KR100435449B1 - Method for preventing slag from differentiating in refining process of stainless steel in refining process of stainless steel - Google Patents

Method for preventing slag from differentiating in refining process of stainless steel in refining process of stainless steel Download PDF

Info

Publication number
KR100435449B1
KR100435449B1 KR10-1999-0028827A KR19990028827A KR100435449B1 KR 100435449 B1 KR100435449 B1 KR 100435449B1 KR 19990028827 A KR19990028827 A KR 19990028827A KR 100435449 B1 KR100435449 B1 KR 100435449B1
Authority
KR
South Korea
Prior art keywords
slag
molten steel
differentiation
stainless steel
refining
Prior art date
Application number
KR10-1999-0028827A
Other languages
Korean (ko)
Other versions
KR20010010119A (en
Inventor
송효석
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1999-0028827A priority Critical patent/KR100435449B1/en
Publication of KR20010010119A publication Critical patent/KR20010010119A/en
Application granted granted Critical
Publication of KR100435449B1 publication Critical patent/KR100435449B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0488Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/06Portable or mobile, e.g. collapsible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0052Details for air heaters
    • F24H9/0073Arrangement or mounting of means for forcing the circulation of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/06Arrangement of mountings or supports for heaters, e.g. boilers, other than space heating radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1854Arrangement or mounting of grates or heating means for air heaters
    • F24H9/1877Arrangement or mounting of combustion heating means, e.g. grates or burners
    • F24H9/1881Arrangement or mounting of combustion heating means, e.g. grates or burners using fluid fuel

Abstract

본 발명은 스테인레스강 정련시 발생하는 슬래그의 분화방지 방법에 관한 것으로, 그 목적은 스테인레스 정련 슬래그의 체적팽창에 의한 분진발생을 억제하기 위해 슬래그의 조성을 변화시켜 분화현상을 원초적으로 방지할 수 있는 방법을 제공함에 있다.The present invention relates to a method for preventing the differentiation of slag generated during the refining of stainless steel, and its object is to change the composition of the slag to prevent the occurrence of dust due to volume expansion of the stainless steel refining slag. In providing.

상기 목적을 달성하기 위한 본 발명은, 정련로에서 용강을 탈탄한 다음 실리콘를 투입하여 용강의 탈산과 슬래그의 환원을 행한 후 용강과 슬래그를 레이들로 출강하는 스테인레스강의 정련방법에 있어서, 상기 슬래그의 환원후에 슬래그중 알루미나 농도가 10%이상 함유되도록 하여 CaO-SiO2-Al2O3-(MgO)의 조성을 갖도록 하면서 용강중의 Al의 농도가 100ppm이하가 되도록 Al드로스를 투입하는 슬래그의 분화방지방법에 관한 것을 그 기술적요지로 한다.In the present invention for achieving the above object, in the refining method of the stainless steel to decarburize molten steel in the refining furnace, and then add silicon to deoxidize the molten steel and reduce the slag, and then the molten steel and slag to the ladle, After reduction, the slag containing 10% or more of alumina is contained so that the composition of CaO-SiO 2 -Al 2 O 3- (MgO) is prevented and the differentiation of slag into which Al dross is injected so that the concentration of Al in the molten steel is 100 ppm or less It is the technical point of the method.

Description

스테인레스강 정련로 슬래그의 분화방지방법{METHOD FOR PREVENTING SLAG FROM DIFFERENTIATING IN REFINING PROCESS OF STAINLESS STEEL IN REFINING PROCESS OF STAINLESS STEEL}METHOD FOR PREVENTING SLAG FROM DIFFERENTIATING IN REFINING PROCESS OF STAINLESS STEEL IN REFINING PROCESS OF STAINLESS STEEL}

본 발명은 스테인레스강 정련시 발생하는 슬래그의 분화방지 방법에 관한 것으로, 보다 상세하게는 스테인레스 정련 슬래그의 체적팽창에 의한 분진발생을 억제하기 위해 슬래그의 조성을 변화시켜 분화현상을 원초적으로 방지할 수 있는 방법에 관한 것이다.The present invention relates to a method for preventing the differentiation of slag generated during the refining of stainless steel, and more particularly, to prevent the occurrence of differentiation by changing the composition of the slag in order to suppress dust generation by volume expansion of the stainless steel refining slag. It is about a method.

일반적으로 스테인레스강 정련시에는 산소취입에 의한 탈탄반응 종료후 탈탄반응시 생성된 크롬 산화물의 환원을 실시하게 되는데, 이때 슬래그의 염기도는 환원 효율의 향상 및 탈황반응을 위해 1.8-2.5의 범위로 조절하게 된다. 그런데, 환원 종료후의 슬래그의 염기도가 1.6이상의 경우 슬래그가 냉각과정중 미세한 분으로 분화하여 공장 내외의 환경을 오염시킬 뿐만 아니라 슬래그의 재활용에도 큰 장애요인이 된다. 특히, 환경오염에 대한 규제가 더욱 엄격해지고 있기 때문에 스테인레스강 슬래그의 분화방지가 더욱 요구되고 있다.In general, in the refining of stainless steel, the reduction of chromium oxide generated during the decarburization reaction after the decarburization reaction by oxygen injection is performed, and the basicity of the slag is adjusted in the range of 1.8-2.5 to improve the reduction efficiency and the desulfurization reaction. Done. However, when the slag basicity after the reduction is greater than 1.6, the slag differentiates into fine powder during the cooling process, which not only pollutes the environment inside and outside the plant, but also becomes a major obstacle to recycling the slag. In particular, due to stricter regulations on environmental pollution, prevention of differentiation of stainless steel slag is required.

스테인레스 용강의 환원 종료후의 슬래그는 염기도가 2부근에서 조절되기 때문에 슬래그의 대부분이 2CaO·SiO2로 구성되고 있고 기타 금속산화물은 미량에 불과하다.Since the slag after the reduction of stainless steel is reduced in basicity near 2, most of the slag is composed of 2CaO · SiO 2 and only a small amount of other metal oxides.

슬래그의 분화현상은 슬래그의 냉각과정에서 상기 2CaO·SiO2가 온도에 따라 α, α', γ(혹은 β)의 상으로 결정변태함에 따라 생기는 것으로 알려져 있다. 이러한 변태과정 및 온도는 다음과 같다.It is known that the differentiation of slag occurs as the 2CaO.SiO 2 crystallizes to the phases of α, α ', and γ (or β) depending on the temperature during slag cooling. This transformation process and temperature is as follows.

통상적인 대기중 냉각에 의해서는 α→α'→γ상의 변태과정을 거치지만 특정 조건하에서 α'→β상으로의 변태를 유도할 수 있다. 상기 각 상들의 밀도(g/cm3)는 α상:3.07, α':3.31, γ상:2.97, β상:3.28이다. 따라서, 상기 변태과정에서 α'→γ상으로의 변태시에는 체적팽창이 일어나게 되는데 정량적으로는 약 10%이상 팽창하기 때문에 냉각과정중 슬래그가 분화하게 된다. 그러나, α'→β상으로의 변태를 유도하는 경우에는 체적팽창에 의한 분화현상을 방지할 수 있게 된다.Normal air cooling undergoes the transformation process of α → α ′ → γ phase, but under certain conditions it is possible to induce transformation into α ′ → β phase. The density (g / cm 3 ) of each of the phases is α phase: 3.07, α ′: 3.31, γ phase: 2.97, and β phase: 3.28. Therefore, in the transformation process, when the transformation from the α '→ γ phase, volume expansion occurs, and since the expansion quantitatively about 10% or more, the slag differentiates during the cooling process. However, when inducing transformation from the α '→ β phase, differentiation due to volume expansion can be prevented.

종래의 슬래그 분화방지제 및 분화방지법중에서 정련용기내에 직접 분화방지제를 적용함으로서 슬래그의 분화를 방지하는 기술로는, (1)붕산(CB2O3·nH2O) 첨가법(슬래그 용기 또는 정련용기내 직접투입) 및 (2) 회붕석(2CaO·B2O3) 첨가법(정련용기내 투입, 특허 056292호) (3)세레스타이트(SrSO4) 첨가법(정련용기내 투입, 특허 078198호) 등이 있다.Among the conventional anti-slag and anti-differentiation methods, the method of preventing the differentiation of slag by applying the anti-differentiation agent directly into the refining vessel includes (1) boric acid (CB 2 O 3 · nH 2 O) addition method (slag vessel or refining vessel) Direct injection) and (2) gray borosilicate (2CaO · B 2 O 3 ) addition method (into refining vessel, patent 056292) (3) ceresite (SrSO 4 ) addition method (into refinery vessel, patent 078198) ).

(1)의 붕산첨가법은 붕산을 정련용기내에 첨가하는 방법으로서, 붕산의 소량 첨가만으로도 분화방지 효과가 있다고 알려져 있다. 그러나, 정련용기에서의 슬래그 유재시 슬래그의 낙하력에 의한 교반이 필요하기 때문에 균일한 혼합을 얻기가 곤란할 뿐만 아니라, 정련용기내에 잔류 또는 출강구 주위에 부착한 슬래그의 분화는 방지하기가 곤란한 문제점이 있다.The boric acid addition method of (1) is a method of adding boric acid into a refining vessel, and it is known that even a small amount of boric acid is effective in preventing differentiation. However, it is difficult to obtain uniform mixing, and it is difficult to prevent the differentiation of the slag adhering to or around the exit hole in the refining vessel, since it is necessary to stir due to the falling force of the slag in the refining vessel. There is this.

또한, (2)의 회붕석 첨가법의 경우에는 0.5-5중량%의 회붕석을 정련용기에 직접 투입하기 때문에 분화 방지효과가 우수하다. 그러나, 회붕석중에 함유된 B2O3가 환원되어 용강중의 [B]농도가 증가하기 때문에 최종제품의 [B]을 규제하는 강종에는 사용하지 못하는 문제점이 있다. 스테인레스강중의 [B]은 내식성을 크게 요구하는 용도로 사용되는 경우 약 10ppm이하가 바람직하다고 보고되고 있다.In addition, in the case of the gray borosilicate addition method of (2), 0.5-5% by weight of gray borosilicate is directly added to the refining container, and thus the effect of preventing differentiation is excellent. However, there is a problem that can not be used for steel grades that regulate the [B] of the final product because B 2 O 3 contained in the gray bore is reduced to increase the [B] concentration in the molten steel. It is reported that [B] in stainless steel is preferably about 10 ppm or less when it is used for applications requiring large corrosion resistance.

또한, (3)의 세레스타이트 첨가법은 [B] 농도를 규제하는 스테인레스강 제조시에 발생하는 정련 슬래그 중량의 3.5-5중량%의 세렌스타이트를 정련과정중 산화단계에서 정련로내에 투입함으로써 슬래그분화를 방지하는 방법이다. 그러나, 정련로내에 세레스타이트를 첨가하는 경우 세레스타이트중에 함유된 유황이 용강중으로 들어갈 우려가 있고 상기 (2)의 회붕석 첨가법과 비교하여 슬래그 중량 대비 투입해야 하는 양이 비교적 많기 때문에(슬래그 중량의 3.5-5중량%) 정련로의 열 및 물질 수지에 혼란을 초래하여 정련로 고유의 기능인 탈탄, 탈황 및 온도조절 등을 곤란하게 할 우려가 있다.In addition, the ceresite addition method of (3) adds 3.5-5% by weight of cerensate of the refining slag generated during the production of stainless steel to regulate the concentration of [B] into the refining furnace during the oxidation step during the refining process It is a method to prevent slag differentiation. However, when ceresite is added to a refining furnace, sulfur contained in ceresite may enter the molten steel, and the amount of slag weight to be added in comparison with the slag weight of slag is relatively higher than that of the gray borosilicate addition method (2). 3.5-5 wt.

이에 본 발명자들은 상기한 종래방법들의 문제점을 개선하기 위해 연구 및 실험을 행하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로서, 본 발명은 스테인레스강의 제조시에 발생하는 정련 슬래그의 분화를 효과적으로 방지할 수 있는 향상된 스테인레스강 정련로 슬래그의 분화방지 방법을 제공하고자 하는데 그 목적이 있다.Accordingly, the present inventors have conducted studies and experiments to improve the problems of the conventional methods described above, and the present invention is proposed based on the results, and the present invention can effectively prevent the differentiation of the refined slag generated during the production of stainless steel. It is an object of the present invention to provide an improved method for preventing the differentiation of slag with improved stainless steel refining.

도 1은 Al드로스의 투입량과 슬래그 분화율과의 관계그래프로서,1 is a graph of the relationship between the input amount of Al dross and the slag differentiation rate,

도 1(a)는 슬래그 중량기준으로 투입할 때Figure 1 (a) is when added based on the slag weight

도 1(b)는 용강 중량기준으로 투입할 때Figure 1 (b) is when added based on the weight of molten steel

도 2는 슬래그의 조건과 분화율과의 관계그래프로서,2 is a graph of the relationship between the conditions of the slag and the differentiation rate,

도 2(a)는 슬래그중의 알루미나 농도조건에 따른 분화율Figure 2 (a) is the differentiation rate according to the alumina concentration conditions in the slag

도 2(b)는 슬래그의 염기도 조건에 따른 분화율2 (b) shows the differentiation rate according to the basicity condition of slag

도 3은 Al드로스를 슬래그 중량기준을 투입하는 경우 용강중 Al농도를 나타내는 그래프이다.Figure 3 is a graph showing the Al concentration in the molten steel when the slag weight reference to the Al dross.

상기 목적을 달성하기 위한 본 발명의 분화방지방법은, 정련로에서 용강을 탈탄한 다음 실리콘를 투입하여 용강의 탈산과 슬래그의 환원을 행한 후 용강과 슬래그를 레이들로 출강하는 스테인레스강의 정련방법에 있어서, 상기 슬래그의 환원후에 슬래그중 알루미나 농도가 10%이상 함유되도록 하여 CaO-SiO2-Al2O3-(MgO)의 조성을 갖도록 하면서 용강중의 Al의 농도가 100ppm이하가 되도록 Al드로스를 투입하는 것을 포함하여 구성된다.In the anti-differentiation method of the present invention for achieving the above object, in the refining method of the stainless steel to decarburize molten steel in the refining furnace, and then add silicon to deoxidize the molten steel and reduce the slag and then tap the molten steel and slag to the ladle. After the reduction of the slag, the alumina concentration in the slag is 10% or more to have a composition of CaO-SiO 2 -Al 2 O 3- (MgO) while adding Al dross so that the concentration of Al in the molten steel is less than 100ppm. It is configured to include.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 CaO-SiO2-(MgO)의 슬래그의 냉각과정에서 α'→γ상변태로서 생기는 체적팽창을 근본적으로 방지하기 위해 알루미늄 제련과정의 부산물인 Al드로스를 이용하는데 그 특징이 있다.The present invention is characterized by using Al dross, a by-product of aluminum smelting, to fundamentally prevent the volume expansion caused by α '→ γ phase transformation during the cooling of the slag of CaO-SiO 2- (MgO).

Al드로스는 금속 알루미늄(Al)과 알루미나(Al2O3)가 주성분을 이루고 있는 비교적 자원이 풍부하고 저렴한 물질로, 보통 금속 Al이 20-40중량%, 알루미나가 40-70중량%, CaO 약 10중량%, 기타 여러가지 성분들을 함유하고 있다.Al dross is a relatively resource-rich and inexpensive material consisting mainly of metal aluminum (Al) and alumina (Al 2 O 3 ), usually 20-40% by weight of metal Al, 40-70% by weight of alumina, and CaO It contains 10% by weight and various other ingredients.

본 발명자는 정련로에서 용강을 탈탄한 다음 실리콘를 투입하여 용강의 탈산과 슬래그의 환원을 행한 후에 정련로내에 Al드로스를 직접 적용한 결과, CaO-SiO2-(MgO)의 슬래그조성이 CaO-SiO2-Al2O3-(MgO)의 슬래그조성으로 바뀌는 것을 확인하였고 또한, CaO-SiO2-Al2O3-(MgO)로 조성되는 슬래그는 분화가 발생하지 않는 것을 확인하였다.The present inventors decarburize molten steel in a refining furnace, and then add silicon to deoxidize and reduce slag of molten steel, and then apply Al dross directly into the refining furnace, and the slag composition of CaO-SiO 2- (MgO) is CaO-SiO. It was confirmed that the slag composition of 2 -Al 2 O 3- (MgO) was changed, and that the slag composed of CaO-SiO 2 -Al 2 O 3- (MgO) did not cause differentiation.

이와 같은 슬래그 조성의 변화는, Al 드로스중의 금속Al이 슬래그중의 SiO2를 환원시켜 슬래그 조성을 CaO-SiO2-Al2O3-MgO로 변화시키는 것과 함께, Al드로스중의 알루미나도 CaO-SiO2-Al2O3-(MgO)의 슬래그조성에 필요한 알루미나의 공급원으로 작용하여 슬래그의 분화가 일어나는 결정상인 2CaO·SiO2·MgO(메르비나이트, MerWinite)의 생성을 억제시키고 2CaO-SiO2-MgO-Al2O3의 새로운 슬래그상(멜리라이트, MELILITE)을 생성시키는 것으로 분석되었다.Such a change in the slag composition is such that the metal Al in the Al dross reduces SiO 2 in the slag to change the slag composition to CaO-SiO 2 -Al 2 O 3 -MgO, and the alumina in Al dross is also changed. It acts as a source of alumina for the slag formation of CaO-SiO 2 -Al 2 O 3- (MgO) to inhibit the formation of 2CaO · SiO 2 · MgO (MerO nite, MerWinite), which is a crystalline phase in which slag differentiation occurs. It was analyzed to generate a new slag phase (Melilite, MELILITE) of -SiO 2 -MgO-Al 2 O 3 .

Al드로스는 상기와 같이 슬래그의 분화를 방지할 뿐 아니라, Al에 의한 SiO2의 환원이 발열 반응이므로 정련로의 열보상측면에서도 효과가 있고, 용강의 탈산에도 유용하게 이용될 수 있다.Al dross not only prevents the slag differentiation as described above, but also reduces the SiO 2 by Al to exothermic reaction, which is effective in terms of thermal compensation of the refining furnace, and can be usefully used for deoxidation of molten steel.

본 발명에서 CaO-SiO2-(MgO)의 슬래그를 CaO-SiO2-Al2O3-(MgO)의 슬래그조성으로 유도하기 위해서는, Al드로스를 적정량 첨가하는 것이 필요하다. 적어도 슬래그중 알루미나 농도가 10%이상 되도록 하면 슬래그 분화가 없는 CaO-SiO2-Al2O3-(MgO)의 슬래그조성이 얻어진다. 본 발명의 실험에 의하면 Al드로스중의 금속Al이 약 35%이고, 알루미나가 50.5%의 경우에는 슬래그 중량기준으로 Al드로스를 5-6중량% 첨가하면 슬래그중 알루미나가 10%이상 되는 것이 확인되었다.The slag (MgO) CaO-SiO 2 -Al 2 O 3 - - CaO-SiO 2 in the present invention in order to induce the slag composition of (MgO), it is necessary that an appropriate amount was added to Al dross. At least 10% of the alumina concentration in the slag results in the slag composition of CaO—SiO 2 —Al 2 O 3 — (MgO) without slag differentiation. According to the experiment of the present invention, in the case of the metal Al in the Al dross is about 35% and the alumina is 50.5%, when 5-6% by weight of Al dross is added based on the slag weight, the alumina in the slag is 10% or more. Confirmed.

그리고, Al드로스의 첨가에 있어 고려해야 하는 중요한 것 중의 하나가 스테인레스강에서 용강중 [Al]농도를 100ppm이하로 낮게 하는 것이다. [Al]농도가 100ppm 보다 많아지면 연속주조에 사용되는 침적노즐의 막힘 현상이 증가된다. 용강과 슬래그가 담겨 있는 정련로내에 알루미늄 드로스를 첨가할 때 용강중 Al농도는 알루미늄 드로스 첨가량에 비례하여 증가하므로 알루미늄 드로스의 투입량을 최소한으로 해야한다. 본 발명의 실험에 의하면 Al드로스중의 금속Al이 약 35%이고, 알루미나가 50.5%의 경우에는 용강중량기준으로 Al드로스를 0.25-0.3중량% 첨가하는 것이 좋다. 그렇지 않으면, 분화방지억제효과도 떨어지며(0.25%이하), [Al]농도가 규제치인 100ppm 이상으로 증가하여 연속주조의 침적노즐 막힘현상이 증가하는문제를 야기 시킨다(0.3중량%이상).One important thing to consider in the addition of Al dross is to lower the [Al] concentration in molten steel to less than 100 ppm in stainless steel. If the concentration of [Al] is more than 100 ppm, clogging of the deposition nozzle used for continuous casting increases. When aluminum dross is added to a refining furnace containing molten steel and slag, the Al concentration in the molten steel increases in proportion to the amount of aluminum dross added. Therefore, the amount of aluminum dross should be minimized. According to the experiment of the present invention, when the metal Al in the Al dross is about 35% and the alumina is 50.5%, it is preferable to add Al dross 0.25-0.3% by weight based on the molten steel weight. Otherwise, the anti-differentiation effect is also reduced (less than 0.25%), and the concentration of [Al] is increased above the regulation value of 100ppm, causing the problem of clogging of the immersion nozzle in continuous casting (more than 0.3% by weight).

상기와 같이 슬래그중의 알루미나의 농도가 10%이상 함유되도록 Al드로스를 첨가하는 경우에 있어서 CaO와 SiO2가 조업조건에 따라 변화될 수 있다. 이 경우에는 염기도를 고려할 때 1.25이하가 되도록 Al드로스의 첨가량을 조절한다.As described above, when Al dross is added such that the concentration of alumina in the slag is 10% or more, CaO and SiO 2 may be changed depending on operating conditions. In this case, basicity Taking into account the amount of Al dross added to be less than 1.25.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예]EXAMPLE

하기표 1의 조성을 갖는 스테인레스강 40kg을 대기유도 용해로에서 용해한 후 산화를 방지하기 위하여 아르곤 가스를 흘려주면서 용강온도를 1650-1700℃로 조절한 후 용강상부에 하기 표 2의 조성의 실조업 슬래그 2kg을 투입하여 용해시킨 다음, 표 3의 조성을 갖는 알루미늄 드로스를 50g씩 증가시키면서 슬래그 상부에 첨가하는 실험을 하였다. 용강온도가 목표온도로 유지되고 슬래그가 용해되면 알루미늄 드로스를 50g씩 첨가하고 5분간 반응시킨 다음 슬래그와 용강샘플을 채취하여 용강성분중 [Al]의 농도를 분석하였고, 슬래그는 공기중에서 냉각시킨 다음 슬래그 분화정도를 측정하였다.After dissolving 40 kg of stainless steel having the composition of Table 1 in an air induction melting furnace, argon gas was flowed to prevent oxidation and the molten steel temperature was adjusted to 1650-1700 ° C. Was added and dissolved, and the experiment was performed to add the aluminum dross having the composition shown in Table 3 in increments of 50 g at the top of the slag. When the molten steel temperature is maintained at the target temperature and the slag is dissolved, 50 g of aluminum dross is added and reacted for 5 minutes. The slag and the molten steel sample are collected, and the concentration of [Al] in the molten steel is analyzed. The slag is cooled in air. Next, the degree of slag differentiation was measured.

정련로 슬래그의 조성(중량%)Composition of Smelting Furnace Slag (% by weight) CaOCaO SiO2 SiO 2 MgOMgO Cr2O3 Cr 2 O 3 AlAl 6060 3030 8.28.2 0.50.5 1.31.3

본 실시예에서의 슬래그 분화율은 슬래그 샘플량에 대하여 슬래그가 100메쉬 이하(149㎛)의 크기로 부서진 량의 비율로 계산한 값이다.The slag differentiation rate in this embodiment is a value calculated by the ratio of the amount of slag broken into a size of 100 mesh or less (149 μm) to the slag sample amount.

도 1에서 보듯이, 슬래그는 Al드로스를 첨가하지 않았을 때 60-90%정도 분화되던 것이 알루미늄 드로스 첨가량을 증가시킴에 따라 분화율은 감소하며, 슬래그 중량 기준 5%이상(도 1a) 또는 용강 중량기준 0.25%이상(도 1b) 첨가하면 슬래그의 분화가 거의 일어나지 않아 본 발명의 알루미늄 드로스가 슬래그 분화방지에 효과가 우수함을 알 수 있다.As shown in Figure 1, the slag was differentiated by 60-90% when the Al dross is not added, the differentiation rate decreases as the amount of aluminum dross is increased, and the slag weight is 5% or more (Fig. 1A) or When the molten steel is added in an amount of 0.25% or more (FIG. 1B), the slag differentiation hardly occurs, and thus the aluminum dross of the present invention is excellent in preventing slag differentiation.

도 2(a)는 슬래그중 알루미나 농도가 증가함에 따라 슬래그 분화율이 감소함을 나타내며, 슬래그 분화를 방지하기 위해서는 슬래그중 알루미나 농도가 10%이상 유지되는 것이 바람직함을 보여주고 있다. 도 2(b)는 슬래그 분화에 미치는 염기도의 영향을 나타낸 것으로 슬래그 염기도가 감소할수록 슬래그 분화는 감소하며 슬래그 염기도가 1.2l이하로 조절되어야 함을 나타낸다.2 (a) shows that the slag differentiation rate decreases as the alumina concentration in the slag increases, and it is preferable to maintain the alumina concentration in the slag more than 10% in order to prevent slag differentiation. 2 (b) shows basicity on slag differentiation As the slag basicity decreases, the slag differentiation decreases and the slag basicity should be controlled to 1.2l or less.

도 3은 용강중 Al농도에 미치는 Al 드로스 첨가량의 영향을 나타낸 것으로 용강중 Al농도는 Al드로스 첨가량이 증가함에 따라 증가하는데, Al드로스 량이 슬래그 중량기준으로 6%이하의 경우에는 용강중 Al 농도가 100ppm이하로 조절되는 것을 확인할 수 있다.한편, 본 발명의 실험에서 용강중량 기준으로 Al드로스의 양이 0.3%이하의 경우에도 용강중 Al 농도가 100ppm이하로 조절되었다.Figure 3 shows the effect of the amount of Al dross added to the Al concentration in the molten steel, the Al concentration in the molten steel increases with the increase in the amount of Al dross, the Al concentration in the molten steel is less than 6% based on the slag weight It can be seen that it is controlled to less than 100ppm. Meanwhile, in the experiment of the present invention, even when the amount of Al dross is 0.3% or less based on the weight of molten steel, the Al concentration in the molten steel was adjusted to 100ppm or less.

상술한 바와 같이, 본 발명은 Al드로스중의 Al과 알루미나가 슬래그 조성을 변화시켜 슬래그가 냉각중에도 상변태에 의한 부피변화를 일으키지 않아 슬래그의 분화을 방지할 수 있는 방법을 제공할 수 있다.As described above, the present invention can provide a method in which Al and alumina in the Al dross change the slag composition so that the slag does not cause a volume change due to phase transformation even during cooling, thereby preventing the differentiation of the slag.

Claims (2)

정련로에서 용강을 탈탄한 다음 실리콘를 투입하여 용강의 탈산과 슬래그의 환원을 행한 후 용강과 슬래그를 레이들로 출강하는 스테인레스강의 정련방법에 있어서,In the refining method of stainless steel in which the molten steel is decarburized in a refining furnace, silicon is added to deoxidize the molten steel and reduce slag, and then the molten steel and slag are pulled out to the ladle. 상기 슬래그의 환원후에 슬래그중 알루미나 농도가 10%이상 함유되도록 하여 CaO-SiO2-Al2O3-(MgO)의 주성분을 갖도록 하면서 용강중의 Al의 농도가 100ppm이하가 되도록 Al드로스를 투입함을 특징으로 하는 슬래그의 분화방지방법.After the slag is reduced, the alumina concentration in the slag is contained 10% or more, so that Al dross is added so that the Al concentration in the molten steel is 100 ppm or less while having the main component of CaO-SiO 2 -Al 2 O 3- (MgO). Method for preventing differentiation of slag, characterized in that. 제 1항에 있어서, 상기 Al드로스의 투입은 슬래그의 염기도가 1.25이하가 되도록 행함을 특징으로 하는 슬래그의 분화방지방법.The method of claim 1, wherein the addition of the Al dross is the basicity of the slag The method of preventing the differentiation of slag, characterized in that to be less than 1.25.
KR10-1999-0028827A 1999-07-16 1999-07-16 Method for preventing slag from differentiating in refining process of stainless steel in refining process of stainless steel KR100435449B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0028827A KR100435449B1 (en) 1999-07-16 1999-07-16 Method for preventing slag from differentiating in refining process of stainless steel in refining process of stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0028827A KR100435449B1 (en) 1999-07-16 1999-07-16 Method for preventing slag from differentiating in refining process of stainless steel in refining process of stainless steel

Publications (2)

Publication Number Publication Date
KR20010010119A KR20010010119A (en) 2001-02-05
KR100435449B1 true KR100435449B1 (en) 2004-06-10

Family

ID=19602251

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0028827A KR100435449B1 (en) 1999-07-16 1999-07-16 Method for preventing slag from differentiating in refining process of stainless steel in refining process of stainless steel

Country Status (1)

Country Link
KR (1) KR100435449B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259114A (en) * 1988-04-06 1989-10-16 Nippon Stainless Steel Co Ltd Method of preventing degradation of stainless steel refining slag
KR920008132A (en) * 1990-10-05 1992-05-27 호머 폴 애플바이 Blend of graft copolymer of propylene polymer material and graft copolymer of olefinic rubber material
KR930013153A (en) * 1991-12-30 1993-07-21 정명식 Prevention method of slag differentiation of stainless steel refining furnace
JPH09256024A (en) * 1996-03-22 1997-09-30 Nisshin Steel Co Ltd Method for preventing powdering of slag in electric arc furnace
KR19990034160A (en) * 1997-10-28 1999-05-15 이구택 How to prevent differentiation of desulfurized slag

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259114A (en) * 1988-04-06 1989-10-16 Nippon Stainless Steel Co Ltd Method of preventing degradation of stainless steel refining slag
KR920008132A (en) * 1990-10-05 1992-05-27 호머 폴 애플바이 Blend of graft copolymer of propylene polymer material and graft copolymer of olefinic rubber material
KR930013153A (en) * 1991-12-30 1993-07-21 정명식 Prevention method of slag differentiation of stainless steel refining furnace
JPH09256024A (en) * 1996-03-22 1997-09-30 Nisshin Steel Co Ltd Method for preventing powdering of slag in electric arc furnace
KR19990034160A (en) * 1997-10-28 1999-05-15 이구택 How to prevent differentiation of desulfurized slag

Also Published As

Publication number Publication date
KR20010010119A (en) 2001-02-05

Similar Documents

Publication Publication Date Title
WO2012133795A1 (en) Environmentally friendly flux for desulfurization of molten steel
KR920004674B1 (en) Process for continuously melting of steel
JP5473815B2 (en) Method for recycling oxidized slag and recycled slag
US4450004A (en) Dephosphorization and desulfurization method for molten iron alloy containing chromium
KR100435449B1 (en) Method for preventing slag from differentiating in refining process of stainless steel in refining process of stainless steel
CA2559154C (en) Method for a direct steel alloying
US5037609A (en) Material for refining steel of multi-purpose application
Iwai et al. Desulfurization and simultaneous desulfurization and dephosphorization of molten iron by Na2O–SiO2 and Na2O–CaO–SiO2 fluxes
US4290803A (en) Process for dephosphorization and denitrification of chromium-containing pig iron
EP0146696B1 (en) Process for refining of chromium-containing molten steel
KR940004820B1 (en) Method of slag making
KR100579396B1 (en) Tundish flux fof titanium nitride inclusion
KR100363418B1 (en) Slag eruption prevention method of ferritic stainless steel
KR920008132B1 (en) Agents for anti-powderizing the stainless steel slag and the anti-powderizing method
JPS6319564B2 (en)
SU1747501A1 (en) Method of manufacturing corrosion-resistance steel with mass carbon at least 0,06 %
KR910000006B1 (en) Method of keeping inductor spouts downgates and outlet channels free of deposits in connection with a cast iron melt
KR0129035B1 (en) Method of dephosphorizing chromium-containing hot metal with lowered oxidation of chromium
Ashok et al. Process evaluation of AOD stainless steel making in Salem Steel Plant, SAIL
KR100356152B1 (en) Method for preventing pulverization of stainless steel slag
JPH02179812A (en) Method for refining stainless steel
KR20050037076A (en) Method for manufacturing steel with low sulfur
SU1294858A1 (en) Method of melting metal manganese with low content of silicon
JP2003301215A (en) Treatment method for slag in refining chromium- containing steel
JPS6031885B2 (en) Dephosphorization method for high chromium molten steel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130530

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140530

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150601

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160530

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170530

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee