리이소시아네이트를 주원료해서 반응성 촉매, 계면활성제, 가교제등의 첨가제를 사용해서 제조한다. 폴리올로는 관능기가 2 ~ 4이고 수산기가 20 ~ 100 mg KOH/g인 폴리에테르폴리올을 사용한다. 특히 슬라브(slab) 제품에서는 수산기가가 56 ~ 35이고 에틸렌 옥사이드 함량이 0 ~ 10% 인 것을 사용한다. 몰드(mold) 제품에서는 수산기가가 20 ~ 50 이고 에틸렌 옥사이드 함량이 10 ~ 20%이고 에틸렌옥사이드가 말단에 붙은 폴리에스텔폴리올을 사용한다. 경질분야에서는 관능기가 4 ~ 8이고 수산기가가 200 ~ 1200인 제품을 사용한다. 폴리우레탄의 주 원료인 폴리올은 관능기가 2에서 8까지, 분자량이 500 ~ 7000 인 제품이 폴리우레탄의 응용분야에 따라 산업적으로 글리세린, 슈가등을 산화에틸렌, 산화프로필렌 단량체를 KOH등의 알카리 옥사이드의 촉매를 사용해서 에폭사 이드 중합으로 제조한다.
폴리올에 제조에 사용되는 출발물질로는 프로필렌 글리콜, 에틸렌 글리콜, 글리세린, 메틸글루코사이드(Methyl Glucoside), 글루코스(Glucose), 트리메틸올프로판(Trimethylol propane), 펜타에리스리톨(Pentaerythritol), 에틸렌 디아민, 톨루엔디아민, 슈가(sugar), 솔비톨등의 다가의 수산기를 가지는 물질등이 있다. 또한 폴리머의 단위 단량체로서는 산화에틸렌, 산화프로필렌, 산화부틸렌등의 에폭사이드기를 가지는 물질등이 있으며, 촉매로는 수산화나트륨, 수산화 칼륨, 산화세슘, 트리메틸 아민, 트리에틸아민등 등의 염기성 촉매와 AlCl3 , ZnCl2, FeCl3, BF3, BCl3, BeCl2, FeBr3, SnCl4, TiCl4, ZrCl4, ZnCl2등 금속촉매등이 있다. 또한 Al(OR)3, Mg(OR)2, Zn(OR)2, Al(I-Pr)3-ZnCl2, Fe(Oet)3, AlEt3 등으로 에폭시 반응을 하기도 한다.
염기성 촉매로 제조된 폴리올은 에폭사이드 중합시 부반응에 의해 불포화 폴리올이 생성되며, 분자량이 6000 이상인 폴리올의 생산이 어려워 고탄성등의 폴리우레탄 제조에 사용할 수 없는 단점이 있고 아민계 염기성 촉매는 촉매 제거의 어려움과 잔존되어 있는 아민 촉매의 냄새 문제의 단점이 있으나 경질우레탄폼 제조용 폴리올에 일부 분야에 사용되기도 한다. 또한 AlCl3, ZnCl2, FeCl2, BF3 등 금속촉매등을 사용해서 폴리올을 제조시에는 염기성 촉매로 인한 모노올(monol)의 부반응이 적어 매우 큰 고분자 폴리올을 제조할 수 있으나 금속 촉매에 산화프로필렌의 반응성이 낮아 사용량이 많고 고체의 촉매의 취급상에 단점이 있다.
에폭사이드 중합의 부반응에 의해 생기는 불포화 폴리올의 농도를 낮추기 위해 염기성 촉매 대신 CsOH 촉매나 복금속 시안계 촉매를 사용하기도 하였다. CsOH 촉매는 기존의 촉매보다 불포화도를 50% 정도 감소시켰고, 복금속 시안 계 촉매는 모노올(Monol)의 부반응을 최소화하여 모노올(Monol) 함량을 0.01 meq/g 이하의 고순도 폴리올 및 분자량이 큰 폴리에테르(polyether), 폴리에스테르(polyester)와 폴리에테르에스테르 폴리올 등 많은 고분자 제품을 만들 수 있었다. 복금속 시안계 촉매는 일반적으로 Ma[M’(CN)6]b Lc L’d 로 구조를 가진다. 금속 염은 일반적으로 M(X)n의 일반식을 가지는데 M은 Zn(Ⅱ), Fe(Ⅱ), Ni(Ⅱ), Mn(Ⅱ), Co(Ⅱ), Sn(Ⅱ), Pb(Ⅱ), Fe(Ⅲ), Mo(Ⅳ), Mo(Ⅵ), Al(Ⅱ), V(Ⅴ), V(Ⅳ), Sr(Ⅱ), W(Ⅳ), W(Ⅵ), Cu(Ⅱ), Cr(Ⅲ) 등이 있다. X는 할로겐화물, 수산화물, 황산염(sulfate), 탄산염(carbonate), 시안염(cyanide), 옥살산염(oxalate), 티오시안염(thiocyanate), 이소시안염(isocyanate), 이소티오시안염(isothiocyanate), 카르복시산염(carboxylate), 질산염(nitrate) 중에서 선택하는 음이온이다. n 값은 1~3이고 M의 원자가를 만족시킨다. 일반적으로 염화아연, 브롬화아연, 아세트산아연, 아세톤일아세트산아연(zinc acetonylacetonate), 벤조산아연, 질산아연, 브롬화철(Ⅱ), 염화코발트(Ⅱ), 티오시안산코발트(Ⅱ), 포름산니켈(Ⅱ), 질산니켈(Ⅱ) 등과 같은 화합물이 있다. 금속 시안염 M’은 일반적으로 (Y)aM’C(N)b(A)c의 구조식을 가진다. M’는 Fe(Ⅱ), Fe(Ⅲ), Co(Ⅱ), Co(Ⅲ), Cr(Ⅱ), Cr(Ⅲ), Mn(Ⅱ), Mn(Ⅲ), Ir(Ⅲ), Ni(Ⅱ), Rh(Ⅲ), Ru(Ⅱ), V(Ⅴ), V(Ⅳ),등에서 선택한다. Y는 알카리 금속 이온이나 알칼리(alkaline) 금속 이온이다. A는 할로겐화물, 수산화물, 황산염, 탄산염, 시안염, 옥살산염, 티오시안염, 이소시안염, 이소티오시안염, 카르복시산염, 질산염 등에서 택하는 이온이다. a와 b는 1보다 큰 정수이다. a, b, c 의 전하의 합계는 M’전하와 균형을 맞춘다. 일반적으로 포타슘헥사코발테이트(Ⅲ)[potassium hexacyanocobaltate(Ⅲ)], 포타슘헥사시아노페레이트(Ⅱ)[potassium hexacyanoferrate(Ⅱ)], 포타슘헥사시아노페레이트(Ⅲ)[potassium hexacyanoferrate(Ⅲ)], 칼슘헥사시아노코발테이트(Ⅱ)[calcium hexacynocobaltate(Ⅱ)], 리튬헥사시아노페레이트(Ⅱ)[lithium hexacyanoferrate(Ⅱ)] 등이 있다.
폴리올 제조용 복금속 시안계 촉매에 관하여는 미국특허 6,627,575호에 상세하게 개시된 바 있다.
폴리우레탄 폼 제조용 이소시아네이트에는 방향족 이소시아네이트, 지방족 이소시아네이트, 아릴아리파틱 이소시아네이트(arylaliphatic isocyanate)와 사이클로아리파틱 이소시아네이트(cycloaliphatic isocyanate)가 있다. 방향족 이소시아네이트는 4,4′-디페닐메탄디이소시아네이트(4,4′diphenylmethande diisocyanate:이하 MDI라 한다), 2,2′-디페닐메탄디이소시아네이트(2,2′diphenylmethane diisocyanate), 1,3-페닐디이소시아네이트(1,3-phenyl diisocyanate)와 이를 혼합한 모노머릭 MDI(monomeric MDI)와 폴리머릭 MDI(Polymeric MDI)와 함께 톨루엔-2,4-디이소시아네이트(toluene-2,4-diisocyante), 톨루엔-4,4-디이소시아네이트( toluene-4,4-diisocyante) 등의 TDI등과 P-페닐렌디이소시아네이트(P-phenylenediisocyanate), 클로로페닐렌-2,4-디이소시아네이트(chlorophenylene-2,4-diisocyante), 디페닐렌-4,4-디이소시아네이트(diphenylene-4,4- diisocyante), 4,4′-디이소시아네이트-3,3′디메틸디페닐(4,4′-diisocayante-3,3′-dimehyldiphenyl), 디페닐에테르디이소시아네이트(diphenyletherdiisocyanate), 2,4,6-트리이소시아네이트톨루엔(2,4,6-triisocyanatotoluene)과 2,4,4′-트리이소시아네이트디페닐에테르(2,4,4′-triisocyantodiphenylether)등이 있다. 또한 이소시아네이트는 여러가지 이소시아네이트를 혼합하여 사용하기도 하는데 일반적으로 MDI/TDI 혼합하여 사용하기도 하며, 이소시아네이트를 폴리에테르 폴리올과 반응시켜 이소시아네이트-터미네이티드프리폴리머(isocyanated-terminated prepolymer)로 제조한 후 사용하기도 한다. 지방족 이소시아네이트로는 1,6-헥사메틸렌디이소시아네이트(1,6-hexamethylene diisocyanate), 사이클로헥산1,4-디이소시아네이트 (cyclohexane 1,4- diisocyanate), 에틸렌디이소시아네이트(ethylene diisocyanate), 1,12-도데칸-디이소시아네이트(1,12-dodecane-diisocyanate), 1,4-테트라메틸렌디이소시아네이트(1,4-tetramethylene diisocyanate), 이소포론디이소시아네이트(isophorone diisocyanate), 4,4′-디사이클로헥실메탄디이소시아네이트(4,4;-dicyclohexylmethane diisocyanate)등과 사이클로이소시아네이트로는 1,3 또는 1,4-사이클로헥산디이소시아네이트(1,4-cyclohexane diisocyanate), 1-이소시아네이트-3,3-5-트리메틸-5-이소시아네이트메틸사이클로헥산(1-isocyanateo-3,3,5-trimethyl-5-isocyanatomethylcyclohexane), 2,4 또는 2,6-헥사하이드로톨루이렌디이소시아네이트(2,6-hexahydortoluylene diisocyanate), 4,4-디이소시아네이트디사이클로헥실메틸(4,4-diisocyanatodicyclohexylmetane)등이 있다.
폴리우레탄 폼 제조에 있어 사용하는 촉매는 반응성 촉매로는 아민계 촉매류와 금속계 촉매류가 있다. 아민계촉매는 N,N-디메틸사이클로헥실아민(N,N-dimethylcyclohexylamine), 트리에틸렌디아민(triethylenediamine), N-메틸모르포린(N-methylmorpholine), N-에틸모르포린(N-ethylmorpholine), 펜타메틸디에틸렌트리아민(pentamethyldiehtylenetriamine), 테트라메틸에틸렌디아민( tetramethylethylenediamine), bis-메틸아미노에틸-에테르(bis -methylaminoethylether), 1-메틸-4-디메틸아미노에틸-피페라진(1-methyl-4-dimetylaminoethyl-piperazine), 3-메톡시-N-디메틸프로필아민(3-methoxy-N-dimethylpropylamine), 디메틸에탄올아민(dimethylethoanolamine), N-코코모르포린(N-cocomorpholine), N,N′-디메틸-N,N′디메틸이소프로필렌디아민[N-N′dimethyl-N′N′dimethyl isopropylpropylenediamine], N,N-디메틸1-3-디메틸아미노-폴리올아민[N,N-dimethyl-3-diethylamino-propylamine]과 디메틸벤질아 민[dimethylbenzylamine], N,N,N′,N′-테트라 에틸디아미노디에틸에테르(N,N,N′,N′-tetramethyldiaminodiethylether), bis-(디메틸 아미노프로필)[bis-(dimethylaminopropyl)] 우레아, 피리딘 등이 있다. 금속촉매로는 염화주석(Stannous Chloride), 염화아연(zinc chloride), 옥틸산납(lead octate), 옥틸산주석(tin dioctate), 디에틸틴헥소에이트(diethyltin hexoate), 디부틸틴디라우레이트(dibutyltin dilaurate)등이 있다.
폴리우레탄 폼 제조에 있어 사용하는 가교제와 사슬연장제로는 분자량이 17 ~ 600인 폴리하이드록실(Polyhydroxyl)기를 가진 물질로서 종류에는 디올/트리올(diol/triol), 알카놀아민(alkanolamine)과 아민류가 있다. 지방족디올/트리올에는 에틸렌글리콜, 프로필렌글리콜, 디에틸렌글리콜, 1,4-부탄디올, 글리세린, 트리메틸올프로판 등이 있으며, 알카놀아민에는 디에탄올아민, 트리에탄올아민 등이 있으며, 아민류에는 에틸렌디아민, 부틸렌디아민, 1,4-부틸렌디아민, 1,6-헥사메틸렌디아민, 4,4′디아미노디페닐메탄, 2,6′-톨루이렌디아민(2,6′-toluylenediamin), 메틸렌-bis-(o-클로로아닐린)[Metylen-bis-(o-chloroaniline)]등의 폴리아민(polyamine) 등이 있다.
폴리우레탄 폼 제조에 있어 사용하는 발포제로는 물, 이산화탄소와 탄화수소류가 있다. 탄화수소류에는 메틸렌클로라이드(Methylene chloride), 프로판, 부탄, 이소부탄등과 디메틸에테르, 디에틸에테르 등의 에테류, 디클로로메탄, 트리클로로 플루오로메탄, 디클로로디플루오로메탄, 1,1,2-트리클로-1,2,2-트리플루오로메탄(1,1,2-trichloro-1,2,2-trifluoroethane), 디클로로테트라플루오로에탄( dichlorotetrafluoroethane) 등의 할로겐화 탄화수소류와 아세톤, MEK, 에틸아세테이트 등의 케톤류가 있다.
폴리우레탄 폼 제조시 특수한 기능을 부여하기 위해 계면활성제, 난연제, 충전제, 염료, 안정제 등을 사용하기도 한다. 폼 발포시 셀(cell)의 구조를 적당한 크기로 제어하기 위해 사용하는 계면활성제로는 유기실리콘화합물과 알킬페놀( ethyoxylated alkyl phenol), 지방족알콜(ethoxylated fatty alcohol), 파라핀오일(paraffin oils), 파마자유(castor oil) 등이 있다. 난연제로는 트리크레질포스페이트(tricresyl phosphate), 트리스-(1,3-디클로로프로필렌포스페이트)[tris-(1,3-dichloropropyl phosphate)], 트리스(2,3-디부로로프로필)포스페이트[tris (2,3-dibromopropyl) phosphat]와 테트라키스(2-클로로에틸)에틸렌 디포스페이트[tetrakis (2-chloroethyl)ethylene diphosphate]등의 인계 난연제와 산화알미늄(aluminum oxide hydrate), 삼산화안티몬(antimony trioxide)등의 무기 난연제와 멜라민사이누레이트(melamine cyanurate)등이 혼합하여 사용한다.
폴리우레탄 폼 제조시 아민 촉매를 저감하여 폼 제조하기 위해서 사용하는 아민이 결합된 폴리올을 제조하기 위해서 미국특허 5,476,969호에서는 N,N′-디메틸디프로필렌트리아민(N,N'-Dimethyldipropylenetriamine)등을, 미국특허 6,060,531호등에서는 N,N′-디메틸-1,4-디아미노부탄(N,N-dimethyl-1,4-diaminobutane), N,N-디메틸-1,3-디아미노프로판(N,N-dimethyl-1,3-diaminopropane)과 N,N-디메틸디프로필렌트리아민(N,N-dimethyldipropylene triamine)등을 출발물질로 하여 아민기를 가진 폴리올을 제조하였고, 미국특허 6,762,274호에서는 3,3'-디아미노-N-메틸프로필아민(3,3'-diamino-N-methyldipropylamine), 3,3'-디아미노-N-에틸디프로필아민( 3,3'-diamino-N-ethyldipropylamine), 2,2'-디아미노-N-메틸디에틸아민(2,2'-diamino-N-methyldiethylamine)등의 아민을 사용하여 폴리올을 제조하였다. 이들은 모두 아민기가 폴리올 주사슬에 1개 결합되어 있어 고반응성 폴리우레탄 폼 제조시나 고탄성용인 고분자 폴리올을 사용하는 자동차 시트분야에서는 아민기의 몰(mole)수가 1개로 적어 우레탄 경화속도가 늦어지는 단점이 있어 상업적으로는 아민 촉매를 추가로 사용해야 하는 단점이 있다.
본 발명의 목적은 폴리올주쇄에 2~3개의 아민촉매화합물이 결합된 우레탄폼 제조용 폴리에테르폴리올과 그의 제조방법을 제공하는데 있다.
아민계촉매를 사용하여 제조되는 폴리우레탄폼에서 이취와 포깅현상의 발생을 저감시켜 주기 위해서 종래에는 이소시아네이트 또는 폴리올에 아민촉매화합물을 결합시킨 후 폴리올과 이소시아네이트를 반응시켜 폴리우레탄폼을 제조하는 방법이 제안된 바 있다.
이 경우 폴리올이나 이소시아네이트는 분자구조상 아민기가 1개이상 결합될 수 없어 1개의 아민기를 함유하는 촉매화합물이 결합된 폴리올이나 이소시아네이트를 이용하여 폴리우레탄폼을 제조하였으나 1개의 아민촉매화합물이 이소시아네이트나 폴리올은 우레탄 반응에서 충분한 아민촉매화합물을 제공하지 못하게 되어 반응시간이 길어지거나 아민화합물을 추가로 사용하여야 하는 단점이 있었다.
본 발명자들은 2차아민(=NH)을 할로겐화 에폭시화합물과 반응시켜 1가의 할로겐화 아미노알콜을 얻은 후 이를 다가의 아미노알콜과 반응시켜서 2~3개의 아미노기를 갖는 화합물을 얻고, 이를 에폭시 화합물과 반응시켜 폴리에스텔폴리올을 제조하면 2~3개의 아민촉매화합물이 결합된 폴리에테르폴리올을 얻을 수 있는 것을 확인하여 본발명을 완성하게 되었다.
본 발명은 폴리올에 결합된 아민 촉매화합물의 몰수가 적어 폴리우레탄 폼의 경화속도 지연등의 단점을 나타내는 것을 개선하기 위해 폴리올 주사슬에 아민기을 3개 까지 결합시켜줄 수 있는 방법을 개발하여 폴리우레탄 폼 제조시 아민 촉매를 추가로 사용하지 않고서도 이취발생과 포깅현상의 발생을 저감하는데 목적이 있다.
본 발명에서는
Figure 112007075261259-pat00002
의 구조를 가지는 에폭시 화합물과
Figure 112007075261259-pat00003
의 구조를 갖는 2차 아민과 일차 반응시켜 1가의 아미노알콜을 얻은 후 이를 (HO)n-N-R의 일반식으로 표시되는 다가의 아미노알콜과 2차 반응시켜 2~3개의 아미노기를 갖는 화합물을 얻고 이를 중합개시제로 하여 프로필렌옥사이드나 에틸렌옥사이드를 에폭사이드 중합반응시켜 폴리올을 제조한다.
삭제
상기 화학구조식에서 X는 할로겐알킬 또는 아릴설포네이트이고, R, R1,R2는 알킬기를 나타낸다.
상기 에폭시화합물에는 x의 종류에 따라 에피클로로히드린(epichlorohydrin), 에피브로모히드린(epibromohydrine), 에피플루오로히드린(epflurohydrin)등의 할로겐화에폭시화합물과 글리시딜메틸설포네이트(glycidyl methanesulfonate), 글리시딜에탄설포네이트(glycidylethanesulfonate), 글리시딜프로판설포네이트(glycidyl propanesulfonate), 글리시딜부탄설포네이트(glycidylbutanesulfonate), 글리시딜벤젠설포네이트(glycidylbenzenesulfonate), 글리시딜 p-톨루에설포네이트(glycidyl p-toluenesulfonate), 글리시딜 m-니트로벤젠셀포네이트(glycidyl m-nitrobenzenesulfonate), 글리시딜 p-니트로벤젠설포네이트(glycidylp-nitrobenzenesulfonate), 글리시딜 트리클로로벤젠설포네이트(glycidyl trichlorobenzensulfonate),글리시딜-1-나프텐설포네이트 (glycidyl-1-naphthalenesulfonate)등이 있다. 2차 아민에는 디메틸아민, 디에틸아민, 디프로필아민, 디이소프로필아민, 디부틸아민, 디이소부틸아민, 디-sec-부틸아민, 디페닐아 민, 디사이클로헥실아민, 3-메틸디페닐아민 등이 있다. 아미노 알콜에는 메탄올아민, 에탄올아민, 프로판올아민, 이소프로판올아민, 부탄올아민, 이소부탄올아민, sec-부탄올아민, t-부탄올아민, 펜타놀아민, 2-아미노-1-페닐에탄올, 디메탄올아민, 디에탄올아민, 디프로판올아민, 디이소프로판올아민, 디이소부탄올아민, 디-sec-부탄올아민, 디부탄올아민, 디펜탄올아민, N-메틸에탄올아민 등이 있다.
본 발명은 종래 하나의 아민촉매가 그라프트(graft) 결합된 폴리올이 반응속도 및 경화반응의 지연을 초래하는 반응성 조절 문제를 해결하기 위한 것으로 본 발명에서는 다수의 아민기를 갖는 아미노 알콜을 폴리올에 그라프트 결합하여 폼의 반응성을 개선하고 휘발성 아민 촉매에 의한 이취 및 포깅현상을 개선하였다. 폴리올 주사슬에 2에서 3까지 아민 촉매를 그라프트하기 위해서 디메탄올아민, 디에탄올아민 등과 같은 디알콜아민에서 아미노메탄올, 아미노에탄올 등과 같은 모노알콜아민(monoalcholamine)과 아민을 가지고 그라프트 되어지는 아민 촉매의 함량을 조절할 수 있다. 또한 아민 촉매의 반응성을 조절하기 위해서는 2차 아민에 치환된 알킬기의 종류를 디메틸아민 및 디페닐아민 등의 C1 ~ C10 로서 조절가능하다.
본 발명은 아민이 그라프트된 폴리올을 합성하기위해 에피클로히드린을 반응기에 넣고 디메틸아민 1당량을 2 시간에서 4시간동안 반응기에 부가하면서 40℃이하로 반응온도를 유지하면서 반응시킨다. 디아민의 부가가 완료된 후 미반응된 디아민의 반응을 완결하기 위해 30분동안 숙성한다. 숙성이 완료된 후 반응기에 디에탄올아민 1당량을 넣고 질소를 치환한 후 반응기의 온도를 95 ~ 120 ℃까지 승온한 후 2 시간에서 4시간동안 반응온도와 압력을 유지한다. 디에탄올아민이 반응이 끝난 후 48% KOH 수용액 1 ~ 1.2 당량을 반응기에 넣고 고속으로 혼합한다. 혼합이 끝난 후 필터를 통해 반응물을 여과한다. 이 반응물이 디메틸아미노알콜이며, 디메틸아미노알콜 1당량과 KOH 수용액을 반응기에 넣고 혼합하면서 반응기의 반응온도를 온도를 95 ~ 120 ℃까지 승온하면서 진공 펌프로 수분을 제거한다. 수분이 제거가 된 후 반응기에 PO/EO을 폴리올의 중량평균 분자량이 3000 ~ 6000이고 EO 함량이 5 ~ 20% wt% 가 되도록 일정량을 부가한다. PO가 부가가 완료된후 미반응 PO을 숙성한 후 진공펌프로 잔량 PO/EO을 제거한다. 마그네졸(마그네시움 실리케이트)을 반응기에 부가하여 KOH 촉매를 제거한다.
본 발명에서 폴리우레탄 폼은 폴리올과 폴리이소시아네이트 그리고 사슬연장자, 계면활성제, 물등을 온도가 15 ~ 50 ℃에서 폴리올에 혼합한 후 밀도가 10 ~ 150 kg/m3이 되도록 폴리이소시아네이트를 0.5 ~ 2 당량의 비율로 7000 rpm이상의 고속으로 5 ~ 10 초간 혼합한 후 30 * 30 * 10 cm의 사각틀에 부어 프리라이스(free rise)로 폼 발포를 한다. 폴리올은 수산기가가 25 ~ 56 mg KOH/g이고 에틸렌 옥사이드가 0 ~ 20%이고 관능기가 3인 폴리프로필렌/에틸렌옥사이드 폴리올과 스틸렌과 아크릴로니트릴이 그라프트되고 수산기가가 20 ~ 40 mg KOH/g인 폴리머 폴리올을 폴리프로필렌/에틸렌옥사이드 폴리올의 0 ~ 20 wt%의 비율을 사용한다.
<아미노 알콜의 합성예>
디메틸아미노알콜의 합성 (합성예 1)
2 L 고압반응기에 에피클로히드린 74g을 넣고 교반하면서 질소를 치환한다. 50% 수용액 디메틸아민을 72g을 60분 동안 반응기에 주입하면서 반응온도 40 ℃에서 에피클로로히드린과 디메틸아민을 반응시킨다. 디메틸아민 부가가 완료된 후 반응물을 30분동안 숙성시켜주면 디메틸아민-3-클로로-2-프로판올 110g이 얻어진다. 이를 반응식으로 표시하면 아래와 같다.
CH2CH20 - CH2Cl + CH3·CH3NH →
(에피클로로히드린) (디메틸아민)
CH3CH3NCH2 - CH(OH)-CH2Cl
(디메틸아민-3클로로-2프로판올)
여기에 디에탄올아민 88g을 넣고 질소 치환한 후 반응기의 반응온도를 120℃ 까지 승온한 후 2시간동안 반응시키면 1-디메틸아민-3-아미노디에탄올-2-프로판올[CH3CH3N-CH2-CH(OH)-CH2-N-(CH2CH2OH)2] 198g이 얻어진다. 반응기에 48% 수용액 KOH 104.2g을 넣은 후 반응온도를 112℃까지 감온하고 3시간 동안 진공펌프로 반응기에 있는 수분을 1000ppm이하가 될 때까지 제거한다. 염화칼륨을 압력 필터를 이용하여 제거한다.
여기에서 얻은 디아미노알콜(1-디메틸아민-3-아미노디에탄올-2프로판올)의 OH값, KOH함량, 중량평균 분자량 및 염소함량은 아래와 같았다.
OHV : 815 meqKOH/g, MW : 206g Cl : 0.2 ppm
트리메틸아미노알콜의 합성 (합성예 2)
2 L 고압반응기에 에피클로로히드린 74g을 넣고 교반하면서 질소를 치환한다. 50% 수용액 디메틸아민을 72g을 60분 동안 반응기에 주입하면서 반응온도 40 ℃에서 반응시킨다. 디메틸아민 부가가 완료된 후 반응물을 30분동안 숙성시켜주면 디메틸아민-3클로로-2-프로판올 110g이 얻어진다. 여기에 모노에탄올아민 25.1g을 넣고 질소 치환한 후 반응기의 반응온도를 반응온도를 120℃ 까지 승온한 후 2시간동안 반응시켜주면 디(1-디메틸아민-2-프로판올)-에탄올아민 136g을 얻을 수 있다. 이를 반응식으로 표시하면 아래와 같다.
CH3CH3N-CH2-CH(OH) - CH2Cl + (HOCH2CH2)NH →
(디메틸아민-3클로로-2프로판올) (모노에탄올아민)
(CH3CH3N-CH2-CH(OH)-CH2)2-NCH2CH2OH
[디(1-디메틸아민-프로판올)-에탄올아민]
반응기에 48% 수용액 KOH 104.2g을 넣은 후 반응온도를 112℃까지 감온하고 3시간 동안 진공펌프로 반응기에 있는 수분을 1000ppm이하가 될 때까지 제거한다. 염화칼륨을 압력 필터를 사용하여 제거한다.
여기에서 얻은 트리메틸아미노알콜(디(1-디메틸아민-프로판올)-에탄올아민)의 OH값, KOH함량, 중량평균 분자량 및 염소함량은 아래와 같았다.
OHV : 635 meqKOH/g, MW : 1176.1 Cl : 0.5 ppm
<폴리올 제조예>
실시예 1
2 L 고압반응기에 출발물질(starter)인 1-디메틸아민-3-아미노디에탄올-2-프로판올 66g과 48% KOH 7g를 가한 후 온도가 112 ℃ 까지 가열한다. 이 혼합물을 교반하면서 진공펌프로 미량의 물을 감압 제거한다. 진공 상태에서 산화프로필렌 단량체(PO) 847.8g과 산화에틸렌(EO) 84.5g을 5시간동안 반응기에 주입한다. 주입완료 후 미반응 산화프로필렌과 산화에틸렌의 반응을 숙성하기 위해 반응기의 반응온도를 125℃까지 승온하면서 1시간동안 숙성한다. 반응 종결 후 반응기 내에 미 반응한 PO 및 EO를 제거하기 위해 30분간 112oC에서 진공상태로 유지한다. 잔량 촉매을 제거하기 위해 반응기에 마그네졸과 필터제를 50g과 5g을 넣은 후 1시간동안 교반후 압력 필터로 통과시켜 촉매를 제거하며 분자내에 2개의 아민기를 갖는 폴리에테르폴리올 1kg을 얻었다.
실시예 2
출발물질로 디(1-디메틸아민-2-프로판올)-에탄올아민 86.4g과 PO 912g을 사용하여 분자내에 3개의 아민기를 갖는 폴리에테르폴리올 1kg을 얻었다.
실시예 2는 출발물질로 1-디메틸아민-3-아미노디에탄올-2-프로판올 대신에 디(1-디메틸아민-2-프로판올)-에탄올아민을 사용하는 것과 PO의 사용량을 변경한 것을 제외하고는 실시예 1과 같은 방법으로 실시하였다.
실시예 3
2 L 고압반응기에 출발물질(starter)로 1-디메틸아민-3-아미노디에탄올-2-프로판올 27.5g 과 48% KOH 수용액 6.7g을 부가한 후 온도가 112 ℃ 까지 가열한다. 이 혼합물을 교반하면서 진공펌프로 미량의 물을 감압 제거한다. 진공 상태에서 산화프로필렌 단량체(PO) 809.3g을 9시간동안 반응기에 주입한다. 주입완료 후 미반응된 산화프로필렌의 반응을 숙성하기 위해 반응기의 반응온도를 125℃까지 승온하면서 1시간동안 숙성한다. 반응 종결 후 반응기 내에 미 반응한 PO를 제거하기 위해 30분간 112oC에서 진공상태로 유지한다. 여기에 산화에틸렌 단량체(EO) 164.7g을 2시간 동안 주입한다. 주입완료 후 미반응된 산화프로필렌의 반응을 숙성하기 위해 반응기의 반응온도를 135℃까지 승온하면서 1시간동안 숙성한다. 반응 종결 후 반응기 내에 미 반응한 PO를 제거하기 위해 30분간 125oC에서 진공상태로 유지한다. 잔량 촉매을 제거하기 위해 반응기에 마그네졸과 필터제를 50g과 5g을 넣은 후 1시간동안 교반후 압력 필터로 통과하여 촉매를 제거한 후 분자내에 2개의 아민기를 갖는 폴리에테르폴리올을 1kg을 얻었다.
실시예 4
실시예 3에서 출발물질로 디(1-디메틸아민-2-프로판올)-에탄올아민 34.5g과 800.2g과 PO와 164.9g의 EO를 사용하여 분자내에 2개의 아민기를 갖는 폴리에테르 폴리올 1kg을 얻었다.
비교예 1
글리세린을 출발물질로 하여 실시예 1과 같은 방법으로 폴리에테르폴리올을 합성하였다.
비교예 2
글리세린을 출발물질로 하여 실시예 3과 같은 방법으로 폴리에테르폴리올을 합성하였다.
상기 실시예 1~4 및 비교예 1,2에서 얻어진 폴리에테르폴리올의 물성값은 아래 [표 1]에 나타낸 바와 같다.
[표 1]
실시예1 실시예2 실시예3 실시예4 비교예 1 비교예 2
OHV 56.3 55.8 28.4 28.3 56.1 27.9
Mw 2973 2016 5926 5946 3000 6032
EO,% 8.6% 8.5% 16.4% 16.5% 8.5% 16.6%
아민값, (MgKOH/g) 36.5 37.7 18.1 18.5 0 0
※OHV : 수산기값(OH Value)
Mw : 중량평균 분자량
<폴리우레탄폼 제조예>
실시예 5 ~ 8
실시예 1 ~ 4의 폴리올을 사용하여 아래의 표와 같은 처방으로 폴리우레탄 폼을 제조하였다. 실시예 5, 6에서는 아민촉매(A-1)를 사용하지 않고도 폴리우레탄폼을 제조할 수 있다.
비교예 3 ~ 4
아래의 표와 같이 비교예 1 ~2의 폴리올과 사슬연장제, 계면활성제, 물등을 온도가 25 ℃에서 부가하여 혼합한 후 폴리이소시아네이트와 7000 rpm이상의 고속으로 7 초간 혼합한 후 30 * 30 * 10 cm의 사각틀에 부어 프리라이스(free rise)로 폼 발포하여 폴리우레탄 폼을 합성하였다.
[표 2]
실시예5 실시예6 비교예3
원부재료
Polyol, , H2O T-9(촉매) A-1(발포조제) BF-2730 메틸렌클로라이드 TDI 실시예1/비교예1 20/80 3.7 0.26 - 1.2 5 115 실시예2/비교예1 10/90 3.7 0.26 - 1.2 5 115 비교예1 100 3.7 0.26 0.1 1.2 5 115
Foam 반응성
Crime time,(sec) Rise Time,(sec) 13 80 12 83 12 81
Foam 물성
밀도, (kg/m3) ILD 25%, (kg/314cm2) 65%, (kg/314cm2) 인열, (kg/cm) 인장, (kg/cm2) 신율, (%) 통기성,(Ft3/min) 반발탄성,(%) Amine함량(ppm) 26.3 22.3 45.3 0.69 0.99 117 1.48 31 - 27.2 21.9 45.2 0.68 0.94 112 1.42 32 - 27 21.7 44.9 0.64 0.94 105 1.85 41 2

T-9 : 옥틸산주석
A-1 : 아민촉매(비스(디메틸아미노에틸)에테르)
BF-2730 : 실리콘 오일
TDI : 톨루엔디이소시아네이트
[표 3]
실시예7 실시예8 비교예4
원부재료
Polyol, Y-7325N H2O 트리에틸렌디아민 EF-600 T-12 DEOA 실리콘오일(소포제) MDI 실시예5/비교예2 50/30 20 3.5 - 0.03 0.1 MC50 실시예6/비교예2 30/50 20 3.5 - 0.03 0.1 MC50 비교예2 80 20 3.5 0.3/0.14/0.2 - - 0.7 0.8 MC50
Foam 물성
밀도,(kg/m3) ILD 25%, (kg/314cm2) ILD 65%,(kg/314cm2) 인열, (kg/cm) 인장, (kg/cm2) 신율, (%) 반발탄성, (%) 압축영구줄음율, (%, Dry) 반복압축변형율,(%) 25% Loss 50% Loss 65% Loss 두께 Loss Amine함량(ppm) 34.5 19.3 61.5 0.93 1.18 131 53 68.0 33.6 27.4 18.8 8.6 - 35.0 19.5 62.3 0.96 1.29 128 53 65.8 33.7 27.2 17.5 9.8 - 34.6 19.6 61.4 0.96 1.22 129 52 67.2 33.7 27.4 18.2 9.3 7

T-12 : 디부틸틴라우레이트 (dibutyl tindilaurate)
Y-7325N : 폴리올(SKC사 제품 상품명)
EF-600 : 실리콘오일
DEOA : 디에탄올아민
본 발명의 방법으로 제조된 폴리에테르폴리올은 폴리우레탄폼 제조시 아민촉매를 사용하지 않거나 아민촉매 사용량은 50~100% 저감시켜 줄 수 있어 폴리우레탄폼의 이취나 포깅현상의 발생을 크게 저감시켜줄 수 있는 효과가 있다.

Claims (3)

  1. 폴리우레탄 폼 제조용 폴리에테르폴리올의 제조방법에 있어서, 2차아민을 할로겐화 에폭시화합물과 반응시켜 2~3개의 아미노기를 갖는 아미노알콜을 얻고 이를 중합개시제로 하여 촉매하에서 에폭시 화합물을 에폭사이드 중합반응시켜 얻어지는 분자내에 2~3개의 아민기를 갖는 폴리우레탄폼 제조용 폴리에테르폴리올의 제조방법.
  2. 제 1항에 있어서,
    2차아민이 디메틸아민, 디에틸아민, 디이소프로필아민, 디부틸아민, 디이소부틸아민, 디-sec-부틸아민, 디페닐아민, 디사이클로헥실아민, 3-메틸디페닐아민 중에서 선택되는 것이고, 할로겐화 에폭시 화합물이 에피클로로히드린, 에피브로모히드린, 에피플루오로히드린 중에서 선택되는 것이고, 아미노알콜이 메타놀아민, 에탄올아민, 프로판올아민, 이소프로판올아민, 부탄올아민, 이소부탄올아민, sec-부탄올아민, t-부탄올아민, 펜타놀아민, 2-아미노-1-페닐에탄올, 디메탄올아민, 디에탄올아민, 디이소프로판올아민, 디이소부탄올아민, 디-sec-부탄올아민, 디부탄올아민, 디펜타놀아민, N-메틸에탄올아민 중에서 선택되는 것이고, 촉매가 KOH이고, 에폭시 화합물이 산화에틸렌 또는 산화프로필렌중에서 선택되는 폴리우레탄폼 제조용 폴리에테르폴리올의 제조방법.
  3. 삭제
KR1020060096996A 2006-10-02 2006-10-02 폴리우레탄폼 제조용 폴리에테르폴리올의 제조방법 KR100840997B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060096996A KR100840997B1 (ko) 2006-10-02 2006-10-02 폴리우레탄폼 제조용 폴리에테르폴리올의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060096996A KR100840997B1 (ko) 2006-10-02 2006-10-02 폴리우레탄폼 제조용 폴리에테르폴리올의 제조방법

Publications (2)

Publication Number Publication Date
KR20080030749A KR20080030749A (ko) 2008-04-07
KR100840997B1 true KR100840997B1 (ko) 2008-06-24

Family

ID=39532658

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060096996A KR100840997B1 (ko) 2006-10-02 2006-10-02 폴리우레탄폼 제조용 폴리에테르폴리올의 제조방법

Country Status (1)

Country Link
KR (1) KR100840997B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101922549B1 (ko) * 2017-06-15 2018-11-28 순천대학교 산학협력단 폴리에테르 폴리올의 제조방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103113872A (zh) * 2013-02-05 2013-05-22 南充市巨星化工有限责任公司 采油用高效降压增注剂及其生产方法
CN109180897A (zh) * 2018-07-19 2019-01-11 中国林业科学研究院林产化学工业研究所 自催化型环氧树脂基多元醇水分散体及其制备方法
CN114044869B (zh) * 2021-12-02 2023-03-24 万华化学集团股份有限公司 一种仲胺类扩链交联剂及一种聚氨酯弹性材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900000408A (ko) * 1988-06-28 1990-01-30 쥬르퀸 루시엔 유연한 폴리우레탄 폼의 제조방법
US5889068A (en) 1997-07-24 1999-03-30 Bayer Corporation Water blown polyurethane soling systems
US6562880B1 (en) 2002-04-17 2003-05-13 Bayer Corporation Polyurethane or polyisocyanurate foams blown with hydrofluorocarbons and carbon atoms
KR20050078969A (ko) * 2004-02-03 2005-08-08 에스케이씨 주식회사 광학 입체 규칙성을 갖는 폴리에테르폴리올 및 그의제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900000408A (ko) * 1988-06-28 1990-01-30 쥬르퀸 루시엔 유연한 폴리우레탄 폼의 제조방법
US5889068A (en) 1997-07-24 1999-03-30 Bayer Corporation Water blown polyurethane soling systems
US6562880B1 (en) 2002-04-17 2003-05-13 Bayer Corporation Polyurethane or polyisocyanurate foams blown with hydrofluorocarbons and carbon atoms
KR20050078969A (ko) * 2004-02-03 2005-08-08 에스케이씨 주식회사 광학 입체 규칙성을 갖는 폴리에테르폴리올 및 그의제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101922549B1 (ko) * 2017-06-15 2018-11-28 순천대학교 산학협력단 폴리에테르 폴리올의 제조방법

Also Published As

Publication number Publication date
KR20080030749A (ko) 2008-04-07

Similar Documents

Publication Publication Date Title
EP2691434B1 (de) Verfahren zur herstellung von polyurethan-weichschaumstoffen
DE3241450C2 (ko)
US3838076A (en) Polyurethane foams from partially aminated polyether polyols
KR101455878B1 (ko) 연질 폴리우레탄 발포체의 제조 방법
JP5410999B2 (ja) ポリウレタンフォーム
EP1419189A1 (en) Process to manufacture flexible polyurethane foams
EP2530101A1 (de) Verfahren zur Herstellung von Polyetherpolyolen
EP3067376A1 (de) Herstellung von Polyurethansystemen unter Einsatz von Polyetherpolycarbonatpolyolen
EP3133097A1 (de) Herstellung von polyurethanweichschäumen mit verbesserter härte
US10301419B2 (en) Method for making propylene oxide/ethylene oxide copolymers using double metal cyanide catalysts, and copolymers so made
EP3044244B1 (en) Pipa polyol based conventional flexible foam
EP0459622B1 (en) Polyurethane foams blown only with water
US10767009B2 (en) Process for preparing polyether polyol using DMC catalyst and continuous addition of starter
EP2736935B1 (en) Process for making a flexible polyurethane foam
JP2004526021A (ja) 軟質ポリウレタンフォームの製造方法
KR100840997B1 (ko) 폴리우레탄폼 제조용 폴리에테르폴리올의 제조방법
EP3359582B1 (en) High resiliency polyurethane foams made with high functionality, high equivalent weight polyols with mainly secondary hydroxyl groups
US5238971A (en) Polyoxyalkylene glycols containing imidazolidones
JPH07207051A (ja) 半硬質ウレタンフォームの製造法
JP2698390B2 (ja) 硬質ウレタンフォーム
DE4408430A1 (de) Verfahren zur Herstellung von hochelastischen Polyurethan-Weichschaumstoffen
JPH0350230A (ja) ポリエーテル類
JPH05170859A (ja) 弾性エラストマーおよびその製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130529

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140528

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160321

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161226

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171227

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 12