KR100562476B1 - Photocatalytic coating solution containing the encapsulated natural fragnance and preparation method thereof - Google Patents

Photocatalytic coating solution containing the encapsulated natural fragnance and preparation method thereof Download PDF

Info

Publication number
KR100562476B1
KR100562476B1 KR1020030032148A KR20030032148A KR100562476B1 KR 100562476 B1 KR100562476 B1 KR 100562476B1 KR 1020030032148 A KR1020030032148 A KR 1020030032148A KR 20030032148 A KR20030032148 A KR 20030032148A KR 100562476 B1 KR100562476 B1 KR 100562476B1
Authority
KR
South Korea
Prior art keywords
sol
weight
photocatalyst
coating
photocatalyst coating
Prior art date
Application number
KR1020030032148A
Other languages
Korean (ko)
Other versions
KR20040099976A (en
Inventor
이태규
김동형
윤우석
Original Assignee
(주) 나노팩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 나노팩 filed Critical (주) 나노팩
Priority to KR1020030032148A priority Critical patent/KR100562476B1/en
Publication of KR20040099976A publication Critical patent/KR20040099976A/en
Application granted granted Critical
Publication of KR100562476B1 publication Critical patent/KR100562476B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating

Abstract

본 발명은 1 내지 10중량%의 광촉매, 1 내지 10중량%의 무기 바인더, 0.1 내지 10중량%의 무기 흡착제, 5 내지 10중량%의 유기 용매 및 65 내지 85중량%의 수성 용매, 1 내지 5중량%의 안정제 및 중량비가 무기 바인더 함유량과 약 1:1이 되도록 마이크로 캡슐화된 천연향을 함유하는 것을 특징으로 하고, 추가적으로 상기 광촉매 코팅용 졸에 0.01 내지 1중량%의 금속화합물을 첨가함을 특징으로 하는 광촉매 코팅용 졸 및 이의 제조방법에 관한 것이다.The present invention comprises 1 to 10% by weight photocatalyst, 1 to 10% by weight inorganic binder, 0.1 to 10% by weight inorganic adsorbent, 5 to 10% by weight organic solvent and 65 to 85% by weight aqueous solvent, 1 to 5 It is characterized by containing a micro-encapsulated natural fragrance such that the weight ratio stabilizer and the weight ratio is about 1: 1 with the inorganic binder content, and additionally 0.01 to 1% by weight of the metal compound is added to the photocatalyst coating sol. It relates to a photocatalyst coating sol and a method for producing the same.

특히, 본 발명은 광촉매, 무기 바인더, 무기흡착물, 유기 용매, 수성 용매, 안정제 및 마이크로 캡슐화된 천연향으로 이루어진 광촉매 함유 코팅용 졸을 가정 및 사무실의 실내벽 또는 실내 인테리어나 자동차 실내와 같은 밀폐공간에 스프레이법 등으로 코팅하여 천연향을 발생시키면서 유해물질 및 유해균을 제거할 수 있고, 또한 이를 공기정화용 필터소재에 담금법 또는 스프레이법 등으로 코팅하여 천연향을 발생시키면서 유해물질 및 유해균을 제거할 수 있다.In particular, the present invention provides a photocatalyst-containing coating sol composed of photocatalyst, inorganic binder, inorganic adsorbent, organic solvent, aqueous solvent, stabilizer and microencapsulated natural fragrance such as interior wall of home and office or interior interior or interior of automobile. It is possible to remove harmful substances and harmful germs while generating natural fragrance by coating the space with spray method. Also, it is possible to remove harmful substances and harmful germs while generating natural fragrance by coating it with air dipping method or spray method. Can be.

광촉매, 무기 바인더, 무기 흡착제, 마이크로 캡슐, 공기정화, 광촉매 코팅용 졸Photocatalyst, inorganic binder, inorganic adsorbent, microcapsule, air purification, photocatalyst coating sol

Description

마이크로 캡슐화된 천연향이 첨가된 광촉매 코팅용 졸 및 이의 제조방법{Photocatalytic coating solution containing the encapsulated natural fragnance and preparation method thereof}Photocatalytic coating solution containing the encapsulated natural fragnance and preparation method

도 1은 본 발명에 따른 실시예 3의 광촉매 고팅용 졸을 코팅한 벽지를 이용하여 암모니아 탈취성능을 나타낸 그래프이다.1 is a graph showing the ammonia deodorizing performance using a wallpaper coated with a photocatalyst coating sol of Example 3 according to the present invention.

도 2는 본 발명에 따른 실시예 4의 광촉매 코팅용 졸을 코팅한 벽지를 이용하여 암모니아 탈취성능 및 천연향 발생을 나타낸 그래프이다.Figure 2 is a graph showing the ammonia deodorizing performance and the natural aroma generation using a wallpaper coated with a photocatalyst coating sol of Example 4 according to the present invention.

도 3은 본 발명에 따른 실시예 4의 광촉매 코팅용 졸을 코팅한 벽지를 이용하여 TMA 탈취성능을 나타낸 그래프이다.Figure 3 is a graph showing the TMA deodorizing performance using a wallpaper coated with a photocatalyst coating sol of Example 4 according to the present invention.

본 발명은 마이크로 캡슐이 첨가된 광촉매 코팅용 졸 및 이의 제조방법에 관한 것으로, 보다 자세하게는 광촉매, 무기 바인더, 무기흡착물, 유기 용매, 수성 용매, 안정제 및 마이크로 캡슐화된 천연향을 함유함을 특징으로 하고, 추가적으로 금속화합물을 첨가하여 천연향 발생과 광촉매 활성을 동시에 나타내는 광촉매 코팅 용 졸 및 이의 제조방법에 관한 것이다. 본 발명의 광촉매 코팅용 졸을 벽지, 블라인드 및 페인팅된 시멘트와 같은 실내 내장재는 물론 공기정화 및 공조용필터류에 상온에서 스프레이법 또는 담금법(dipping methods)으로 코팅하여 실내공간 등에 적용하였을 때 천연향을 발생시키며 유해물질 및 유해균을 제거할 수 있다.The present invention relates to a photocatalyst coating sol added with a microcapsule and a method for preparing the same, and more particularly, a photocatalyst, an inorganic binder, an inorganic adsorbate, an organic solvent, an aqueous solvent, a stabilizer, and a microencapsulated natural flavor. In addition, the present invention relates to a photocatalyst coating sol and a method for preparing the same, which simultaneously add a metal compound to exhibit natural flavor and photocatalytic activity. When the photocatalyst coating sol of the present invention is applied to indoor spaces such as wallpaper, blinds and painted cement, as well as air purification and air conditioning filters at room temperature by spraying or dipping methods, natural fragrance is applied. It can generate harmful substances and harmful bacteria.

최근에는 실내공기오염에 대한 관심이 높아지고 있으며, 이에 건물의 재실자들은 실내환경 개선의 중요성을 인식하여 쾌적한 실내환경에서 거주하기 위해 노력하고 있다. 특히, 인간이 실내에서 생활하는 시간이 하루 중 90% 이상을 차지하고 있으며, 실내공기가 오염될 경우 쉽게 정화되지 않아 재실자들의 건강상의 위협으로 작용하기 때문에 이에 대한 대책 마련이 시급한 실정이다. 또한 실내 악취를 감추기 위하여 사용된 기존의 천연향 발생은 다량의 향을 일시적으로 발생시켜 유지비용이 많이 소모되거나 향 약품을 분사하는 추가장치 등이 필요하다는 단점이 있다.In recent years, interest in indoor air pollution has increased, and the occupants of the building are aware of the importance of improving the indoor environment and are trying to live in a comfortable indoor environment. In particular, humans occupy more than 90% of their time indoors, and if indoor air is contaminated, it is not easy to clean, which acts as a threat to the health of occupants. In addition, the existing natural fragrance generation used to conceal the indoor odor has a disadvantage in that a large amount of fragrance is generated temporarily, so that maintenance costs are consumed or an additional device for spraying fragrance drugs is required.

따라서, 상술한 문제점들을 해결하기 위하여 고급산화기술 중의 한 방법인 광촉매를 이용한 오염물질 및 악취물질을 제거하는 방법에 대한 관심이 최근 들어 높아지고 있다.Therefore, in order to solve the above problems, interest in a method of removing contaminants and odorous substances using a photocatalyst, which is one of advanced oxidation techniques, has recently increased.

광촉매 산화반응은 띠 간격에너지(band gap energy) 이상의 빛 에너지를 광촉매에 조사하였을 때 전자와 정공이 발생하고, 정공에 의해 생성되는 수산화라디칼(·OH)의 강력한 산화력으로 광촉매 표면에 흡착된 기상 또는 액상의 유기물이 분해되는 반응을 의미한다.The photocatalytic oxidation reaction generates electrons and holes when light energy above band gap energy is irradiated to the photocatalyst, and is a gas or adsorbed on the surface of the photocatalyst due to the strong oxidation power of radicals (· OH) produced by the holes. It means a reaction in which a liquid organic matter is decomposed.

즉, 광촉매는 빛 에너지를 흡수함으로써 촉매활성을 나타내게 되는데, 이때 발생하는 강력한 산화력으로 환경오염물질이 산화분해하는 것이다. 상기 광촉매 반응을 유도하는 물질로는 TiO2, ZnO2, ZnO, SrTiO3, CdS, GaP, InP, GaAs, BaTiO3, KNbO3, Fe2O3, Ta2O5, WO3, SnO2 , Bi2O3, NiO, Cu2O, SiO, SiO2, MoS2, InPb, RuO2, CeO2 등이 사용되고 있으며, 상기 광촉매에 Pt, Rh, Ag, Cu, Sn, Ni, Fe 등의 금속 및 이들의 금속산화물을 첨가하여 광촉매 활성을 배가시켜 사용할 수도 있다.That is, the photocatalyst exhibits catalytic activity by absorbing light energy, and the environmental pollutants are oxidatively decomposed by the strong oxidizing power generated at this time. Materials for inducing the photocatalytic reaction include TiO 2 , ZnO 2 , ZnO, SrTiO 3 , CdS, GaP, InP, GaAs, BaTiO 3 , KNbO 3 , Fe 2 O 3 , Ta 2 O 5 , WO 3 , SnO 2 , Bi 2 O 3 , NiO, Cu 2 O, SiO, SiO 2 , MoS 2 , InPb, RuO 2 , CeO 2, etc. are used, and metals such as Pt, Rh, Ag, Cu, Sn, Ni, Fe, etc. are used for the photocatalyst. And these metal oxides can be added to double the photocatalytic activity.

상기 광촉매 반응을 유도하는 물질중에서 이산화티타늄(TiO2)은 인체에 무해하고 광촉매 활성이 탁월하며, 내광부식성이 우수하고 가격이 저렴하여 가장 많이 사용되고 있다. 이산화티타늄은 380㎚ 이하의 자외선을 흡수하여 반응함으로써 전자(전도대)와 정공(가전자대)이 생성되는데, 이때 광원으로 사용되는 자외선은 태양에너지 외에 램프, 백열전등, 수은램프 등의 인공조명 등이 사용될 수 있다. 상기 반응에서 생성된 전자와 정공은 10-12 내지 10-9 초만에 재결합하지만, 재결합하기 전에 오염물질 등이 표면에 흡착하게 되면 상기 전자와 정공에 의해 분해된다. 이러한 광촉매의 반응 기전을 나타낸 것이 다음의 반응식 1 내지 5이다.Among the materials for inducing the photocatalytic reaction, titanium dioxide (TiO 2 ) is harmless to the human body, has excellent photocatalytic activity, has excellent light corrosion resistance, and is inexpensive. Titanium dioxide absorbs and reacts with ultraviolet rays of 380 nm or less to generate electrons (conductor bands) and holes (gap bands) .In this case, ultraviolet light is used in addition to solar energy and artificial lighting such as lamps, incandescent lamps and mercury lamps. Can be used. The electrons and holes generated in the reaction recombine in 10 -12 to 10 -9 seconds, but are decomposed by the electrons and holes if contaminants or the like adsorb to the surface before recombination. The reaction mechanism of this photocatalyst is shown in the following reaction schemes 1 to 5.

TiO2 + hν→ e- + h+ TiO 2 + hν → e - + h +

e- + O2 → O2 - 라디칼 e - + O 2 → O 2 - radical

h+ + -OH → -OH 라디칼h + + -OH → -OH radical

O2 - 라디칼 + A(유기물, 균, 오염물질) → A'O 2 - radical + A (organic, bacteria, pollutant) → A '

-OH 라디칼 + B(유기물, 균, 오염물질) → B'-OH radical + B (organic, bacteria, pollutant) → B '

이와 같이 오염물질을 흡착·분해시킬 수 있는 광촉매의 반응특성을 지닌 코팅물을 제공하기 위하여 광촉매(이산화티타늄)를 함유한 코팅용 졸의 개발을 위한 연구가 활발히 진행되어 왔다. 특히 광촉매 층을 거울, 렌즈 및 판유리 등의 투명기재에 코팅시켜 기재가 뿌옇게 되거나 물방울이 형성되는 것을 방지하는 안티포깅(antifogging)에 관한 기술이 국제특허공개공보 제WO96/029375호에 개시되어 있다.In order to provide a coating having a reaction characteristic of a photocatalyst capable of adsorbing and decomposing contaminants, research has been actively conducted to develop a coating sol containing a photocatalyst (titanium dioxide). In particular, a technique related to antifogging for coating a photocatalytic layer on a transparent substrate such as a mirror, a lens, and a plate glass to prevent the substrate from becoming cloudy or water droplets is disclosed in WO96 / 029375.

또한, 이산화티타늄을 광촉매로 사용하여 악취성분(담배연기)을 탈취하는 공기청정기용 필터, 수중 또는 공기중의 항균을 위한 필터, 유리와 타일 등의 방오 분야에서 실용화되고 있다.In addition, it has been put to practical use in antifouling fields such as filters for air cleaners that deodorize odor components (tobacco smoke) using titanium dioxide as a photocatalyst, filters for antibacterial in water or in the air, and glass and tiles.

현재 통상적으로 많이 사용되고 있는 액상을 경유한 광촉매 코팅방법으로는 티탄 알콕사이드를 출발물질로 하여 졸을 만든 다음 담체에 코팅하는 방법이지만(일본특허공개공보 평5-253544호), 상기 방법은 코팅한 후 담체 상에서의 광촉매 입자를 생성시키는 단계, 광촉매 활성이 큰 아나타제(anatase)형 결정화 단계 및 담체와의 접착성을 부여하기 위하여 400 내지 600℃에서 소성시키는 단계로 이루어져 있으므로 제조공정이 복잡하고 제조비용이 매우 높다는 단점이 있다.Currently, the photocatalyst coating method through the liquid phase commonly used is a method of making a sol with a titanium alkoxide as a starting material and then coating it on a carrier (Japanese Patent Laid-Open Publication No. H5-253544). Since the photocatalyst particles are formed on the carrier, the anatase crystallization step having a high photocatalytic activity and the step of firing at 400 to 600 ° C. to give adhesion to the carrier are complicated and the production cost is high. The disadvantage is very high.

또한 상기 방법을 사용할 경우, 내열성에 약한 플라스틱류 등의 고분자물질에 코팅하기에는 많은 제약이 따른다. 더 나아가서 내열성이 우수한 타일, 세라믹류에 광촉매를 코팅하여 고온에서 열처리를 행한다하더라도 전력소비가 크다는 문제점이 있다.In addition, when using the above method, there are a lot of restrictions to the coating on polymer materials such as plastics that are weak in heat resistance. Furthermore, there is a problem in that power consumption is high even when heat treatment is performed at a high temperature by coating a photocatalyst on tiles and ceramics having excellent heat resistance.

한편, 광촉매 코팅용 졸을 사용하지 않고 기상을 경유한 광촉매 코팅방법으로는 일본특허공개공보 소60-44053호에 개시된 스패터링법 또는 화학적 증착법이 있다. 그러나, 이 경우에도 초기투자비, 즉 제조설비가 고가라는 단점이 있으며 코팅두께를 증가시킬 경우 막대한 전력 및 시간 소모가 뒤따른다는 문제점이 있다.On the other hand, as a photocatalyst coating method via a gas phase without using a photocatalyst coating sol, there is a sputtering method or a chemical vapor deposition method disclosed in Japanese Patent Laid-Open No. 60-44053. However, even in this case, there is a disadvantage that the initial investment cost, that is, the manufacturing equipment is expensive, and when the coating thickness is increased, enormous power and time consumption are followed.

종래에는 용액 상태에서 한 종류의 입자들 사이에 다른 종류의 입자를 균일하게 분산하기 위해 서로 다른 두 가지 종류의 졸을 물리적으로 혼합하거나(미국특허 제5,591,380호), 출발 물질인 두 종류의 알콕사이드(alkoxide)를 용매에 동시에 용해시켜 졸을 제조하는 방법(미국특허 제4,176,089호) 등이 개시되었다. 그러나, 일반적으로 두 가지 종류의 졸을 혼합할 경우 졸의 안정성이 저하되어 짧은 시간 내에 겔화되며, 코팅시 코팅막이 두꺼워져 열처리 후에 담체로부터 탈리될 우려가 있다. 또한, 출발 물질을 동시에 용해하여 졸입자를 분산시킬 경우, 제조조건을 정밀하게 조절해야 하기 때문에 공정이 복잡해진다는 단점이 있다.Conventionally, two different types of sol are physically mixed (US Pat. No. 5,591,380) to uniformly disperse different types of particles among different types of particles in a solution state, or two kinds of alkoxides as starting materials ( A method of preparing a sol by simultaneously dissolving alkoxide in a solvent (US Pat. No. 4,176,089) and the like have been disclosed. However, in general, when the two types of sol is mixed, the stability of the sol is degraded and gelled within a short time, and there is a fear that the coating film thickens during coating and detaches from the carrier after heat treatment. In addition, when dissolving the sol particles by dissolving the starting material at the same time, there is a disadvantage that the process is complicated because the manufacturing conditions must be precisely controlled.

이에 본 발명자들은 상술한 종래 기술의 문제점을 고려하여 지속적으로 연구 한 끝에 천연향 발생과 탈취성능이 우수한 광촉매 코팅용 졸을 개발함으로써 본 발명을 완성하기에 이르렀다.Accordingly, the present inventors have completed the present invention by developing a photocatalyst coating sol having excellent natural fragrance generation and deodorizing performance after continuously studying in view of the problems of the prior art described above.

본 발명은 마이크로 캡슐화된 천연향을 함유하는 상온 경화형 광촉매 코팅용 졸을 제조하여 스프레이법 등을 통해 실내 내장재로 사용되는 각종 유/무기재료 또는 공기정화용 필터소재 등에 코팅함으로써 천연향 발생, 탈취 및 항균기능을 부여하는데 그 목적이 있다. 따라서, 상기 광촉매 코팅용 졸은 고온에서의 소성과정을 거치지 않고 스프레이법 또는 담금법 등으로 담체에 코팅시킴으로써 광촉매 기능을 부여할 수 있다.The present invention manufactures a sol for curing a photocatalyst coating at room temperature containing a micro-encapsulated natural fragrance and coating it to various organic / inorganic materials or air purification filter material used as interior interior materials through a spray method, such as natural fragrance generation, deodorization and antibacterial Its purpose is to give functionality. Accordingly, the photocatalyst coating sol can be imparted with a photocatalyst function by coating the carrier with a spray method or a immersion method without undergoing baking at a high temperature.

본 발명은 1 내지 10중량%의 광촉매, 1 내지 10중량%의 무기 바인더, 0.1 내지 10중량%의 무기 흡착제, 5 내지 10중량%의 유기 용매 및 65 내지 85중량%의 수성 용매, 1 내지 5중량%의 안정제 및 중량비가 무기 바인더 함유량과 약 1:1이 되도록 마이크로 캡슐화된 천연향을 첨가함을 특징으로 하는 광촉매 코팅용 졸을 제공함을 특징으로 한다.The present invention comprises 1 to 10% by weight photocatalyst, 1 to 10% by weight inorganic binder, 0.1 to 10% by weight inorganic adsorbent, 5 to 10% by weight organic solvent and 65 to 85% by weight aqueous solvent, 1 to 5 It provides a photocatalyst coating sol characterized in that the microencapsulated natural flavor is added such that the weight percentage stabilizer and the weight ratio are about 1: 1 with the inorganic binder content.

또한, 본 발명은 상기 광촉매 코팅용 졸에 추가적으로 0.01 내지 1중량%의 금속화합물을 첨가함을 특징으로 하는 광촉매 코팅용 졸을 제공함을 특징으로 한다. In addition, the present invention is characterized by providing a photocatalyst coating sol characterized in that the addition of 0.01 to 1% by weight of the metal compound to the photocatalyst coating sol.

본 발명에서 사용되는 광촉매는 일반적으로 광활성 금속산화물 즉, TiO2; ZnO2; ZnO; CaTiO; WO3; SnO2; MoO3; Fe2O3 ; InP; GaAs; BaTiO3; KNbO3; Fe2O3; 및 Ta2O5로 이루어진 그룹중에서 단독 또는 두가지 이상 혼합하여 사용할 수 있으며, 바람직하게는 TiO2 및/또는 ZnO2를 사용할 수 있으며, 가장 바람직하게는 TiO2 를 사용할 수 있다. 또한 광촉매 기능을 부여하기 위하여 첨가되는 상기 광촉매의 입자크기는 투명한 광촉매 코팅용 졸을 제조하고, 코팅한 후의 코팅막의 균일성을 고려할 때 상기 광촉매 입자의 첨가량은 본 발명의 광촉매 코팅용 졸의 제조에 있어서 매우 중요한 변수로 작용한다.Photocatalysts used in the present invention are generally photoactive metal oxides, that is, TiO 2 ; ZnO 2 ; ZnO; CaTiO; WO 3 ; SnO 2 ; MoO 3 ; Fe 2 O 3 ; InP; GaAs; BaTiO 3 ; KNbO 3 ; Fe 2 O 3 ; And Ta 2 O 5 may be used alone or in combination of two or more thereof, preferably TiO 2 and / or ZnO 2 may be used, and most preferably TiO 2 may be used. In addition, the particle size of the photocatalyst added to impart a photocatalyst function is to prepare a transparent photocatalyst coating sol, and considering the uniformity of the coating film after coating, the amount of the photocatalyst particles is added to the preparation of the photocatalyst coating sol of the present invention. It is a very important variable.

한편, 본 발명에서는 고상 성분인 광촉매 분말 또는 이의 현탁액을 담체에 코팅하기 위해서는 상기 광촉매 성분을 졸형태로 제조하기 위한 바인더가 필수적이다.On the other hand, in the present invention, in order to coat the photocatalyst powder or suspension thereof as a solid component on a carrier, a binder for preparing the photocatalyst component in a sol form is essential.

상기 바인더로는 유기 바인더와 무기 바인더를 사용할 수 있으나 에틸렌글리콜과 같은 유기 바인더를 사용할 경우 광촉매 코팅용 졸로 담체를 코팅한 후 광촉매의 고유 특성에 의하여 유기 바인더는 분해되므로 코팅된 제품의 내구성과 기능성을 장기간 유지할 수 없다.The binder may be an organic binder or an inorganic binder, but in the case of using an organic binder such as ethylene glycol, after coating the carrier with a photocatalyst coating sol, the organic binder is decomposed due to the inherent properties of the photocatalyst. Can not be maintained for a long time.

무기 바인더로 담체를 코팅한 경우 분해될 위험성은 없지만 첨가량이나 종류에 따라 기능저하를 유발시킬 수 있다. 따라서 무기 바인더의 종류와 혼합비는 상품성과 기능성을 유지시키기 위하여 가장 중요한 변수라고 할 수 있다. If the carrier is coated with an inorganic binder, there is no risk of decomposition, but it may cause a decrease in function depending on the amount or type of addition. Therefore, the type and mixing ratio of the inorganic binder can be said to be the most important variable in order to maintain the commerciality and functionality.

본 발명에서 사용되는 무기 바인더는 이소프록포사이드 화합물; 지르코늄아 세테이트; 지르코늄아세테이트 수화물; 및 실란 계열의 화합물로 이루어진 그룹중에서 단독 또는 두가지 이상을 사용할 수 있고, 바람직하게는 실란 계열의 화합물을 사용할 수 있으며, 가장 바람직하게는 알킬트리알콕시 실란으로 메틸트리메톡시 실란(methyltrimethoxy silane)과 3-글리시드옥시프로필트리메톡시 실란(3-glycidoxypropyltrimethoxy silane) 등을 사용할 수 있다. 또한, 본 발명에서 사용되는 무기 바인더 용액을 제조함에 있어서, 실리카를 상기 이소프록포사이드 화합물, 지르코늄아세테이트, 지르코늄아세테이트 수화물 또는 실란 계열의 화합물에 첨가할 수 있다.Inorganic binders used in the present invention include isoproposide compounds; Zirconium acetate; Zirconium acetate hydrate; And silane-based compounds alone or in combination of two or more thereof, preferably silane-based compounds, and most preferably alkyltrialkoxy silane and methyltrimethoxy silane (3). -Glycidoxypropyltrimethoxy silane and the like can be used. In addition, in the preparation of the inorganic binder solution used in the present invention, silica may be added to the isopropoxide compound, zirconium acetate, zirconium acetate hydrate or silane-based compound.

또한, 본 발명에서 사용되는 무기 흡착제는 광촉매 반응시 악취물질 및 유해물질들을 흡착시킬 수 있는 고흡착성 무기물질이면 어느 것을 사용하여도 무방하다. 본 발명에서는 이에 한정되지는 않으나, 콜로이달 실리카; 마그네슘 또는 칼슘과 합성된 실리케이트; 수산화아파타이트; 지르코늄아세테이트수화물; 활석; 규조토; 및 은 및/또는 구리이온이 담지된 제올라이트로 이루어진 그룹중에서 단독 또는 두가지 이상을 사용할 수 있으며, 바람직하게는 마그네슘 또는 칼슘이 함유된 실리케이트류, 활석, 규조토, 은 및/또는 구리이온을 담지한 제올라이트를 사용하는 것이 바람직하다. In addition, the inorganic adsorbent used in the present invention may be used as long as it is a highly adsorptive inorganic material capable of adsorbing odorous substances and harmful substances in the photocatalytic reaction. In the present invention, but is not limited to this, colloidal silica; Silicates synthesized with magnesium or calcium; Apatite hydroxide; Zirconium acetate hydrate; talc; Diatomaceous earth; And a zeolite carrying silver and / or copper ions alone or two or more thereof. Preferably, magnesium or calcium-containing silicates, talc, diatomaceous earth, silver and / or copper ions are supported. Preference is given to using.

본 발명에 있어서, 상기 광촉매 및 무기 바인더를 용해시키기 위해 사용되는 용매는 유기 용매 및 수성 용매를 사용할 수 있다. 유기 용매로는 저급 알킬기를 가진 알코올을 사용할 수 있으며, 수성 용매로는 정제수를 사용하는 것이 바람직하다. 특히, 유기 용매보다 수성 용매를 많은 함량으로 본 발명의 광촉매 고팅용 졸 에 포함시키는 이유는 유해한 물질을 포함하는 유기 용매를 다량 사용하는 것보다 환경친화적이기 때문이다.In the present invention, as the solvent used to dissolve the photocatalyst and the inorganic binder, an organic solvent and an aqueous solvent may be used. An alcohol having a lower alkyl group can be used as the organic solvent, and purified water is preferably used as the aqueous solvent. In particular, the reason why the amount of the aqueous solvent is included in the photocatalyst sol of the present invention in a larger amount than that of the organic solvent is that it is more environmentally friendly than using a large amount of an organic solvent containing a harmful substance.

본 발명에 있어서, 광촉매 코팅용 졸을 안정화시키기 위해 사용되는 안정제는 아세틸기를 가지는 화합물을 사용하는 것이 바람직하다. In the present invention, it is preferable to use a compound having an acetyl group as the stabilizer used to stabilize the sol for photocatalyst coating.

본 발명에 있어서, 광촉매 코팅용 졸을 원하는 담체에 담지시켜 천연향이 발생하도록 하기 위하여 마이크로 캡슐화된 천연향을 첨가시킬 수 있다. 마이크로 캡슐화된 천연향은 이에 한정되지는 않으나, 프레지아향; 박하향; 및 솔향으로 이루어진 그룹중에서 단독 또는 두가지 이상을 사용할 수 있다. 상기 천연향을 마이크로 캡슐화하는 방법은 고상 또는 액상의 향기 성분을 통상의 분무건조법, 계면중합법 또는 상분리법 등을 통하여 멜라닌, 폴리우레탄 또는 젤라틴으로 이루어진 수지를 이용하여 완전히 감싸는 것으로 당업계에 잘 알려져 있다. 본 발명의 광촉매 코팅용 졸에 함유된 마이크로 캡슐화된 천연향은 물리적인 힘에 의하여 캡슐이 깨지면서 향이 발생하거나 인공조명 또는 태양광으로 인한 캡슐주변의 광촉매 반응에 의하여 캡슐이 깨지면서 향이 발생하게 된다.In the present invention, the microencapsulated natural flavor may be added to support the photocatalyst coating sol on a desired carrier so that the natural flavor is generated. Microencapsulated natural flavors include, but are not limited to, prezia flavors; Peppermint flavor; And it can be used alone or two or more in the group consisting of scent. The method of micro-encapsulating the natural flavor is well known in the art to completely wrap the solid or liquid fragrance components using a resin consisting of melanin, polyurethane or gelatin through conventional spray drying, interfacial polymerization or phase separation. have. The micro-encapsulated natural fragrance contained in the photocatalyst coating sol of the present invention generates fragrance as the capsule is broken by physical force or the fragrance is broken by the photocatalytic reaction around the capsule due to artificial lighting or sunlight.

본 발명에 있어서, 광촉매 코팅용 졸에 추가적으로 금속화합물을 첨가할 수 있다. 금속화합물로는 항균기능을 향상시킬 수 있고, 광원의 빛을 조사하였을 때 색을 띄는 물질이라면 어느 것을 사용하여도 무방하다. 본 발명에서는 이에 한정되지는 않으나, 구리화합물[예를 들면, 아세틸아세토네이트(Copper(II) acetylacetonate), 구리 아세테이트 수화물(Copper(II) acetate monohydrate) 등]; 은화합물[예를 들면, 은 아세테이트(Silver Acetate) 등]; 벵갈라; 버밀리온; 카드 뮴레드; 황토; 카들뮴옐로; 에메랄드록; 산화크롬녹; 프러시안블루; 코발트청; 망간; 및 카본블랙으로 이루어진 그룹중에서 단독 또는 두가지 이상을 혼합하여 사용할 수 있으며, 바람직하게는 구리화합물을 사용할 수 있다.In the present invention, a metal compound may be additionally added to the photocatalyst coating sol. As the metal compound, any antimicrobial function can be improved, and any material that exhibits color when irradiated with light from a light source may be used. In the present invention, but not limited to, copper compounds (for example, acetylacetonate (Copper (II) acetylacetonate), copper acetate hydrate (Copper (II) acetate monohydrate), etc.); Silver compounds (eg, silver acetate, etc.); Bengala; Vermilion; Cadmium red; ocher; Cadmium yellow; Emerald rock; Chromium oxide; Prussian Blue; Cobalt blue; manganese; And carbon black may be used alone or in combination of two or more thereof. Preferably, a copper compound may be used.

따라서, 본 발명에서는 광촉매 기능을 유지하면서 담체에 대한 코팅성, 투명도, 내구성 등이 우수한 광촉매를 제조한 후 이를 무기 바인더, 무기 흡착제, 유기 용매, 무기 용매 및 마이크로 캡슐화된 천연향과 혼합하여 상온 경화형 광촉매 코팅용 졸을 제조하기 위하여 다음과 같은 단계를 거쳐 광촉매 코팅용 졸을 제조할 수 있다.Therefore, in the present invention, after preparing a photocatalyst having excellent coating properties, transparency, durability, etc. for a carrier while maintaining a photocatalytic function, the mixture is mixed with an inorganic binder, an inorganic adsorbent, an organic solvent, an inorganic solvent, and a microencapsulated natural fragrance, and thus room temperature curing type. In order to manufacture a photocatalyst coating sol, a photocatalyst coating sol may be prepared by the following steps.

1) 광촉매의 제조1) Preparation of Photocatalyst

1 내지 20중량%의 TiCl4가 용해된 증류수 용액을 저온에서 교반하여 TiCl4 가수분해시킨다. 이때 TiO2의 입자성장을 조절하기 위하여 가수분해억제제로 1 내지 4N의 염산 또는 질산을 일정량 첨가한다.1 to 20% by weight of TiCl 4 that the TiCl 4 and stirring the dissolved solution of distilled water at a low temperature Hydrolysis. At this time, in order to control the grain growth of TiO 2 , a certain amount of 1-4N hydrochloric acid or nitric acid is added as a hydrolysis inhibitor.

또한 용액의 안정성을 향상시키기 위하여 음이온 교환막을 사용하여 일정시간 투석하여 콜로이드의 이온강도를 감소시킨다. 그리고, 상기 콜로이드 용액의 pH가 4 내지 6이 되면 투석을 정지하고 이것을 이산화티타늄 졸로 사용한다.In addition, in order to improve the stability of the solution by using an anion exchange membrane for a certain period of time to reduce the ionic strength of the colloid. When the pH of the colloidal solution is 4 to 6, dialysis is stopped and this is titanium dioxide. Use as a sol.

한편, 상기 콜로이드 용액을 진공법에 의하여 수분을 제거하게 되면 입자의 평균직경이 4 내지 10nm인 이산화티타늄 분말을 얻게 된다. 이때 공기중의 오염물질이 이산화티타늄 분말에 흡착하게 되면 광촉매 기능을 저하시키므로 상기 분말은 밀폐하여 보관하는 것이 바람직하다.On the other hand, when the colloidal solution to remove the moisture by a vacuum method to obtain a titanium dioxide powder having an average diameter of particles of 4 to 10nm. At this time, when the pollutant in the air is adsorbed on the titanium dioxide powder, the photocatalyst function is reduced, so the powder is preferably kept closed.

2) 무기 바인더 용액의 제조2) Preparation of Inorganic Binder Solution

본 발명자들은 상기 제시된 무기 바인더로 사용되는 물질 중에서 실란 계열의 화합물을 단독으로 사용하였을 때보다 알킬트리알콕시 실란, 바람직하게는 메틸트리메톡시 실란과 3-글리시독시프로필트리메톡시 실란 등을 동시에 첨가하여 광촉매 코팅용 졸을 제조하는 것이 코팅막의 상온 경화성과 부착성, 경도 및 내약품성을 향상시킨다는 것을 발견하였다.The inventors of the present invention used an alkyltrialkoxy silane, preferably methyltrimethoxy silane, 3-glycidoxypropyltrimethoxy silane, and the like at the same time than the silane-based compound alone among the materials used as the inorganic binder. It has been found that the addition of a sol for coating a photocatalyst improves the room temperature curability and adhesion, hardness and chemical resistance of the coating film.

또한 상기 코팅용 졸을 제조함에 있어서 구성화합물, 특히 실리카를 함유한 실란을 함유한 졸을 제조할 때 온도를 25 내지 50℃로 조절하면 이산화티타늄과 실리카의 첨가에 따른 코팅용 졸의 분산성, 상온 경화속도와 코팅한 후의 코팅막의 균일성을 향상시킬 수 있다는 것을 발견하였다.In the preparation of the coating sol, when preparing a sol containing a constituent compound, especially a silane containing silica, if the temperature is adjusted to 25 to 50 ℃ dispersibility of the coating sol according to the addition of titanium dioxide and silica, It was found that the room temperature curing rate and the uniformity of the coating film after coating could be improved.

따라서 본 발명에서는 30 내지 50중량%의 알킬트리알콕시 실란, 바람직하게는 10 내지 20중량%의 메틸트리메톡시 실란과 20 내지 30중량%의 3-글리시독시프로필트리메톡시 실란 및 50 내지 70중량%의 에탄올로 구성된 혼합용액(용액A)을 제조한 후, 5 내지 20중량%의 훈증 실리카(Fumed silica, 입자크기 7nm) 및 10 내지 20중량%의 염산을 혼합한 수용액을 상온에서 유지하면서 상기 용액A를 교반 중 첨가함으로써 용액B를 제조하였다. 이때 용액A의 첨가속도와 온도를 일정하게 유지하지 않으면 코팅한 후의 내구성, 코팅성 및 경도 저하를 일으킨다.Thus, in the present invention, 30 to 50% by weight of alkyltrialkoxy silane, preferably 10 to 20% by weight of methyltrimethoxy silane and 20 to 30% by weight of 3-glycidoxypropyltrimethoxy silane and 50 to 70 After preparing a mixed solution composed of wt% ethanol (solution A), while maintaining an aqueous solution of 5 to 20% by weight of fumed silica (particle size 7nm) and 10 to 20% by weight of hydrochloric acid at room temperature Solution B was prepared by adding Solution A while stirring. At this time, if the addition rate and temperature of the solution A is not kept constant, it causes durability, coating property and hardness after coating.

3) 마이크로 캡슐화된 천연향이 첨가된 상온 경화형 광촉매 코팅용 졸의 제조3) Preparation of room temperature curing photocatalyst coating sol to which microencapsulated natural flavor is added

단계 1)에서 제조한 이산화티타늄 졸 또는 분말 1 내지 10중량%를 5 내지 10중량%의 유기 용매 및 65 내지 85중량%의 수성 용매가 혼합된 용매에 첨가하여 약 1시간 동안 교반한 후, 상기 용액에 1 내지 10중량%의 용액B를 혼합하고, 이에 안정제로서 아세틸기를 가지는 화합물을 0.5 내지 5중량% 첨가하여 상온 경화형 광촉매 코팅용 졸인 용액C를 제조한다.1 to 10% by weight of the titanium dioxide sol or powder prepared in step 1) was added to a mixed solvent of 5 to 10% by weight of an organic solvent and 65 to 85% by weight of an aqueous solvent, followed by stirring for about 1 hour. 1 to 10% by weight of Solution B is mixed into the solution, and 0.5 to 5% by weight of a compound having an acetyl group is added thereto as a stabilizer to prepare a solution C which is a sol for curing at room temperature type photocatalyst coating.

한편, 상기 용액C를 제조하는 과정에 있어서, 중량비가 용액B의 함유량과 비교하여 약 1:1이 되도록 한 마이크로 캡슐화된 천연향을 용액B가 첨가될 때 함께 혼합한다.On the other hand, in the process of preparing the solution C, the micro-encapsulated natural flavor so that the weight ratio is about 1: 1 compared to the content of the solution B is mixed together when the solution B is added.

상기 안정제로서 아세틸기를 가지는 화합물을 0.5 내지 5중량% 첨가한다. 이때 유기 용매로는 메탄올, 에탄올, 프로판올 또는 1-메톡시-2 프로판올 등이 사용될 수 있으며, 유기 용매로는 정제수가 사용될 수 있다. 또한 아세틸기를 가지는 화합물로서는 아세틸 아세톤 등이 사용될 수 있다. 그러나 본 발명에서 사용되는 상기 유기 용매, 수성 용매 및 아세틸기를 가지는 화합물의 종류는 이에 한정되는 것은 아니다. 한편, 이산화티타늄을 자외선 조사 등으로 전처리한 후 본 발명의 광촉매 코팅용 졸을 제조하는 경우 광촉매 기능을 더욱 향상시킬 수 있다.0.5 to 5% by weight of a compound having an acetyl group is added as the stabilizer. In this case, methanol, ethanol, propanol or 1-methoxy-2 propanol may be used as the organic solvent, and purified water may be used as the organic solvent. Moreover, acetyl acetone etc. can be used as a compound which has an acetyl group. However, the type of the compound having an organic solvent, an aqueous solvent and an acetyl group used in the present invention is not limited thereto. On the other hand, when the photocatalyst coating sol of the present invention after the pretreatment of titanium dioxide by ultraviolet irradiation or the like can further improve the photocatalytic function.

최종적으로, 상기 마이크로 캡슐화된 천연향이 첨가된 광촉매 코팅용 졸에 0.1 내지 10중량%의 무기 흡착제를 첨가하여 초음파 장치에서 10 내지 50분간 초음파 처리한 후, 필요에 따라 0.01 내지 1중량%의 금속화합물을 첨가하여 본 발명의 광촉매 코팅용 졸을 제조한다(용액D).Finally, 0.1 to 10% by weight of the inorganic adsorbent is added to the microencapsulated natural flavor-added photocatalyst coating sol, sonicated for 10 to 50 minutes in an ultrasonic apparatus, and then 0.01 to 1% by weight of a metal compound, if necessary. Was added to prepare a photocatalyst coating sol of the present invention (solution D).

4) 본 발명의 광촉매 코팅용 졸을 이용한 담체의 코팅4) Coating of carrier using photocatalyst coating sol of the present invention

본 발명의 광촉매 코팅용 졸을 항균, 탈취, 오염방지 등의 효과를 필요로 하는 다양한 담체, 즉 유기, 무기 또는 플라스틱 재료 등에 인쇄법, 스프레이법 또는 담금법으로 코팅하여 건조시켜 사용할 수 있다. 예를 들면 섬유, 커튼, 벽지 등의 인테리어 제품, 알루미늄 메쉬, 폴리프로필렌 필터 등의 공조용 필터, 텐트, 우산, 테이블보 등의 일용품, 식품 포장재 등의 포장용기, 육묘 시트 등의 농업분야 등에 스프레이법 등으로 코팅한 후 건조시키면 항균, 탈취, 정전기 발생억제, 항염(anti-efflorescence), 오염방지 등의 기능을 가진 코팅막을 형성시킬 수 있다. 코팅을 행하기 전에 담체의 표면에 묻은 먼지나 유분을 세정하여 주면 부착성을 더욱 향상시킬 수 있으므로 에탄올 등과 같은 유기용매 또는 스팀세정기로 세정하는 것이 바람직하다.The photocatalyst coating sol of the present invention can be dried and coated with a printing method, a spray method or a immersion method on various carriers that require antibacterial, deodorant, antifouling, etc. effects. For example, interior products such as textiles, curtains and wallpaper, air conditioning filters such as aluminum mesh and polypropylene filters, daily necessities such as tents, umbrellas and tablecloths, packing containers such as food packaging materials, and agricultural fields such as seedling sheets. After coating by spraying and drying, a coating film having functions of antibacterial, deodorization, static electricity suppression, anti-efflorescence, and pollution prevention can be formed. It is preferable to clean with an organic solvent such as ethanol or a steam cleaner since the adhesion to the surface may be further improved by washing dust or oil on the surface of the carrier before coating.

또한 코팅두께가 5 마이크론 이상이 되면 코팅막의 균열의 원인이 되며 코팅두께가 0.5 마이크론 이하일 경우에는 광촉매 기능이 현저히 저하된다. 따라서 코팅두께를 0.5 내지 5 마이크론의 범위안에서 유지하는 것이 바람직하다.In addition, when the coating thickness is 5 microns or more, it causes cracking of the coating film, and when the coating thickness is 0.5 microns or less, the photocatalytic function is significantly reduced. Therefore, it is desirable to maintain the coating thickness within the range of 0.5 to 5 microns.

코팅 후 코팅된 면을 메탄올로 표면처리를 행하면 더욱 우수한 광촉매 기능을 가진 코팅막을 제조할 수 있다. After coating, the coated surface may be treated with methanol to prepare a coating film having a superior photocatalytic function.

본 발명은 하기 실시예로 보다 구체적으로 예시될 것이다. 그러나, 이들 실시예는 단지 본 발명의 구현예이며 본 발명의 범위를 한정하는 것이 아니다.The invention will be more specifically illustrated by the following examples. However, these examples are merely embodiments of the invention and do not limit the scope of the invention.

<실시예><Example>

실시예 1 Example 1

이산화티타늄 졸의 제조Preparation of Titanium Dioxide Sol

10중량%의 TiCl4(Junsei Co., Japan)가 용해된 증류수 용액을, 1℃ 이하의 온도에서 교반하면서 TiCl4의 가수분해반응을 일으켰다. 또한 TiO2의 입자성장을 억제하기 위하여 가수분해억제제로 2N HCl 교반중 0.1중량%를 20 분간격으로 총 0.4 중량%가 되도록 첨가하였다.The distilled water solution in which 10 wt% of TiCl 4 (Junsei Co., Japan) was dissolved caused a hydrolysis reaction of TiCl 4 while stirring at a temperature of 1 ° C or lower. In addition, in order to suppress the growth of TiO 2 particles, 0.1 wt% of 2N HCl while stirring was added to a total of 0.4 wt% at 20 minute intervals as a hydrolysis inhibitor.

상기 용액의 안정성을 향상시키기 위하여 음이온 교환막(Spectra/Pro Membrane, MWCO:8000)을 사용하여 4시간 투석하여 콜로이드의 이온강도를 감소시켰다. 그 후, 상기 용액의 pH가 4이상이 되면 투석을 정지하고 이것을 콜로이드 상태의 이산화티타늄 졸로 사용하였다. 투석을 행할 때 용액의 온도는 30 내지 35℃로 유지하였다.In order to improve the stability of the solution, dialysis was performed for 4 hours using an anion exchange membrane (Spectra / Pro Membrane, MWCO: 8000) to decrease the ionic strength of the colloid. Thereafter, when the pH of the solution reached 4 or more, dialysis was stopped and this was used as a colloidal titanium dioxide sol. The temperature of the solution was maintained at 30 to 35 ° C when dialysis was performed.

상기 제조된 이산화티타늄졸의 입자크기가 30nm 이상의 것을 사용하여 상온 경화형 광촉매 코팅용 졸을 제조한 경우에는 담체에 투명하게 코팅이 되지 않았다. 이는 1차 입자들이 뭉쳐져 2차 입자의 크기가 100nm 정도까지 되었기 때문으로 사료된다.When the particle size of the titanium dioxide sol prepared above was 30 nm or more to prepare a sol for curing a photocatalyst at room temperature, the carrier was not transparently coated. This may be because the primary particles are agglomerated and the secondary particles are up to about 100 nm in size.

실시예 2Example 2

무기 바인더 용액의 제조Preparation of Inorganic Binder Solution

14 내재 16 중량%의 메틸트리메톡시 실란(Aldrich Co., U.S.A.), 20 내지 23중량%의 3-글리시독시프로필트리메톡시 실란(Aldrich Co., U.S.A.) 및 65 중량 %의 에탄올을 10℃ 이하의 온도에서 약 30분 동안 교반하면서 혼합하였다(용액A). 상기 용액A에 12중량%의 훈증 실리카(Fumed silica, 입자크기 7nm, Aldrich Co., U.S.A.)와 1.4중량%의 0.05N 염산을 혼합한 수용액을 약 35℃에서 유지하면서 상기 용액A를 0.1중량%/min으로 약 24시간 동안 교반하면서 첨가함으로써 용액B를 제조하였다.14 intrinsic 16 wt% methyltrimethoxy silane (Aldrich Co., USA), 20-23 wt% 3-glycidoxypropyltrimethoxy silane (Aldrich Co., USA) and 65 wt% ethanol Mix with stirring for about 30 minutes at a temperature of &lt; 0 &gt; C or lower (solution A). 0.1% by weight of Solution A while maintaining an aqueous solution of 12% by weight of fumed silica (Fumed silica, particle size 7 nm, Aldrich Co., USA) and 1.4% by weight of 0.05N hydrochloric acid at about 35 ° C. Solution B was prepared by adding with stirring for about 24 hours at / min.

이때 용액A의 첨가속도와 온도를 일정하게 유지하여야 한다. 또한 첨가된 상기 실리카의 입자크기가 10nm 보다 클 경우에는 코팅막의 투명성이 입자크기가 10nm이하의 것보다 8 내지 10% 낮아졌고 경화속도도 현저히 늦어졌다.At this time, the rate and temperature of solution A should be kept constant. In addition, when the particle size of the added silica was larger than 10 nm, the transparency of the coating film was 8 to 10% lower than the particle size of 10 nm or less, and the curing rate was significantly slowed.

실시예 3Example 3

상온 경화형 광촉매 코팅용 졸의 제조Preparation of sol for room temperature curing photocatalyst coating

상기 실시예 1에서 제조한 이산화티타늄졸 8중량%을 82 중량%의 정제수, 3중량%의 유기 용매(에탄올 : 1-메톡시-2 프로판올 = 1:1)에 첨가한 후 약 1시간 교반 하였다. 상기 용액에 실시예 2에서 제조한 용액B를 5중량% 혼합하고 안정제로 아세틸 아세톤 2중량%를 첨가하여 상온 경화형 광촉매 코팅용 졸을 제조하여 용액 C를 수득하였다.8 wt% of the titanium dioxide sol prepared in Example 1 was added to 82 wt% of purified water and 3 wt% of an organic solvent (ethanol: 1-methoxy-2 propanol = 1: 1), followed by stirring for about 1 hour. . 5 wt% of the solution B prepared in Example 2 was added to the solution, and 2 wt% of acetyl acetone was added as a stabilizer to prepare a sol for coating a room temperature curable photocatalyst, thereby obtaining a solution C.

실시예 4Example 4

마이크로 캡슐화된 천연향이 첨가된 상온 경화형 광촉매 코팅용 졸의 제조Preparation of Solvents for Room Temperature Curing Photocatalyst Coatings with Micro-encapsulated Natural Flavors

상기 실시예 1에서 제조한 이산화티타늄졸 7중량%을 73중량%의 정제수 및 2중량%의 유기 용매(에탄올 : 1-메톡시-2 프로판올 = 1:1)에 첨가한 후 약 1시간 교반하였다. 상기 용액에 실시예 2에서 제조한 용액B를 5중량% 혼합하고 중량비가 용액B의 함유량과 비교하여 1:1이 되도록 마이크로 캡슐화된 천연향을 혼합한 후 안정제로 아세틸 아세톤 2중량%를 첨가하였다. 상기 용액에 5.7중량%의 활석(DUKSAN PURE CHEMICAL Co., Ltd., 대한민국)을 첨가한 후 초음파장치[BRANSON Ultrasonic Co., DHA-1000]에서 30분 이상 초음파 처리 한 다음 0.3중량%의 구리아세테이트 수화물[Junsei chemical. Co., Ltd., Japan]을 첨가하여 마이크로 캡슐화된 천연향이 첨가된 상온 경화형 광촉매 코팅용 졸을 제조하여 용액 D를 수득하였다.7 wt% of titanium dioxide sol prepared in Example 1 was added to 73 wt% of purified water and 2 wt% of an organic solvent (ethanol: 1-methoxy-2 propanol = 1: 1), followed by stirring for about 1 hour. . 5 wt% of Solution B prepared in Example 2 was mixed with the solution, and the microencapsulated natural flavor was mixed so that the weight ratio was 1: 1 compared to the content of Solution B. Then, 2 wt% of acetyl acetone was added as a stabilizer. . After adding 5.7% by weight of talc (DUKSAN PURE CHEMICAL Co., Ltd., South Korea) to the solution and sonicating in an ultrasonic apparatus [BRANSON Ultrasonic Co., DHA-1000] for 30 minutes or more, 0.3% by weight of copper acetate Hydrates [Junsei chemical. Co., Ltd., Japan] to prepare a sol for coating a photocatalytic coating of a room temperature curable photocatalyst added with microencapsulated natural flavor to obtain a solution D.

실시예 5Example 5

마이크로 캡슐화된 천연향이 첨가된 상온 경화형 광촉매 코팅용 졸을 이용한 담체의 코팅Carrier coating using a sol for micro-encapsulated natural photocatalytic photocatalyst coating sol

상기 실시예 4에서 제조한 용액 D는 벽지, 블라인드, 목재, 유리, 조화등 플라스틱류에 스프레이법으로 코팅하고 상온에서 약 10분간 건조시켜 탈취, 항균, 정전기 발생억제, 항염(anti-efflorescence), 오염방지 등의 기능을 가진 코팅막을 형성시켰다. 또한 코팅을 행하기 전 담체의 표면에 묻은 먼지나 유분을 아세톤 등과 같은 유기용매로 세정하여 부착성을 향상시켰다(cross cut test 100/100). 코팅막의 부착성을 측정하기 위해 부착성시험기(SHEEN, England)를 사용하여 코팅막에 등간격으로 평행선 11개를 그리고 이에 수직으로 교차하는 등간격의 평행선 11개를 그어 정사각형 100개를 만들었다. 그리고 점착 테이프를 붙혀 정사각형이 몇 개가 남아 있는가에 의해 부착성을 실험한 결과 100% 부착된 상태였다.Solution D prepared in Example 4 is coated with a spray method on the plastics such as wallpaper, blinds, wood, glass, artificial flowers, and dried at room temperature for about 10 minutes to deodorize, antibacterial, antistatic, anti-efflorescence, A coating film having a function such as antifouling was formed. In addition, before coating, the adhesion to the surface of the carrier was cleaned with an organic solvent such as acetone or the like to remove dirt or oil (cross cut test 100/100). In order to measure the adhesion of the coating film, an adhesion tester (SHEEN, England) was used to draw 11 parallel lines at equal intervals and 11 parallel lines at equal intervals perpendicular to the coating film to make 100 squares. In addition, the adhesiveness was tested by how many squares remained by attaching an adhesive tape, and thus 100% was attached.

또한 코팅두께가 5 마이크론 이상이 되면 코팅막의 균열이 쉽게 일어났으며 코팅두께가 0.5 마이크론 이하일 경우에는 광촉매 활성(TCE의 분해속도)이 60%이상 저하되었다.In addition, when the coating thickness was more than 5 microns, the coating film was easily cracked. When the coating thickness was 0.5 microns or less, the photocatalytic activity (decomposition rate of TCE) was reduced by more than 60%.

코팅된 면을 메탄올으로 표면처리를 행한 경우 광촉매 활성(TCE의 분해속도)이 15-20% 향상된 코팅막을 제조할 수 있었다.When the coated surface was subjected to surface treatment with methanol, a coating film having 15-20% improved photocatalytic activity (decomposition rate of TCE) could be prepared.

실시예 6Example 6

상기 실시예 3에서 제조된 천연향이 첨가되지 않은 광촉매 코팅용 졸(용액 C)을 벽지에 코팅한 후 암모니아의 탈취 실험을 수행한 결과, 도 1에 나타낸 바와 같이, 암모니아 성분을 나타내는 피크들(800-1,200cm3)이 시간이 경과함에 따라 제거되는 것을 확인하였다. As a result of performing a deodorization experiment of ammonia after coating the photocatalyst coating sol (solution C) to which the natural flavor was not added in Example 3 was coated on the wallpaper, as shown in FIG. -1,200 cm 3 ) was confirmed to be removed over time.

또한, 실시예 4에서 제조된 마이크로 캡슐화된 천영향이 첨가된 광촉매 코팅용 졸(용액 D)을 벽지에 코팅한 후 암모니아의 탈취 실험을 수행한 결과, 도 2에 나타낸 바와 같이, 암모니아 피크들이 제거되면서 천연향을 나타내는 피크들(약 600cm-1)이 발생되는 것을 확인하였다. 이는 광촉매 표면의 흡착 및 광반응에 악취물질인 암모니아가 제거되면서 광촉매의 광반응에 의해 마이크로 캡슐화된 천연향의 캡슐이 깨지면서 향이 발생되고 있음을 보여주는 것이다.In addition, the deodorization experiment of ammonia after coating the photocatalyst coating sol (solution D) to which the microencapsulated cloth effect prepared in Example 4 was added to the wallpaper was performed, and as shown in FIG. 2, ammonia peaks were removed. As it was confirmed that the peaks (about 600cm -1 ) indicating a natural aroma is generated. This shows that the aroma is generated by breaking the capsule of micro-encapsulated natural fragrance by the photoreaction of photocatalyst by removing ammonia, which is an odorous substance, in the photocatalytic surface adsorption and photoreaction.

이때 코팅된 샘플은 25mm×60mm의 크기로서 전자현미경(SEM)으로 분석한 결과 코팅막의 두께는 약 1.5 마이크론이었다. 분해속도를 측정하기 위하여 암모니아의 초기농도는 약 2000ppm, 반응은 125cm2의 셀을 사용하여 블랙라이트 형광등(파장 : 300 내지 368nm, 최대파장 : 400nm, 4W BLB, Sankyo denki, Japan)으로 빛을 조사하여 FTIR 분광기(Perkin Elmer, Spectrum one FT-IR spectrometer)에 의해 암모니아의 분해속도를 측정하였다.At this time, the coated sample was 25mm × 60mm in size and analyzed by electron microscope (SEM), and the thickness of the coating film was about 1.5 micron. In order to measure the decomposition rate, the initial concentration of ammonia was about 2000 ppm and the reaction was 125 cm 2 , and the light was irradiated with a black light fluorescent lamp (wavelength: 300 to 368 nm, maximum wavelength: 400 nm, 4W BLB, Sankyo denki, Japan). The decomposition rate of ammonia was measured by a FTIR spectrometer (Perkin Elmer, Spectrum one FT-IR spectrometer).

실시예 7Example 7

상기 실시예 4에서 제조한 용액 D를 코팅한 벽지(P&T-230)를 이용하여 악취의 대표적인 화합물인 TMA(Trimethylamine)를 광촉매 반응으로 분해하였다.Using the wallpaper coated with the solution D prepared in Example 4 (P & T-230) was decomposed TMA (Trimethylamine), a representative compound of the odor by a photocatalytic reaction.

도 1에 나타낸 바와 같이, TMA는 약 30분 이내에 모두 분해되었고 기존의 상용화되어 있는 광촉매졸 보다 탈취성능이 우수하였다. 이때 코팅된 샘플은 400mm×400mm의 크기로서 분해속도를 측정하기 위하여 TMA의 초기농도는 약 7ppm, 반응은 125L의 아크릴 밀폐실을 사용하여 검지관법에 의해 TMA의 분해속도를 측정하였다.As shown in FIG. 1, all TMAs were decomposed within about 30 minutes and had better deodorizing performance than conventional commercially available photocatalysts. At this time, the coated sample was 400mm × 400mm in size to measure the decomposition rate, the initial concentration of TMA was about 7ppm, the reaction rate was measured by the detection tube method using an acrylic sealed chamber of 125L.

본 발명은 상술한 바와 같이 광촉매층에 대한 소성과정을 거치지 않고 담체의 코팅이 가능하여 금속재료, 무기재료는 물론 유기재료 등에도 광촉매기능을 부여할 수 있고 천연향을 발생시키면서 탈취, 항균 및 항염효과 등을 나타낼 수 있는 상온 경화형 광촉매 코팅용 졸을 제공하는 유용한 발명이다.The present invention is capable of coating the carrier without undergoing a firing process for the photocatalyst layer as described above, which can impart a photocatalyst function to metal materials, inorganic materials, as well as organic materials, and deodorize, antibacterial and anti-inflammatory while generating natural flavor. It is a useful invention which provides the sol for room temperature hardening type photocatalyst coating which can exhibit an effect, etc.

Claims (16)

1 내지 10중량%의 광촉매, 1 내지 10중량%의 무기 바인더, 0.1 내지 10중량%의 무기 흡착제, 5 내지 10중량%의 유기 용매, 65 내지 85중량%의 수성 용매, 1 내지 5중량%의 안정제, 0.01 내지 1중량%의 금속화합물 및 중량비가 무기 바인더 함유량과 1:1 이 되도록 마이크로 캡슐화된 천연향을 함유함을 특징으로 하는 광촉매 코팅용 졸.1-10% by weight photocatalyst, 1-10% by weight inorganic binder, 0.1-10% by weight inorganic adsorbent, 5-10% by weight organic solvent, 65-85% by weight aqueous solvent, 1-5% by weight A photocatalyst coating sol comprising a stabilizer, a metal compound of 0.01 to 1% by weight, and a natural flavor encapsulated in a microcapsule so that the weight ratio is 1: 1 with the inorganic binder content. 삭제delete 제 1항에 있어서, 금속화합물이 구리화합물; 은화합물; 벵갈라; 버밀리온; 카드뮴레드; 황토; 카드뮴옐로; 에메랄드록; 산화크롬녹; 프러시안블루; 코발트청; 망간; 및 카본블랙으로 이루어진 그룹중에서 단독 또는 두가지 이상을 함유함을 특징으로 하는 광촉매 코팅용 졸.The method of claim 1, wherein the metal compound is a copper compound; Silver compounds; Bengala; Vermilion; Cadmium red; ocher; Cadmium yellow; Emerald rock; Chromium oxide; Prussian Blue; Cobalt blue; manganese; And sol for photocatalyst coating, characterized in that it contains solely or two or more of the group consisting of carbon black. 제 1항에 있어서, 광촉매가 TiO2; ZnO2; ZnO; CaTiO; WO3; SnO2; MoO3; Fe2O3; InP; GaAs; BaTiO3; KNbO3; Fe2O3 ; 및 Ta2O5으로 이루어진 그룹중에서 단독 또는 두가지 이상을 함유함을 특징으로 하는 광촉매 코팅용 졸.The photocatalyst of claim 1, wherein the photocatalyst is selected from TiO 2 ; ZnO 2 ; ZnO; CaTiO; WO 3 ; SnO 2 ; MoO 3 ; Fe 2 O 3 ; InP; GaAs; BaTiO 3 ; KNbO 3 ; Fe 2 O 3 ; And Ta 2 O 5 , a photocatalyst coating sol characterized in that it contains one or more than two. 제 4항에 있어서, 광촉매의 입자의 평균직경이 5 내지 30㎚인 것을 특징으로 하는 광촉매 코팅용 졸. 5. The photocatalyst coating sol according to claim 4, wherein the average diameter of the particles of the photocatalyst is 5 to 30 nm. 제 1항에 있어서, 무기 흡착제가 콜로이달 실리카; 마그네슘 또는 칼슘과 합성된 실리케이트; 수산화아파타이트; 지르코늄아세테이트수화물; 활석; 규조토; 및 은 및/또는 구리이온이 담지된 제올라이트로 이루어진 그룹중에서 단독 또는 두가지 이상을 함유함을 특징으로 하는 광촉매 코팅용 졸.The method of claim 1, wherein the inorganic adsorbent is selected from colloidal silica; Silicates synthesized with magnesium or calcium; Apatite hydroxide; Zirconium acetate hydrate; talc; Diatomaceous earth; And a sole or two or more of the group consisting of a zeolite supported with silver and / or copper ions. 제 1항에 있어서, 무기 바인더가 이소프록포사이드 화합물; 지르코늄아세테이트; 지르코늄아세테이트 수화물; 및 실란 계열의 화합물으로 이루어진 그룹중에서 단독 또는 두가지 이상을 함유함을 특징으로 하는 광촉매 코팅용 졸.The method of claim 1, wherein the inorganic binder is an isoproposide compound; Zirconium acetate; Zirconium acetate hydrate; And sol for photocatalyst coating, characterized in that it contains one or two or more from the group consisting of silane-based compounds. 제 7항에 있어서, 실란 계열의 화합물이 메틸트리메톡시 실란 및 3-글리시드옥시프로필트리메톡시 실란인 것을 특징으로 하는 광촉매 코팅용 졸.8. The sol for photocatalyst coating according to claim 7, wherein the silane-based compound is methyltrimethoxy silane and 3-glycidoxy propyltrimethoxy silane. 제 7항에 있어서, 무기 바인더에 실리카를 첨가함을 특징으로 하는 광촉매 코팅용 졸.8. The photocatalyst coating sol according to claim 7, wherein silica is added to the inorganic binder. 제 1항에 있어서, 유기 용매가 저급 알킬기를 가진 알코올인 것을 특징으로 하는 광촉매 코팅용 졸.The photocatalyst coating sol according to claim 1, wherein the organic solvent is an alcohol having a lower alkyl group. 제 1항에 있어서, 수성 용매가 정제수인 것을 특징으로 하는 광촉매 코팅용 졸.The sol for photocatalyst coating according to claim 1, wherein the aqueous solvent is purified water. 제 1항에 있어서, 안정제가 아세틸기를 가지는 화합물인 것을 특징으로 하는 광촉매 코팅용 졸.The sol for photocatalyst coating according to claim 1, wherein the stabilizer is a compound having an acetyl group. 제 1항에 있어서, 마이크로 캡슐화된 천연향이 프레지아향; 박하향; 및 솔향으로 이루어진 그룹중에서 단독 또는 두가지 이상을 함유함을 특징으로 하는 광촉매 코팅용 졸.The method of claim 1, wherein the microencapsulated natural flavor is Presia flavor; Peppermint flavor; And a sol for photocatalyst coating, characterized in that it contains one or two or more from the group consisting of scents. 광촉매 코팅용 졸을 제조함에 있어서,In preparing a photocatalyst coating sol, ⒜ 나노미터 크기의 광촉매졸 또는 분말을 제조하는 단계;(B) preparing nanocatalyst sol or powder; ⒝ 실리카 및 무기 바인더를 혼합하여 무기 바인더 용액을 제조하는 단계;(B) mixing the silica and the inorganic binder to prepare an inorganic binder solution; ⒞ 단계 ⒜의 광촉매졸 또는 분말 1 내지 10중량%을 65 내지 85중량%의 수성 용매 및 5 내지 10중량%의 유기 용매에 첨가하여 1시간 동안 교반한 후, 상기 용액에 단계 ⒝의 무기 바인더 용액 1 내지 10중량% 및 중량비가 무기 바인더 용액 함유량과 1:1이 되도록 마이크로 캡슐화된 천연향을 첨가하고, 1 내지 5중량%의 안정제를 첨가하여 졸을 제조하는 단계; 및(Iv) 1 to 10% by weight of the photocatalyst sol or powder of step (iv) is added to 65 to 85% by weight of an aqueous solvent and 5 to 10% by weight of an organic solvent and stirred for 1 hour, and then to the solution, the inorganic binder solution of step (iv) Preparing a sol by adding microencapsulated natural flavor so that 1 to 10% by weight and the weight ratio is 1: 1 with the inorganic binder solution content, and adding 1 to 5% by weight stabilizer; And ⒟ 단계 ⒞의 졸에 0.1 내지 10중량%의 무기 흡착제를 첨가하여 초음파 장치에서 10 내지 50분간 초음파 처리한 후, 0.01 내지 1중량%의 금속화합물을 첨가하는 단계로 이루어짐을 특징으로 하는 광촉매 코팅용 졸의 제조방법.(Iii) adding 0.1 to 10% by weight of an inorganic adsorbent to the sol of step iii, sonicating in an ultrasonic apparatus for 10 to 50 minutes, and then adding 0.01 to 1% by weight of a metal compound. Method for preparing sol 제 1항 및 제 3항 내지 제13항 중 어느 한 항에 따른 광촉매 코팅용 졸을 인쇄법, 스프레이법 또는 담금법으로 코팅하여 건조시킨 담체.A carrier obtained by coating and drying the photocatalyst coating sol according to any one of claims 1 and 3 to 13 by a printing method, a spray method or a immersion method. 제 15항에 있어서, 담체가 유기, 무기 또는 플라스틱 재료인 것을 특징으로 하는 담체.16. The carrier of claim 15, wherein the carrier is an organic, inorganic or plastic material.
KR1020030032148A 2003-05-21 2003-05-21 Photocatalytic coating solution containing the encapsulated natural fragnance and preparation method thereof KR100562476B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030032148A KR100562476B1 (en) 2003-05-21 2003-05-21 Photocatalytic coating solution containing the encapsulated natural fragnance and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030032148A KR100562476B1 (en) 2003-05-21 2003-05-21 Photocatalytic coating solution containing the encapsulated natural fragnance and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20040099976A KR20040099976A (en) 2004-12-02
KR100562476B1 true KR100562476B1 (en) 2006-03-21

Family

ID=37377427

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030032148A KR100562476B1 (en) 2003-05-21 2003-05-21 Photocatalytic coating solution containing the encapsulated natural fragnance and preparation method thereof

Country Status (1)

Country Link
KR (1) KR100562476B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100935534B1 (en) 2008-06-17 2010-01-07 한국기계연구원 A photocatalyst film and method for manufacturing same
KR100980516B1 (en) 2008-08-27 2010-09-06 장순웅 Photocatalyst sol and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100819519B1 (en) * 2006-08-11 2008-04-07 (주)알엔씨 Photocatalytic coating composition for accessory of automobiles and method for coating the same on an object
US20100130348A1 (en) * 2007-09-21 2010-05-27 Chul-Hyun Kang Photocatalytic composition for anti-reflection and the glass substrate coated with the composition
US9844767B2 (en) 2015-08-28 2017-12-19 Korea Institute Of Science And Technology Catalyst filter comprising nano metallic catalyst sprayed on the surface of support

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100935534B1 (en) 2008-06-17 2010-01-07 한국기계연구원 A photocatalyst film and method for manufacturing same
KR100980516B1 (en) 2008-08-27 2010-09-06 장순웅 Photocatalyst sol and manufacturing method thereof

Also Published As

Publication number Publication date
KR20040099976A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
KR100518956B1 (en) Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same
CN102198405B (en) Composite catalyst for purifying indoor formaldehyde and preparation method of composite catalyst
JP3678606B2 (en) Metal-modified apatite and method for producing the same
JP6830446B2 (en) Photocatalytic coating
KR100357765B1 (en) Process of preparation of photo-semiconductive filter for deodorization and antibacterial activity and photo-semiconductive filter for deodorization and antibacterial activity used this process
JP2775399B2 (en) Porous photocatalyst and method for producing the same
WO2002040609A1 (en) Coating responding to visible light, coating film and article
JP2001070800A (en) Photocatalyst film composition and photocatalyst body using the same
JP4293801B2 (en) Active tubular titanium oxide particles, catalyst containing the titanium oxide particles, and deodorant
US6365007B1 (en) Photocatalysts for the degradation of organic pollutants
JP3697608B2 (en) Metal-modified apatite material and method for producing the same
JP5544515B2 (en) Method for producing emulsion paint for forming weather and stain resistant film, emulsion paint and weather and stain resistant paint film
KR100562476B1 (en) Photocatalytic coating solution containing the encapsulated natural fragnance and preparation method thereof
JP4320393B2 (en) Photocatalyst material and method for producing the same
JP5403584B2 (en) Stain resistant material synthesized by reprecipitation method and having weather resistance and method for producing the same
JP5358433B2 (en) Composite, method for producing the same, and composition containing the same
JP5610329B2 (en) Titanium oxide volatile organic compound decomposition material coated with silicate
KR20020045856A (en) Photocatalyst coating sol capable of hardening at low temperature and preparation method thereof
JP2013126623A (en) Catalyst body holding positive hole in light irradiation non-receiving state, method for producing the same, and antiviral/antibacterial cloth
RU2482912C1 (en) Method of producing filtering-sorbing material with photo catalytic properties
KR101070854B1 (en) The exterior and interior materials and manufacture method thereof of clay using the titanium dioxide photocatalyst coated apatite on the surface
JP2009268943A (en) Photocatalyst, photocatalyst dispersion containing the same, and photocatalyst coating composition
KR102130373B1 (en) Photocatalys and method for preparing the same
JP4224598B2 (en) Metal-modified apatite and method for producing the same
KR20030084174A (en) Direct adhesion method of photocatalyst on substrate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130312

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140313

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee