KR100789147B1 - The method of preparation polyethyleneterephthalate nanocomposite fiber with enhanced modulus - Google Patents

The method of preparation polyethyleneterephthalate nanocomposite fiber with enhanced modulus Download PDF

Info

Publication number
KR100789147B1
KR100789147B1 KR1020060108542A KR20060108542A KR100789147B1 KR 100789147 B1 KR100789147 B1 KR 100789147B1 KR 1020060108542 A KR1020060108542 A KR 1020060108542A KR 20060108542 A KR20060108542 A KR 20060108542A KR 100789147 B1 KR100789147 B1 KR 100789147B1
Authority
KR
South Korea
Prior art keywords
poss
polyethylene terephthalate
amine
nanocomposite
pet
Prior art date
Application number
KR1020060108542A
Other languages
Korean (ko)
Inventor
김홍운
방윤혁
최수명
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020060108542A priority Critical patent/KR100789147B1/en
Priority to EP06026489A priority patent/EP1810993A3/en
Priority to JP2006349121A priority patent/JP4523933B2/en
Application granted granted Critical
Publication of KR100789147B1 publication Critical patent/KR100789147B1/en
Priority to US12/458,155 priority patent/US20090270539A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/76Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics

Abstract

A method for manufacturing a polyethylene terephthalate nano composite fiber is provided to improve the initial modulus and the high-temperature modulus of the fiber, by using a polyethylene terephthalate nano composite chip containing amine-based POSS(Polyhedral Oligomeric Silsesquixane). A polyethylene terephthalate nano composite fiber contains one of amine-based POSS, such as C31H71NO12Si8, C59H127NO12Si8, and C33H76N2O12Si8. The polyethylene terephthalate nano composite fiber is obtained by preparing a polyethylene terephthalate nano composite chip containing 85 mol% of ethylene terephthalate units and having an intrinsic viscosity of 0.50-1.20, and melt-spinning and drawing the polyethylene terephthalate nano composite chip. The 1-5 wt.% of POSS is contained in the 100 wt.% of whole polymer.

Description

모듈러스가 향상된 폴리에틸렌테레프탈레이트 나노복합 섬유의 제조방법 {The method of preparation polyethyleneterephthalate nanocomposite fiber with enhanced modulus}The method of preparation polyethyleneterephthalate nanocomposite fiber with enhanced modulus}

도 1은 각각 3종의 아민계 폴리헤드럴 올리고머성 실세스퀵산(polyhedral Oligomeric Silsesquixane, 이하, 'POSS'라 한다)이 2 중량% 첨가된 폴리에틸렌테레프탈레이트(이하 'PET'라 한다) 나노복합 섬유의 단면에 대한 SEM 사진이다. 1 is a polyethylene terephthalate (hereinafter referred to as 'PET') nanocomposite fiber to which 2 wt% of three amine-based polyhedral oligomeric silsesquixanes (hereinafter referred to as 'POSS') are added. SEM picture of the cross section of the.

도 2는 아민계 POSS 3종을 2wt% 첨가한 PET 나노복합 섬유의 온도에 따른 저장탄성율(storage modulus) 변화 곡선이다.FIG. 2 is a storage modulus change curve according to temperature of PET nanocomposite fiber to which 3 wt% of amine-based POSS is added.

도 3은 아민계 POSS 3종이 2wt% 첨가된 PET 나노복합 섬유의 tanδ을 나타낸 것이다.Figure 3 shows the tan δ of the PET nanocomposite fiber added 2 wt% of the three amine-based POSS.

본 발명은 모듈러스가 향상된 폴리에틸렌테레프탈레이트(PET) 나노복합 섬유에 관한 것으로서, 더욱 상세하게는 내열성이 우수한 나노화합물인 아민계 POSS인 C31H71NO12Si8 또는 C59H127NO12Si8 또는 C33H76N2O12Si8을 전체 폴리머 대비 2중량%를 중합 단계에서 첨가하여, 에틸렌테레프탈레이트 단위가 85몰% 이상이고 고유점도가 0.50 내지 1.20 범위인 폴리에틸렌테레프탈레이트 나노복합칩을 제조한 후, 상기 복합칩을 용융방사 및 연신시켜 제조되는 우수한 초기 및 고온 모듈러스를 갖는 PET 나노복합 섬유를 제조하는 기술에 관한 것이다. The present invention relates to a polyethylene terephthalate (PET) nanocomposite fiber with improved modulus, and more particularly, C 31 H 71 NO 12 Si 8 or C 59 H 127 NO 12 Si 8 which is an amine-based POSS which is a nano compound having excellent heat resistance. Or C 33 H 76 N 2 O 12 Si 8 2% by weight relative to the total polymer in the polymerization step to produce a polyethylene terephthalate nanocomposite chip having an ethylene terephthalate unit of 85 mol% or more and an intrinsic viscosity in the range of 0.50 to 1.20. After manufacturing, the present invention relates to a technique for producing PET nanocomposite fibers having excellent initial and high temperature modulus prepared by melt spinning and stretching the composite chip.

대표적인 폴리에스터인 ‘PET’는 1949년 ICI가 섬유용으로 처음 공업화한 것으로, 나일론 및 아크릴 섬유와 함께 이른바 3대 합성섬유의 하나로 성장하였으며, 비섬유 분야에서도 고강도, 고내열성, 투명성, 기체 차단성, 연신 가공성 등의 우수한 물성, 가공 특성 및 가격경쟁력을 바탕으로 급격히 성장해 왔다. 특히 타이어코드용으로 사용되는 PET는 경제성과 고강도 면에서 유리하나, 내열강력이 약하고 저내수성이라는 단점이 있으므로 내열성 향상 및 고온에서의 모듈러스 감소 온도의 증가는 필수적으로 요구되고 있는 실정이다.'PET', a representative polyester, was first industrialized by ICI for textiles in 1949. It grew into one of the three synthetic fibers, together with nylon and acrylic fibers, and high strength, high heat resistance, transparency and gas barrier properties in non-fiber fields. It has grown rapidly on the basis of excellent physical properties such as drawing processability, processing characteristics and price competitiveness. In particular, PET used for tire cords is advantageous in terms of economy and high strength, but has a disadvantage in that heat resistance is weak and low water resistance. Therefore, an improvement in heat resistance and an increase in modulus reduction temperature at high temperatures are required.

일반적으로 테레프탈산과 에틸렌글리콜의 축중합에 의해 합성되는 PET의 장점으로 첫째 금속재료섬유제품 등에 대한 우수한 접착성 및 도막성, 둘째 뛰어난 내후성, 열안정성, 절연성 및 우수한 외관, 셋째 인체에 무해한 점, 넷째 염색성, 항필링성 등이 뛰어나며 기존의 섬유와 동등한 기계적 성질을 갖고 있다는 점을 들 수 있다. 이러한 다양한 장점들에도 불구하고 앞서 언급한 바와 같이 더욱 우수한 성능을 얻기 위한 노력이 계속되고 있는데 몬모릴로나이트(MMT) 등의 점토를 수지 내에 박리분산시켜 내열성, 기체차단성 및 기타 기계적 물성이 엔지니어링 플라스 틱 수준으로 우수한 PET/점토 나노복합체를 제조하려는 노력이 그 중의 하나이다.In general, PET is synthesized by condensation polymerization of terephthalic acid and ethylene glycol. It is excellent in dyeing and anti-pilling properties, and has the same mechanical properties as conventional fibers. Despite these various advantages, efforts are underway to achieve better performance, as mentioned above. Efforts to produce excellent PET / clay nanocomposites are one of them.

고분자수지/점토 나노복합체를 제조하는 것은 기존의 마이크론(10-6m) 규모의 보강재를 첨가하여 물성을 향상시키는 방법에서 벗어나 무기 충전제/강화제의 입자크기를 나노미터 규모까지 분산시켜 기존 무기물 충전 복합체의 단점을 현저히 극복하는 것을 기본적인 목표로 하고 있으며, 원가 대비 성능면에서 매우 유리한 방법으로 차세대 복합재료 시장의 판도에 큰 변화를 가져올 것으로 예측되는 핵심기술의 하나이다.The preparation of polymer resin / clay nanocomposites is not a method of improving the physical properties by adding reinforcement materials of the existing micron (10 -6 m), but dispersing the particle size of the inorganic filler / reinforcement agent to the nanometer scale. Its basic goal is to overcome the shortcomings of the system, and it is one of the key technologies that are expected to make a big difference in the next generation composite market in a very advantageous way in terms of cost performance.

1987년 일본 토요타 연구진들에 의해 적절한 방법으로 나일론 단량체를 규산염층 사이에 삽입시키고 이를 층간 중합함으로써 층간 거리가 10 nm 가까이 증가하는 박리현상이 보고된 이래 미국일본 등에서 연구가 진행되고 있으나 양이온 중합이 가능한 경우에만 이용될 수 있고 기존의 산업설비를 그대로 사용할 수 없다는 문제점이 있었다.In 1987, Toyota researchers in Japan have introduced a nylon monomer between silicate layers in an appropriate manner, and the interlayer polymerization has been reported to increase the distance between layers by 10 nm. There was a problem that can be used only if the existing industrial equipment can not be used as it is.

1993년 일본의 야노 등은 유기화제로 처리된 MMT(몬모릴로나이트)를 고분자 용액에 침지시킴으로서 용매가 규산염층 사이를 침투하여 규산염층을 분산시키고 이러한 분산을 유지하는 방법으로 폴리이미드/점토 나노복합체를 제조하였으나 제조과정에 다량의 용매가 사용되고 별도의 용매제거 공정이 필요하며, 폴리머가 유기화된 MMT의 층간으로 단순 삽입만 되거나 용매 건조과정 중에 층간 거리가 다시 좁아진다는 문제점이 있었다.In 1993, Yano et al. Produced polyimide / clay nanocomposites by immersing MMT (montmorillonite) treated with an organic agent in a polymer solution to disperse the silicate layer by dispersing the silicate layer and maintaining this dispersion. However, a large amount of solvent is used in the manufacturing process and a separate solvent removal process is required, and there is a problem that the polymer is simply inserted into the organic layer of MMT, or the distance between layers is narrowed again during the solvent drying process.

기존의 PET 및 다른 고분자에 적용되어 나노복합체에 사용된 나노 점토는 점 토 층간의 간격을 넓히고 고분자와의 상용성을 위하여 알킬기가 8개 이상인 유기물로 처리하였다. 유기화 처리된 나노 점토는 층간 간격은 최대로 약 3 nm로 고분자가 층간 삽입(intercalated)되어 반응에 관여하므로 제한을 받게 되었다. 점토층 간격이 층박리(exfoliated)된 경우에는 어느 정도 고분자 물성에 영향을 줄 수 있다. 하지만, 이들은 길이와 폭이 최소 200 nm 이상이므로 섬유 구조상 이화합물로 존재하게 된다. 다만, 성형품인 경우에는 기체 차단성을 향상시켜 주는 역할을 하므로 많이 사용되었다. 유기화 처리된 나노 점토의 가장 본질적인 문제는 고온에서 유기화 처리된 부분이 대부분 분해되어 고분자와 반응할 수 있는 상태가 되지 못한다는 점이다. Nano clay used in nanocomposites applied to existing PET and other polymers was treated with organic material having 8 or more alkyl groups for widening the gap between clay layers and compatibility with polymers. The organically treated nanoclays were limited because the interlayers of the polymers were intercalated at a maximum of about 3 nm and involved in the reaction. If the clay layer spacing is exfoliated, it may affect the polymer properties to some extent. However, since they are at least 200 nm in length and width, they exist as foreign compounds in fiber structure. However, in the case of a molded article was used a lot because it serves to improve the gas barrier properties. The most inherent problem with organically treated nanoclays is that at high temperatures most of the organicized parts are decomposed and unable to react with the polymer.

이러한 나노 점토에 비해 본 발명에 사용된 아민계 POSS는 유무기 혼성 나노화합물로서 고온에서 유기 부분이 유지되며, 균일한 분포를 이루기 때문에 PET 섬유에서 초기 및 고온 모듈러스를 향상시킬 수 있다.The amine-based POSS used in the present invention as compared to the nano clay is an organic-inorganic hybrid nano-compound to maintain the organic portion at a high temperature, and because of the uniform distribution can improve the initial and high temperature modulus in PET fibers.

본 발명의 목적은 상기와 같은 문제점을 해결하기 위하여 열적 안정성이 우수하고 PET와 상용성이 있는 나노화합물 C31H71NO12Si8(상품명 AM0265) 또는 C59H127NO12Si8(상품명 AM0270) 또는 C33H76N2O12Si8(상품명 AM0275)을 전체 폴리머 대비 2중량%를 중합단계에서 첨가하여, 에틸렌테레프탈레이트 단위가 85몰% 이상이고 고유점도가 0.50 내지 1.20 범위인 폴리에틸렌테레프탈레이트 나노복합칩을 제조한 후, 상기 복합칩을 용융방사 및 연신시켜 제조되는 초기 및 고온 모듈러스가 우수한 PET 나노복합 섬유를 제조하는 기술을 제공하는 데 있다.An object of the present invention is to solve the above problems, nano compound C 31 H 71 NO 12 Si 8 (brand name AM0265) or C 59 H 127 NO 12 Si 8 (brand name AM0270) having excellent thermal stability and compatibility with PET ) Or C 33 H 76 N 2 O 12 Si 8 (trade name AM0275) by adding 2% by weight of the total polymer in the polymerization step, polyethylene terephthalate having an ethylene terephthalate unit of at least 85 mol% and intrinsic viscosity in the range of 0.50 to 1.20 After manufacturing the phthalate nanocomposite chip, to provide a technique for producing a PET nanocomposite fiber excellent in initial and high temperature modulus prepared by melt spinning and stretching the composite chip.

상기 목적을 달성하기 위하여 본 발명은 하기 구조식 I로 나타내어지는 3종의 화합물 중 하나의 아민계 POSS를 포함하고, 에틸렌테레프탈레이트 단위가 85 몰% 이상이고 고유점도가 0.50 내지 1.20 범위인 폴리에틸렌테레프탈레이트 나노복합칩을 용융방사 및 연신시켜 제조된 폴리에틸렌 테레프탈레이트 나노복합 섬유를 제공한다.In order to achieve the above object, the present invention comprises an amine-based POSS of one of the three compounds represented by the following structural formula I, polyethylene terephthalate unit of ethylene terephthalate unit of 85 mol% or more and intrinsic viscosity in the range of 0.50 to 1.20 Provided is a polyethylene terephthalate nanocomposite fiber prepared by melt spinning and stretching the nanocomposite chip.

[구조식 I][Formula I]

Figure 112006080820592-pat00001
Figure 112006080820592-pat00001

(a) C31H71NO12Si8 (a) C 31 H 71 NO 12 Si 8

Figure 112006080820592-pat00002
Figure 112006080820592-pat00002

(b) C59H127NO12Si8 (b) C 59 H 127 NO 12 Si 8

Figure 112006080820592-pat00003
Figure 112006080820592-pat00003

(c) C33H76N2O12Si8 (c) C 33 H 76 N 2 O 12 Si 8

또한 상기 아민계 POSS의 첨가량은 전체 폴리머 대비 1∼5 중량%인 것이 바람직하다.In addition, the amount of the amine-based POSS is preferably 1 to 5% by weight based on the total polymer.

또한, 상기 아민계 POSS를 분산시킨 에틸렌글리콜과 디메틸테레프탈레이트를 에스테르화 반응시킨 후, 중축합시켜 제조된 에틸렌테레프탈레이트 단위가 85몰% 이상이고 고유점도가 0.50 내지 1.20 범위인 폴리에틸렌테레프탈레이트 나노복합칩을 용융방사 및 연신시켜 폴리에틸렌테레프탈레이트 나노복합 섬유를 제조하는 방법을 제공한다.In addition, the polyethylene terephthalate nanocomposite having an ethylene glycol and dimethyl terephthalate dispersed in the amine-based POSS esterification reaction, and then polycondensation is ethylene terephthalate units 85 mol% or more and intrinsic viscosity in the range of 0.50 to 1.20 Provided is a method for producing polyethylene terephthalate nanocomposite fibers by melt spinning and stretching chips.

또한, 상기 아민계 POSS는 초음파 분산기를 사용하여 에틸렌글리콜에 분산시키는 것이 바람직하다.In addition, the amine-based POSS is preferably dispersed in ethylene glycol using an ultrasonic disperser.

이하 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 내열성이 우수한 유무기 혼성 나노화합물인 아민계 POSS를 적용한 폴리에틸렌테레프탈레이트(polyethyleneterephthalate) 나노복합 섬유를 제조하는 것이다. PET 나노복합체를 만들기 위해서, 열적 안정성이 우수한 아민계 POSS를 1 ∼ 5 중량% 첨가하여 PET 중합을 하였다. The present invention is to produce a polyethylene terephthalate nanocomposite fiber to which the amine-based POSS, which is an organic-inorganic hybrid nano compound having excellent heat resistance, is applied. In order to make a PET nanocomposite, 1 to 5% by weight of an amine POSS having excellent thermal stability was added to perform PET polymerization.

PET는 에틸렌글리콜(Ethylene Glycol, 이하 'EG')과 디메틸테레프탈레이트(DMT)와의 에스테르 교환 반응(ester interchange)을 통한 DMT법과 EG와 테레프탈릭산(terephthalic acid, 이하 'TPA')과의 에스테르 반응을 통한 TPA법으로 제조될 수 있다. 본 발명의 중합방법은 TPA법과 DMT법이 모두 가능하지만, 디메틸 테레프탈레이트(Dimethyl Terephthalate, 이하 'DMT')와 EG를 1:2의 몰비로 하여 인 시투(in situ) 방법으로 중합물을 제조하는 것이 더욱 바람직하다. DMT는 EG에 대한 용해도가 TPA보다 좋아 취급하기가 용이하고 에스테르 초기 반응에서의 반응속도가 빨라 고분자량의 폴리머를 고순도로 제작하는 것이 가능하다. 그러므로 랩(Lab) 및 파일롯(pilot) 단계에서 시험용으로 많이 사용되는 바람직한 방법이다. PET is subjected to the esterification reaction between EG and terephthalic acid (TPA) through the ester interchange of ethylene glycol (EG) and dimethyl terephthalate (DMT). It can be prepared by the TPA method. In the polymerization method of the present invention, both the TPA method and the DMT method are possible, but it is possible to prepare a polymer by an in situ method using dimethyl terephthalate (DMT) and EG in a molar ratio of 1: 2. More preferred. Since DMT has better solubility in EG than TPA, it is easy to handle and has a high reaction rate in the initial reaction of esters, thus making it possible to produce high molecular weight polymers with high purity. Therefore, it is a preferred method that is frequently used for testing in the lab and pilot stages.

이때 아민계 POSS는 EG에 미리 분산시켜 투입하도록 한다. 즉, 분산을 좋게 하기 위하여 초음파 분산기를 이용하여 분산시키는 것이 바람직하며, 이렇게 분산된 EG 용액은 나노화합물로 인해 전체가 약간 흐린 불투명 상태가 됨을 확인할 수 있었다.At this time, the amine POSS is dispersed in EG in advance. That is, it is preferable to disperse using an ultrasonic disperser in order to improve the dispersion, and the dispersed EG solution was confirmed to be slightly opaque due to the nano compound.

아민계 POSS의 장점은 열적 안정성이 우수하고 입자 크기가 나노 스케일(100 nm 이하)이며, 유기/무기 작용기를 가지고 있으므로 다양한 반응성을 가질 수 있다는 것이다. 열적 안정성은 열중량 분석기 (thermogravimetic analyzer, 이하 TGA) 를 통해 확인되었으며, PET 중축합 온도인 280℃까지 C31H71NO12Si8, C59H127NO12Si8 및 C33H76N2O12Si8가 각각 62%, 2%, 21%가 분해되므로 중합 과정에서 열적으로 안정하여 PET 내에서 반응하여 분산되어 물성에 영향을 주게 된다. 기존의 유기화 처리된 나노 점토(nanoclay)는 고온에서 유기화된 부분이 대부분 분해가 되므로 물성에 영향을 끼치지 못한다. 다만, 성형품의 경우 유기화된 부분이 분해되어도 점토는 그대로 남아 있어 기체 차단성에 있어서는 향상됨을 알 수 있다. 아민계 POSS는 또한 입자 크기도 100nm 이내의 균일한 입자이고 유기/무기 작용기를 동시에 포함하고 고온에도 유기 작용기가 다량 존재하므로 PET 중합물과 반응하여 분산되어 물성에 영향을 주게 된다. 200nm 이상인 나노 점토에 비해 반응성과 분산도에서 상당히 우수함을 알 수 있었다.The advantages of amine-based POSS are that they have excellent thermal stability, particle size is nanoscale (100 nm or less), and have organic / inorganic functional groups, and thus have various reactivity. Thermal stability was confirmed by a thermogravimetic analyzer (TGA), and C 31 H 71 NO 12 Si 8 , C 59 H 127 NO 12 Si 8 and C 33 H 76 N 2 up to PET polycondensation temperature of 280 ° C. Since 62%, 2%, and 21% of O 12 Si 8 is decomposed, respectively, it is thermally stable in the polymerization process and reacts and disperses in PET to affect physical properties. Conventional organically treated nanoclay (nanoclay) does not affect the physical properties because most of the organic portion is decomposed at high temperatures. However, in the case of the molded article, even if the organic part is decomposed, the clay remains intact, and it can be seen that the gas barrier property is improved. The amine-based POSS is also a uniform particle having a particle size of less than 100 nm and simultaneously contains organic / inorganic functional groups and a large amount of organic functional groups exist at a high temperature, thereby reacting and dispersing with the PET polymer to affect physical properties. It was found that the reactivity and dispersibility were significantly superior to nano clays of 200 nm or more.

본 발명에서 사용되는 유무기 혼성 나노 화합물인 POSS의 분자식은 (RSiO1.5)n이고, 알킬기 R의 종류와 n에 따라 다양한 구조를 가지게 되므로 여러 가지 중합체에 응용이 가능하다. The molecular formula of POSS, the organic-inorganic hybrid nano-compound used in the present invention is (RSiO 1.5 ) n , and has a variety of structures depending on the type and n of the alkyl group R is applicable to various polymers.

본 발명에서는 R기는 알킬기이고, 그 중 이소부틸기(isobutyl)와 이소옥틸(isooctyl)기가 바람직하고, 작용기는 PET와 상용성이 좋은 아민기를 가진 C31H71NO12Si8, C59H127NO12Si8 및 C33H76N2O12Si8의 3종류를 선택하여 미국의 하이브리드 플래스틱(hybrid Plastics)사에서 직접 구매하여 정제하지 않고 사용하였으며, 입체 구조는 위 구조식 I에 나타낸 바와 같다.In the present invention, the R group is an alkyl group, of which isobutyl and isooctyl groups are preferable, and the functional group is C 31 H 71 NO 12 Si 8 , C 59 H 127 having an amine group having good compatibility with PET. Three types of NO 12 Si 8 and C 33 H 76 N 2 O 12 Si 8 were selected and purchased directly from hybrid plastics in the United States and used without purification. The three-dimensional structure is shown in the above formula (I). .

상기 3종의 아민계 POSS가 전체 폴리머 대비 2 중량% 첨가된 PET 나노복합체 를 중합 제조하고, 이를 결정화 온도 이하인 70℃에서 24시간 진공 건조한 후에 이의 단면을 주사전자 현미경(Scanning Electron Microscopy, 이하 SEM)으로 관찰하여 입자의 크기 및 분산도를 비교해 보았다. 분말 상태인 C31H71NO12Si8와 C33H76N2O12Si8 경우에는 크기가 50∼80 nm 정도로 균일하며, 전체적으로 분산도가 상당히 좋음을 알 수 있었다. 점성이 있는 액체 상태인 C59H127NO12Si8는 나노 물질 자체들이 서로 응집되므로 크기가 100∼200nm인 응집체들을 확인할 수 있었다(도 1). The three amine-based POSS were polymerized to prepare a PET nanocomposite added with 2% by weight of the total polymer, and after vacuum drying at 70 ° C. which is below the crystallization temperature for 24 hours, the cross-section of the amine POSS was examined by scanning electron microscopy (SEM). The particle size and the degree of dispersion were compared. In the case of C 31 H 71 NO 12 Si 8 and C 33 H 76 N 2 O 12 Si 8 in powder form, the uniformity was about 50-80 nm, and the overall dispersion was very good. C 59 H 127 NO 12 Si 8 , a viscous liquid state, was able to identify aggregates having a size of 100 to 200 nm because the nanomaterials themselves aggregated together (FIG. 1).

PET 나노복합체의 중합물은 70℃에서 24시간 진공 건조시킨 다음, 유량계(Rheometer)를 이용하여 265℃에서 섬유를 제조하였다. 이 섬유를 오일 수조(oil bath)에서 충분히 수동 연신하여 사염화탄소로 세척 후 상온에서 건조하였다. 동역학 분석을 통하여 고온에 따른 모듈러스를 측정한 결과 초기 모듈러스는 순수 PET에 비해 3종 모두 2배 이상 증가하였다(도 2). 또한, 저장탄성율과 손실탄성율(loss modulus)의 비인 tanδ에서 피크 값에 의해 측정되는 Tg는 PET가 101℃인데 비해 3종 모두 112∼113℃로 10℃ 이상 향상되는 결과를 나타내었다(도 3).The polymer of the PET nanocomposite was vacuum dried at 70 ° C. for 24 hours and then fabricated at 265 ° C. using a rheometer. This fiber was sufficiently drawn in an oil bath, washed with carbon tetrachloride, and dried at room temperature. As a result of measuring the modulus according to the high temperature through kinetic analysis, the initial modulus increased more than two times in all three species compared to pure PET (FIG. 2). In addition, the Tg measured by the peak value at tanδ, the ratio between the storage modulus and the loss modulus, showed that the PET was 101 ° C., and all three species improved by 10 ° C. or more to 112 ° C. to 113 ° C. (FIG. 3). .

POSS의 열안정성 평가는 다음과 같은 방법으로 실시하였다.Thermal stability evaluation of POSS was carried out in the following manner.

(1) POSS의 열안정성(1) Thermal Stability of POSS

POSS의 열안정성을 조사하기 위해 열중량분석기(TGA) 분석을 수행하였다. TGA 분석 전에 모든 시료는 진공 오븐(40℃)에서 충분히 건조시켰으며 모든 TGA 분석은 질소가스를 흘려주면서 30 ~ 800℃의 온도범위에 대해 10℃/min의 승온 속도로 수행하였다.Thermogravimetric Analysis (TGA) analysis was performed to investigate the thermal stability of the POSS. Prior to TGA analysis, all samples were sufficiently dried in a vacuum oven (40 ° C.) and all TGA analyzes were performed at an elevated temperature rate of 10 ° C./min over a temperature range of 30 to 800 ° C. while flowing nitrogen gas.

본 발명에서 아민계 POSS의 열적 안정성을 확인한 결과 280℃에서 C31H71NO12Si8, C59H127NO12Si8, C33H76N2O12Si8가 각각 62%, 2%, 21%의 분해가 일어나 중합시 첨가될 경우 PET 중합 온도에서도 각각 38%, 98%, 79% 유지됨을 알 수 있었다. Thermal stability of the amine-based POSS in the present invention as a result of C 31 H 71 NO 12 Si 8 , C 59 H 127 NO 12 Si 8 , C 33 H 76 N 2 O 12 Si 8 at 280 ℃ 62%, 2% , 21% of decomposition occurred when the polymerization was added in the polymerization was found to be maintained at 38%, 98%, 79% at the polymerization temperature, respectively.

첨가량은 PET 중합물 대비 2 중량%로 선정하였으며, 초음파 분산기로 충분히 분산시킨다. 분산이 잘 된 것은 EG 용액 전체의 투명성을 약간 흐리게 하고 있음을 확인할 수 있다.The addition amount was selected as 2% by weight relative to the PET polymer, and sufficiently dispersed by an ultrasonic disperser. Good dispersion can be seen to slightly blur the transparency of the entire EG solution.

실시 예 Example

<실시 예1>Example 1

PET 중합시 분말 상태인 C31H71NO12Si8-POSS 2 중량%를 중합 단계에서 첨가하여 고유점도가 0.7인 폴리에틸렌테레프탈레이트 나노복합칩을 제조한 후, 이를 70℃에서 24시간 진공 건조하여 유량계를 이용하여 265℃에서 방사 및 연신 후 섬유를 제조하여 동역학 분석을 실시하였다.During PET polymerization, 2 wt% of C 31 H 71 NO 12 Si 8 -POSS in powder form was added in the polymerization step to prepare a polyethylene terephthalate nanocomposite chip having an intrinsic viscosity of 0.7, and then vacuum dried at 70 ° C. for 24 hours. After spinning and stretching at 265 ° C. using a flow meter, fibers were prepared and subjected to kinetic analysis.

<실시 예2>Example 2

PET 중합시 점성이 있는 액체 상태인 C59H127NO12Si8-POSS를 2 중량% 첨가하여 고유점도가 0.7인 폴리에틸렌테레프탈레이트 나노복합칩을 제조한 후, 이를 70℃에서 24시간 진공 건조하여 유량계를 이용하여 265℃에서 방사 및 연신 후 섬유를 제조하여 동역학 분석을 실시하였다.Polyethylene terephthalate nanocomposite chip having 0.7 intrinsic viscosity was prepared by adding 2 wt% of C 59 H 127 NO 12 Si 8 -POSS, a viscous liquid, during PET polymerization, and vacuum drying at 70 ° C. for 24 hours. After spinning and stretching at 265 ° C. using a flow meter, fibers were prepared and subjected to kinetic analysis.

<실시 예3>Example 3

PET 중합시 분말 상태인 C33H76N2O12Si8-POSS 2 중량% 첨가하여 고유점도가 0.7인 폴리에틸렌테레프탈레이트 나노복합칩을 제조한 후, 이를 70℃에서 24시간 진공 건조하여 유량계를 이용하여 265℃에서 방사 및 연신 후 섬유를 제조하여 동역학 분석을 실시하였다.When PET polymerization, 2 wt% of C 33 H 76 N 2 O 12 Si 8 -POSS powdered to prepare a polyethylene terephthalate nanocomposite chip having an intrinsic viscosity of 0.7, and vacuum dried at 70 ℃ for 24 hours to measure the flowmeter After spinning and stretching at 265 ° C., fibers were prepared and subjected to kinetic analysis.

비교 예 Comparative example

<비교 예1> Comparative Example 1

POSS가 전혀 첨가되지 않은 PET 중합체(IV=0.7)를 제조하여 70℃에서 24시간 진공 건조 후 유량계를 이용하여 265℃에서 방사 및 연신을 거쳐 섬유를 제조하여 동역학 분석을 실시하였다.PET polymer without POSS at all was prepared (IV = 0.7), and vacuum dried at 70 ° C. for 24 hours to prepare fibers through spinning and stretching at 265 ° C. using a flowmeter.

실시 예1 ~ 3의 경우 분산성이 양호함을 확인할 수 있다. 또한, 초기 모듈러스 및 80℃ 이상 고온에서 모듈러스 감소 즉, Tg는 3종의 아민계 POSS에 대하여 모두 향상됨을 확인하였다. In Examples 1 to 3 it can be confirmed that the dispersibility is good. In addition, it was confirmed that the modulus reduction, that is, Tg, was improved for all three amine-based POSS at initial modulus and high temperature of 80 ° C. or higher.

상기한 바와 같이, 본 발명에 사용된 상기 3종의 아민계 POSS인 C31H71NO12Si8, C59H127NO12Si8, C33H76N2O12Si8는 폴리에틸렌테레프탈레이트 섬유에서 초 기 및 고온 모듈러스를 향상시킬 수 있다.As described above, C 31 H 71 NO 12 Si 8 , C 59 H 127 NO 12 Si 8 , C 33 H 76 N 2 O 12 Si 8, which are the three amine-based POSS used in the present invention, are polyethylene terephthalate Initial and high temperature modulus can be improved in the fibers.

이상에서 본 발명은 기재된 구체 예에 대해서만 상세히 기술되었지만, 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.While the invention has been described in detail only with respect to the described embodiments, it will be apparent to those skilled in the art that various modifications and variations are possible within the spirit of the invention, and such modifications and variations belong to the appended claims. .

Claims (4)

아민계 폴리헤드럴 올리고머 실세스퀵산(POSS)인 하기 구조식 I의 (a) C31H71NO12Si8, (b)C59H127NO12Si8, (c)C33H76N2O12Si8 중 어느 하나를 포함하고, 에틸렌테레프탈레이트 단위가 85몰% 이상이고 고유점도가 0.50 내지 1.20 범위인 폴리에틸렌테레프탈레이트 나노복합칩을 제조하여 용융방사 및 연신시켜 얻어지는 폴리에틸렌테레프탈레이트 나노복합 섬유.(A) C 31 H 71 NO 12 Si 8 , (b) C 59 H 127 NO 12 Si 8 , (c) C 33 H 76 N 2 of the following structural formula I as an amine polyhedral oligomeric silsesquiacid (POSS) Polyethylene terephthalate nanocomposite fiber obtained by melting, spinning and stretching a polyethylene terephthalate nanocomposite chip comprising any one of O 12 Si 8 and having an ethylene terephthalate unit of 85 mol% or more and an intrinsic viscosity ranging from 0.50 to 1.20 . [구조식 I][Formula I]
Figure 112007050204147-pat00004
Figure 112007050204147-pat00004
(a) C31H71NO12Si8 (a) C 31 H 71 NO 12 Si 8
Figure 112007050204147-pat00005
Figure 112007050204147-pat00005
(b) C59H127NO12Si8 (b) C 59 H 127 NO 12 Si 8
Figure 112007050204147-pat00006
Figure 112007050204147-pat00006
(c) C33H76N2O12Si8 (c) C 33 H 76 N 2 O 12 Si 8
제 1 항에 있어서, 상기 아민계 폴리헤드럴 올리고머성 실세스퀵산(POSS)은 전체 폴리머 대비 1∼5 중량% 포함된 것을 특징으로 하는 폴리에틸렌테레프탈레이트 나노복합 섬유.The polyethylene terephthalate nanocomposite fiber according to claim 1, wherein the amine polyhedral oligomeric silsesquixane (POSS) is contained in an amount of 1 to 5% by weight based on the total polymer. 아민계 폴리헤드럴 올리고머성 실세스퀵산(POSS)인 하기 구조식 I의 (a) C31H71NO12Si8, (b)C59H127NO12Si8, (c)C33H76N2O12Si8 중 어느 하나가 분산되어 있는 에틸렌글리콜과 디메틸테레프탈레이트를 에스테르화 반응시킨 후 중축합시켜 제조된 에틸렌테레프탈레이트 단위를 85몰% 이상 포함하고 고유점도가 0.50 내지 1.20 범위인 폴리에틸렌테레프탈레이트 나노복합칩을 용융방사 및 연신시켜 제조하는 것을 특징으로 하는 폴리에틸렌테레프탈레이트 나노복합 섬유의 제조방법.(A) C 31 H 71 NO 12 Si 8 , (b) C 59 H 127 NO 12 Si 8 , (c) C 33 H 76 N of the following structural formula I as an amine polyhedral oligomeric silsesquixic acid (POSS) Polyethylene tere containing 85 mol% or more of ethylene terephthalate units prepared by esterification of ethylene glycol and dimethyl terephthalate in which any one of 2 O 12 Si 8 is dispersed, and polycondensation, and having an intrinsic viscosity in the range of 0.50 to 1.20. A method for producing polyethylene terephthalate nanocomposite fiber, which is prepared by melt spinning and stretching a phthalate nanocomposite chip. [구조식 I][Formula I]
Figure 112006080820592-pat00007
Figure 112006080820592-pat00007
(a) C31H71NO12Si8 (a) C 31 H 71 NO 12 Si 8
Figure 112006080820592-pat00008
Figure 112006080820592-pat00008
(b) C59H127NO12Si8 (b) C 59 H 127 NO 12 Si 8
Figure 112006080820592-pat00009
Figure 112006080820592-pat00009
(c) C33H76N2O12Si8 (c) C 33 H 76 N 2 O 12 Si 8
제 3 항에 있어서, 상기 아민계 폴리헤드럴 올리고머성 실세스퀵산(POSS)은 초음파 분산기를 사용하여 에틸렌글리콜에 분산시킨 것을 특징으로 하는 폴리에틸렌테레프탈레이트 나노복합 섬유의 제조방법.The method of claim 3, wherein the amine polyhedral oligomeric silsesquixane (POSS) is dispersed in ethylene glycol using an ultrasonic disperser.
KR1020060108542A 2005-12-29 2006-11-03 The method of preparation polyethyleneterephthalate nanocomposite fiber with enhanced modulus KR100789147B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020060108542A KR100789147B1 (en) 2006-11-03 2006-11-03 The method of preparation polyethyleneterephthalate nanocomposite fiber with enhanced modulus
EP06026489A EP1810993A3 (en) 2005-12-29 2006-12-20 Method of preparation of polyethylenetherephthalate nanocomposite fiber with enhanced modulus
JP2006349121A JP4523933B2 (en) 2005-12-29 2006-12-26 Method for producing polyethylene terephthalate nanocomposite fiber with improved modulus
US12/458,155 US20090270539A1 (en) 2005-12-29 2009-07-01 The method of preparation of polyethylene terephthalate nanocomposite with enhanced modulus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060108542A KR100789147B1 (en) 2006-11-03 2006-11-03 The method of preparation polyethyleneterephthalate nanocomposite fiber with enhanced modulus

Publications (1)

Publication Number Publication Date
KR100789147B1 true KR100789147B1 (en) 2007-12-28

Family

ID=39148128

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060108542A KR100789147B1 (en) 2005-12-29 2006-11-03 The method of preparation polyethyleneterephthalate nanocomposite fiber with enhanced modulus

Country Status (1)

Country Link
KR (1) KR100789147B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101130262B1 (en) * 2008-12-18 2012-03-26 주식회사 효성 Preparation of Polyethyleneterephthalate Nanocomposite Fiber with Enhanced Modulus Retention at High Temperature
KR101204388B1 (en) 2009-07-08 2012-11-26 주식회사 효성 Preparation of PET nanocomposites with enhanced thermal stability and modulus
KR101879109B1 (en) * 2016-12-30 2018-07-17 주식회사 효성 Method for prerparing abrasion-resistant polyester fiber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030207152A1 (en) 2002-04-18 2003-11-06 Canon Kabushiki Kaisha Semiconducting hole injection materials for organic light emitting devices
US20040126683A1 (en) 2002-07-08 2004-07-01 Xin Jin Organic charge transporting polymers including charge transport moieties and silane groups, and silsesquioxane compositions prepared therefrom
JP2004211216A (en) 2002-12-27 2004-07-29 National Institute Of Advanced Industrial & Technology Silsesquioxane-based polymer fiber and method for producing the same
KR20040078002A (en) * 2003-03-03 2004-09-08 (주) 나노텍 Carbon Nano-Composite Materials for Shielding of Electromagnetic Wave and Preparation Method Thereof
KR20050094160A (en) * 2004-03-22 2005-09-27 주식회사 효성 Polyethylene terephthalate nano composite fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030207152A1 (en) 2002-04-18 2003-11-06 Canon Kabushiki Kaisha Semiconducting hole injection materials for organic light emitting devices
US20040126683A1 (en) 2002-07-08 2004-07-01 Xin Jin Organic charge transporting polymers including charge transport moieties and silane groups, and silsesquioxane compositions prepared therefrom
JP2004211216A (en) 2002-12-27 2004-07-29 National Institute Of Advanced Industrial & Technology Silsesquioxane-based polymer fiber and method for producing the same
KR20040078002A (en) * 2003-03-03 2004-09-08 (주) 나노텍 Carbon Nano-Composite Materials for Shielding of Electromagnetic Wave and Preparation Method Thereof
KR20050094160A (en) * 2004-03-22 2005-09-27 주식회사 효성 Polyethylene terephthalate nano composite fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101130262B1 (en) * 2008-12-18 2012-03-26 주식회사 효성 Preparation of Polyethyleneterephthalate Nanocomposite Fiber with Enhanced Modulus Retention at High Temperature
KR101204388B1 (en) 2009-07-08 2012-11-26 주식회사 효성 Preparation of PET nanocomposites with enhanced thermal stability and modulus
KR101879109B1 (en) * 2016-12-30 2018-07-17 주식회사 효성 Method for prerparing abrasion-resistant polyester fiber

Similar Documents

Publication Publication Date Title
Chang et al. Poly (ethylene terephthalate) nanocomposites by in situ interlayer polymerization: the thermo-mechanical properties and morphology of the hybrid fibers
Liu et al. Preparation and characterization of carbon nanotube/polyetherimide nanocomposite films
JP6963040B2 (en) Method for manufacturing graphene composite material
Chang et al. Poly (trimethylene terephthalate) nanocomposite fibers by in situ intercalation polymerization: thermo-mechanical properties and morphology (I)
Njuguna et al. Nanofiller‐reinforced polymer nanocomposites
KR100966193B1 (en) Nano-composite comprising poss and method for manufacturing the same
US11472940B2 (en) Graphene polyethylene terephthalate composite for improving reheat energy consumption
KR100789147B1 (en) The method of preparation polyethyleneterephthalate nanocomposite fiber with enhanced modulus
KR101130262B1 (en) Preparation of Polyethyleneterephthalate Nanocomposite Fiber with Enhanced Modulus Retention at High Temperature
JP4523933B2 (en) Method for producing polyethylene terephthalate nanocomposite fiber with improved modulus
Garcia et al. Zirconium phosphate changing hygroscopicity of polyamide-6 in nanocomposites PA-6/ZrP
Geng et al. Novel preparation of nano-SiO2 core-shell hybrid inorganic-organic sizing agents for enhanced interfacial and mechanical properties of carbon fibers/epoxy composites
KR20080061048A (en) Polyethyleneterephthalate nanocomposites with high thermal stability and process of preparing the nanocomposites
KR20070071219A (en) Pet nanocomposite fiber using organic/inorganic nano-compound
KR100943388B1 (en) PET Nanocomposite Fiber with Enhanced Modulus Retention at High Temperature and Method of Preparing the same
Lee et al. Preparation and characterization of polyhydroxyamide hybrid nanocomposite films containing MWCNTs and clay as reinforcing materials
KR101204388B1 (en) Preparation of PET nanocomposites with enhanced thermal stability and modulus
KR20070071217A (en) Nanocomposite using organic and inorganic nano-compound
KR20110073970A (en) Preparation of polyethylene terephthalate nanocomposites with enhanced modulus
Tan et al. Crystallization behavior and mechanical strength of poly (butylene succinate‐co‐ethylene glycol)‐based nanocomposites using functionalized multiwalled carbon nanotubes
US20070155878A1 (en) Method of preparation of polyethylene terephthalate nanocomposite fiber with enhanced modulus
KR20120069040A (en) Preparation of polyethylene terephthalate nanocomposite tire cord with high thermal stability
KR20120019136A (en) Preparation of pet nanocomposite fiber with enhanced modulus retention at high temperature
Hojiyev et al. Polyester yarns reinforced by nanoclays
KR100595988B1 (en) Polyethylene terephthalate nano composite fiber

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110623

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20120619

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee