KR100214073B1 - Bpsg film forming method - Google Patents

Bpsg film forming method Download PDF

Info

Publication number
KR100214073B1
KR100214073B1 KR1019950050997A KR19950050997A KR100214073B1 KR 100214073 B1 KR100214073 B1 KR 100214073B1 KR 1019950050997 A KR1019950050997 A KR 1019950050997A KR 19950050997 A KR19950050997 A KR 19950050997A KR 100214073 B1 KR100214073 B1 KR 100214073B1
Authority
KR
South Korea
Prior art keywords
bpsg film
temperature
film
chamber
wafer
Prior art date
Application number
KR1019950050997A
Other languages
Korean (ko)
Other versions
KR970052884A (en
Inventor
박인옥
정영석
김의식
Original Assignee
김영환
현대전자산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업주식회사 filed Critical 김영환
Priority to KR1019950050997A priority Critical patent/KR100214073B1/en
Priority to TW085114063A priority patent/TW308714B/zh
Priority to GB9625363A priority patent/GB2308229A/en
Priority to DE19651778A priority patent/DE19651778A1/en
Priority to CN96121564A priority patent/CN1159489A/en
Priority to JP8336172A priority patent/JP2859864B2/en
Publication of KR970052884A publication Critical patent/KR970052884A/en
Application granted granted Critical
Publication of KR100214073B1 publication Critical patent/KR100214073B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02129Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being boron or phosphorus doped silicon oxides, e.g. BPSG, BSG or PSG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition

Abstract

본 발명은 높은 농도의 보론과 인을 갖는 BPSG(boro phospho silicate glass)막을 웨이퍼 상에 증착하는 제1단계; 저온 및 저압을 유지하는 반응로에서 상기 BPSG막이 형성된 웨이퍼를 주입하여 열처리함으로써 상기 BPSG막의 표면에서의 보론과 인의 농도를 낮추는 제2단계; 상기 반응로의 온도를 고온으로 올린 분위기에서 상기 BPSG막을 열처리하는 제3단계; 상기 반응로에서 상기 BPSG막의 표면에 얇은 보호산화막을 도포하는 제4단계; 상기 반응로의 온도를 저온으로 낮추어 열처리하는 제5단계를 포함하여 이루어지는 것을 특징으로 하는 BPSG막의 표면 평탄화 방법에 관한 것이다.The present invention includes a first step of depositing a BPSG (boro phospho silicate glass) film having a high concentration of boron and phosphorus on a wafer; A second step of lowering concentrations of boron and phosphorus on the surface of the BPSG film by injecting and heat-processing the wafer on which the BPSG film is formed in a reactor at low temperature and low pressure; A third step of heat-treating the BPSG film in an atmosphere of raising the temperature of the reactor to a high temperature; A fourth step of applying a thin protective oxide film on the surface of the BPSG film in the reactor; It relates to a surface planarization method of the BPSG film, characterized in that it comprises a fifth step of the heat treatment by lowering the temperature of the reactor to a low temperature.

Description

비피에스지(BPSG)막 형성방법BPSG film formation method

본 발명은 반도체소자 제조 공정에서 기판 표면의 평탄화를 위하여 적용되는 BPSG(borophospho silicate glass; 이하 BPSG라 칭함)막 형성방법에 관한 것으로, 특히 결정결함을 방지할 수 있는 BPSG막 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a borophospho silicate glass (hereinafter referred to as BPSG) film applied for planarization of a substrate surface in a semiconductor device manufacturing process, and more particularly to a method for forming a BPSG film which can prevent crystal defects.

반도체소자가 점차 고집적화되어감에 따라, 보다 넓은 활성영역을 확보하기 위하여 다층의 전도막을 형성하게 되고, 이에 따라 점차 기판의 단차는 깊어지게 된다. 따라서, 다층 전도막 형성시 후속공정을 진행하기 위해서는 전체적으로 웨이퍼 표면을 평탄화시켜야 하는바, 평탄화 층간절연막을 형성하기 위한 일반적인 방법은 고온에서 플로우(flow)되는 특성을 가지고 있는 BPSG막을 사용하는 것이다.As semiconductor devices are increasingly integrated, multilayer conductive films are formed in order to secure a wider active area, thereby increasing the level of the substrate. Therefore, in order to proceed with the subsequent process in forming the multilayer conductive film, the wafer surface must be planarized as a whole. A general method for forming the planarized interlayer insulating film is to use a BPSG film having a property of flowing at high temperature.

종래의 BPSG막 형성 공정을 살펴보면 다음과 같다.Looking at the conventional BPSG film forming process as follows.

먼저, 평탄화 특성을 향상시키기 위하여 보통 보론(boron)과 인(phosphorus)의 농도를 높게 유지하면서 PECVD(plasma enhanced chemical vapor deposition; 이하, PECVD라 칭함) 또는 APCVD(atmospheric pressure chemical vapor deposition; 이하, APCVD라 칭함) 방식으로 BPSG막을 웨이퍼에 증착한다.First, plasma enhanced chemical vapor deposition (PECVD) or atmospheric pressure chemical vapor deposition (APCVD) or APCVD (APCVD) is generally maintained while maintaining high concentrations of boron and phosphorus to improve planarization characteristics. The BPSG film is deposited on the wafer in the manner as described above.

이어서, 상기와 같이 BPSG막을 증착한 웨이퍼를 약 800℃를 유지하는 확산로(석영관이라고도 함)에 장착한 후, 약 850∼900℃ 정도의 고온으로 올리고 N2분위기에서 플로우 위한 열처리를 진행한다.Subsequently, the wafer on which the BPSG film is deposited as described above is mounted in a diffusion furnace (also called a quartz tube) that maintains about 800 ° C., then heated to a high temperature of about 850 to 900 ° C. and heat treated for flow in an N 2 atmosphere. .

계속해서, 표면 평탄화를 마친 웨이퍼는 약 650∼800℃ 정도로 온도를 낮춘 후 확산로에서 꺼내어 진다.Subsequently, the wafer after the surface planarization is lowered to about 650 to 800 ° C and then taken out of the diffusion furnace.

그러나, 이와 같은 방법으로 BPSG막의 플로우를 진행할 때 BPSG막 내부에서 고농도를 유지하는 보론과 인은 표면 밖으로 확산되려는 경향이 강하여 플로우가 진행되면서 막의 표면에는 불순물(보론과 인) 농도가 포화 농도 이상으로 증가하게 된다. 이와 같은 상태로 웨이퍼를 고온의 확산로에서 실온의 확산로 밖으로 꺼내면 웨이퍼 표면은 급격한 온도변화와 대기중에 있는 수분에 의하여 표면에서 포화농도 이상의 불순물이 결정 형태로 석출한다. 이러한 표면에 석출된 결정 결함들은 소자의 패턴 형성을 방해할 뿐 아니라 도체간의 절연 특성의 불량을 야기시키는 원인으로 작용한다.However, when the flow of the BPSG film proceeds in this manner, boron and phosphorus, which maintain a high concentration inside the BPSG film, tend to diffuse out of the surface, and as the flow proceeds, the concentration of impurities (boron and phosphorus) on the surface of the film is higher than the saturation concentration. Will increase. In this state, when the wafer is taken out from the high temperature diffusion furnace to the room temperature diffusion furnace, the surface of the wafer is precipitated in crystal form at the surface due to the rapid temperature change and moisture in the atmosphere. Crystal defects deposited on these surfaces not only interfere with the pattern formation of the device, but also act as a cause of poor insulation properties between conductors.

따라서, 본 발명은 상기 문제점을 해결하기 위하여 안출된 것으로서, 반도체 소자 제조공정에서 보론과 인의 농도가 높은 BPSG막의 플로우 공정시, 상기 BPSG막 표면에서 보론과 인이 포화상태가 되고 이들이 결정으로 석출되는 것을 방지하여 양호한 막질을 얻을 수 있는 BPSG막 형성방법을 제공하는데 그 목적이 있다.Therefore, the present invention has been made to solve the above problems, in the process of flow of the BPSG film having a high concentration of boron and phosphorus in the semiconductor device manufacturing process, boron and phosphorus is saturated on the surface of the BPSG film and these are precipitated as crystals It is an object of the present invention to provide a method for forming a BPSG film, which can prevent the film from being prevented and obtain a good film quality.

상기 목적을 달성하기 위한 본 발명의 BPSG막 형성방법은, 소정 공정이 완료된 웨이퍼 상에 BPSG막을 증착하는 제1단계; 상기 제1단계가 완료된 웨이퍼를 10∼100mTorr 압력과 650∼750℃ 온도를 갖는 저압화학기상증착장비의 챔버내에 장착하고 열처리하여 상기 BPSG막 표면의 P와 B 농도를 감소시키는 제2단계; 상기 저압화학기상증착장비의 챔버 온도를 850∼900℃로 올린 후 열처리하여 상기 BPSG막을 플로우시키는 제3단계; 상기 저압화학기상증착장비의 챔버 내에서 상기 플로우된 BPSG막 표면에 보호산화막을 형성하는 제4단계; 및 상기 저압화학기상증착장비의 챔버 온도를 650∼750℃ 온도로 낮춘 후 상기 제4단계가 완료된 웨이퍼를 상기 챔버내에서 꺼내는 제5단계를 포함하여 이루어진다.BPSG film forming method of the present invention for achieving the above object, the first step of depositing a BPSG film on a wafer is completed a predetermined process; A second step of mounting the wafer on which the first step is completed in a chamber of a low pressure chemical vapor deposition apparatus having a pressure of 10 to 100 mTorr and a temperature of 650 to 750 ° C., and then heat-treating it to reduce P and B concentrations on the surface of the BPSG film; A third step of raising the chamber temperature of the low pressure chemical vapor deposition apparatus to a temperature of 850 to 900 ° C. and then performing heat treatment to flow the BPSG film; A fourth step of forming a protective oxide film on the surface of the flowed BPSG film in the chamber of the low pressure chemical vapor deposition apparatus; And a fifth step of lowering the chamber temperature of the low pressure chemical vapor deposition apparatus to a temperature of 650 to 750 ° C. and taking out the wafer in which the fourth step is completed in the chamber.

이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 살펴보기로 한다.Hereinafter, the most preferred embodiments of the present invention will be described in detail so that those skilled in the art can easily implement the technical idea of the present invention.

본 발명에 따른 BPSG막의 플로우 공정은 확산로가 아닌 저압화학기상증착(LPCVD : Low pressure chemical vapor deposition; 이하, LPCVD라 칭함) 장비에서 3단계 열처리를 통하여 실시되고 이에 의해 결정 결함의 생성을 방지하게 된다.The flow process of the BPSG film according to the present invention is carried out through a three-step heat treatment in a low pressure chemical vapor deposition (LPCVD) equipment, not a diffusion furnace, thereby preventing the formation of crystal defects. do.

이를 구체적으로 살펴보면, 먼저, 통상의 PECVD 또는 APCVD 방식으로 웨이퍼에 BPSG막을 증착한다. 이때 평탄화 특성을 향상시키기 위하여 보통 보론과 인의 농도를 높게 유지한다.Specifically, first, a BPSG film is deposited on a wafer by a conventional PECVD or APCVD method. At this time, in order to improve the planarization characteristics, the concentrations of boron and phosphorus are usually kept high.

이어서, 약 650℃ 내지 750℃를 유지하는 LPCVD 장비의 챔버내에 BPSG막이 형성된 웨이퍼를 장착한 후 LPCVD 챔버 내부를 10∼100mTorr 정도의 저압의 상태로 만든다.Subsequently, after mounting the wafer on which the BPSG film is formed in the chamber of the LPCVD apparatus maintaining about 650 ° C to 750 ° C, the inside of the LPCVD chamber is brought to a low pressure of about 10 to 100 mTorr.

다음, 10∼100mTorr 정도의 저압의 상태에서 챔버내의 온도를 약 650℃ 내지 750℃의 저온으로 계속 유지하고 약 40분 내지 100분간 열처리를 한다. (1단계 열처리) 이렇게 하면 BPSG막의 표면에서 보론과 인이 바깥으로 빠져나오면서(out-diffusion) 표면 농도는 감소하게 되며, 빠져나온 보론과 인은 펌핑에 의해서 챔버 밖으로 곧바로 배출된다.Next, the temperature in the chamber is continuously maintained at a low temperature of about 650 ° C to 750 ° C at a low pressure of about 10 to 100 mTorr, and heat treated for about 40 to 100 minutes. This reduces the surface concentration as boron and phosphorus are out-diffusion from the surface of the BPSG film, and the boron and phosphorus are discharged straight out of the chamber by pumping.

계속하여, 챔버내의 온도를 850∼900℃로 올린 후 N2분위기에서 약 15분 내지 45분 동안 열처리를 하여 BPSG막을 플로우 시킴으로써 웨이퍼 표면을 평탄화 시킨다. (2단계 열처리)Subsequently, after raising the temperature in the chamber to 850 to 900 ° C., heat treatment is performed for about 15 to 45 minutes in N 2 atmosphere to flow the BPSG film to planarize the wafer surface. (2-step heat treatment)

마지막으로, 상기와 같이 웨이퍼 표면 평탄화가 완료되면 상기 챔버 내에 N2O SiH2Cl2가스를 공급하여 상기 플로우된 BPSG막 표면에 보호산화막을 약100∼200Å 정도로 얇게 형성한다. (3단계 열처리)Lastly, as described above, when the wafer surface planarization is completed, N 2 O SiH 2 Cl 2 gas is supplied into the chamber to form a thin protective oxide film on the surface of the flowed BPSG film as thin as about 100 to 200 microns. (3-step heat treatment)

이후, 반응로의 온도를 약 650℃ 내지 750℃도로 낮추고 웨이퍼를 꺼낸다.Thereafter, the temperature of the reactor is lowered to about 650 ° C to 750 ° C and the wafer is taken out.

이상과 같이 본 발명에 따른 BPSG막의 결정결함은 세가지면에서 방지될 수 있는데, 첫째, LPCVD 장비에서 저압의 상태를 유지하고 약 650℃내지 750℃ 저온에서 장시간 열처리를 진행함으로써 BPSG막의 표면에서 보론과 인의 농도를 감소시켜 표면에서의 결정 석출 정도를 감소시킨다.As described above, the crystal defect of the BPSG film according to the present invention can be prevented in three planes. First, by maintaining the state of low pressure in the LPCVD equipment and performing heat treatment at a low temperature of about 650 ° C. to 750 ° C. for a long time, boron and The concentration of phosphorus is reduced to reduce the degree of crystal precipitation on the surface.

둘째, 저온 열처리 후 곧바로 LPCVD 챔버의 온도를 BPSG막의 플로우 가능 온도인 850∼900℃ 정도로 올린 후 평탄화를 위한 열처리를 진행하고, 연속으로 N2O와 SiH2Cl2가스를 이용하여 BPSG막의 표면에 산화막을 증착시킴으로써 표면 보호막을 형성하여 결정 석출 가능성을 없앤다.Second, the BPSG film surface, and goes to a heat treatment for flattening after immediately raising the temperature of the LPCVD chamber so 850~900 ℃ BPSG film flow can be temperature, using the N 2 O and SiH 2 Cl 2 gas after low temperature heat treatment in a continuous By depositing the oxide film, a surface protective film is formed to eliminate the possibility of crystal precipitation.

셋째, 3단계의 열처리를 통하여 표면에서의 결정 석출 가능성을 최대한 낮춘후 웨이퍼를 실온의 반응로 밖으로 꺼낸다 해도 표면의 급격한 온도 변화와 대기중의 수분에 의한 결정 석출은 일어나지 않는다.Third, even if the possibility of crystal precipitation on the surface is reduced as much as possible through the three-step heat treatment, the wafer is taken out of the reaction chamber at room temperature, but the sudden temperature change of the surface and crystal precipitation due to moisture in the air do not occur.

상기와 같이 이루어지는 본 발명은 후속공정에서의 소자 패턴닝 형성을 방해하고 도체간 절연 불량을 야기하는 결정이 BPSG막의 표면에서 생성되는 것을 방지함으로써 반도체 소자의 특성과 수율을 향상시키는 효과가 있다.The present invention made as described above has an effect of improving the characteristics and yield of the semiconductor device by preventing crystals from forming on the surface of the BPSG film that prevent the formation of device patterning in a subsequent process and cause poor insulation between conductors.

본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.Although the technical idea of the present invention has been described in detail according to the above preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.

Claims (7)

반도체소자 제조방법에 있어서, 소정 공정이 완료된 웨이퍼 상에 BPSG막을 증착하는 제1단계; 상기 제1단계가 완료된 웨이퍼를 10∼100mTorr 압력과 650∼750℃ 온도를 갖는 저압화학기상증착장비의 챔버내에 장착하고 열처리하여 상기 BPSG막 표면의 P와 B 농도를 감소시키는 제2단계; 상기 저압화학기상증착장비의 챔버 온도를 850∼900℃로 올린 후 열처리하여 상기 BPSG막을 플로우시키는 제3단계; 상기 저압화학기상증착장비의 챔버 내에서 상기 플로우된 BPSG막 표면에 보호산화막을 형성하는 제4단계; 및 상기 저압화학기상증착장비의 챔버 온도를 650∼750℃ 온도로 낮춘 후 상기 제4단계가 완료된 웨이퍼를 상기 챔버내에서 꺼내는 제5단계를 포함하여 이루어진 BPSG막 형성방법.A semiconductor device manufacturing method comprising: a first step of depositing a BPSG film on a wafer on which a predetermined process is completed; A second step of mounting the wafer on which the first step is completed in a chamber of a low pressure chemical vapor deposition apparatus having a pressure of 10 to 100 mTorr and a temperature of 650 to 750 ° C., and then heat-treating it to reduce P and B concentrations on the surface of the BPSG film; A third step of raising the chamber temperature of the low pressure chemical vapor deposition apparatus to a temperature of 850 to 900 ° C. and then performing heat treatment to flow the BPSG film; A fourth step of forming a protective oxide film on the surface of the flowed BPSG film in the chamber of the low pressure chemical vapor deposition apparatus; And a fifth step of lowering the chamber temperature of the low pressure chemical vapor deposition apparatus to a temperature of 650 to 750 ° C. and taking out the wafer in which the fourth step is completed in the chamber. 제1항에 있어서, 상기 제2단계에서의 열처리는 40분 내지 100분 동안 이루어지는 것을 특징으로 하는 BPSG막 형성방법.The method of claim 1, wherein the heat treatment in the second step is performed for 40 to 100 minutes. 제1항에 있어서, 상기 제3단계에서의 열처리는 N2분위기에서 이루어지는 것을 특징으로 하는 BPSG막 형성방법.The method of claim 1, wherein the heat treatment in the third step is performed in an N 2 atmosphere. 제1항 또는 제3항에 있어서, 상기 제3단계에서의 열처리는 15분 내지 45분간 이루어지는 것을 특징으로 하는 BPSG막 형성방법.4. The method of claim 1 or 3, wherein the heat treatment in the third step is performed for 15 to 45 minutes. 제1항에 있어서, 상기 보호산화막을 형성하는 제4단계는 상기 챔버에 N2O와 SiH2Cl2가스를 공급하여 형성하는 것을 특징으로 하는 BPSG막 형성방법.The method of claim 1, wherein the fourth step of forming the protective oxide film is performed by supplying N 2 O and SiH 2 Cl 2 gas to the chamber. 제1항 또는 제5항에 있어서, 상기 보호산화막을 100∼200Å의 두께로 형성하는 것을 특징으로 하는 BPSG막 형성방법.The method of forming a BPSG film according to claim 1 or 5, wherein the protective oxide film is formed to a thickness of 100 to 200 GPa. 제1항에 있어서, 상기 제1단계는 PECVD 또는 APCVD 장비에서 이루어짐을 특징으로 하는 BPSG막 형성방법.The method of claim 1, wherein the first step is performed in PECVD or APCVD equipment.
KR1019950050997A 1995-12-16 1995-12-16 Bpsg film forming method KR100214073B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1019950050997A KR100214073B1 (en) 1995-12-16 1995-12-16 Bpsg film forming method
TW085114063A TW308714B (en) 1995-12-16 1996-11-16
GB9625363A GB2308229A (en) 1995-12-16 1996-12-05 Method for planarizing the surface of a wafer
DE19651778A DE19651778A1 (en) 1995-12-16 1996-12-12 Method for leveling the surface of a wafer
CN96121564A CN1159489A (en) 1995-12-16 1996-12-16 Wafer surface planing method
JP8336172A JP2859864B2 (en) 1995-12-16 1996-12-16 Method for planarizing BPSG film surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950050997A KR100214073B1 (en) 1995-12-16 1995-12-16 Bpsg film forming method

Publications (2)

Publication Number Publication Date
KR970052884A KR970052884A (en) 1997-07-29
KR100214073B1 true KR100214073B1 (en) 1999-08-02

Family

ID=19440781

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950050997A KR100214073B1 (en) 1995-12-16 1995-12-16 Bpsg film forming method

Country Status (6)

Country Link
JP (1) JP2859864B2 (en)
KR (1) KR100214073B1 (en)
CN (1) CN1159489A (en)
DE (1) DE19651778A1 (en)
GB (1) GB2308229A (en)
TW (1) TW308714B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2994616B2 (en) * 1998-02-12 1999-12-27 キヤノン販売株式会社 Underlayer surface modification method and semiconductor device manufacturing method
US6608327B1 (en) 1998-02-27 2003-08-19 North Carolina State University Gallium nitride semiconductor structure including laterally offset patterned layers
US6051849A (en) 1998-02-27 2000-04-18 North Carolina State University Gallium nitride semiconductor structures including a lateral gallium nitride layer that extends from an underlying gallium nitride layer
US6265289B1 (en) 1998-06-10 2001-07-24 North Carolina State University Methods of fabricating gallium nitride semiconductor layers by lateral growth from sidewalls into trenches, and gallium nitride semiconductor structures fabricated thereby
US6177688B1 (en) 1998-11-24 2001-01-23 North Carolina State University Pendeoepitaxial gallium nitride semiconductor layers on silcon carbide substrates
US6255198B1 (en) 1998-11-24 2001-07-03 North Carolina State University Methods of fabricating gallium nitride microelectronic layers on silicon layers and gallium nitride microelectronic structures formed thereby
US6521514B1 (en) 1999-11-17 2003-02-18 North Carolina State University Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on sapphire substrates
US6380108B1 (en) 1999-12-21 2002-04-30 North Carolina State University Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on weak posts, and gallium nitride semiconductor structures fabricated thereby
US6403451B1 (en) 2000-02-09 2002-06-11 Noerh Carolina State University Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts
US6261929B1 (en) 2000-02-24 2001-07-17 North Carolina State University Methods of forming a plurality of semiconductor layers using spaced trench arrays
KR20120098095A (en) * 2011-02-28 2012-09-05 에스케이하이닉스 주식회사 Method for manufacturing semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2538722B2 (en) * 1991-06-20 1996-10-02 株式会社半導体プロセス研究所 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
TW308714B (en) 1997-06-21
CN1159489A (en) 1997-09-17
KR970052884A (en) 1997-07-29
GB2308229A (en) 1997-06-18
JPH09181071A (en) 1997-07-11
GB9625363D0 (en) 1997-01-22
DE19651778A1 (en) 1997-06-19
JP2859864B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
US5286681A (en) Method for manufacturing semiconductor device having a self-planarizing film
US4617087A (en) Method for differential selective deposition of metal for fabricating metal contacts in integrated semiconductor circuits
KR100214073B1 (en) Bpsg film forming method
KR960002073B1 (en) Fabricating method of semiconductor device
KR100262400B1 (en) Method of planarization semiconductor device
KR100203134B1 (en) Method of planariztion interlayer insolating film of semiconductor device
JP3004129B2 (en) Method for manufacturing semiconductor device
KR100361536B1 (en) Method for forming interlayer dielectric in semiconductor device
KR100228348B1 (en) Semiconductor apparatus and its fabricating method
JPH08203890A (en) Formation of interlayer insulation film in semiconductor device
JP2004165533A (en) Semiconductor device fabricating method
JP3154730B2 (en) Thin film processing method and apparatus
KR960013154B1 (en) Fabricating method of semiconductor device
KR0147650B1 (en) Method for forming interlayer insulating film of semiconductor device
KR100212014B1 (en) Method of forming bpsg films of semiconductor device
KR100345663B1 (en) A method for inter-dielectric planarization of film in semiconductor device
KR100223771B1 (en) Semiconductor device and fabricating method
KR100310462B1 (en) Manufacturing method of semiconductor device for improving planarization of bpsg
KR930009548B1 (en) Planarizing method of semiconductor device using doping process
JPH088336A (en) Semiconductor device and fabrication thereof
KR19990055216A (en) Method of forming interlayer insulating film of semiconductor device
KR0172550B1 (en) Planarizing method of interlayer insulating film in a semiconductor device
KR100372650B1 (en) Method for forming polysilicon of semiconductor device
KR100474190B1 (en) Method of thermal process in a semiconductor device
KR100256232B1 (en) A method for forming interlayer dielectric layer in semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080425

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee