KR100317617B1 - Process for the preparation of high performance carbon fibers having improved adhesive property with matrix resins - Google Patents

Process for the preparation of high performance carbon fibers having improved adhesive property with matrix resins Download PDF

Info

Publication number
KR100317617B1
KR100317617B1 KR1019990017131A KR19990017131A KR100317617B1 KR 100317617 B1 KR100317617 B1 KR 100317617B1 KR 1019990017131 A KR1019990017131 A KR 1019990017131A KR 19990017131 A KR19990017131 A KR 19990017131A KR 100317617 B1 KR100317617 B1 KR 100317617B1
Authority
KR
South Korea
Prior art keywords
carbon fiber
electrolytic solution
solution
high performance
current density
Prior art date
Application number
KR1019990017131A
Other languages
Korean (ko)
Other versions
KR20000073687A (en
Inventor
박수진
이재락
김문한
Original Assignee
김충섭
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김충섭, 한국화학연구원 filed Critical 김충섭
Priority to KR1019990017131A priority Critical patent/KR100317617B1/en
Publication of KR20000073687A publication Critical patent/KR20000073687A/en
Application granted granted Critical
Publication of KR100317617B1 publication Critical patent/KR100317617B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/003Treatment with radio-waves or microwaves
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties

Abstract

본 발명은 탄소섬유를 산성 전해용액에서 시간, 농도 및 가해준 전류밀도를 변화시켜 양극 산화시킴으로써 섬유 표면의 결점을 제거하고, 산소 관능기를 도입함으로써 표면을 부드럽게 하여 매트릭스로 사용되는 수지와의 계면결합력을 증가시키는 고성능 탄소섬유의 제조방법에 관한 것이다.The present invention removes the defects on the surface of the fiber by anodic oxidation by changing the time, concentration and current density applied to the carbon fiber in an acidic electrolyte solution, and smoothes the surface by introducing an oxygen functional group to interface with the resin used as the matrix. It relates to a method for producing a high performance carbon fiber to increase the.

Description

매트릭스 수지와의 접착성이 향상된 고성능 탄소섬유의 제조방법{Process for the preparation of high performance carbon fibers having improved adhesive property with matrix resins}Process for the preparation of high performance carbon fibers having improved adhesive property with matrix resins

본 발명은 양극 산화를 이용하여 탄소섬유 표면에 산소 관능기를 도입하여계면결합력을 향상시킨 고성능 탄소섬유의 제조방법에 관한 것이다. 더욱 상세하게는 산성 전해 용액만을 사용하여 고강도 탄소섬유를 전기화학적 방법으로 매우 낮은 전류밀도로 양극 산화시킴으로써 섬유 표면의 결점을 제거하고 산소 관능기를 도입하여 매트릭스와의 계면결합력을 증가시키는 고성능 탄소섬유의 제조방법에 관한 것이다.The present invention relates to a method for producing a high-performance carbon fiber improved the interface bonding force by introducing an oxygen functional group on the surface of the carbon fiber using anodization. More specifically, the high-performance carbon fiber, which uses only an acidic electrolytic solution, anodizes the high-strength carbon fiber to a very low current density by electrochemical method, thereby eliminating defects on the surface of the fiber and introducing an oxygen functional group to increase the interfacial bonding force with the matrix. It relates to a manufacturing method.

항공. 우주 산업의 시작과 더불어 급속하게 개발되기 시작한 탄소섬유 강화 복합재료는 오늘날 항공. 우주 산업 뿐만 아니라 전기. 전자 재료, 토목. 건축 재료, 자동차, 선박, 군사장비, 스포츠 용품 등 다양한 분야에서 사용되고 있는 첨단 소재중의 한가지이다. 이러한 강화재로서의 탄소섬유는 최종 열처리 온도에 의해 그 종류가 나누어 지는데 일반적으로 열처리 온도가 증가할수록 계면결합력은 감소하는 경향을 보이는데 이는 열처리 온도가 증가할수록 결정구조가 완벽해져 표면 에너지가 낮아지기 때문이다. 또한 열처리 온도를 1000 내지 1500℃ 까지 가열하여 탄화시킨 고강도 탄소섬유는 일반적으로 크로멘(chromene)이나 피론(pyrone)과 같은 염기성 관능기를 가지거나 탄소원자 자체가 루이스 염기성을 띠게 된다고 알려져 있다. 따라서 탄소섬유의 계면결합력은 섬유의 표면적을 늘려 더 많은 접촉점을 제공하거나 섬유와 수지 사이의 물리화학적 상호작용을 증가시킴으로써 향상될 수 있다. 이와 같은 계면결합력을 향상시키기 위한 탄소섬유의 표면 처리 방법들이 기존에 많이 연구되어 왔다. 탄소섬유의 표면처리는 크게 기상산화, 액상 산화, 전기 화학적 산화 등을 들 수 있으며, 기상 산화 (플라즈마 처리)는 공정이 간단하고 부산물이 거의 없으며 섬유 자체 물성의 손상이 가장 적은 방법으로 최근에는 가장널리 행해지는 표면처리 방법이다. 액체를 이용한 산화법은 기상 처리법에 비해 에칭 효과가 적으며 계면결합력을 향상시키는데 효과적이며, 전기 화학적 처리 방법은 산성이나 염기성 수용액에서 섬유 표면을 전기 화학적으로 산화시키는 것으로 연속 공정이 가능하므로 상업적으로 선호되는 공정이다. 이 방법은 산성 및 염기성 수용액을 전해 용액으로 사용하여 도 1에서 도시한 것과 같이 양극 산화하는 것으로서 전해 용액의 종류와 농도, 처리 시간에 크게 의존하게 된다.Airline. Carbon fiber-reinforced composites, which began to develop rapidly with the start of the aerospace industry, are aviation today. Electricity as well as the space industry. Electronic materials, civil engineering. It is one of the high-tech materials used in various fields such as building materials, automobiles, ships, military equipment, and sporting goods. Carbon fiber as a reinforcing material is divided by the final heat treatment temperature. Generally, as the heat treatment temperature increases, the interfacial bonding force tends to decrease, because the crystal structure becomes more perfect and the surface energy decreases as the heat treatment temperature increases. In addition, high-strength carbon fiber carbonized by heating the heat treatment temperature to 1000 to 1500 ℃ is generally known to have a basic functional group, such as chromene (pyrone), or the carbon atom itself is Lewis basic. Therefore, the interfacial bonding force of carbon fibers can be improved by increasing the surface area of the fibers to provide more contact points or increasing the physicochemical interaction between the fibers and the resin. Many methods for surface treatment of carbon fibers have been studied to improve such interfacial bonding force. The surface treatment of carbon fiber can be classified into gas phase oxidation, liquid phase oxidation, electrochemical oxidation, etc. The gas phase oxidation (plasma treatment) is a method that has a simple process, almost no by-products, and has the least damage to physical properties of the fiber itself. It is a widely used surface treatment method. The liquid oxidation method has a smaller etching effect than the gas phase treatment method, and is effective in improving interfacial bonding force. The electrochemical treatment method is a commercially preferred method because it is possible to continuously process the fiber surface in an acidic or basic aqueous solution by electrochemical oxidation. It is a process. This method uses an acidic and basic aqueous solution as the electrolytic solution and anodizes it as shown in FIG. 1, and is highly dependent on the type, concentration, and treatment time of the electrolytic solution.

종래에는 주로 염기성 수용액을 전해 용액으로 사용하여 비교적 높은 전류로서 탄소섬유를 전기화학적으로 처리하였다. 이 경우에는 탄소섬유 표면 자체를 손상시키게 되며, 그로 인한 매트릭스 수지와의 계면결합력이 감소하는 문제점이 발생하였다.Conventionally, carbon fiber was electrochemically treated with a relatively high current by using a basic aqueous solution as an electrolytic solution. In this case, the surface of the carbon fiber itself is damaged, resulting in a decrease in interfacial bonding force with the matrix resin.

따라서, 본 발명에서는 상기한 종래의 문제점을 고려하여, 탄소섬유를 전기화학적으로 처리할 때 매트릭스 수지와의 계면결합력을 향상시킬 수 있는 고성능 탄소섬유의 제조방법을 제공하는 것을 그 기술적 과제로 하고 있다.Accordingly, the present invention has been made in view of the above-mentioned conventional problems, and provides a method for producing a high-performance carbon fiber that can improve the interfacial bonding force with the matrix resin when the carbon fiber is electrochemically treated. .

도 1은 본 발명에 따른 양극 산화에 의한 탄소섬유의 표면처리 장치를 도시하고,1 shows a surface treatment apparatus of carbon fiber by anodization according to the present invention,

도 2는 본 발명에 따른 양극 산화된 탄소/에폭시 복합재료의 층간전단강도를 도시하며,2 shows the interlaminar shear strength of anodized carbon / epoxy composite according to the present invention,

도 3은 본 발명에 따른 양극 산화된 탄소/에폭시 복합재료의 층간전단강도를 도시함.3 illustrates the interlaminar shear strength of anodized carbon / epoxy composites in accordance with the present invention.

도면의 주요 부분에 대한 부호의 설명Explanation of symbols for the main parts of the drawings

1: 탄소섬유 2: 전해조 3: 세척조1: carbon fiber 2: electrolytic bath 3: washing bath

4: 양극 로울러 5: 흑연 음극판 6: 건조기4: anode roller 5: graphite negative electrode plate 6: dryer

7: 테이크-업 (Take up) 모터7: Take up motor

본 발명자들은 상기 종래 기술과 관련한 문제를 해결하기 위하여 연구한 결과, 산성 수용액 만을 전해 용액으로 사용하고 매우 낮은 전류를 이용하여 탄소섬유를 전기화학적으로 처리하면 양극 산화에 의해 탄소섬유 표면에 산소 관능기를 도입하고, 표면을 부드럽게 하여 매트릭스와의 접촉 면적을 증가시켜 계면결합력이 향상된 고성능 탄소섬유를 제조할 수 있다는 것을 발견하였다. 본 발명은 이러한발견을 기초로하여 달성되었다.The present inventors have studied to solve the problems associated with the prior art, and when using an acidic aqueous solution as the electrolytic solution and electrochemically treating the carbon fiber using a very low current, the oxygen functional groups on the surface of the carbon fiber by anodization It has been found that high-performance carbon fibers with improved interfacial bonding force can be prepared by introducing and smoothing the surface to increase the contact area with the matrix. The present invention has been accomplished based on this finding.

본 발명에서는 기존 탄소섬유의 제조방법에 있어서 표면처리를 산성 수용액만을 전해 용액으로 사용하여 전해 용액 중에서 흑연 양극과 흑연 음극판 사이에 놓고, 상기 흑연 양극과 흑연 음극판간에 0.5 내지 5V의 전압 및 5 내지 450 ㎂/m2의 전류 밀도로 전류를 인가함으로써 고성능 탄소섬유를 제조하는 방법을 제공한다.In the present invention, the surface treatment in the existing carbon fiber manufacturing method using only an acidic aqueous solution as an electrolytic solution, placed between the graphite anode and the graphite negative electrode in the electrolytic solution, the voltage of 0.5 to 5V and 5 to 450 between the graphite anode and the graphite negative electrode plate Provided is a method for producing a high performance carbon fiber by applying a current at a current density of ㎂ / m 2 .

본 발명에서 사용될 수 있는 산성 전해 용액으로는 HNO3, H2SO4, HCl, H3PO4, H2C2O4, H2NSO3H 및 C7C6O2와 같은 루이스 산 용액을 들 수 있다.Acidic electrolytic solutions that can be used in the present invention include Lewis acid solutions such as HNO 3 , H 2 SO 4 , HCl, H 3 PO 4 , H 2 C 2 O 4 , H 2 NSO 3 H and C 7 C 6 O 2 Can be mentioned.

이들 산성 전해 용액의 농도는 5중량내지 40 중량인 것이 바람직하다. 농도가 5중량미만인 경우는 양극 산화에 의하여 해리되는 전해질의 농도가 낮은 관계로 탄소섬유 표면에 생성되는 산소 관능기 양이 적기 때문에 바람직하지 못하며, 40 중량를 초과하면 해리되어 나오는 많은 전해질이 탄소섬유 표면을 부식시키고 따라서 섬유 축 방향으로의 에칭 현상으로 인한 매트릭스 수지와의 계면결합력이 감소하기 때문에 바람직하지 못하다.It is preferable that the concentration of these acidic electrolytic solutions is 5-40 weight. If the concentration is less than 5 wt%, it is not preferable because the amount of oxygen functional groups generated on the surface of the carbon fiber is low due to the low concentration of the electrolyte dissociated by the anodic oxidation. This is undesirable because it reduces the interfacial bonding force with the matrix resin due to corrosion and thus etching phenomenon in the fiber axis direction.

본 발명에서, 상기 양극과 음극에 인가되는 전압은 0.5 내지 5V가 바람직하다. 0.5V 미만에서는 양극 산화에 의해 해리되는 전해질의 농도가 낮은 관계로 탄소섬유 표면에 생성되는 산소 관능기 양이 적기 때문에 바람직하지 못하며, 5V를 초과하면 해리되어 나오는 많은 전해질이 탄소섬유 표면을 부식시키고 따라서 섬유 축 방향으로의 에칭 현상으로 인한 매트릭스 수지와의 계면결합력이 감소하는 현상을 유발하기 때문에 바람직하지 못하다.In the present invention, the voltage applied to the positive electrode and the negative electrode is preferably 0.5 to 5V. Less than 0.5V is undesirable because the concentration of electrolyte dissociated by anodic oxidation is low and the amount of oxygen functional groups generated on the surface of the carbon fiber is small, and above 5V, many dissociated electrolytes corrode the surface of the carbon fiber. It is not preferable because it causes a phenomenon that the interfacial bonding force with the matrix resin decreases due to the etching phenomenon in the fiber axis direction.

또한 전류 밀도는 10 내지 450㎂/m2가 바람직하다. 10㎂/m2미만에서는 양극 산화에 의해 해리되는 전해질의 농도가 낮은 관계로 탄소섬유 표면에 생성되는 산소 관능기의 양이 적기 때문에 바람직하지 못하며, 450㎂/m2를 초과하면 해리되어 나오는 많은 전해질이 탄소섬유 표면을 부식시키고 따라서 섬유 축 방향으로의 에칭과 같은 현상으로 인한 매트릭스 수지와의 계면결합력이 감소하는 현상을 유발하기 때문에 바람직하지 못하다.Moreover, as for current density, 10-450 mA / m <2> is preferable. In 10㎂ / m 2 mothamyeo less than the concentration of the electrolyte to be dissociated by the anodizing not preferable since there is little amount of the oxygen functional groups produced on the carbon fiber surface with a lower relationship, it dissociates when it exceeds 450㎂ / m 2, number of electrolyte out This is undesirable because it causes corrosion of the surface of the carbon fiber and thus causes a decrease in interfacial bonding force with the matrix resin due to a phenomenon such as etching in the fiber axis direction.

본 발명에서는 전류를 10 내지 120초 동안 인가시키는 것이 바람직하다. 10초 미만에서는 양극 산화에 의해 해리되는 전해질의 농도가 낮은 관계로 탄소섬유 표면에 생성되는 산소 관능기 양이 적기 때문에 바람직하지 못하며, 120초를 초과하면 해리되어 나오는 많은 전해질이 탄소섬유 표면을 부식시키고 따라서 섬유 축 방향으로 에칭 현상으로 인한 매트릭스 수지와의 계면결합력이 감소하는 현상을 유발하기 때문에 바람직하지 못하다.In the present invention, it is preferable to apply a current for 10 to 120 seconds. Less than 10 seconds is not preferable because the concentration of the electrolyte dissociated by the anodic oxidation is low because of the small amount of oxygen functional groups generated on the surface of the carbon fiber, and more than 120 seconds, many dissociated electrolytes corrode the surface of the carbon fiber Therefore, it is not preferable because it causes a phenomenon that the interfacial bonding force with the matrix resin due to the etching phenomenon in the fiber axis direction is reduced.

본원 발명에서, 전해 용액의 농도, 인가 전압, 전류 밀도, 전류를 가하는 시간 등과 같은 전기화학적 처리에 관련된 조건들은 사용하는 산성 전해 용액의 강도에 따라 조정할 수 있다. 예컨대, 상대적으로 강산인 질산, 황산이나 염산을 사용하는 경우에는 상대적으로 약산에 해당하는 다른 루이스 산을 사용하는 경우에 비하여 상술한 조건들을 낮추어서 실시한다.In the present invention, the conditions related to the electrochemical treatment such as the concentration of the electrolytic solution, the applied voltage, the current density, the time of applying the current, and the like can be adjusted according to the strength of the acidic electrolytic solution used. For example, when using nitric acid, sulfuric acid, or hydrochloric acid, which are relatively strong acids, the above-described conditions are lowered than when using other Lewis acids, which are relatively weak acids.

위와 같은 과정을 통하여 얻어지는 탄소섬유의 표면 특성은 산성 전해 용액의 종류와 농도, 인가시키는 전압과 전류 밀도, 처리 시간에 크게 의존하는 것을 알 수 있었다. 따라서, 본 발명은 탄소섬유 표면을 부드럽게 하고 표면에 산소 관능기를 도입하여 매트릭스 수지와의 계면결합력을 향상시킴으로써 강화재로 사용될 때 우수한 기계적 특성, 즉 층간전단강도(interlaminar shear strength)를 갖는 고성능 탄소섬유를 제조하는 것을 그 목적으로 한다.Surface properties of the carbon fiber obtained through the above process was found to be highly dependent on the type and concentration of the acidic electrolytic solution, the voltage and current density to be applied, and the treatment time. Accordingly, the present invention provides a high-performance carbon fiber having excellent mechanical properties, namely interlaminar shear strength, when used as a reinforcing material by smoothing the surface of the carbon fiber and introducing an oxygen functional group to the surface to improve interfacial bonding force with the matrix resin. It aims to manufacture it.

본 발명은 다음 실시예에서 더욱 상세히 설명되어지지만, 본 발명의 범위는 이들 실시예에 의해 한정되지 않는다.Although the invention is described in more detail in the following examples, the scope of the invention is not limited by these examples.

실시예 1Example 1

국내 태광산업의 고강도 PAN계 탄소섬유 TZ-307 제품을 강화재로 사용하였다. 전해 용액은 5중량농도의 HNO3수용액을 사용하여 10초 동안 1V의 전압 및 10㎂/m2의 전류 밀도로 전기화학적으로 표면처리 하였다. 표면 처리된 탄소섬유를 속슬레(soxhlet) 장치를 이용하여 아세톤으로 2 시간 동안 세척한 후 건조시켰다. 그런 후 매트릭스로는 국내 국도화학(주)의 비스페놀 A의 디글리시딜 에테르 (DGEBA, YD-128)계 에폭시 수지와 경화제로 상기 국도화학사 제품인 디아미노 디페닐 메탄(DDM)을 사용하였다. 이때 에폭시 수지는 일방향 프리프레그 제조시 작업의 편리함과 수지가 탄소섬유 속으로 함침이 원활하도록 에틸메틸케톤(MEK)으로 희석하여 사용하였다. 일방향 프리프레그를 적층하고, 적층된 프리프레그를 열압착기를 이용하여 진공분위기 하에서 압력과 열에 의해서 성형하였다. 이때 경화 조건은 7.35MPa의 압력을 가함과 동시에 150℃에서 2시간 30분 동안 경화시켰으며, 최종경화물의 섬유 부피는 50(±2)로 조절하였다.The high-strength PAN-based carbon fiber TZ-307 of Korea's Taekwang Industry was used as a reinforcing material. The electrolytic solution was electrochemically surface-treated at a voltage of 1V and a current density of 10 mA / m 2 for 10 seconds using an aqueous 5% HNO 3 solution. The surface treated carbon fibers were washed with acetone for 2 hours using a soxhlet apparatus and then dried. Then, as a matrix, diglycidyl ether (DGEBA, YD-128) -based epoxy resin of Bisphenol A of Kukdo Chemical Co., Ltd. and diamino diphenyl methane (DDM) manufactured by Kukdo Chemical Co., Ltd. were used. At this time, the epoxy resin was diluted with ethyl methyl ketone (MEK) so as to facilitate the operation of the one-way prepreg and the resin to be impregnated into the carbon fiber. One-way prepregs were laminated, and the laminated prepregs were molded by pressure and heat under a vacuum atmosphere using a thermocompressor. At this time, the curing conditions were applied at a pressure of 7.35 MPa and cured at 150 ° C. for 2 hours and 30 minutes, and the fiber volume of the final cured product was adjusted to 50 (± 2).

이렇게 하여 얻어진 탄소섬유 표면의 화학조성비는 표 1에, 그리고 복합재료의 기계적 특성은 표 2에 나타내었다.The chemical composition ratio of the carbon fiber surface thus obtained is shown in Table 1, and the mechanical properties of the composite material are shown in Table 2.

실시예 2Example 2

실시예 1에서와 같은 루이스 산 용액인 7중량농도의 H2SO4용액을 전해 용액으로 사용하여 탄소섬유를 20초 동안 1.5V의 전압 및 150㎂/m2의 전류 밀도로 전기화학적으로 표면처리하였다. 그리고 실시예 1과 같은 방법으로 경화시켜 복합재료를 제조하였다.Electrochemical surface treatment of carbon fiber at a voltage of 1.5 V and a current density of 150 mA / m 2 for 20 seconds using a Lewis acid solution of 7 wt% H 2 SO 4 solution as the electrolytic solution as in Example 1 It was. And the cured in the same manner as in Example 1 to prepare a composite material.

이렇게 하여 얻어진 탄소섬유 표면의 화학 조성비는 표 1에, 그리고 복합재료의 기계적 특성은 표 2에 나타내었다.The chemical composition ratio of the carbon fiber surface thus obtained is shown in Table 1, and the mechanical properties of the composite material are shown in Table 2.

실시예 3Example 3

실시예 1에서와 같은 루이스 산 용액인 10중량농도의 HCl 용액을 전해 용액으로 사용하여 탄소섬유를 30초 동안 0.5V의 전압 및 5㎂/m2의 전류 밀도로 전기화학적으로 표면처리하였다. 그리고 실시예 1과 같은 방법으로 경화시켜 복합재료를 제조하였다.The carbon fiber was electrochemically surface treated at a voltage of 0.5 V and a current density of 5 mA / m 2 for 30 seconds using an HCl solution of 10 wt%, a Lewis acid solution as in Example 1, as an electrolytic solution. And the cured in the same manner as in Example 1 to prepare a composite material.

이렇게 하여 얻어진 탄소섬유 표면의 화학 조성비는 표 1에, 그리고 복합재료의 기계적 특성은 표 2에 나타내었다.The chemical composition ratio of the carbon fiber surface thus obtained is shown in Table 1, and the mechanical properties of the composite material are shown in Table 2.

실시예 4Example 4

실시예 1에서와 같은 루이스 산 용액인 20중량농도의 H3PO4용액을 전해 용액으로 사용하여 탄소섬유를 60초 동안 3V의 전압 및 300㎂/m2의 전류 밀도로 전기화학적으로 표면처리하였다. 그리고 실시예 1과 같은 방법으로 경화시켜 복합재료를 제조하였다.The carbon fiber was electrochemically surface treated at a voltage of 3 V and a current density of 300 mA / m 2 for 60 seconds using a Lewis acid solution of 20 wt% H 3 PO 4 solution as the electrolytic solution as in Example 1. . And the cured in the same manner as in Example 1 to prepare a composite material.

이렇게 하여 얻어진 탄소섬유 표면의 화학 조성비는 표 1에, 그리고 복합재료의 기계적 특성은 표 2에 나타내었다.The chemical composition ratio of the carbon fiber surface thus obtained is shown in Table 1, and the mechanical properties of the composite material are shown in Table 2.

실시예 5Example 5

실시예 1에서와 같은 루이스 산 용액인 30중량농도의 H2C2O4용액을 전해 용액으로 사용하여 탄소섬유를 90초 동안 2V의 전압 및 200㎂/m2의 전류 밀도로 전기화학적으로 표면처리하였다. 그리고 실시예 1과 같은 방법으로 경화시켜 복합재료를 제조하였다.Electrochemically surfaced carbon fiber at a voltage of 2 V and a current density of 200 mA / m 2 for 90 seconds using a 30 weight H 2 C 2 O 4 solution, a Lewis acid solution as in Example 1, as an electrolytic solution. Treated. And the cured in the same manner as in Example 1 to prepare a composite material.

이렇게 하여 얻어진 탄소섬유 표면의 화학 조성비는 표 1에, 그리고 복합재료의 기계적 특성은 표 2에 나타내었다.The chemical composition ratio of the carbon fiber surface thus obtained is shown in Table 1, and the mechanical properties of the composite material are shown in Table 2.

실시예 6Example 6

실시예 1에서와 같은 루이스 산 용액인 40중량농도의 H2NSO3H 용액을 전해 용액으로 사용하여 탄소섬유를 120초 동안 4V의 전압 및 400㎂/m2의 전류 밀도로 전기화학적으로 표면처리하였다. 그리고 실시예 1과 같은 방법으로 경화시켜 복합재료를 제조하였다.Electrochemical surface treatment of carbon fiber at a voltage of 4V and a current density of 400 mA / m 2 for 120 seconds using 40 wt% H 2 NSO 3 H solution, a Lewis acid solution as in Example 1, as an electrolytic solution It was. And the cured in the same manner as in Example 1 to prepare a composite material.

이렇게 하여 얻어진 탄소섬유 표면의 화학 조성비는 표 1에, 그리고 복합재료의 기계적 특성은 표 2에 나타내었다.The chemical composition ratio of the carbon fiber surface thus obtained is shown in Table 1, and the mechanical properties of the composite material are shown in Table 2.

실시예 7Example 7

실시예 1에서와 같은 루이스 산 용액인 40중량농도의 C7H6O2용액을 전해 용액으로 사용하여 탄소섬유를 120초 동안 5V의 전압 및 500㎂/m2의 전류 밀도로 전기화학적으로 표면처리하였다. 그리고 실시예 1과 같은 방법으로 경화시켜 복합재료를 제조하였다.Electrochemically surfaced carbon fiber at a voltage of 5 V and a current density of 500 mA / m 2 for 120 seconds using a 40 wt.% C 7 H 6 O 2 solution, which is a Lewis acid solution as in Example 1, as an electrolytic solution. Treated. And the cured in the same manner as in Example 1 to prepare a composite material.

이렇게 하여 얻어진 탄소섬유 표면의 화학 조성비는 표 1에, 그리고 복합재료의 기계적 특성은 표 2에 나타내었다.The chemical composition ratio of the carbon fiber surface thus obtained is shown in Table 1, and the mechanical properties of the composite material are shown in Table 2.

구분division C1s C 1s O1s O 1s N1s N 1s Eb(eV)E b (eV) AT()AT () Eb(eV)E b (eV) AT()AT () Eb(eV)E b (eV) AT()AT () 미처리탄소섬유실시예 1실시예 2실시예 3실시예 4실시예 5실시예 6실시예 7Untreated Carbon Fiber Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 284.7284.7284.7284.8284.6284.7284.7284.8284.7284.7284.7284.8284.6284.7284.7284.8 79.363.565.463.768.068.168.368.579.363.565.463.768.068.168.368.5 532.6532.5532.4532.6532.6532.5532.4532.6532.6532.5532.4532.6532.6532.5532.4532.6 19.335.133.234.830.630.530.330.119.335.133.234.830.630.530.330.1 400.7400.7400.6400.7400.3400.6400.6400.7400.7400.7400.6400.7400.3400.6400.6400.7 1.41.41.41.51.41.41.41.41.41.41.41.51.41.41.41.4

* AT: 전체 면적* AT: total area

구분division 층간전단강도(MPa)Interlaminar Shear Strength (MPa) 미처리 탄소섬유실시예 1실시예 2실시예 3실시예 4실시예 5실시예 6실시예 7Untreated Carbon Fiber Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 46.372.571.671.865.265.064.364.146.372.571.671.865.265.064.364.1

*각각의 측정값은 실시예에 따른 평균값을 나타낸다.Each measured value represents the average value which concerns on an Example.

표 1과 표 2로부터 명확히 알 수 있는 바와 같이, 본 발명에 따라 탄소섬유를 표면처리하였을 경우 (실시예 1 내지 7), 표면처리를 하지 않은 경우 보다 섬유 표면에 산소 관능기의 양이 60 내지 80증가하였으며, 복합 재료의 층간 전단강도(ILSS)는 약 38 내지 57증가하였음을 확인할 수 있었다.As can be clearly seen from Table 1 and Table 2, when the carbon fiber is surface treated according to the present invention (Examples 1 to 7), the amount of oxygen functional groups on the surface of the fiber is 60 to 80 than when not treated It was confirmed that the interlayer shear strength (ILSS) of the composite material increased by about 38 to 57.

Claims (5)

산성 용액을 전해 용액으로 사용하고, 흑연 양극과 흑연 음극판 간에 0.5 내지 5 V의 전압 및 5 내지 500 ㎂/m2의 전류 밀도로, 10 내지 120초 동안 전류를 인가함에 의해 고강도 탄소섬유를 전기화학적으로 표면처리하여 양극 산화에 의해 탄소섬유 표면에 산소 관능기를 도입함으로써 매트릭스 수지와의 계면결합력을 증가시키는 것을 특징으로 하는 고성능 탄소섬유의 제조방법.The high-strength carbon fiber is electrochemically prepared by using an acidic solution as an electrolytic solution and applying a current for 10 to 120 seconds at a voltage of 0.5 to 5 V and a current density of 5 to 500 mA / m 2 between the graphite anode and the graphite cathode plate. And surface-treatment by introducing an oxygen functional group on the surface of the carbon fiber by anodization to increase the interfacial bonding force with the matrix resin. 제1항에 있어서, 산성 전해 용액이 HNO3, H2SO4, HCl, H3PO4, H2C2O4, H2NSO3H 및 C7C6O2의 루이스 산 용액인 것을 특징으로 하는 고성능 탄소섬유의 제조방법.The method of claim 1 wherein the acidic electrolytic solution is a Lewis acid solution of HNO 3 , H 2 SO 4 , HCl, H 3 PO 4 , H 2 C 2 O 4 , H 2 NSO 3 H and C 7 C 6 O 2 Method for producing a high performance carbon fiber characterized in that. 제1항에 있어서, 산성 전해 용액의 농도가 5 내지 40중량인 것을 특징으로 하는 고성능 탄소섬유의 제조방법.The method of claim 1, wherein the acidic electrolytic solution has a concentration of 5 to 40 weight. 삭제delete 삭제delete
KR1019990017131A 1999-05-13 1999-05-13 Process for the preparation of high performance carbon fibers having improved adhesive property with matrix resins KR100317617B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990017131A KR100317617B1 (en) 1999-05-13 1999-05-13 Process for the preparation of high performance carbon fibers having improved adhesive property with matrix resins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990017131A KR100317617B1 (en) 1999-05-13 1999-05-13 Process for the preparation of high performance carbon fibers having improved adhesive property with matrix resins

Publications (2)

Publication Number Publication Date
KR20000073687A KR20000073687A (en) 2000-12-05
KR100317617B1 true KR100317617B1 (en) 2001-12-22

Family

ID=19585237

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990017131A KR100317617B1 (en) 1999-05-13 1999-05-13 Process for the preparation of high performance carbon fibers having improved adhesive property with matrix resins

Country Status (1)

Country Link
KR (1) KR100317617B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020061951A (en) * 2001-01-19 2002-07-25 주식회사 솔나노켐 Methods for Modifying Interfacial Properties of Fillers
KR101013779B1 (en) 2008-12-24 2011-02-14 주식회사 효성 Method and apparatus for treating surface of carbon fiber
KR101418877B1 (en) * 2012-12-20 2014-07-17 인하대학교 산학협력단 Manufacturing method of anodized carbon fibers using acidic liquid electrolytes mixed sulfuric acid and nitric acid

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101693600B1 (en) * 2015-12-02 2017-01-09 한국생산기술연구원 Surface treatment using aqueous plating solution to the carbon surface for metal plating
CN110592927A (en) * 2019-08-28 2019-12-20 大同新成新材料股份有限公司 Surface treatment method of carbon fiber
CN112746299A (en) * 2020-12-18 2021-05-04 连云港鹰游工程技术研究院有限公司 Surface treatment method for carbon fiber carbon filaments
CN114775262B (en) * 2022-04-22 2023-07-21 常州爱特恩新材料科技有限公司 Carbon fiber treatment method and system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR880006415A (en) * 1986-11-20 1988-07-22 나까하라 노부유끼 Surface treatment method of carbon fiber
KR890000702A (en) * 1987-06-01 1989-03-16 가와사끼 데루오 Surface treatment method of carbon fiber
JPH0284527A (en) * 1988-02-29 1990-03-26 Toray Ind Inc Treatment of carbon fiber
JPH02169763A (en) * 1988-12-12 1990-06-29 Mitsubishi Rayon Co Ltd Surface-improved carbon fiber and production thereof
KR900010090A (en) * 1988-12-12 1990-07-06 나가이 야타로 Carbon fiber with modified surface and method for manufacturing same
JPH0376866A (en) * 1989-08-11 1991-04-02 Toho Rayon Co Ltd Method for carrying out surface treatment of carbon fiber bundle
JPH0465572A (en) * 1990-07-06 1992-03-02 Nippon Steel Corp Method for carrying out surface oxidation treatment of carbon fiber and treating device therefor
JPH0544155A (en) * 1991-08-06 1993-02-23 Petoca:Kk Surface treatment of carbon fiber
JP2000064172A (en) * 1998-08-08 2000-02-29 Korea Res Inst Chem Technol Production of highly functional activated carbon fiber by positive electrode oxidation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR880006415A (en) * 1986-11-20 1988-07-22 나까하라 노부유끼 Surface treatment method of carbon fiber
KR890000702A (en) * 1987-06-01 1989-03-16 가와사끼 데루오 Surface treatment method of carbon fiber
JPH0284527A (en) * 1988-02-29 1990-03-26 Toray Ind Inc Treatment of carbon fiber
JPH02169763A (en) * 1988-12-12 1990-06-29 Mitsubishi Rayon Co Ltd Surface-improved carbon fiber and production thereof
KR900010090A (en) * 1988-12-12 1990-07-06 나가이 야타로 Carbon fiber with modified surface and method for manufacturing same
JPH0376866A (en) * 1989-08-11 1991-04-02 Toho Rayon Co Ltd Method for carrying out surface treatment of carbon fiber bundle
JPH0465572A (en) * 1990-07-06 1992-03-02 Nippon Steel Corp Method for carrying out surface oxidation treatment of carbon fiber and treating device therefor
JPH0544155A (en) * 1991-08-06 1993-02-23 Petoca:Kk Surface treatment of carbon fiber
JP2000064172A (en) * 1998-08-08 2000-02-29 Korea Res Inst Chem Technol Production of highly functional activated carbon fiber by positive electrode oxidation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020061951A (en) * 2001-01-19 2002-07-25 주식회사 솔나노켐 Methods for Modifying Interfacial Properties of Fillers
KR101013779B1 (en) 2008-12-24 2011-02-14 주식회사 효성 Method and apparatus for treating surface of carbon fiber
KR101418877B1 (en) * 2012-12-20 2014-07-17 인하대학교 산학협력단 Manufacturing method of anodized carbon fibers using acidic liquid electrolytes mixed sulfuric acid and nitric acid

Also Published As

Publication number Publication date
KR20000073687A (en) 2000-12-05

Similar Documents

Publication Publication Date Title
Park et al. Effect of acidic anode treatment on carbon fibers for increasing fiber-matrix adhesion and its relationship to interlaminar shear strength of composites
Jang et al. The effect of surface treatment on the performance improvement of carbon fiber/polybenzoxazine composites
Jin et al. Preparation and characterization of carbon fiber-reinforced thermosetting composites: a review
US3671411A (en) Treatment of carbon or graphite fibers and yarns for use in fiber reinforced composites
CN112323482B (en) Carbon fiber obtained by electrophoretic deposition-electropolymerization combined modification and resin matrix composite material thereof
US5324587A (en) Adhesively bonded aluminum
KR100317617B1 (en) Process for the preparation of high performance carbon fibers having improved adhesive property with matrix resins
CN105696313A (en) Surface modification method of carbon fibers
CN108625151A (en) A kind of surface treatment method of high-strength carbon fiber
WO2019153218A1 (en) Environmentally friendly non-destructive fiber-reinforced composite material recovering method
KR20210140976A (en) Method for forming anodized film and anodized aluminum containing anodized film formed thereby
KR100572995B1 (en) Manufacturing process of nickel-plated carbon fibers by electroplating method
KR101418877B1 (en) Manufacturing method of anodized carbon fibers using acidic liquid electrolytes mixed sulfuric acid and nitric acid
KR100486962B1 (en) Manufacturing process of nanoscaled nickel-plated carbon fibers by non-electroplating method
JPH0544154A (en) Surface treatment of carbon fiber
US3657082A (en) Treatment of fibrous materials
Ma et al. Constructing “soft‐stiff” structure on the surface of carbon fiber to enhance the interfacial properties of its epoxy composites
WO2020093503A1 (en) Electrically promoted heterogeneous catalytic device for recovering cfrp and control method thereof
US3865705A (en) Process for modifying the surface characteristics of carbon substrates and composite articles produced from the treated substrates
KR20170036273A (en) Epoxy composites having enhanced thermal stability and mechnical behaviors and manufacturing method of the same
JPS6385167A (en) Surface modified carbon fiber and its production
CN111393689B (en) CF/PPS composite material with high impact toughness and preparation method thereof
CN115703892A (en) High-performance degradable epoxy resin-carbon fiber composite material and preparation method thereof
CN111423695A (en) CF/PEEK with high interlaminar shear strength and bending strength and preparation method thereof
WO2020118551A1 (en) Three-dimensional flexible capacitor material, preparation method therefor, and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20051123

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee