KR100437331B1 - Process of producing cathode active material based on lithium-containing manganese by using combustion method for reducing time needed for production and improving battery life - Google Patents

Process of producing cathode active material based on lithium-containing manganese by using combustion method for reducing time needed for production and improving battery life Download PDF

Info

Publication number
KR100437331B1
KR100437331B1 KR1019970023877A KR19970023877A KR100437331B1 KR 100437331 B1 KR100437331 B1 KR 100437331B1 KR 1019970023877 A KR1019970023877 A KR 1019970023877A KR 19970023877 A KR19970023877 A KR 19970023877A KR 100437331 B1 KR100437331 B1 KR 100437331B1
Authority
KR
South Korea
Prior art keywords
lithium
active material
containing manganese
positive electrode
electrode active
Prior art date
Application number
KR1019970023877A
Other languages
Korean (ko)
Other versions
KR19990000784A (en
Inventor
조재필
김근배
박용철
김성수
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1019970023877A priority Critical patent/KR100437331B1/en
Publication of KR19990000784A publication Critical patent/KR19990000784A/en
Application granted granted Critical
Publication of KR100437331B1 publication Critical patent/KR100437331B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: A process of producing a cathode active material based on lithium-containing manganese is provided to reduce the time needed for the production and to manufacture a battery having high initial capacity and improved life. CONSTITUTION: The process for producing a cathode active material based on lithium-containing manganese comprises the steps of: mixing raw materials including a lithium-containing compound and a manganese-containing compound and fuel in distilled water(H2O); evaporating 20-60 wt% of the distilled water contained in the mixture; adding an oxidant to the mixture; heating the mixture to perform a combustion reaction; and firing the product obtained from the combustion reaction. Particularly, the raw materials include LiOH·H2O and MnO2.

Description

연소법을 이용한 리튬 함유 망간계 양극 활물질 제조 방법Method of manufacturing lithium-containing manganese-based positive electrode active material using combustion method

[산업상 이용 분야][Industrial use]

본 발명은 리튬 함유 망간계 양극 활물질 제조 방법에 관한 것으로서, 더욱 상세하게는 리튬 이차 전지의 양극 활물질을 연소법으로 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a lithium-containing manganese-based positive electrode active material, and more particularly, to a method for producing a positive electrode active material of a lithium secondary battery by a combustion method.

[종래 기술][Prior art]

최근 카메라 일체형 VTR, 오디오, 랩탑형 퍼스널 컴퓨터, 휴대용 전화기 등의 새로운 포터블 전자기기의 소형화 및 경량화 추세와 관련하여, 이들 기기의 전원으로 사용되는 전지의 성능을 고성능화하고, 대용량화하는 기술이 필요하게 되었으며, 특히 경제적인 측면에서 이들 전지의 제조 원가를 절감하는 기술 개발 노력이 진행되고 있다. 일반적으로 전지는 망간 전지, 알칼리 전지, 수은 전지, 산화은 전지 등과 같이 일회용으로 사용하는 일차 전지와 납축 전지, 금속수소화물을 양극(cathode) 활물질로 하는 저압형의 Ni/MH전지, 밀폐형 니켈카드뮴 전지, 니켈수소 전지, 리튬 금속 전지, 리튬 이온 전지(LIB: lithium ion battery), 리튬 폴리머 전지(LPB: lithium polymer battery)와 같은 리튬군 전지 등과 같이 재충전하여 사용할 수 있는 이차 전지, 그리고 연료 전지, 태양 전지 등으로 구분할 수 있다.Recently, with the trend toward miniaturization and lightening of new portable electronic devices such as camera-integrated VTRs, audio, laptop personal computers, portable telephones, and the like, there is a need for a technology for increasing the performance and capacity of batteries used as power sources for these devices. In particular, efforts are being made to develop technologies that reduce manufacturing costs of these batteries, particularly in economic terms. In general, batteries include primary cells used for single use, such as manganese batteries, alkaline batteries, mercury batteries, and silver oxide batteries, low-pressure type Ni / MH batteries, and sealed nickel-cadmium batteries using lead-acid batteries and metal hydrides as cathode materials. Rechargeable batteries such as nickel metal hydride batteries, lithium metal batteries, lithium ion batteries (LIB), lithium polymer batteries (LPB), and fuel cells, solar cells, and the like. It can be divided into batteries and the like.

이 중 일차 전지는 용량이 적고, 수명이 짧으며, 재활용이 안되므로 환경 오염을 일으키는 문제점이 있는데 반하여, 이차 전지는 재충전하여 사용할 수 있으므로 수명이 길며, 평균 전압도 일차 전지보다 월등히 높아 성능과 효율성 측면에서 우수하며, 폐기물의 발생도 적으므로 환경보호 측면에서도 우수하다.Among them, the primary battery has a problem of causing environmental pollution because it has a small capacity, a short lifespan, and cannot be recycled. On the other hand, the secondary battery can be recharged and used for a long time, and the average voltage is much higher than that of the primary battery. It is excellent in environmental protection because it generates less waste and generates less waste.

상기한 리튬 이차 전지의 양극 재료로 현재 사용 중이거나 사용 가능성이 대두되고 있는 리튬 이차 전지의 양극 재료로는 전이금속 산화물 (LiCoO2, LiNiO2, LiMn2O4) 및 산화물 고용체(LiMXCo1-XO2, LiMXCo1-XO2, M=Ni, Co, Fe, Mn, Cr, ......) 등을 들 수 있다. 이러한 리튬 이차 전지에 대하여서는 과거 약 30 년 동안 꾸준한 연구가 계속되어 왔으며, 최근에 소니 에너지텍(Sony Energytec)사와 몰리 에너지(Moli Energy)사가 상품화한 리튬 이온 이차 전지는, 음극(anode) 활물질로는 탄소재료를 사용하고, 양극(cathode) 활물질로는 소니 에너지텍사의 경우 LiCoO2를 사용하고 몰리 에너지사는 LiNiO2를 사용하였으며, 전해액으로는 PC/DEC/LiPF5(PC: Propylene carbonate, DEC: Diethylene carbonate) 등으로 구성되어 있다.As a cathode material of the lithium secondary battery, which is currently being used or is emerging as a cathode material of the lithium secondary battery, transition metal oxides (LiCoO 2 , LiNiO 2 , LiMn 2 O 4 ) and oxide solid solutions (LiM X Co 1). -X O 2, LiM X Co 1 -X O 2, M = Ni, Co, Fe, Mn, Cr, and the like ...). The lithium secondary battery has been steadily researched for about 30 years, and recently, a lithium ion secondary battery commercialized by Sony Energytec and Moli Energy has been used as an anode active material. The carbon material is used, LiCoO 2 is used as the cathode active material by Sony Energy Tech, LiNiO 2 is used by Molly Energy, and PC / DEC / LiPF 5 (PC: Propylene carbonate, DEC: Diethylene carbonate).

그러나 현재 사용되고 있는 양극 활물질, LiNiO2, LiCoO2등은 이론용량의 40 내지 60% 정도밖에 활용하지 못하고 있어서 보다 큰 용량을 갖는 양극활물질의 개발과 병행하여 이론용량을 더 많이 활용할 수 있도록 기존 양극 활물질의 물성을 개선하기 위한 노력이 경주되고 있다.However, the currently used cathode active materials, LiNiO 2 , LiCoO 2 and the like can only use about 40 to 60% of the theoretical capacity, so that in parallel with the development of a positive electrode active material having a larger capacity, the existing cathode active material can be utilized more Efforts are being made to improve the physical properties of

상기와 같은 리튬 이차 전지의 양극 활물질로서는 LiCoO2가 가장 일반적으로 사용되고 있는데, 여기서 코발트(Co)는 가격적인 면에서 니켈(Ni)의 약 2배, 망간(Mn)의 약 4배에 달하고 있어 경제적인 면에서 부담이 많으며, 특히 인체에 유해하기 때문에 대체 재료 개발의 필요성이 제기되어 왔다.LiCoO 2 is the most commonly used positive electrode active material of the lithium secondary battery as described above. Cobalt (Co) is about twice as expensive as nickel (Ni) and about 4 times as much as manganese (Mn) in terms of cost. There is a need for developing alternative materials because it is burdensome in terms of personnel and especially harmful to human body.

상기와 같은 대체 재료의 필요성에 부응하는 한편, 경제적인 장점, 높은 충전 및 방전 특성, 전해질의 안정성 및 우수한 가역성 등으로 인하여 리튬 이차 전지의 양극재료 중에서 현재까지 LiMn2O4를 대상으로 한 연구, 특히 LiMn2O4합성법에 대한 연구가 활발하게 진행되고 있다.In order to meet the necessity of the above alternative materials, due to economic advantages, high charging and discharging characteristics, stability of electrolyte and excellent reversibility, research on LiMn 2 O 4 among the cathode materials of lithium secondary batteries to date, In particular, research on the synthesis method of LiMn 2 O 4 is actively progressing.

종래에는 주로 Li2CO3와 MnO2를 이용한 고상 반응법을 사용하여 양극 활물질 LiMn2O4를 제조하고 있다. 이 제조 방법은 우선 재료 분말을 볼밀한 다음 700 내지 800℃에서 24시간 정도로 소결한 다음 다시 볼밀과 소결 공정을 반복하여 양극 활물질을 얻는 것이다.Conventionally, the positive electrode active material LiMn 2 O 4 is mainly manufactured by using a solid phase reaction method using Li 2 CO 3 and MnO 2 . In this manufacturing method, first, the material powder is ball milled and then sintered at 700 to 800 ° C. for about 24 hours, and then the ball mill and the sintering process are repeated to obtain a cathode active material.

미국 특허 제5135732호에서는 고상 반응법을 이용한 LiMn2O4합성법을 개시하고 있다. 그러나 고상 반응법은 불균일 반응이 일어나기 쉬워 균일한 상을 얻기 어렵고, 분말 입자의 크기를 일정하게 제어하기 곤란하여 소결성이 떨어지며, 장시간의 제조 시간이 요구되는 문제점이 발생하며 이 방법으로 제조된 LiMn2O4를 사용하여 전지를 제조할 경우 초기 용량이 낮은 문제점이 있지만 계속적인 충방전시 안정성을 보였다.U.S. Pat.No. 5,513,323 discloses a method for synthesizing LiMn 2 O 4 using solid phase reaction. However, the solid-phase reaction method is difficult to obtain a uniform phase due to non-uniform reaction, difficult to control the size of the powder particles uniformly, poor sinterability, and requires a long time for production, and thus, LiMn 2 produced by this method When the battery was prepared using O 4 , there was a problem of low initial capacity, but showed stability during continuous charge and discharge.

이외에도 솔루션(solution) 또는 졸-겔을 이용하여 400 내지 850℃에서 LiMn2O4제조하는 방법등이 많이 사용되고 있다. LiMn2O4분말들은 합성 온도에 따라 큰 차이를 보이며 졸-겔을 이용한 합성법으로 제조한 분말들은 그 입도가 1 내지 2마이크론(micron) 정도로 적은 것으로 알려져 있다. 일반적으로 낮은 온도에서 합성한 양극 활물질 분말들은 초기 용량은 큰 반면 계속 충방전시 급격하게 용량이 떨어지는 단점이 있다. 또한 졸-겔법으로 합성한 분말들은 700 내지 800℃에서 6내지 12시간 정도 소결한 후 실제 양극 활물질에 사용되고 있다.In addition, a method of preparing LiMn 2 O 4 at 400 to 850 ° C. using a solution or a sol-gel has been widely used. LiMn 2 O 4 powders vary greatly depending on the synthesis temperature, and powders prepared by the synthesis method using sol-gel are known to have a small particle size of 1 to 2 microns. In general, the cathode active material powders synthesized at low temperature have a large initial capacity, but have a disadvantage in that the capacity rapidly drops during continuous charge and discharge. In addition, the powders synthesized by the sol-gel method are used in actual cathode active materials after sintering at 700 to 800 ° C. for about 6 to 12 hours.

P. Barboux 등은 망간 나이트레이트(Mn nitrate) 또는 망간 아세테이트(Mn acetate)와 리튬 하이드록사이드(LiOH) 및 암모니아(NH4OH)를 이용하는 졸-겔법에 의한 LiMn2O4제조 방법을 발표하였으며(J. Soild State Chem.94, 185-186, 1991), 미국 특허 제 3300697호의 페치니(Pechini) 합성법을 응용한 졸-겔법에 의한 LiMn2O4제조 방법을 개시하였다. 그러나 이들 방법들 역시 장시간의 제조 시간이 요구되는 문제점이 발생하였다.P. Barboux et al. Published a method for preparing LiMn 2 O 4 by sol-gel method using manganese nitrate or manganese acetate (Mn acetate) with lithium hydroxide (LiOH) and ammonia (NH 4 OH). ( J. Soild State Chem. 94, 185-186, 1991), a method for preparing LiMn 2 O 4 by a sol-gel method using the Pechini synthesis method of US Patent No. 3300697 is disclosed. However, these methods also have a problem that requires a long manufacturing time.

상기한 문제점을 해결하기 위한 것으로서 본 발명의 목적은 제조 시간이 매우 짧고, 전지 제조시 초기 용량이 높으면서도 계속적인 충방전시에도 용량의 감소 정도가 안정적이므로 전지의 수명을 향상시킬 수 있는 리튬 함유 양극 활물질 제조 방법을 제공하기 위함이다.In order to solve the above problems, an object of the present invention is very short manufacturing time, high initial capacity at the time of manufacturing the battery, but the capacity reduction is stable even during continuous charging and discharging, the lithium containing can improve the life of the battery This is to provide a method for producing a positive electrode active material.

도 1은 본 발명의 일 실시예에 따른 LiMn2O4분말의 X-선 회절 데이터를 나타낸 그래프.1 is a graph showing X-ray diffraction data of LiMn 2 O 4 powder according to an embodiment of the present invention.

도 2는 본 발명의 일 실시예에 따른 LiMn2O4분말을 포함하여 제조한 Li/LiMn2O4밧데리를 0.2C rate로 충방전시 밧데리 용량과 셀 전압을 나타낸 그래프.Figure 2 is a graph showing the battery capacity and cell voltage when charging and discharging a Li / LiMn 2 O 4 battery prepared in accordance with one embodiment of the present invention LiMn 2 O 4 powder at 0.2C rate.

도 3은 본 발명의 일 실시예에 따른 LiMn2O4분말을 포함하여 제조한 Li/LiMn2O4밧데리를 1C rate로 충방전시 23사이클까지의 용량 변화를 나타낸 그래프.Figure 3 is a graph showing the capacity change up to 23 cycles when charging and discharging a Li / LiMn 2 O 4 battery prepared by including a LiMn 2 O 4 powder according to an embodiment of the present invention at 1C rate.

도 4은 본 발명의 일 실시예에 따른 LiMn2O4분말을 포함하여 제조한 Li/LiMn2O4밧데리를 1C rate로 충방전한 실험 결과를 나타낸 그래프.Figure 4 is a graph showing the experimental results of charging and discharging the Li / LiMn 2 O 4 battery prepared by including a LiMn 2 O 4 powder according to an embodiment of the present invention at 1C rate.

[과제를 해결하기 위한 수단][Means for solving the problem]

상기한 목적을 달성하기 위하여 본 발명은 리튬 함유 화합물 및 망간 함유 화합물을 포함하는 원료 물질과 연료를 증류수(H2O)에서 혼합하는 공정과 상기 혼합물에 포함된 증류수의 20 내지 60중량%를 증발시키는 공정과 상기 혼합물에 산화제를 첨가하는 공정과 상기 혼합물을 가열하여 연소 반응시키는 공정과 상기 연소 반응 생성물을 소결하는 공정을 포함하는 리튬 함유 망간계 양극 활물질 제조 방법을제공한다.In order to achieve the above object, the present invention provides a process for mixing a raw material and a fuel containing a lithium-containing compound and a manganese-containing compound in distilled water (H 2 O) and evaporating 20 to 60% by weight of the distilled water contained in the mixture. It provides a process for producing a lithium-containing manganese-based positive electrode active material comprising a step of adding, an oxidizing agent to the mixture, the step of heating and combustion reaction of the mixture and the step of sintering the combustion reaction product.

상기 원료 물질은 LiOH·H2O와 MnO2를 포함하는 것이 바람직하다. 또한 상기 원료 물질은 LiNO3와MnO2를 포함하는 것이 바람직하기도 하다.The starting material preferably comprises a LiOH · H 2 O, and MnO 2. In addition, the raw material may preferably include LiNO 3 and MnO 2 .

상기 원료 물질: 연료의 중량% 비율은 1:0.2 내지 1:1인 것이 바람직하다.The weight percentage ratio of the raw material to the fuel is preferably 1: 0.2 to 1: 1.

상기 증류수 : 산화제의 중량% 비율은 10:0.5 내지 10:1.5인 것이 바람직하다.The weight percentage ratio of distilled water to oxidant is preferably 10: 0.5 to 10: 1.5.

상기 연료는 글라이신, 옥살로하이드라자이드(C2H6N4O2), 말로노하이드라이즈(C2H4N2O2) 및 테트라포르말트리사진(C4H16N6O2)으로 이루어진 군에서 선택되는 것이 바람직하다.The fuel is glycine, oxalohydrazide (C 2 H 6 N 4 O 2 ), malonohydride (C 2 H 4 N 2 O 2 ) and tetraformaltriazine (C 4 H 16 N 6 O 2 It is preferably selected from the group consisting of

상기 산화제는 질산(HNO3), 황산(H2SO4), 염산(HCl)으로 이루어진 군에서 선택되는 것이 바람직하다.The oxidant is preferably selected from the group consisting of nitric acid (HNO 3 ), sulfuric acid (H 2 SO 4 ), hydrochloric acid (HCl).

상기 소결 공정은 700 내지 800℃에서 6 내지 12시간동안 수행하는 것이 바람직하다.The sintering process is preferably carried out at 700 to 800 ℃ for 6 to 12 hours.

또한 본 발명은 본 발명의 목적을 달성하기 위하여 상기한 방법에 따라 제조한 리튬 함유 망간계 양극 활물질을 제공한다.The present invention also provides a lithium-containing manganese-based positive electrode active material prepared according to the above method in order to achieve the object of the present invention.

또한 본 발명은 본 발명의 목적을 달성하기 위하여 상기한 방법에 따라 제조한 리튬 함유 망간계 양극 활물질을 사용한 전지를 제공한다. 상기 전지의 음극 활물질로는 그래파이트 또는 비정질 계통의 카본 그리고 코크스를 사용할 수 있다.In addition, the present invention provides a battery using a lithium-containing manganese-based positive electrode active material prepared according to the above method in order to achieve the object of the present invention. Graphite or amorphous carbon and coke may be used as the negative electrode active material of the battery.

[실시예]EXAMPLE

다음은 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예들은 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 하기의 실시예에 한정되는 것은 아니다.The following presents a preferred embodiment to aid the understanding of the present invention. However, the following examples are merely provided to more easily understand the present invention, and the present invention is not limited to the following examples.

실시예 1Example 1

100㎖의 증류수에 0.1몰의 LiOH·H20와 0.2몰 MnO2(전기분해로 만든 MnO2)를 섞은 후 글라이신(glycine)과 50:50의 중량% 비율로 섞었다. 즉 (LiOH·H20 + MnO2):글라이신의 중량% 비율을 50:50으로 하였다. 이것을 100 내지 150℃에서 사용된 증류수의 약 50중량%를 증발시킨 다음 8㎖의 질산을 첨가하며서 격렬하게 섞었다. 이후 온도를 300 내지 400℃로 올린다음 2㎖의 질산을 첨가하였다. 물이 완전히 증발하기 시작하면서 이 용액은 버블(bubble)이 생기면서 용액의 자촉반응으로 흰 연기가 갑자기 나오면서 연소반응이 일어났다. 완전히 반응이 끝난 후 얻어진 분말은 LiMn2O4분말의 전구체(precursor)로서 매우 부서지기 쉬운 분말들의 형태로 되었다. 이어서 분당 3℃로 가열한 다음 700 내지 800℃에서 10시간 정도 유지한 다음 다시 분당 2℃로 25℃까지 서서히 냉각하여 LiMn2O4분말을 제조하였다. 이 분말의 X-선 회절 패턴은 도 1에서 보는 바와 같이 순수한 LiMn2O4상만 존재함을 알 수 있었다.0.1 mole LiOH.H 2 O and 0.2 mole MnO 2 (MnO 2 made by electrolysis) were mixed with 100 ml of distilled water, and then mixed with glycine (glycine) at a 50% by weight ratio. That is, the weight percentage ratio of (LiOH.H 2 O + MnO 2 ): glycine was 50:50. This was evaporated about 50% by weight of distilled water used at 100-150 ° C. and mixed vigorously with addition of 8 ml nitric acid. The temperature was then raised to 300-400 ° C. and then 2 ml nitric acid was added. As the water began to evaporate completely, the solution formed a bubble, and the combustion reaction occurred when white smoke suddenly emerged from the solution. The powder obtained after complete reaction was in the form of powders very brittle as a precursor of LiMn 2 O 4 powder. Subsequently, the mixture was heated to 3 ° C. per minute, then maintained at 700 to 800 ° C. for about 10 hours, and then slowly cooled to 25 ° C. at 2 ° C. per minute to prepare LiMn 2 O 4 powder. X-ray diffraction pattern of this powder was found to exist only pure LiMn 2 O 4 phase as shown in FIG.

* 제조한 LiMn2O4분말을 사용한 전지 제조 *Battery Preparation Using LiMn 2 O 4 Powder

상기 제조한 분말:PVDF(Kynar 2608):denka carbon black을 89:5:6의 중량%로 섞은 다음 일정량의 NMP를 첨가하면서 균일한 페이스트가 될 때까지 섞었다. 이렇게 만든 페이스트는 닥터-블레이드기(doctor-blade)를 이용하여 200마이크론의 두께로 알루미늄 호일에 도포한 다음 150℃에서 NMP를 완전히 날려보내고 30㎏/㎠의 압력으로 압축하였다. 이렇게 만든 양극 활물질 페이스트를 지름 2㎝의 원형으로 자른 다음 코인 전지 캔(coin cell can)에 웰딩(welding)하였다. 음극인 리튬 호일도 양극과 같은 크기로 자른 다음 코인 전지 캡에 니켈 호일을 압축하여 붙였다. 세퍼레이터는 3M사 제품을 사용하였으며 전해질은 EC/DMC와 LiPF6를 사용하여 코인 전지를 제조하였다.The powder: PVDF (Kynar 2608): denka carbon black prepared above was mixed at a weight percentage of 89: 5: 6, and then mixed until a uniform paste was added while adding a certain amount of NMP. This paste was applied to aluminum foil with a doctor-blade to a thickness of 200 microns and then completely blown NMP at 150 ℃ and compressed to a pressure of 30 kg / ㎠. The cathode active material paste thus prepared was cut into a circle having a diameter of 2 cm and then welded to a coin cell can. Lithium foil, which is a negative electrode, was also cut to the same size as a positive electrode and then pressed with a nickel foil in a coin battery cap. The separator was manufactured by 3M company and the electrolyte was prepared using a coin cell using EC / DMC and LiPF 6 .

이와 같이 제조한 코인 전지를 이용하여 충방전 특성을 0.2C 및 1C로하여 측정하여 도 2 및 도 4에 나타내었다. 도 2에서 보이듯이 0.2C로 충방전을 했을 경우 초기 용량은 120mAh/g이었고 20사이클 뒤에는 112mAh/g였다. 도 4에서 보이듯이 고율(1C)로 충방전했을 경우도 초기 용량이 110mAh/g이었으며 23사이클 이후에는 99mAh/g이었다. 또한 전지의 용량 변화 역시 도 3에서 나타낸 바와 같이 평탄한 경향을 보이는 것을 알 수 있었다.Using the coin battery prepared as described above, the charge and discharge characteristics were measured at 0.2C and 1C, and are shown in FIGS. 2 and 4. As shown in FIG. 2, when the battery was charged and discharged at 0.2C, the initial capacity was 120 mAh / g and after 20 cycles, 112 mAh / g. As shown in FIG. 4, even when charged and discharged at a high rate (1C), the initial capacity was 110 mAh / g and after 23 cycles, it was 99 mAh / g. In addition, it can be seen that the capacity change of the battery also shows a flat tendency as shown in FIG. 3.

실시예 2Example 2

상기 실시예 1에서 글라이신 대신 옥살로하이드라자이드(C2H6N4O2)를 사용한 것을 제외하고는 실시예 1과 동일하게 실시하였다.Except for using glyco oxalohydrazide (C 2 H 6 N 4 O 2 ) in Example 1 was carried out in the same manner as in Example 1.

실시예 3Example 3

상기 실시예 1에서 글라이신 대신 말로노하이드라이즈(C2H4N2O2)를 사용한 것을 제외하고는 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was repeated except that malonohydride (C 2 H 4 N 2 O 2 ) was used instead of glycine in Example 1.

실시예 4Example 4

상기 실시예 1에서 글라이신 대신 테트라포르말트리사진(C4H16N6O2)를 사용한 것을 제외하고는 실시예 1과 동일하게 실시하였다.Except for using glycine tetraformal triazine (C 4 H 16 N 6 O 2 ) in Example 1 was carried out in the same manner as in Example 1.

비교예 1Comparative Example 1

미국 특허 제5135732호에서 개시된 방법에 따라 고상 반응법을 이용하여 LiMn2O4분말을 제조하였다.LiMn 2 O 4 powder was prepared using a solid phase reaction according to the method disclosed in US Pat.

비교예 2Comparative Example 2

출발 물질로서 리튬 나이트레이트(Li nitrate)와 망간 나이트레이트(Mn nitrate)를 1:2몰%로 90℃의 증류수에 녹여서 금속 수용액을 만든 다음 시트르산(citric acid)과 에틸렌 글리콜(ethylene glycol)을 1:4의 몰비율로 넣어서 완전히 녹인다음 점도가 높은 용액을 만들었다. 이 용액을 110℃에서 10 내지 15시간동안에스테르화(esterification)시킨 다음 180℃에서 진공 건조시켰다. 이 건조분말을 800℃에서 소성하여 LiMn2O4분말을 제조하였다.Lithium nitrate and manganese nitrate (Mn nitrate) were dissolved in distilled water at 90 ° C. as a starting material to prepare a metal solution, followed by citric acid and ethylene glycol. The solution was dissolved completely by adding a molar ratio of 4: 4 to obtain a high viscosity solution. The solution was esterified at 110 ° C. for 10-15 hours and then vacuum dried at 180 ° C. The dry powder was calcined at 800 ° C. to prepare LiMn 2 O 4 powder.

상기한 실시예와 비교예의 LiMn2O4분말의 제조에 소요되는 시간을 하기한 표 1에서 나타내었다.The time required for preparing the LiMn 2 O 4 powder of the above Examples and Comparative Examples is shown in Table 1 below.

제조 시간(hour)Manufacturing time (hour) 실시예 1Example 1 2020 실시예 2Example 2 2020 실시예 3Example 3 2020 비교예 1Comparative Example 1 160160 비교예 2Comparative Example 2 5050

상기한 표 1에서 보이는 바와 같이 실시예는 비교예 1에 비해 LiMn2O4분말의 제조시간이 80% 이상 단축되었음을 알 수 있다.As shown in Table 1 above, it can be seen that in Example, the manufacturing time of the LiMn 2 O 4 powder was shortened by 80% or more compared with Comparative Example 1.

상기 실시예와 비교예에서 제조한 LiMn2O4분말을 사용하여 제조한 전지에 0.2C 및 1C의 전류를 인가하고 충방전 특성을 측정하여 하기한 표 2에 나타내었다.To the battery prepared using the LiMn 2 O 4 powder prepared in the above Examples and Comparative Examples to apply a current of 0.2C and 1C and to measure the charge and discharge characteristics are shown in Table 2 below.

0.2C0.2C 1C1C 1 cycle1 cycle 20 cycle20 cycle 1 cycle1 cycle 20 cycle20 cycle 실시예 1Example 1 120 mAh/g120 mAh / g 110 mAh/g110 mAh / g 110 mAh/g110 mAh / g 100 mAh/g100 mAh / g 실시예 2Example 2 123 mAh/g123 mAh / g 112 mAh/g112 mAh / g 110 mAh/g110 mAh / g 100 mAh/g100 mAh / g 실시예 3Example 3 125 mAh/g125 mAh / g 115 mAh/g115 mAh / g 115 mAh/g115 mAh / g 105 mAh/g105 mAh / g 비교예 1Comparative Example 1 105 mAh/g105 mAh / g 98 mAh/g98 mAh / g 90 mAh/g90 mAh / g 80 mAh/g80 mAh / g 비교예 2Comparative Example 2 121 mAh/g121 mAh / g 110 mAh/g110 mAh / g 115 mAh/g115 mAh / g 98 mAh/g98 mAh / g

상기한 표 2에서 보이듯이 실시예에서 제조한 LiMn2O4를 사용하여 제조한 전지는 고율 방전(1C)에서도 0.2C로 충방전시의 초기 방전 용량의 92%로 나타났으며 23사이클 후에도 초기 용량의 90%를 유지하였음을 알 수 있다.As shown in Table 2 above, the battery manufactured using the LiMn 2 O 4 prepared in Example was 0.2C even at a high rate discharge (1C), which was 92% of the initial discharge capacity at the time of charging and discharging. It can be seen that 90% of the dose was maintained.

상기한 바와 같이 연소법을 사용하여 리튬 함유 양극 활물질을 합성하면 분말의 제조시간이 월등히 단축됨으로써 생산성을 향상시킬 수 있으며 이 분말을 사용하여 제조한 전지는 초기 용량이 높으면서도 계속적인 충방전시에도 용량의 감소 정도가 안정적이므로 전지의 수명이 향상된다.As described above, when the lithium-containing cathode active material is synthesized using the combustion method, the production time of the powder can be significantly shortened, thereby improving productivity. The battery manufactured using the powder has a high initial capacity and a capacity during continuous charge / discharge. Since the reduction degree is stable, the battery life is improved.

Claims (10)

리튬 함유 화합물 및 망간 함유 화합물을 포함하는 원료 물질과 연료를 증류수(H2O)에서 혼합하는 공정과;Mixing a raw material and a fuel containing a lithium-containing compound and a manganese-containing compound in distilled water (H 2 O); 상기 혼합물에 포함된 증류수의 20 내지 60중량%를 증발시키는 공정과;Evaporating 20 to 60% by weight of distilled water contained in the mixture; 상기 혼합물에 산화제를 첨가하는 공정과;Adding an oxidizing agent to the mixture; 상기 혼합물을 가열하여 연소 반응시키는 공정과;Heating the combustion mixture by heating the mixture; 상기 연소 반응 생성물을 소결하는 공정을;Sintering the combustion reaction product; 포함하는 리튬 함유 망간계 양극 활물질 제조 방법.A lithium-containing manganese-based positive electrode active material manufacturing method comprising. 제 1항에 있어서, 상기 원료 물질은 LiOH·H2O와;The method of claim 1, wherein the raw material is LiOH.H 2 O; MnO2를;MnO 2 ; 포함하는 것인 리튬 함유 망간계 양극 활물질 제조 방법.Method for producing a lithium-containing manganese-based positive electrode active material comprising. 제 1항에 있어서, 상기 원료 물질은 LiNO3와;The method of claim 1, wherein the raw material is LiNO 3 and; MnO2를;MnO 2 ; 포함하는 것인 리튬 함유 망간계 양극 활물질 제조 방법.Method for producing a lithium-containing manganese-based positive electrode active material comprising. 제 1항에 있어서, 상기 원료 물질: 연료의 중량% 비율은 1:0.2 내지 1:1인 리튬 함유 망간계 양극 활물질 제조 방법.The method of claim 1, wherein the weight% ratio of the raw material to the fuel is 1: 0.2 to 1: 1. 제 1항에 있어서, 상기 증류수 : 산화제의 중량% 비율은 10:0.5 내지 10:1.5인 리튬 함유 망간계 양극 활물질 제조 방법.The method of claim 1, wherein the weight ratio of distilled water to oxidant is 10: 0.5 to 10: 1.5. 제 1항에 있어서, 상기 연료는 글라이신, 옥살로하이드라자이드(C2H6N4O2), 말로노하이드라이즈(C2H4N2O2) 및 테트라포르말트리사진(C4H16N6O2)으로 이루어진 군에서 선택되는 것인 리튬 함유 망간계 양극 활물질 제조 방법.The method of claim 1, wherein the fuel is glycine, oxalohydrazide (C 2 H 6 N 4 O 2 ), malonohydride (C 2 H 4 N 2 O 2 ) and tetraformaltriazine (C 4 H 16 N 6 O 2 ) A lithium-containing manganese-based positive electrode active material manufacturing method selected from the group consisting of. 제 1항에 있어서, 상기 산화제는 질산(HNO3), 황산(H2SO4), 염산(HCl)으로 이루어진 군에서 선택되는 것인 리튬 함유 망간계 양극 활물질 제조 방법.The method of claim 1, wherein the oxidizing agent is selected from the group consisting of nitric acid (HNO 3 ), sulfuric acid (H 2 SO 4 ), and hydrochloric acid (HCl). 제 1항에 있어서, 상기 소결 공정은 700 내지 800℃에서 6 내지 12시간 동안 수행하는 것인 리튬 함유 망간계 양극 활물질 제조 방법.The method of claim 1, wherein the sintering process is performed at 700 to 800 ° C. for 6 to 12 hours. 제 1항 내지 제 8항 중 어느 하나의 방법에 따라 제조한 리튬 함유 망간계 양극 활물질.A lithium-containing manganese-based positive electrode active material prepared according to any one of claims 1 to 8. 제 1항 내지 제 8항 중 어느 하나의 방법에 따라 제조한 리튬 함유 망간계 양극 활물질을 사용한 전지.A battery using a lithium-containing manganese-based positive electrode active material prepared according to any one of claims 1 to 8.
KR1019970023877A 1997-06-10 1997-06-10 Process of producing cathode active material based on lithium-containing manganese by using combustion method for reducing time needed for production and improving battery life KR100437331B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970023877A KR100437331B1 (en) 1997-06-10 1997-06-10 Process of producing cathode active material based on lithium-containing manganese by using combustion method for reducing time needed for production and improving battery life

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970023877A KR100437331B1 (en) 1997-06-10 1997-06-10 Process of producing cathode active material based on lithium-containing manganese by using combustion method for reducing time needed for production and improving battery life

Publications (2)

Publication Number Publication Date
KR19990000784A KR19990000784A (en) 1999-01-15
KR100437331B1 true KR100437331B1 (en) 2004-10-02

Family

ID=37348905

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970023877A KR100437331B1 (en) 1997-06-10 1997-06-10 Process of producing cathode active material based on lithium-containing manganese by using combustion method for reducing time needed for production and improving battery life

Country Status (1)

Country Link
KR (1) KR100437331B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399025B1 (en) * 2000-11-23 2003-09-19 한국과학기술원 Preparation of lithium manganese oxide for Li-secondary battery

Also Published As

Publication number Publication date
KR19990000784A (en) 1999-01-15

Similar Documents

Publication Publication Date Title
JP4973825B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
KR101378580B1 (en) Cathod active material, lithium rechargeble battery including the same, and method of activiting the same
JP4546937B2 (en) Cathode active material for non-aqueous electrolyte lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP4063350B2 (en) Method for producing composite oxide using sol-gel method
US5759719A (en) Electrode material for lithium intercalation electrochemical cells
KR100378005B1 (en) Cathode active material for lithium ion battery having high capacity and stability, and method for producing the same
KR102152370B1 (en) Cathode active material and lithium secondary batteries comprising the same
WO2003069701A1 (en) Production methods for positive electrode active matter and non-aqueous electrolytic battery
KR20070060784A (en) A cathode material for lithium secondary batteries with non-aqueous electrolyte, a process for preparing the cathode material and lithium secondary battery containing the same
JP3929548B2 (en) Method for producing non-aqueous electrolyte secondary battery
JPH1160243A (en) Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
JP2002117831A (en) Manufacturing method of positive electrode active material and manufacturing method of nonaqueous electrolyte secondary battery
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
KR100437331B1 (en) Process of producing cathode active material based on lithium-containing manganese by using combustion method for reducing time needed for production and improving battery life
JPH10125324A (en) Manufacture of nonaqueous electrolyte secondary battery and positive active material thereof
KR100450212B1 (en) METHOD FOR PREPARING LiMn2O4 POWDER FOR LITHIUM ION BATTERIES IN UNIFORM PHASE TO PROVIDE HIGH INITIAL BATTERY CAPACITY
JPH05251079A (en) Manufacture of positive electrode active material for nonaqueous electrolyte cell and nonaqueous electrolyte cell having same positive electrode active material
KR100582115B1 (en) 5? spinel complex-oxide prepared, method for preparing the same, and lithium secondary batteries using the same
KR100420044B1 (en) LiMn2O4 POWDER CONTAINING CONDUCTIVE AGENT
JPH10326619A (en) Manufacture of positive electrode active material for nonacqueous electrolyte battery and battery equipped with positive electrode active material
WO2013099967A1 (en) Oxide and method for producing same
KR0146811B1 (en) Process for preparing lico02 using sol-gel method
KR100691542B1 (en) Method for preparing transition metal oxide based negative electrode material for lithium secondary batteries and the same
KR19990048468A (en) Positive Electrode Active Material for Lithium-Based Secondary Battery and Manufacturing Method Thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130522

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140526

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150519

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee