KR0122333B1 - Al-ni-co permanent magnet alloy producing method - Google Patents

Al-ni-co permanent magnet alloy producing method

Info

Publication number
KR0122333B1
KR0122333B1 KR1019940029116A KR19940029116A KR0122333B1 KR 0122333 B1 KR0122333 B1 KR 0122333B1 KR 1019940029116 A KR1019940029116 A KR 1019940029116A KR 19940029116 A KR19940029116 A KR 19940029116A KR 0122333 B1 KR0122333 B1 KR 0122333B1
Authority
KR
South Korea
Prior art keywords
alnico
powder
permanent magnet
temperature
hours
Prior art date
Application number
KR1019940029116A
Other languages
Korean (ko)
Other versions
KR960019347A (en
Inventor
최승덕
양충진
변갑식
손영근
Original Assignee
김만제
포항종합제철주식회사
신창식
재단법인산업과학기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김만제, 포항종합제철주식회사, 신창식, 재단법인산업과학기술연구소 filed Critical 김만제
Priority to KR1019940029116A priority Critical patent/KR0122333B1/en
Publication of KR960019347A publication Critical patent/KR960019347A/en
Application granted granted Critical
Publication of KR0122333B1 publication Critical patent/KR0122333B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

The method is characterized by permanent-magnetizing by: fabricating a rapid cooling powder of micro crystalline by rapid-cooling of alnico 8 system alloy using rapid cooling technique; crushing into fine powder and shaping; and performing 2 step prescription process for 0.5 - 4 hours in the temperature of 1100 - 1250 deg C and for 5 - 20 hours in the temperature of 550 - 580 deg C in sequence.

Description

알니코 8계 영구자석 합금의 제조방법Method for manufacturing Alnico 8 permanent magnet alloy

제1도는 본 발명 방법에 적용되는 급속냉각법으로 제조된 알니코 8계 분말을 나타내는 사진.1 is a photograph showing an alnico 8-based powder prepared by a rapid cooling method applied to the method of the present invention.

제2도는 종래 방법에 적용되는 용해 주조법으로 제조된 알니코계 분말을 나타내는 사진.2 is a photograph showing an alnico powder produced by a melt casting method applied to a conventional method.

본 발명은 알니코 8계 영구자석 합금의 제조방법에 관한 것으로, 보다 상세히는 알니코 8계 영구자석용 합금을 급속냉각기술을 이용하여 결정질의 분말로 제조한 후, 적절한 입도로 분쇄하여 성형하여 얻어진 성형체를 소결한 다음 열처리를 행하므로서 알니코 8계 영구자석 합금을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing an alnico 8-permanent magnet alloy, and more specifically, to produce a crystalline powder of the alnico 8-permanent magnet alloy using a rapid cooling technique, and then pulverized to an appropriate particle size The present invention relates to a method for producing an alnico 8-based permanent magnet alloy by sintering the obtained molded body and then performing heat treatment.

일반적으로 알니코계 영구자석 합금은 높은 잔류자화력과 큐리온도를 갖고 있으며, 음향기기와 계측기등에 널리 사용되고 있다.In general, alnico permanent magnet alloys have high residual magnetism and Curie temperature, and are widely used in acoustic equipment and measuring instruments.

Al, Ni, Co, Fe 또는 Al, Ni, Co, Ti, Fe를 주성분으로 하는 자석 합금인 알니코계 영구자석 합금은 일반적으로 용해주조법(일본 특허공보 (소)41-9284, 및 (소) 39-24213)으로 제조되고 있으나 경하고 취약한 알니코계 자석의 특징 때문에 절삭 가공이 극히 곤란하여 소형이고 복잡한 형상을 갖는 자석등은 분말야금법(일본 특허공보 (소) 57-207101 및 (소) 61-127848)에 의하여 제조된다. 또한 용해후 노즐을 사용하여 롤(roll) 표면에 분사시켜 냉각시킴으로서 극히 얇은 테이프 형상으로 제조(일본 특허공보 (소) 57-60804)되기도 하나 이 방법은 자기특성이 낮고 두께가 얇아 실용성이 거의 없다.Alnico-based permanent magnet alloys, which are Al, Ni, Co, Fe, or a magnetic alloy composed mainly of Al, Ni, Co, Ti, and Fe, are generally melt casting methods (Japanese Patent Publication No. 41-9284, and 39-24213), but it is extremely difficult to cut due to the hard and fragile alnico magnets, so that the magnets with small and complicated shape are made of powder metallurgy (Japanese Patent Publication (S) 57-207101 and (S)). 61-127848). In addition, by dissolving and cooling the surface of the roll by using a nozzle after melting, it is manufactured into an extremely thin tape shape (Japanese Patent Publication No. 57-60804). However, this method has low magnetic properties and a thin thickness, which makes practical use almost impossible. .

분말 야금법으로 제조되는 소결 알니코계 자석은 Ti이 첨가된 알니코 8계 조성의 합금이 주로 사용된다.As the sintered alnico magnet manufactured by the powder metallurgy, an alloy of an alnico 8-based composition to which Ti is added is mainly used.

이것은 용해 주조법으로 알니코 8계 합금을 제조할 때에는 균열이나 깨짐이 훨씬 많아 제조상의 문제가 있기 때문이다.This is because when the Alnico 8-based alloy is manufactured by the melt casting method, there are many cracks and cracks and there are manufacturing problems.

기존의 분말 야금법으로 알니코계 자석을 제조할 때에는 통상 각각의 원소분말을 소정의 조성으로 칭량한 후 혼합하여 성형, 소결, 열처리하는 과정을 거치며, 이때 원료가 되는 분말은When manufacturing an alnico magnet by the conventional powder metallurgy method, each element powder is weighed to a predetermined composition and then mixed, molded, sintered, and heat treated.

(1) 자석을 구성하는 각 원소의 단체 금속 분말을 소정량 혼합한 것(1) Mixing a predetermined amount of single metal powder of each element constituting the magnet

(2) 자석을 구성하는 각 원소중 특히 산화하기 쉬운 금속, 예를 들면 Al이나 Fe등 만을 미리 Fe와 합금한 것을 분말화한 Fe-Al나 Fe-Ti 합금분말을 다른 단체 금속분말과 소정량 혼합한 것(2) Predetermined amounts of Fe-Al and Fe-Ti alloy powders, which are powdered by pre-alloying only metals such as Al or Fe, which are particularly susceptible to oxidation, among the elements constituting the magnet; Mixed

(3) 소정의 자석성분을 함유하는 주조합금을 분쇄하여 얻어진 자석합금분말등이 사용된다.(3) A magnet alloy powder or the like obtained by pulverizing a main alloy containing a predetermined magnetic component is used.

그렇지만 이들 원료분말을 일정량 혼합하여 성형한 후, 소결, 열처리하여 알니코계 자석을 제조할 때 다음과 같은 문제점들이 있었다.However, after mixing a predetermined amount of these raw powders, and then sintering and heat treatment to produce the alnico magnets had the following problems.

즉, (1)의 분말을 사용했을 때는 Al, Ti등 산화하기 쉬운 금속분말이 단독으로 존재하므로 산화에 의해 성형성 및 소결성이 저하하며, (2)의 분말을 사용했을 때는 금속분말이 단독으로 존재하는 (1)에 비해 산화는 완화되나 극히 경하므로 소성 변형 저항을 크게하는 원인이 되어 성형성이 저하한다. 그리고 (3)의 분말을 사용하였을 때는 (1)(2)에 비해 균일 조성을 갖는 소결체가 얻어지나 결정립도가 조대하여 분쇄가 어렵고 극히 경하므로 프레스 성형성이 저하하게 되는 문제점이 있었다.That is, when the powder of (1) is used, since metal powders, such as Al and Ti, which are easily oxidized, exist alone, the moldability and sinterability are reduced by oxidation, and when the powder of (2) is used, the metal powder alone Compared with (1) present, oxidation is relaxed but extremely hard, causing plastic deformation resistance to be large, resulting in poor moldability. And when the powder of (3) was used, compared with (1) and (2), the sintered compact which has a uniform composition is obtained, but since the grain size is coarse, grinding | pulverization is difficult and extremely hard, and there existed a problem that press formability fell.

또한 상기 원료분말을 사용하여 알니코 합금화를 충분히 진행시키기 위해서는 고온도(1250℃ 이상)에서 장시간(4hr) 소결해야 하며, 원료분말 자체의 입도를 될 수 있는 한 작게, 예를 들어 200메쉬(74마이크로미터) 이하로, 하는 것이 바람직하지만 이렇게 미분말로 하면 성형성이 충분치 않고 또 가격도 비싸 비경제적일 뿐만 아니라 분말의 성형성이 부족한 성형체를 소결해서 얻어진 소결체는 성형밀도가 충분치 않아 자석의 자기특성이 저하하게 되는 문제점이 있었다.In addition, in order to sufficiently advance the alnico alloying using the raw material powder, the raw material powder should be sintered at a high temperature (1250 ° C. or more) for a long time (4hr), and as small as possible to have a particle size of the raw material powder itself, for example, 200 mesh (74). Micrometer) or less, but this fine powder is not economical enough and expensive, and the sintered body obtained by sintering the molded body having insufficient moldability of powder does not have sufficient molding density. There was a problem of this deterioration.

이에 본 발명자는 상기한 종래 분말야금법의 문제점을 해결하기 위해 연구와 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로서, 본 발명은 목적하는 조성의 알니코 8계 합금분말을 단일 공정에 의한 급속냉각 기술을 이용하여 제조하고 등온 자장열처리 및 2단 시효 처리를 함으로써, 분쇄성 및 성형성이 양호하고 높은 소결밀도를 가지며 자기 특성이 뛰어난 알니코 8계 영구자석을 값싸고 단순한 공정으로 제조하는 방법을 제공하고자 하는데 그 목적이 있다.Accordingly, the present inventors have conducted research and experiments to solve the problems of the conventional powder metallurgy, and based on the results, the present invention proposes a single Alnico 8-based alloy powder having a desired composition. Manufactured using the rapid cooling technology by the process and isothermal magnetic field heat treatment and two-stage aging treatment, the Alnico 8-based permanent magnet with good crushability and formability, high sintered density and excellent magnetic properties is a cheap and simple process The purpose is to provide a method for manufacturing.

이하, 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명은 Al-Ni-Co-Ti-Fe를 주요성분으로 하는 알니코 8계 영구자석을 제조하는 방법에 있어서, 용융상태의 알니코 8계 합금을 급속냉각기술을 이용하여 급속냉각하여 미세결정질의 급냉형 분말로 제조한 후, 미세분말로 분쇄하고 성형한 다음 1100-1250℃의 온도에서 0.5-4시간 소결한 후, 일관 열처리 공정에 의하여 780-840℃ 온도구간에서 2-7kOe의 외부자장을 부하하면서 등온자장 열처리를 행하고, 그후 640-670℃에서 1-4시간 및 550-580℃에서 5-20시간 순으로 2단 시효처리를 행함으로써 고특성의 저렴한 알니코 8계 영구자석을 제조하는 방법에 관한 것이다.The present invention provides a method for producing an Alnico 8-based permanent magnet containing Al-Ni-Co-Ti-Fe as a main component, by rapidly cooling the Alnico 8-based alloy in a molten state by using a rapid cooling technique to obtain microcrystalline. After the quenching powder was prepared, pulverized into fine powder, molded, and sintered at 0.5-100 h at a temperature of 1100-1250 ° C., and then subjected to an external heat treatment of 2-7 kOe at a temperature range of 780-840 ° C. by a consistent heat treatment process. Isothermal magnetic field heat treatment, and then two-stage aging treatment in the order of 1-4 hours at 640-670 ° C and 5-20 hours at 550-580 ° C to produce a low-cost Alnico 8-type permanent magnet with high characteristics. It is about how to.

이하, 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서 알니코 8계 합금중 Ti 함량은 4-9wt%로 하는 것이 바람직하다. 왜냐하면 Ti의 함량이 4wt% 이하일 때에는 목적하는 자기특성, 즉, 고보자력을 얻을 수 없으며, 9wt%를 초과할 때에도 자속밀도가 현저하게 저하되기 때문이다.In the present invention, the Ti content in the alnico 8-based alloy is preferably 4-9 wt%. This is because the desired magnetic properties, that is, high coercive force cannot be obtained when the Ti content is 4 wt% or less, and the magnetic flux density is significantly lowered even when it exceeds 9 wt%.

본 발명은 종래와 같은 고가의 원료분말을 적정량 혼합하여 성형 및 소결하지 않고, 저가의 각 원소 인곳트를 적정량 칭량하여 용융시킨 상태의 알니코 8계 합금을 대한민국 특허번호 제48371호에 제시된 것과 같은 축출형 용융회전법을 사용하여 6-50m/sec의 급속냉각기의 회전체 속도(Wheel speed)로 냉각시켜 미세결정질(1-30마이크로미터)의 제1도와 같은 급속냉각형 분말을 얻는다. 이때, 급속냉각기의 회전체 속도가 6m/sec 이하에서는 용융상태의 합금을 축출해주는 힘이 약하여 분말을 얻기 어렵고 회전체 속도가 40m/sec 이상이 되어도 상관은 없으나 작업상 문제가 있으므로 회전체 속도를 6-40m/sec로 하는 것이 바람직하다. 이때 분말의 입자형태는 단섬유(flake)형상으로 취성이 상당히 크므로 분쇄성이 아주 양호하기 때문에 헥산(hexane), 아세톤(aceton), 알콜(alcohol)등의 유기 용매나 공기 중에서 보통의 분쇄과정을 통하여 용이하게 250메쉬(mesh) 이하의 입도로 제조할 수 있다. 또, 극히 산화하기 쉬운 Al, Ti등의 산화에 의해 성형성과 소결성이 저하하는 현상은 거의 없어 성형밀도와 소결밀도가 향상되며, 소결후의 조직이 아주 균일하여 자기특성 향상에 유익하다.The present invention provides an Alnico 8-based alloy in a state in which an appropriate amount of inexpensive raw material powder is not mixed and molded and sintered, and an appropriate amount of low-cost ingots are weighed and melted, as shown in Korean Patent No. 48371. Cooling is performed at a wheel speed of a 6-50 m / sec rapid cooler using an extract melt melting method to obtain a rapid cooling powder as shown in FIG. 1 of microcrystalline (1-30 micrometers). At this time, if the rotor speed of the rapid cooler is 6m / sec or less, the power to dislodge the alloy in the molten state is weak to obtain powder and the rotor speed may be more than 40m / sec. It is preferable to set it as 6-40 m / sec. At this time, the particle shape of the powder is short flakes, and the brittleness is very high. Therefore, the pulverization is very good. Therefore, the normal pulverization process is performed in an organic solvent such as hexane, acetone, alcohol, or air. Through it can be easily prepared to a particle size of less than 250 mesh (mesh). In addition, there is almost no phenomenon in which moldability and sintering property are deteriorated by oxidation of Al, Ti, etc. which are extremely easy to oxidize, and the molding density and sintering density are improved, and the structure after sintering is very uniform, which is beneficial for improving magnetic properties.

상기와 같은 입도로 분쇄된 급냉분말을 금형속에 충진시킨 후 1-10ton/㎠ 의 압력으로 압축성형하여 성형체를 제조하는 것이 바람직하다. 왜냐하면 성형압이 1ton/㎠ 이하에서는 성형압이 낮아 강도를 유지하기가 어렵고, 10ton/㎠ 이상에서는 성형압이 높아 금형의 손상이 심하기 때문이다.It is preferable to prepare a molded body by compressing the quench powder pulverized to the above-mentioned particle size into a mold and compression molding at a pressure of 1-10 ton / cm 2. This is because, when the molding pressure is 1ton / cm 2 or less, it is difficult to maintain the strength because the molding pressure is low, and when the molding pressure is 10ton / cm 2 or more, the mold pressure is high and the damage of the mold is severe.

상기와 같이 얻어진 성형체를 진공 또는 아르곤이나 수소 분위기 중에서 소결처리하여 치밀화를 시킨다. 이때 소결조건은 1100-1250℃의 범위에서 0.5-4시간 행하는 것이 바람직하다. 여기서 소결온도 1100℃ 이하에서는 소결온도가 낮아 충분한 밀도화가 일어나지 않기 때문에 자기특성이 저하하고, 1250℃ 이상에서는 소결온도가 지나치게 높아 용융(melting)이 일어나 성형체의 형상이 무너지게 되므로 소결온도를 1100-1250℃로 하는 것이 바람직하다. 상기의 소결체에는 용체화 처리를 1200-1250℃의 온도에서 10-30분간 행한 후, 780-840℃ 온도구간에서 온도를 일정하게 유지시키고 2-7kOe의 외부자장을 부하하면서 5-30분간 유지하여 등온자장 처리를 행한다. 그러면 이 과정에서 비자성상인 α단상에서 강자성상인 α1상이 석출하게 된다.The molded article obtained as described above is subjected to sintering under vacuum or argon or hydrogen atmosphere to densify. At this time, the sintering conditions are preferably performed in the range of 1100-1250 ° C. for 0.5-4 hours. In this case, the sintering temperature is lower than 1100 ° C., so the magnetic properties are low because sufficient density does not occur, and at 1250 ° C. or higher, the sintering temperature is too high, causing melting, resulting in the collapse of the molded body. It is preferable to set it as 1250 degreeC. After the solution treatment is performed for 10-30 minutes at a temperature of 1200-1250 ° C., the temperature is kept constant at a temperature range of 780-840 ° C. and 5-30 minutes while loading an external magnetic field of 2-7 kOe. Isothermal field treatment is performed. In this process, the α 1 phase, which is a ferromagnetic phase, is precipitated from the α single phase, which is a nonmagnetic phase.

이때 열처리 온도가 780℃이하이면 강자성상이 석출하는데 소요시간이 오래 걸리며 석출된 강자성상의 크기도 작으므로 자기특성이 저하되며, 840℃이상이면 석출상이 조대해져 자기특성이 저하된다. 또한 외부 자장을 2kOe이하로 주어지게 되면 자기배열이 잘 일어나지 않으며, 7kOe를 초과하면 불필요한 과도한 자장이 걸리게 되어 전력낭비가 심하다. 뿐만 아니라 등온자장 열처리를 5분 이하로 하면 석출물의 석출이 완전하지 않아 자기특성이 저하하고 30분 이상으로 하면 석출물의 크기가 조대해져 자기특성이 저하하므로 5-30분간 행하는 것이 바람직하다.At this time, if the heat treatment temperature is less than 780 ℃, it takes a long time for the ferromagnetic phase to precipitate, and the magnetic properties are degraded because the precipitated ferromagnetic phase is small, and if it is more than 840 ℃, the precipitated phase is coarse to reduce the magnetic properties. In addition, when the external magnetic field is less than 2kOe, the magnetic array does not occur well, and when it exceeds 7kOe, unnecessary excessive magnetic field is taken, leading to severe power consumption. In addition, if the isothermal magnetic field heat treatment is 5 minutes or less, precipitation of the precipitate is not complete, and the magnetic properties are lowered. If it is 30 minutes or more, the size of the precipitate is coarsened and the magnetic properties are lowered.

자장중 열처리를 행하는 이유는 열처리중 석출하는 Fe-Co계 조성의 강자성 석출물이 석출하는 동안에 방향성을 가지고 자장방향으로 배향하게끔 배열효과를 준다.The reason of the heat treatment in the magnetic field is that the ferromagnetic precipitate of the Fe-Co-based composition which is deposited during the heat treatment has an alignment effect to orientate in the magnetic field direction while being precipitated.

따라서 본 발명에서는 등온자장 열처리의 시간 및 온도를 조절함으로써 자기특성을 나타내는 강자성상의 석출물 분포, 형상 및 석출량을 조절할 수 있다.Therefore, in the present invention, by adjusting the time and temperature of the isothermal magnetic field heat treatment, the precipitate distribution, shape, and amount of precipitation of the ferromagnetic phase exhibiting magnetic properties can be controlled.

상기의 용체화처리는 소결후 바로 등온 자장처리를 할 경우 생략할 수도 있다.The solution treatment may be omitted when isothermal magnetic field treatment immediately after sintering.

시효처리는 640-670℃의 온도에서 1-5시간 550-580℃의 온도에서 5-20시간 유지하는 2단 시효처리를 행하는 것이 적당하다.As for the aging treatment, it is appropriate to perform a two-stage aging treatment that is maintained at a temperature of 640-670 ° C. for 1-5 hours at a temperature of 550-580 ° C. for 5-20 hours.

여기서 시효처리는 통상 600℃ 부근의 일정온도에서 일정시간 유지하는 것이 최종적으로 얻어지는 자기특성이 우수하다. 그러나 이럴 경우 반응이 늦어 우수한 자기특성을 얻는데 걸리는 시간이 긴 단점이 있다. 따라서 반응을 가속시키기 위하여 이보다 높은 온도인 640-670℃ 온도부근에서 1-5시간 유지시켜 반응을 진행시킨 후에 550-580℃의 온도에서 5-20시간 처리하는 2단 시효처리가 바람직하다. 이때 640-670℃ 온도 부근에서 너무 오래 유지시키면 자기배열이 흐트러져 자기특성이 저하되므로 주의해야 한다.Here, the aging treatment is excellent in the magnetic properties that are finally obtained by maintaining a constant time at a constant temperature around 600 占 폚. However, in this case, there is a disadvantage in that the reaction takes a long time to obtain excellent magnetic properties. Therefore, in order to accelerate the reaction, the two-stage aging treatment is preferably performed at a temperature of 550-580 ° C. for 5-20 hours after the reaction proceeds by maintaining the temperature at a temperature higher than 640-670 ° C. for 1-5 hours. At this time, if it is maintained for too long around 640-670 ℃, the magnetic array will be disturbed and the magnetic properties will be degraded.

이하 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the following examples.

[실시예1]Example 1

Al, Ni, Co, Cu, Ti, Fe 인콧트(ingot)를 하기 표 1의 조성을 갖는 알니코 8계 합금 조성으로 칭량한 후 Ar 분위기 중에서 플라즈마 아크로 완전 용융한 후 축출형 용융회전기에 의해 단섬유 형상의 급냉분말을 제조하였으며, 이때의 냉각속도, 즉 냉각회전체의 회전 속도는 8.51m/sec로 하였다.Al, Ni, Co, Cu, Ti, Fe ingots were weighed with an Alnico 8-based alloy composition having the composition shown in Table 1, followed by complete melting with a plasma arc in an Ar atmosphere, followed by short fibers by an ejection type melt rotor. A quench powder of a shape was prepared, and the cooling speed at this time, that is, the rotation speed of the cooling rotor was 8.51 m / sec.

상기와 같이 제조된 급냉분말에 대하여 X-선 회절분석을 행한 결과 모두 결정입도 5-10마이크로미터의 결정질 조직으로 나타났으며, 표 1에 용해된 합금의 조성을 나타내었다.As a result of X-ray diffraction analysis on the quenched powder prepared as described above, the crystal grain size was 5-10 micrometers, and the composition of the alloy dissolved in Table 1 was shown.

상기 표 2에 나타난 바와 같이 본 발명에 따라 제조된 소결 영구자석이 종래의 주조법으로 얻은 자석에 비하여도 최대 자기 에너지적이 동일하며, 종래의 분말법으로 얻은 자석에 비해서는 자기 특성이 휠씬 우수함을 알 수 있다. 표 2에 나타난 바와 같이 Ti 함량이 따라 최적 등온 자장 열처리 온도 및 시간은 변하게 되며 위에 표시된 온도와 시간은 최적 특성을 주는 조건이다.As shown in Table 2, the sintered permanent magnet manufactured according to the present invention has the same maximum magnetic energy as compared to the magnet obtained by the conventional casting method, and the magnetic properties are much superior to the magnet obtained by the conventional powder method. Can be. As shown in Table 2, the optimum isothermal magnetic field heat treatment temperature and time change according to the Ti content, and the temperature and time indicated above are conditions that give optimum characteristics.

[실시예 2]Example 2

7.31wt%(이하%) Al-14.43% Ni-37.76% Co-3.03% Cu-7.43% Ti-30.04% Fe 조성의 알니코 8계 합금조성으로 칭량한 후 Ar 분위기 중에서 플라즈마 아크로 완전 용융한 후 축출형 용융회전기에 의해 단섬유 형상의 급냉분말을 제조하였으며, 이때의 냉각속도, 즉 냉각회전체의 회전속도는 8.51m/sec로 하였다.7.31wt% (hereinafter%) Al-14.43% Ni-37.76% Co-3.03% Cu-7.43% Ti-30.04% Weighed by Alnico 8-based alloy composition, and then completely melted with a plasma arc in an Ar atmosphere and then withdrawn. The short-fiber quenching powder was produced by a mold melting rotor, and the cooling speed at this time, that is, the rotation speed of the cooling rotor was 8.51 m / sec.

상기와 같이 제조된 급냉리본에 대하여 X-선 회절분석을 행한 결과 모두 결정질 조직으로 나타났다.X-ray diffraction analysis of the quench ribbons prepared as described above showed all crystalline structures.

이 급냉분말을 알콜류 용매중에서 아트리터를 사용하여 분쇄한 후 400메쉬의 체를 사용하여 분급하여 38마이크로미터 이하의 입도의 분말을 얻었다. 이와 같이 분쇄된 분말은 8t/㎠의 수직압력으로 성형하였으며, 이들 성형체를 하기 표 3의 소결온도 조건으로 1시간 동안 진공분위기하에서 소결처리하였다.The quenched powder was pulverized using an attritor in an alcohol solvent and then classified using a 400 mesh sieve to obtain a powder having a particle size of 38 micrometers or less. The powder thus pulverized was molded at a vertical pressure of 8 t / cm 2, and the molded bodies were sintered under a vacuum atmosphere for 1 hour under the sintering temperature conditions shown in Table 3 below.

이 소결체를 1250℃에서 10분간 용체화 처리후 820℃ 온도에서 5kOe의 자장중에서 15분간 등온자장 처리한 후 640℃, 4시간과 570℃, 16시간 2단 시효처리를 행하여 영구자석 시편을 제조하였다.After sintering the sintered body for 1 minute at 1250 ° C for 10 minutes in a magnetic field of 5 kOe at 820 ° C for 15 minutes, the sintered body was subjected to two-stage aging at 640 ° C for 4 hours and 570 ° C for 16 hours to prepare permanent magnet specimens. .

상기와 같이 제조된 영구자석 시편에 대한 자기특성을 측정하고, 그 결과를 하기 표 3에 나타내었다.Magnetic properties of the permanent magnet specimens prepared as described above were measured, and the results are shown in Table 3 below.

상기 표 3에 나타난 바와 같이, 본 발명에 따라 제조된 영구자석은 낮은 온도와 짧은 소결시간임에도 높은 밀도와 우수한 자기특성을 나타내고 있음을 알 수 있으며, 본 발명의 범위내에서 소결온도가 증가되면 밀도가 커지고 자기특성이 향상됨을 알 수 있다. 그러나 종래 분말법에는 높은 소결온도에서 장시간 소결하여도 밀도 및 자기특성은 본 발명예의 최적 조건보다도 열등함을 알 수 있다.As shown in Table 3, the permanent magnet produced according to the present invention can be seen that it exhibits high density and excellent magnetic properties even at low temperatures and short sintering time, the density is increased if the sintering temperature within the scope of the present invention It can be seen that the magnetic properties are increased and the magnetic properties are improved. However, it can be seen that in the conventional powder method, the density and magnetic properties are inferior to the optimum conditions of the examples of the present invention even after sintering at a high sintering temperature for a long time.

상술한 바와 같이 본 발명은 종래 고가의 원료분말들을 적정 조성으로 혼합하여 성형한 후, 고온에서 장시간 소결한 다음 일정온도 구간에서 온도를 변화시켜가며 자장처리를 한 후, 시효처리하여 알니코 8계 영구자석 합금을 제조하던 것과는 달리, 고가의 원료분말 대신 저가의 각 원소 인곳트를 적정 조성으로 칭량 후 용융시키고 이를 급속냉각 시킨 후, 적정입도로 분쇄하여 성형하고 낮은 온도에서 단시간 소결한 다음 등온자장 처리 및 2단 시효처리를 하므로서, 분쇄성 및 성형성이 양호하고 높은 소결밀도를 가지며 자기특성이 뛰어날 뿐만 아니라 저렴하고 경제적인 알니코 8계 영구자석 합금을 저온에서 단시간에 제조가능한 효과가 있다.As described above, according to the present invention, after mixing the expensive raw material powders with a suitable composition, they are sintered at a high temperature for a long time, and then subjected to a magnetic field treatment by varying the temperature in a predetermined temperature section, followed by aging treatment. Unlike manufacturing permanent magnet alloys, instead of expensive raw material powder, each elemental ingot of low cost is weighed and melted in an appropriate composition, rapidly cooled, pulverized to an appropriate particle size, and sintered at low temperature for a short time, and then isothermal Through the treatment and the two-stage aging treatment, good crushability, moldability, high sintered density, excellent magnetic properties, and inexpensive and economical, it is possible to produce an inexpensive Alnico 8-based permanent magnet alloy in a short time at low temperature.

Claims (2)

Al-Ni-Co-Ti-Fe를 주요성분으로 하는 알니코 8계 영구자석을 제조하는 방법에 있어서, 알니코 8계 합금을 급속냉각기술을 이용하여 급속냉각하여 미세결정질의 급냉형 분말로 제조한 후, 미세분말로 분쇄하고 성형한 다음, 1100-1250℃의 온도에서 0.5-4시간 및 550-580℃에서 5-20시간 순으로 2단 시효처리를 행하여 영구자석화 하는 것을 특징으로 하는 알니코 8계 영구자석 합금의 제조방법.In the method for producing an Alnico 8-based permanent magnet containing Al-Ni-Co-Ti-Fe as a main component, the Alnico 8-based alloy is rapidly cooled using a rapid cooling technique to prepare a microcrystalline quenching powder. After pulverizing and molding into fine powder, the egg is characterized in that the permanent magnetization by performing a two-stage aging treatment in the order of 0.5-4 hours at a temperature of 1100-1250 ℃ and 5-20 hours at 550-580 ℃ Nico 8-based permanent magnet alloy manufacturing method. 제1항에 있어서, 상기 알니코 8계 합금중 Ti은 4-9wt%로 조성됨을 특징으로 하는 알니코 8계 영구자석 합금의 제조방법.The method of claim 1, wherein the Ti of the Alnico 8-based alloy manufacturing method of the Alnico 8-based permanent magnet, characterized in that the composition of 4-9wt%.
KR1019940029116A 1994-11-08 1994-11-08 Al-ni-co permanent magnet alloy producing method KR0122333B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940029116A KR0122333B1 (en) 1994-11-08 1994-11-08 Al-ni-co permanent magnet alloy producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940029116A KR0122333B1 (en) 1994-11-08 1994-11-08 Al-ni-co permanent magnet alloy producing method

Publications (2)

Publication Number Publication Date
KR960019347A KR960019347A (en) 1996-06-17
KR0122333B1 true KR0122333B1 (en) 1997-11-21

Family

ID=19397287

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940029116A KR0122333B1 (en) 1994-11-08 1994-11-08 Al-ni-co permanent magnet alloy producing method

Country Status (1)

Country Link
KR (1) KR0122333B1 (en)

Also Published As

Publication number Publication date
KR960019347A (en) 1996-06-17

Similar Documents

Publication Publication Date Title
US4801340A (en) Method for manufacturing permanent magnets
US4585473A (en) Method for making rare-earth element containing permanent magnets
JP2720040B2 (en) Sintered permanent magnet material and its manufacturing method
EP0516264A1 (en) Producing method for high coercive rare earth-iron-boron magnetic particles
US5690752A (en) Permanent magnet containing rare earth metal, boron and iron
KR950013978B1 (en) Alico magnet manufacturing method
JPS62198103A (en) Rare earth-iron permanent magnet
KR0122333B1 (en) Al-ni-co permanent magnet alloy producing method
US20210304933A1 (en) Synthesis of high purity manganese bismuth powder and fabrication of bulk permanent magnet
KR19980033787A (en) Method for manufacturing iron-silicon sintered soft magnetic alloy
JPH058562B2 (en)
JP2893705B2 (en) Manufacturing method of permanent magnet
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
KR20010055808A (en) Fabrication method of Fe-Cr-Co permanent magnet
JPH01171219A (en) Manufacture of permanent magnet integral with york
JPH10154610A (en) Manufacturing method of anisotropic magnet powder, anisotropic magnet powder and anisotropic bond magnet
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPS63216307A (en) Alloy powder for magnet
JPH0418704A (en) Manufacture of permanent magnet
Ozawa et al. Microstructures and magnetic properties of Nd-Fe-BX (X= Co, Zr) alloys produced by a metallic mold casting method
JPH0812815B2 (en) Rare earth magnet manufacturing method
JPH1088273A (en) Alloy raw material for rare earth permanent magnet, alloy powder for rare earth permanent magnet and production of rare earth permanent magnet
JPH04196107A (en) Manufacture of permanent magnet
JPH0418706A (en) Manufacture of permanent magnet
JPS5827321B2 (en) Permanent magnet manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20000825

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee