KR100526728B1 - Preparation of Tungsten Nano-Powder from Tungsten Chlorides - Google Patents
Preparation of Tungsten Nano-Powder from Tungsten Chlorides Download PDFInfo
- Publication number
- KR100526728B1 KR100526728B1 KR10-2003-0030136A KR20030030136A KR100526728B1 KR 100526728 B1 KR100526728 B1 KR 100526728B1 KR 20030030136 A KR20030030136 A KR 20030030136A KR 100526728 B1 KR100526728 B1 KR 100526728B1
- Authority
- KR
- South Korea
- Prior art keywords
- tungsten
- nano
- gas
- powder
- particle size
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/20—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
- B22F9/22—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2201/00—Treatment under specific atmosphere
- B22F2201/01—Reducing atmosphere
- B22F2201/013—Hydrogen
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
본 발명은 매우 균일한 입도를 갖는 나노 크기의 텅스텐 분말을 생산하기 위한 염화텅스텐으로부터 나노 텅스텐 분말의 제조 방법에 관한 것이다. 본 발명에 따른 제조 방법에서는 수소가스와 함께 소량의 아황산가스를 동시에 공급하여 염화텅스텐과 수소의 반응으로 생성된 나노 텅스텐 입자 핵이 상호충돌하거나 핵성장 과정에서 금속입자가 임의로 성장하는 것을 효과적으로 방지함으로써, 종래의 방법에 비해 보다 입도가 작고 또한 균일한 나노 텅스텐 분말이 제조된다.The present invention relates to a method for producing nanotungsten powder from tungsten chloride for producing nanosized tungsten powder with very uniform particle size. In the production method according to the present invention by supplying a small amount of sulfurous acid gas with hydrogen gas at the same time to effectively prevent the nano-tungsten particle nucleus generated by the reaction of tungsten chloride and hydrogen, or metal particles randomly grow during the nuclear growth process by In comparison with the conventional method, nanotungsten powder having a smaller particle size and a uniform thickness is produced.
본 발명에 따른 나노 텅스텐 분말의 제조 방법을 이용하여 나노 텅스텐 분말을 제조하는 경우 종래의 수소가스만을 사용하는 제조 방법에 비해 보다 입도가 작고 입도분포가 좁은 나노 텅스텐 분말을 제조할 수 있다. 또한, 본 발명은 가스증발법이나 고온 열분해법에 비해 제조 단가가 저렴하고 공업적인 대량 생산이 가능하다는 장점을 제공하고 있다.When the nano-tungsten powder is manufactured using the method of manufacturing the nano-tungsten powder according to the present invention, a nano-tungsten powder having a smaller particle size and a narrower particle size distribution may be prepared than the conventional production method using only hydrogen gas. In addition, the present invention provides an advantage that the production cost is lower than that of the gas evaporation method or the high temperature pyrolysis method, and industrial mass production is possible.
Description
본 발명은 매우 균일한 입도를 갖는 나노 크기의 텅스텐 분말을 생산하기 위한 염화텅스텐으로부터 나노 텅스텐 분말의 제조 방법에 관한 것이다.The present invention relates to a method for producing nanotungsten powder from tungsten chloride for producing nanosized tungsten powder with very uniform particle size.
최근 들어 나노기술에 대한 전세계적인 관심이 집중되고 이에 대한 연구개발이 활발히 진행됨에 따라, 각종 나노재료의 제조 및 응용에 대하여 국내외에서 새로운 기술개발이 속속 보고되고 있다.Recently, as the global interest in nanotechnology has been concentrated and research and development has been actively progressed, new technology developments have been reported at home and abroad for the manufacture and application of various nanomaterials.
이러한 나노기술의 특징은 기존의 소재나 재료가 갖는 물성을 획기적으로 개선함으로써, 실현 불가능한 것으로 생각되었던 여러 가지 제품들을 현실적으로 가능하게 한다는 점이다. 예를 들면, 반도체 회로선폭을 100 나노미터 이하로 줄임으로써 집적도를 종래 수준에 비해 크게 향상시킬 수 있으며, 새로운 개념의 메모리칩인 MRAM의 실현 및 각종 고성능 센서와 화학 촉매 등에 광범위하게 응용될 수 있다.The unique feature of this nanotechnology is that by dramatically improving the properties of existing materials or materials, it is possible to realistically enable various products that were considered infeasible. For example, by reducing the semiconductor circuit line width to 100 nanometers or less, the degree of integration can be greatly improved compared to the conventional level, and it can be widely applied to realization of a new concept of memory chips, MRAM, and various high-performance sensors and chemical catalysts. .
나노 크기의 금속분말을 제조하기 위한 방법으로는 크게 액상에서 화학반응을 유도하여 나노 크기의 금속을 침전시키는 방법과 기상에서 고온 열분해하여 나노 금속분말을 얻은 방법이 알려져 있으나, 대부분의 경우 상기 두 가지 방법에서는 원료로서 금속 알콕사이드(alkoxide)와 같은 유기금속화합물을 사용하는 것이 일반적이다.Methods for preparing nano-sized metal powders are known to induce chemical reactions in a liquid phase to precipitate nano-sized metals and to obtain nano metal powders by high temperature pyrolysis in a gas phase. In the method, it is common to use an organometallic compound such as a metal alkoxide as a raw material.
그러나, 상기한 유기금속화합물들은 대부분 값이 매우 고가이기 때문에 나노 금속분말을 대량 생산하는 데에는 경제성의 문제가 뒤따르게 된다.However, since most of the organometallic compounds are very expensive, there is an economic problem in mass production of nano metal powder.
상기 유기금속화합물을 사용하여 나노 금속분말을 제조하는 방법 이외의 초미립자 제조 방법으로는 가스증발법, 금속 수산염을 고온에서 수소가스로 환원하는 방법, 금속 염화물 증기를 수소가스로 환원하는 방법, 금속카보닐 화합물을 열분해하는 방법, 금속 수용액에 수소가스를 주입하여 환원하는 방법 등을 들 수 있다. 이 가운데, 특히 공업적으로 관심을 끄는 방법으로는 값이 매우 저렴한 금속 염화물을 원료로 사용하는 것으로서, 이 방법은 우선 원료인 금속 염화물을 적당한 온도에서 가열하여 증발시키고 여기에서 얻은 금속 염화물 증기와 환원가스인 수소와의 고온 반응을 통하여 원하는 입도의 나노 금속분말을 얻게 된다. 상기 각종 원료로부터 나노 금속을 제조하는 방법과 관련하여 현재까지 발표된 자료로는 미국 특허 제6,521,016호, 동 제6,316,377호, 동 제5,698,483호 및 일본 특허 제2002-266007호, 동 제2002-255515호, 동 제2002-067000호 등이 있다.Ultrafine particles other than the method for producing nano metal powder using the organometallic compound include gas evaporation, reduction of metal hydrate to hydrogen gas at high temperature, reduction of metal chloride vapor to hydrogen gas, metal carbon And a method of thermally decomposing the nil compound, a method of reducing hydrogen gas by injecting it into an aqueous metal solution, and the like. Among them, a particularly interesting method is to use a metal chloride which is very inexpensive as a raw material. The method first involves evaporating the metal chloride as a raw material at an appropriate temperature to evaporate it and reducing the metal chloride vapor obtained therefrom. The high temperature reaction with hydrogen, a gas, gives a nano metal powder of a desired particle size. Data published to date regarding the method of manufacturing nano metals from the various raw materials include US Pat. Nos. 6,521,016, 6,316,377, 5,698,483, and Japanese Patents 2002-266007 and 2002-255515. And 2002-067000.
상기한 나노 금속분말의 제조법 가운데 가스증발법과 같은 물리적 방법에 의한 제조법의 경우 화학적 방법에 비해 결정성이 양호하고 입도분포가 매우 좁은 장점은 있으나, 장치비가 많이 들고 공정비용이 비싸 전반적인 제조원가가 화학적 방법에 비해 높은 단점이 있다. 예를 들면, 나노 철 분말을 가스증발법으로 제조하고자 하는 경우 수소 환원법으로 제조하는 것에 비해 2배 정도의 제조비용이 필요한 것으로 알려져 있다.In the method of manufacturing the nano metal powder, the method by physical method such as gas evaporation method has the advantage of good crystallinity and very narrow particle size distribution compared to the chemical method, but the manufacturing cost is high and the process cost is high. There is a high disadvantage compared to. For example, when the nano-iron powder is to be produced by the gas evaporation method, it is known that the manufacturing cost is about twice that of the hydrogen reduction method.
반면, 금속 염화물을 수소 환원시키는 방법으로 나노 금속분말을 제조하는 경우에 있어서는 제조 단가가 비교적 저렴하고 공업적인 대량 생산이 가능한 장점은 있으나, 고온에서의 화학반응을 정밀하게 제어하기 어렵기 때문에 생산된 나노 분말의 입도분포가 넓은 단점을 가지고 있다.On the other hand, in the case of manufacturing nano metal powder by hydrogen reduction method of metal chloride, there is an advantage that the production cost is relatively inexpensive and industrial mass production is possible, but it is difficult to precisely control the chemical reaction at high temperature. The particle size distribution of nano powders has a wide disadvantage.
이것은 금속 염화물 증기와 수소가스가 반응하는 과정에서 생성된 금속입자 핵들이 서로 충돌하면서 입도가 커지는 현상을 보이기 때문으로, 통상적인 방법으로 고온 반응을 시키게 되면 상기 현상의 제어가 극히 어려운 문제점이 있다.This is because the metal particle nuclei generated during the reaction of the metal chloride vapor and hydrogen gas collide with each other, resulting in a large particle size. Therefore, when the high temperature reaction is performed in a conventional manner, the control of the phenomenon is extremely difficult.
본 발명은 염화텅스텐을 원료로 사용하여 이를 증발시킨 다음 고온에서 수소가스와의 환원 반응을 통하여 나노 텅스텐 분말을 제조하는 방법에 있어서, 종래의 통상적인 방법에 비해 생성된 나노 텅스텐 분말의 입도가 작고, 또한 입도분포가 매우 좁은 나노 텅스텐 분말을 제조할 수 있는 수단을 제공하고자 하는데 그 목적이 있다.The present invention is a method for producing nano-tungsten powder by tungsten chloride as a raw material to evaporate it and then reducing with hydrogen gas at a high temperature, the particle size of the produced nano tungsten powder is smaller than the conventional method Another object of the present invention is to provide a means for preparing nanotungsten powder having a very narrow particle size distribution.
본 발명은 염화텅스텐을 원료로 사용하여 이를 증발시킨 다음 고온에서 수소가스와의 환원 반응을 통한 나노 텅스텐 분말의 제조 방법에 있어서, 1) 질소가스를 공급하여 증발로에서 염화텅스텐을 증발시키는 단계, 2) 반응로에 수소가스와 아황산가스(SO2)를 동시에 공급하여 증발된 염화텅스텐과 반응시키는 단계를 포함함을 특징으로 하는 나노 텅스텐 분말의 제조 방법에 관한 것이다.The present invention is a method for producing nano-tungsten powder by using a tungsten chloride as a raw material to evaporate it and then a reduction reaction with hydrogen gas at high temperature, 1) supplying nitrogen gas to evaporate tungsten chloride in an evaporation furnace, 2) The present invention relates to a method for producing nanotungsten powder, comprising the step of reacting with evaporated tungsten chloride by simultaneously supplying hydrogen gas and sulfurous acid gas (SO 2 ) to the reactor.
상기에서 수소가스와 혼합하여 주입하는 아황산가스는 고체 표면에서의 흡착성이 매우 강하여 환원 반응으로 생성된 나노 텅스텐 입자 핵에 부착되어 입자 핵들간의 상호충돌이나 핵성장 과정에서 텅스텐 입자가 임의로 성장하는 것이 효과적으로 방지된다.The sulfurous acid gas mixed with the hydrogen gas is very adsorbable on the solid surface and attached to the nanotungsten particle nucleus generated by the reduction reaction, so that tungsten particles grow arbitrarily in the process of mutual collision or nuclear growth between the particle nuclei. Effectively prevented.
이하, 본원에 첨부된 도 1를 참조하여 본 발명의 제조 방법을 대해 설명한다.Hereinafter, a manufacturing method of the present invention will be described with reference to FIG. 1 attached to the present application.
도 1에서 보는 바와 같이 우선 직경이 다른 두 개의 석영관을 준비하고 큰 석영관 (1) 안쪽으로 작은 석영관 (2)을 삽입한다. 이때, 작은 석영관 (2)의 길이는 염화텅스텐을 가열하여 증발시키기만 하면 되기 때문에 큰 석영관 (1) 보다는 짧도록 한다. 이와 같이 준비된 석영관을 각각 온도제어가 가능한 두 개의 관로(tube furnace)에 집어 넣는다. 상기 두 개의 관로 가운데 첫 번째 관로 (3)는 염화텅스텐을 가열하여 증기로 만들기 위한 것이고, 두 번째 관로 (4)는 증기화된 염화텅스텐과 수소가스의 환원 반응을 위한 것이다.As shown in Fig. 1, first, two quartz tubes having different diameters are prepared, and a small quartz tube 2 is inserted into the large quartz tube 1. At this time, the length of the small quartz tube 2 is shorter than that of the large quartz tube 1 because only the tungsten chloride needs to be heated and evaporated. The quartz tube thus prepared is placed in two tube furnaces each having temperature control. The first of the two pipelines (3) is for heating tungsten chloride into steam, and the second (4) is for the reduction reaction of vaporized tungsten chloride with hydrogen gas.
상기와 같이 준비된 장치에 염화텅스텐 (5) 5g을 내화 용기 (6)에 담아 작은 석영관 중간 부위로 장입한다. 또한, 가스 주입관 두 개를 준비하여 제1 가스 주입관 (7)은 작은 석영관 내부로, 제2 가스 주입관 (8)은 큰 석영관 내부로 도 1에서 보는 것처럼 삽입하고, 배출관 (9)을 연결한 다음 고무 마개 (10)로 석영관을 밀봉한다.In the device prepared as above, 5 g of tungsten chloride (5) is placed in a refractory container (6) and charged into a small quartz tube middle portion. In addition, two gas inlet tubes are prepared so that the first gas inlet tube 7 is inserted into the small quartz tube, and the second gas inlet tube 8 is inserted into the large quartz tube, as shown in FIG. ) And seal the quartz tube with a rubber stopper (10).
상기와 같이 장치 조립이 끝난 다음 질소가스를 1,000 ml/분의 유량으로 제1 가스 주입관 (7)을 통해 약 30분 가량 충분히 흘려 석영관 내부의 공기를 배출시킨다. 공기 배출이 끝난 다음 염화텅스텐이 위치한 증발로인 첫 번째 관로 (3)의 온도를 염화텅스텐이 증발할 수 있는 200 ~ 300℃까지 승온시켜 염화텅스텐을 증발시킨다. 이때, 반응로인 두 번째 관로 (4)의 온도는 반응온도인 600 ~ 800℃가 되도록 미리 승온시키며, 승온이 끝나면 제1 가스 주입관을 통한 질소가스 공급은 그대로 유지하면서 제2 가스 주입관을 통해 반응가스인 수소가스와 함께 아황산가스를 동시에 공급하는 방법으로 나노 텅스텐 분말을 제조한다. 이때 공급되는 질소, 수소 및 아황산가스의 비율은 1 : 1 ~ 5 : 1의 질소:수소의 비율 및 5 : 1 ~ 20 : 1의 수소:아황산가스의 비율이 적당하다. 상기 가스 공급 비율보다 너무 낮거나 또는 높으면 불필요한 가스 소모량이 늘어나고 생성된 입자의 균일도가 떨어지는 문제가 발생한다.After the device is assembled as described above, nitrogen gas is sufficiently flowed through the first gas injection tube 7 at a flow rate of 1,000 ml / min for about 30 minutes to discharge the air inside the quartz tube. After the air is discharged, the tungsten chloride is evaporated by raising the temperature of the first conduit (3), the evaporation furnace in which tungsten chloride is located, to 200-300 ° C where tungsten chloride can evaporate. At this time, the temperature of the second pipe (4), which is the reactor, is raised in advance so that the reaction temperature is 600 to 800 ° C. After the temperature is raised, the second gas injection pipe is maintained while maintaining the nitrogen gas supply through the first gas injection pipe. Nano tungsten powder is manufactured by simultaneously supplying sulfur dioxide with hydrogen gas as a reaction gas. At this time, the ratio of nitrogen, hydrogen, and sulfurous acid gas supplied is suitably a ratio of nitrogen: hydrogen of 1: 1 to 5: 1 and a ratio of hydrogen: sulphite of 5: 1 to 20: 1. If the gas supply ratio is too low or too high, unnecessary gas consumption increases and the uniformity of the generated particles is lowered.
상기 본 발명에서 석영관을 두 개로 사용하고 가스 주입관을 독립적으로 설치한 이유는 수소를 직접 염화텅스텐 시료쪽으로 공급할 경우 증발되지 않은 염화텅스텐과 수소가 반응하여 염화텅스텐 시료 표면에서 바로 텅스텐 금속이 생성되기 때문이다.In the present invention, two quartz tubes are used and gas injection tubes are installed independently. When hydrogen is directly supplied to the tungsten chloride sample, tungsten chloride which is not evaporated reacts with hydrogen to form tungsten metal directly on the tungsten chloride sample surface. Because it becomes.
또한, 상기 본 발명의 방법대로 제조된 나노 텅스텐 분말은 공급가스와 함께 밖으로 배출되며 액상 포집기 등을 이용하여 나노 텅스텐 분말을 회수하게 되나, 생성된 나노 텅스텐 분말의 포집 방법은 이에 특별히 제한하지는 않으며, 극미립 여과법 및 싸이클론법 등 당업계의 일반적인 포집 방법 모두가 적용가능하다.In addition, the nano tungsten powder prepared according to the method of the present invention is discharged out together with the supply gas and recovers the nano tungsten powder using a liquid collector, etc., but the method of collecting the produced nano tungsten powder is not particularly limited thereto. All general methods of collection in the art, such as microfiltration and cyclone, are applicable.
이와 같이 염화텅스텐을 원료로 사용하여 이를 증발시킨 다음 수소가스와 함께 아황산가스를 주입하는 본 발명에 따르면 종래의 통상적인 방법에 비해 입도가 작고, 또한 입도분포가 매우 좁은 나노 텅스텐 분말이 제조된다.Thus, according to the present invention using tungsten chloride as a raw material to evaporate it and then injecting sulfurous acid gas with hydrogen gas, a nano tungsten powder having a smaller particle size and a very narrow particle size distribution is prepared.
이하, 하기 실시예에서 본 발명을 보다 상세히 설명하나, 본 발명은 이에 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
<비교예 1>Comparative Example 1
염화텅스텐 5 g을 내화 용기 (6)에 담아 도 1과 같이 장치를 조립하고 제1 가스 주입관 (7)을 통해 30분간 질소가스를 흘려 보냈다. 석영관 내부의 공기 배출이 끝난 다음 반응로 (4)의 온도를 600℃, 또한 증발로 (3)의 온도를 300℃까지 승온시키고, 승온이 끝나면 질소공급은 그대로 유지하면서 제2 가스 주입관 (8)을 통해 수소가스를 공급하여 나노 텅스텐 분말을 제조하였다. 이때, 질소:수소의 공급비율은 1 : 1이 되도록 하였다.5 g of tungsten chloride was put in the fireproof container 6, and the apparatus was assembled as shown in FIG. 1, and nitrogen gas was flowed through the 1st gas injection pipe 7 for 30 minutes. After the discharge of the air inside the quartz tube, the temperature of the reactor 4 is increased to 600 ° C., and the temperature of the evaporation furnace 3 is increased to 300 ° C. After the temperature rises, the second gas inlet tube ( Nano tungsten powder was prepared by supplying hydrogen gas through 8). At this time, the supply ratio of nitrogen: hydrogen was set to 1: 1.
염화텅스텐과 수소의 반응으로 생성된 나노 텅스텐 분말을 공급가스와 함께 외부로 배출시키고 배출가스를 등유(kerosene)가 채워진 액상 포집기를 통과시키는 방법으로 나노 텅스텐 분말을 회수율 92%로 회수하였다.The nano-tungsten powder produced by the reaction of tungsten chloride and hydrogen was discharged to the outside together with the feed gas and the discharge gas was passed through a kerosene-filled liquid collector to recover the nano-tungsten powder at a recovery rate of 92%.
회수한 나노 텅스텐 분말의 입도를 투과전자 현미경 (Transmission electron Microscopy)을 사용하여 측정 및 분석한 결과 평균입도가 51nm이고 입도범위가 18 ~ 105nm이었다..The particle size of the recovered nano tungsten powder was measured and analyzed by transmission electron microscopy, and the average particle size was 51 nm and the particle size range was 18 to 105 nm.
<실시예 1><Example 1>
염화텅스텐 5 g을 내화 용기 (6)에 담아 비교예 1과 동일하게 장치를 조립하고 제1 가스 주입관 (7)을 통해 30분간 질소가스를 1,000 ml/분의 유량으로 흘려 보냈다. 석영관 내부의 공기 배출이 끝난 다음 반응로 (4)의 온도를 600℃, 또한 증발로 (3)의 온도를 300℃까지 승온시키고, 승온이 끝나면 질소공급은 그대로 유지하면서 제2 가스 주입관 (8)을 통해 수소가스와 아황산가스를 동시에 공급하여 나노 텅스텐 분말을 제조하였다. 이때, 질소:수소의 공급비율은 1 : 1이 되도록 하고, 수소:아황산가스의 공급비율은 5 : 1이 되도록 하였다.5 g of tungsten chloride was put in the refractory container 6, the apparatus was assembled like Comparative Example 1, and nitrogen gas was flowed through the 1st gas injection pipe 7 for 30 minutes by the flow volume of 1,000 ml / min. After the discharge of the air inside the quartz tube, the temperature of the reactor 4 is increased to 600 ° C., and the temperature of the evaporation furnace 3 is increased to 300 ° C. After the temperature rises, the second gas inlet tube ( The nano tungsten powder was prepared by simultaneously supplying hydrogen gas and sulfurous acid gas through 8). At this time, the supply ratio of nitrogen: hydrogen was 1: 1, and the supply ratio of hydrogen: sulfurous acid gas was 5: 1.
상기 반응으로 생성된 나노 텅스텐 분말을 비교예 1과 동일한 방법으로 액상 포집기를 사용하여 회수율 93%로 회수하였다. 회수한 나노 텅스텐 분말의 입도를 투과전자현미경을 사용하여 측정 및 분석한 결과, 평균입도가 37nm이고 입도범위가 24 ~ 52nm로서, 아황산가스를 공급하지 않은 비교예 1의 종래의 방법에 비해 입도가 작고 균일도가 우수함을 알 수 있었다.Nano tungsten powder produced by the reaction was recovered in a recovery rate of 93% using a liquid collector in the same manner as in Comparative Example 1. As a result of measuring and analyzing the particle size of the recovered nano tungsten powder using a transmission electron microscope, the average particle size is 37 nm and the particle size range is 24 to 52 nm, compared with the conventional method of Comparative Example 1, in which no sulfite gas was supplied. Small and uniformity was found to be excellent.
<실시예 2><Example 2>
염화텅스텐 5 g을 내화 용기 (6)에 담아 비교예 1과 동일하게 장치를 조립하고 제1 가스 주입관 (7)을 통해 30분간 질소가스를 1,000 ml/분의 유량으로 흘려 보냈다. 석영관 내부의 공기배출이 끝난 다음 반응로 (4)의 온도를 800℃, 또한 증발로의 온도 (3)를 200℃까지 승온시키고, 승온이 끝나면 실시예 1과 같은 방법으로 제2 가스 주입관 (8)을 통해 수소가스와 아황산가스를 동시에 공급하였다. 이때, 질소:수소의 공급비율은 5 : 1이 되도록 하고, 수소:아황산가스의 공급비율은 20 : 1이 되도록 하였다.5 g of tungsten chloride was put in the refractory container 6, the apparatus was assembled like Comparative Example 1, and nitrogen gas was flowed through the 1st gas injection pipe 7 for 30 minutes by the flow volume of 1,000 ml / min. After the discharge of the air inside the quartz tube, the temperature of the reactor 4 was increased to 800 ° C and the temperature of the evaporation furnace 3 to 200 ° C. Through (8), hydrogen gas and sulfurous acid gas were simultaneously supplied. At this time, the supply ratio of nitrogen: hydrogen was set to 5: 1, and the supply ratio of hydrogen: sulfurous acid gas was set to 20: 1.
상기 반응으로 생성된 나노 텅스텐 분말을 비교예 1과 동일한 방법으로 액상 포집기를 사용하여 회수율 91%로 회수하였다. 회수된 나노 텅스텐 분말의 입도를 투과전자현미경을 사용하여 측정 및 분석한 결과, 평균입도가 32nm이고 입도범위가 20 ~ 45nm로서, 아황산가스를 공급하지 않은 비교예 1의 종래의 방법에 비해 입도가 작고 균일도가 우수함을 알 수 있었다.The nano tungsten powder produced by the reaction was recovered in a recovery rate of 91% using a liquid collector in the same manner as in Comparative Example 1. As a result of measuring and analyzing the particle size of the recovered nano tungsten powder using a transmission electron microscope, the average particle size was 32 nm and the particle size range was 20 to 45 nm, and the particle size was compared with the conventional method of Comparative Example 1 which did not supply sulfite gas. Small and uniformity was found to be excellent.
본 발명의 방법을 이용하여 나노 텅스텐 분말을 제조하면 입도분포가 좁고 균일한 크기의 나노 텅스텐 분말을 얻을 수 있다.When the nano tungsten powder is manufactured using the method of the present invention, a nano tungsten powder having a narrow particle size distribution and a uniform size can be obtained.
또한, 본 발명은 염화텅스텐을 수소 환원시키는 방법으로 나노 텅스텐 분말을 제조함으로써, 종래의 가스증발법이나 고온 열분해법에 비해 제조 단가가 비교적 저렴한 동시에 공업적인 대량 생산이 가능하다는 특징이 있다.In addition, the present invention is characterized in that the production cost is relatively low compared to the conventional gas evaporation method or high temperature pyrolysis method, and industrial mass production is possible by manufacturing nano tungsten powder by hydrogen reduction method of tungsten chloride.
도 1은 본 발명에 따른 나노 금속분말 제조 장치의 평면도.1 is a plan view of a nano-metal powder production apparatus according to the present invention.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
1, 2.: 석영관 3, 4.: 관로1, 2 .: quartz tube 3, 4 .: pipeline
5.: 염화텅스텐 6.: 내화 용기5 .: tungsten chloride 6 .: fireproof container
7.: 제1 가스 주입관 8.: 제2 가스 주입관7 .: first gas inlet tube 8 .: second gas inlet tube
9.: 배출관 10.: 고무 마개9 .: discharge pipe 10 .: rubber stopper
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0030136A KR100526728B1 (en) | 2003-05-13 | 2003-05-13 | Preparation of Tungsten Nano-Powder from Tungsten Chlorides |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0030136A KR100526728B1 (en) | 2003-05-13 | 2003-05-13 | Preparation of Tungsten Nano-Powder from Tungsten Chlorides |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040097735A KR20040097735A (en) | 2004-11-18 |
KR100526728B1 true KR100526728B1 (en) | 2005-11-09 |
Family
ID=37375871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2003-0030136A KR100526728B1 (en) | 2003-05-13 | 2003-05-13 | Preparation of Tungsten Nano-Powder from Tungsten Chlorides |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100526728B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190061876A (en) | 2017-11-28 | 2019-06-05 | 엔에이티엠 주식회사 | Method for producing tungsten powder having wide range of particle size distribution |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100808027B1 (en) * | 2006-08-18 | 2008-02-28 | 한국과학기술연구원 | Fabrication method of nickel nano-powder by gas phase reaction |
CN115351286B (en) * | 2022-08-08 | 2023-07-14 | 杭州新川新材料有限公司 | High-temperature evaporation furnace for metal powder production |
-
2003
- 2003-05-13 KR KR10-2003-0030136A patent/KR100526728B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190061876A (en) | 2017-11-28 | 2019-06-05 | 엔에이티엠 주식회사 | Method for producing tungsten powder having wide range of particle size distribution |
Also Published As
Publication number | Publication date |
---|---|
KR20040097735A (en) | 2004-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100808027B1 (en) | Fabrication method of nickel nano-powder by gas phase reaction | |
Mohammed et al. | Full factorial design approach to carbon nanotubes synthesis by CVD method in argon environment | |
JP7274528B2 (en) | Method | |
US8845995B2 (en) | Single, multi-walled, functionalized and doped carbon nanotubes and composites thereof | |
US20040265212A1 (en) | Synthesis of coiled carbon nanotubes by microwave chemical vapor deposition | |
CN102498061A (en) | Production of graphene from metal alkoxide | |
KR101516900B1 (en) | Preparation method of industrial purple nano-needle tungsten oxide | |
WO2008054349A2 (en) | Carbon nanotube structures formed on large free floating substrates | |
JP2009500281A (en) | Carbon nanoparticles, production method thereof, and use thereof | |
Sengupta | Carbon nanotube fabrication at industrial scale: Opportunities and challenges | |
CN106587010A (en) | Carbon nanotube material prepared by using carbon-clad metal catalyst and preparation method of carbon nanotube material | |
CN1768002B (en) | Method of preparing carbon nanotube from liquid phased-carbon source | |
CN107108222A (en) | Utilize the CNT purification process of fluidized-bed reactor | |
Dhore et al. | Synthesis and characterization of high yield multiwalled carbon nanotubes by ternary catalyst | |
JP2009148758A (en) | Apparatus and method for manufacturing catalyst for carbon nanotube by using spray pyrolysis method | |
JP6403144B2 (en) | Process for producing vapor-deposited fine carbon fiber | |
JP2005097014A (en) | Carbon nanotube production apparatus, production method, and gas decomposer used therein | |
KR100526728B1 (en) | Preparation of Tungsten Nano-Powder from Tungsten Chlorides | |
US20090297709A1 (en) | Carbon encapsulated metal particles and method of manufacturing the same | |
JPWO2004030853A1 (en) | Method and apparatus for producing metal powder | |
JP4967120B2 (en) | Method for producing ZnO-based nanotube | |
CN105271179A (en) | Method for preparing porous wall carbon nano cages through nitrogen doped template | |
KR100593268B1 (en) | A manufacturing process of Fe nano powder with carbide coating by Chemical Vapor Condensation | |
CN102642824A (en) | Graphite nano-carbon fiber and method of producing same | |
CN113697871B (en) | Preparation of short columnar PdO based on hydrolysis reaction2Method for producing nanoparticle material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20121011 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20130930 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20140930 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20151002 Year of fee payment: 11 |
|
LAPS | Lapse due to unpaid annual fee |