JPH10154610A - Manufacturing method of anisotropic magnet powder, anisotropic magnet powder and anisotropic bond magnet - Google Patents

Manufacturing method of anisotropic magnet powder, anisotropic magnet powder and anisotropic bond magnet

Info

Publication number
JPH10154610A
JPH10154610A JP8314595A JP31459596A JPH10154610A JP H10154610 A JPH10154610 A JP H10154610A JP 8314595 A JP8314595 A JP 8314595A JP 31459596 A JP31459596 A JP 31459596A JP H10154610 A JPH10154610 A JP H10154610A
Authority
JP
Japan
Prior art keywords
quenched
powder
magnet powder
anisotropic magnet
anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8314595A
Other languages
Japanese (ja)
Inventor
Sei Arai
聖 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP8314595A priority Critical patent/JPH10154610A/en
Publication of JPH10154610A publication Critical patent/JPH10154610A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0556Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together pressed

Abstract

PROBLEM TO BE SOLVED: To make feasible of manufacturing anisotropic magnet powders having excellent magnetic characteristics and reliability by a method wherein quenched alloy powders in a specific composition filled in a metallic capsule is hot processed to align the readily magnetizable axial direction of a main phase crystalline particles for providing the anisotropy. SOLUTION: The anisotropic magnet powders represented by a formula, after filling up an SS 41 made box type capsule with quenched alloy powders 1 containing impurities indispensable for manufacture, are hot processed to be aligned in the readily magnetizable axial direction of TbCu 7 type structure in the constitutional structure for the manufacture. Provided that in the formula, R1 represents an element out of rare earth elements including Y, R2 represents an element selected from a group of Zr, Hf, Sc, M represents an element selected from a group of Ti, Si, V, Cr, Mo, Mn, W, Ni, Ca, Cu, Al, Nb, Sn, Ag, Ta while x, y, z, u respectively satisfies the inequalities mentioned as follows, i.e., 2<=x, 0.01<=y, 4<=x+y<=20, 0<=z<=40, 0<=u<=20 in atomic %.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高性能を有し、か
つ形状自由度の高い異方性希土類ボンド磁石材料に関
し、詳しくは異方性磁石粉末の製造方法、異方性磁石粉
末および異方性ボンド磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic rare earth bonded magnet material having a high performance and a high degree of freedom in shape, and more particularly to a method for producing an anisotropic magnet powder, an anisotropic magnet powder, and an anisotropic magnet powder. Related to an isotropic bonded magnet.

【0002】[0002]

【従来の技術】希土類磁石はNd−Fe−B系焼結磁石
をはじめ、従来に無い高い性能が得られる磁石で、OA
機器をはじめとする電子機器の小型化、低消費電力化に
大きく寄与している。なかでも磁石粉末を、樹脂をバイ
ンダーとして結合した樹脂結合型磁石いわゆるボンド磁
石は、焼結法をはじめとするバルク磁石では製造するこ
とがむずかしいリング磁石を作製できるなどの形状自由
度に非常に優れる利点を活かしてOA用各種スピンドル
モータ、ステッピングモータなどの用途を中心に大きく
市場を伸ばしている。
2. Description of the Related Art Rare earth magnets, such as Nd-Fe-B based sintered magnets, are magnets that offer unprecedented high performance.
It has greatly contributed to the miniaturization and low power consumption of electronic devices such as devices. Above all, resin-bonded magnets in which magnet powder is bonded with a resin as a binder, so-called bond magnets, are extremely excellent in shape flexibility, such as making ring magnets that are difficult to manufacture with bulk magnets such as sintering. Taking advantage of the advantages, the market is growing significantly, mainly for applications such as various spindle motors for OA and stepping motors.

【0003】希土類ボンド磁石材料の中には、構成組織
中のハード磁性相結晶粒の磁化容易軸がほぼ一方向にそ
ろった異方性ボンド磁石と、結晶粒の磁化容易軸方向が
ランダムな方向を向いている等方性ボンド磁石とがあ
る。
[0003] Rare earth bonded magnet materials include an anisotropic bonded magnet in which hard magnetic phase crystal grains in the constitutional structure have an easy axis of magnetization in almost one direction, and an easy axis of crystal grains in a random direction. And isotropic bonded magnets.

【0004】等方性ボンド磁石材料としては、液体急冷
法で作製されるNd−Fe−B系磁石粉末を原料として
エポキシ樹脂やナイロン樹脂等をバインダーとして使用
したボンド磁石が主として使用されている。その磁石粉
末の構成組織はNd2Fe14B相のほぼ単相からなる
組織である。
As an isotropic bonded magnet material, a bonded magnet using an Nd-Fe-B-based magnet powder produced by a liquid quenching method as a raw material and using an epoxy resin or a nylon resin as a binder is mainly used. The constituent structure of the magnet powder is a structure composed of a substantially single phase of the Nd2Fe14B phase.

【0005】さらに上述した従来のNd−Fe−B系磁
石粉末以外の等方性ボンド磁石材料として最近注目を集
めているのが、スプリング磁石あるいはナノコンポジッ
ト磁石と呼ばれている磁石材料である。これは、構成組
織として永久磁石特性を出現させる硬磁性相のほかに、
高い磁化を有するα−Feなどの軟磁性相を有し、しか
もこれらの結晶粒径が10nmオーダーの大きさからなる組
織となっている。一般的に軟磁性相は非常に小さな保磁
力で磁化反転が起こるため、永久磁石材料組織として存
在すると保磁力を劣化させて磁石特性に悪影響を及ぼす
とされていた。しかし10nmオーダーの結晶粒径で存在
し、かつ硬磁性相との界面を有する場合には、硬磁性相
と軟磁性相との結晶粒間において交換相互作用が働くた
め、軟磁性相の磁化反転が硬磁性相との界面での交換相
互作用によって抑制され、保磁力を確保する事ができ
る。このような材料には、硬磁性相としてNd2Fe1
4B相、軟磁性相としてα−Fe相やFe3B相を有す
るNd−Fe−B系の材料、硬磁性相としてSm2Fe1
7Nx相、軟磁性相としてα−Fe相を有するSm−F
e−N系の材料、そして硬磁性相としてSmZr(F
e,Co)7Nx相、軟磁性相としてα−Fe相を有する
Sm−Zr−(Fe,Co)−N系の材料が挙げられ
る。
Further, a magnet material called a spring magnet or a nanocomposite magnet has recently attracted attention as an isotropic bonded magnet material other than the above-mentioned conventional Nd-Fe-B magnet powder. This is in addition to the hard magnetic phase, which makes permanent magnet properties appear as a constituent tissue,
It has a soft magnetic phase such as α-Fe having high magnetization, and furthermore, has a structure in which the crystal grain size is on the order of 10 nm. In general, since a soft magnetic phase undergoes magnetization reversal with a very small coercive force, it has been considered that its coercive force is degraded when present as a permanent magnet material structure, adversely affecting magnet properties. However, in the case of a crystal grain size of the order of 10 nm and having an interface with the hard magnetic phase, since the exchange interaction acts between the crystal grains of the hard magnetic phase and the soft magnetic phase, the magnetization reversal of the soft magnetic phase occurs. Is suppressed by the exchange interaction at the interface with the hard magnetic phase, and the coercive force can be secured. Such materials include Nd2Fe1 as a hard magnetic phase.
4B phase, Nd-Fe-B based material having α-Fe phase and Fe3B phase as soft magnetic phase, Sm2Fe1 as hard magnetic phase
Sm-F having 7Nx phase and α-Fe phase as soft magnetic phase
e-N-based material and SmZr (F
e, Co) 7Nx phase and Sm-Zr- (Fe, Co) -N-based material having an α-Fe phase as a soft magnetic phase.

【0006】異方性のボンド磁石としてはSm2Co17
系が、現在のところ市場に受け入れられている。これは
特定組成の合金インゴットに熱処理を施した後、粉砕し
て粉末とするものである。こうした製法により、最高で
20MGOe程度の高性能を有するボンド磁石である。
As an anisotropic bonded magnet, Sm 2 Co 17 is used.
The system is currently accepted by the market. In this method, a heat treatment is applied to an alloy ingot having a specific composition, and then the powder is ground to obtain a powder. By such a manufacturing method,
It is a bonded magnet having a high performance of about 20 MGOe.

【0007】その他に異方性のボンド磁石材料として
は、HDDR法で異方化されるNd−Fe−B系粉末
や、Sm−Fe系合金を窒化する事により作製されるS
m−Fe−N系粉末などが開発されている。
Other anisotropic bonded magnet materials include Sd produced by nitriding Nd-Fe-B-based powder or Sm-Fe-based alloy anisotropically formed by the HDDR method.
m-Fe-N powders and the like have been developed.

【0008】[0008]

【発明が解決しようとする課題】上述した従来技術は、
以下のような課題を有している。
The prior art described above is
It has the following problems.

【0009】まず、等方性のボンド磁石材料は異方性に
比べて性能が低い。実際に上市されているNd−Fe−
B系の等方性ボンド磁石の磁気特性(最大エネルギー
積)は最高でも10〜12MGOe程度である。
First, isotropic bonded magnet materials have lower performance than anisotropic bonded magnet materials. Nd-Fe- actually put on the market
The magnetic property (maximum energy product) of the B-based isotropic bonded magnet is at most about 10 to 12 MGOe.

【0010】また上述した硬磁性相と軟磁性相の複合組
織からなるスプリング磁石についても、比較的高い磁化
が得られる反面保磁力が低く、その結果得られるボンド
磁石としての最大エネルギー積は10MGOeに満たな
い低い値に留まっている。また保磁力が低いことから高
温での使用に適さない。
[0010] In the above-described spring magnet having a composite structure of a hard magnetic phase and a soft magnetic phase, a relatively high magnetization can be obtained, but the coercive force is low. As a result, the maximum energy product as a bond magnet is 10 MGOe. It stays at a lower value than below. Further, since the coercive force is low, it is not suitable for use at high temperatures.

【0011】これに対して異方性ボンド磁石は高いエネ
ルギー積が得られる。しかし上述した各種の異方性ボン
ド磁石は、それぞれ以下のような課題を有している。
On the other hand, an anisotropic bonded magnet can obtain a high energy product. However, the various anisotropic bonded magnets described above have the following problems.

【0012】まずSm2Co17系のボンド磁石はNdに
比べて高価な希土類元素のSmの含有量が多く、さらに
これも高価なCoを主元素として含むため非常に高価な
磁石となる。ボンド磁石で20MGOe程度の性能は得
られるポテンシャルは有するものの、価格/性能比が高
くコストパフォーマンスに劣る。
First, the Sm2Co17-based bonded magnet has a high content of Sm, a rare earth element, which is more expensive than Nd, and also contains expensive Co as a main element, making it a very expensive magnet. Although the bonded magnet has the potential to obtain a performance of about 20 MGOe, the price / performance ratio is high and the cost performance is inferior.

【0013】HDDR法により作製されるNd−Fe−
B系磁石粉末は、活性なNdを希土類として使用してい
るため耐酸化性に劣り、実際の使用にあたっては表面の
コーティングが必要となる。またHDDRという方法に
よって異方化を実現しており、安定した製造が難しいた
め特性バラツキが大きく、特に十分な配向度を安定して
得ることが困難であり、ボンド磁石として実際に得られ
る性能は15〜17MGOe程度である。さらに保磁力
の温度係数がSm−Co系に比べて大きいことや、高保
磁力でかつ配向度が悪いことから着磁性に劣るという欠
点があり、このため未だ市場に受け入れられていないの
が現状である。
Nd-Fe- produced by the HDDR method
The B-based magnet powder is inferior in oxidation resistance because active Nd is used as a rare earth element, and requires a surface coating for actual use. In addition, since the anisotropic method is realized by the method of HDDR, stable manufacturing is difficult, and there is a large variation in characteristics. In particular, it is difficult to stably obtain a sufficient degree of orientation. It is about 15 to 17 MGOe. Furthermore, the temperature coefficient of the coercive force is larger than that of the Sm-Co system, and the coercive force is inferior in magnetization due to the low coercive force and the poor degree of orientation. Therefore, it has not yet been accepted in the market. is there.

【0014】Sm−Fe−N系粉末は、Sm2Co17
系、HDDRとは異なり、その保磁力機構がいわゆるニ
ュークリエーション型である。このため保磁力を得るた
めには磁石粉末を微粉化する必要があり、具体的には3
μm程度の微粉末にすることが要求される。しかしこの
ような一様な微粉末をボンド磁石化すると、ボンド磁石
として高密度化することが困難であり、結果として得ら
れる磁石特性は、そのポテンシャルからすると低い値に
留まり、量産レベルの特性は15〜17MGOe程度で
ある。また微粉末とすることから、製造プロセスにおい
て酸化による特性劣化が激しく、満足な磁気特性を得る
ことがむずかしい。
The Sm—Fe—N powder is Sm 2 Co 17
Unlike the system and HDDR, the coercive force mechanism is a so-called nucleation type. Therefore, in order to obtain a coercive force, it is necessary to pulverize the magnet powder.
It is required to make fine powder of about μm. However, if such a uniform fine powder is formed into a bond magnet, it is difficult to increase the density as a bond magnet, and the resulting magnet properties remain low in view of their potential, and the properties at the mass production level are low. It is about 15 to 17 MGOe. In addition, since the powder is made into a fine powder, characteristic deterioration due to oxidation is severe in the manufacturing process, and it is difficult to obtain satisfactory magnetic characteristics.

【0015】また特開平8−191006号公報に記載
された実施例1中にはSm−Zr−Fe−N系の異方性
ボンド磁石の記述があるが、これも合金インゴットを粉
砕して得られる磁石で、上述したSm−Fe−N系の材
料と同様に磁石粉末を3μm程度の微粉末にすることが
必要であり、高密度化がむずかしく、かつ酸化の影響が
大きいため磁気特性および熱安定性に劣るという課題を
有している。
In Example 1 described in JP-A-8-191006, there is a description of an Sm-Zr-Fe-N based anisotropic bonded magnet, which is also obtained by pulverizing an alloy ingot. It is necessary to make the magnet powder into a fine powder of about 3 μm as in the case of the above-mentioned Sm—Fe—N material, and it is difficult to increase the density and the effect of oxidation is large. It has a problem of poor stability.

【0016】本発明は、以上のような従来技術の課題を
解決するものであり、そのうち請求項1記載の発明は微
細な結晶粒径を有する主相である硬磁性相を熱間加工に
より配向させて磁気特性、および信頼性にすぐれた異方
性磁石粉末の製造方法を提供することを目的としてい
る。
The present invention solves the above-mentioned problems of the prior art, and among them, the invention according to claim 1 orients a hard magnetic phase which is a main phase having a fine crystal grain size by hot working. It is another object of the present invention to provide a method for producing anisotropic magnet powder having excellent magnetic properties and reliability.

【0017】請求項6記載の発明は、熱処理を行うこと
によって、磁気特性特に角型性をさらに改善し、また特
性ばらつきの少ない磁石粉末の製造方法を提供すること
を目的としている。
It is an object of the present invention to provide a method for producing a magnet powder which further improves magnetic properties, particularly squareness, by performing heat treatment, and has less variation in properties.

【0018】請求項11記載の発明は窒化を行うことに
より、異方化した主相結晶中に窒素原子をインターステ
ィシャルに固溶させて飽和磁化および異方性磁界を本質
的に向上し、さらに高特性な異方性磁石粉末を得ること
を目的としている。
According to an eleventh aspect of the present invention, by performing nitriding, nitrogen atoms are interstitially dissolved in the anisotropic main phase crystal to substantially improve saturation magnetization and anisotropic magnetic field. It is intended to obtain an anisotropic magnet powder having higher characteristics.

【0019】請求項2,3,7,8,12および13に
記載のの発明は、加工を行う前の合金粉末を液体急冷法
で作製した急冷薄帯を基本とするもので、微細均一な結
晶粒径からなる組織を有する異方性磁石粉末を容易に、
かつ生産性よく製造する製造方法を提供することを目的
としている。
The invention according to the second, third, seventh, eighth, twelfth and thirteenth inventions is based on a rapidly quenched thin strip prepared by liquid quenching of an alloy powder before being processed, and has a fine uniform shape. Easily produce anisotropic magnet powder having a structure consisting of crystal grains,
Another object of the present invention is to provide a manufacturing method for manufacturing with high productivity.

【0020】また請求項4,5,9,10,14および
15の発明は、熱間加工工程における加工条件を規定す
ることにより、高い配向度を有して磁気特性に優れる異
方性磁石粉末の製造方法を提供することを目的としてい
る。
The invention according to claims 4, 5, 9, 10, 14 and 15 provides anisotropic magnet powder having a high degree of orientation and excellent magnetic properties by defining working conditions in the hot working step. The purpose of the present invention is to provide a manufacturing method.

【0021】請求項16記載の発明は、磁石粉末中のN
量を規定することにより、主相結晶構造を安定化し、高
い磁気特性を安定して得ることのできる異方性磁石粉末
を提供することを目的としている。
[0021] According to a sixteenth aspect of the present invention, the N in the magnet powder is reduced.
It is an object of the present invention to provide an anisotropic magnet powder capable of stabilizing a main phase crystal structure and stably obtaining high magnetic properties by regulating the amount.

【0022】そして請求項17乃至20の発明は、本発
明の異方性磁石粉末を樹脂と結合して高い磁気特性と信
頼性を有する異方性ボンド磁石を提供することにある。
It is another object of the present invention to provide an anisotropic bonded magnet having high magnetic properties and high reliability by combining the anisotropic magnet powder of the present invention with a resin.

【0023】[0023]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明は、R1xR2y(Fe100-uM
u)100-x-y-zCozなる組成式で表わされ(但し、R1
はYを含む希土類元素のうち1種またはそれ以上の元
素、R2はZr,Hf,Scの群から選ばれる1種また
はそれ以上の元素、MはTi,Si,V,Cr,Mo,
Mn,W,Ni,Ga,Cu,Al,Nb,Sn,A
g,Taの群から選ばれる1種またはそれ以上の元素
で、x、y、z、uは原子%でそれぞれ2≦x、0.0
1≦y、4≦x+y≦20、0≦z≦40、0≦u≦2
0)、さらに製造上不可避な不純物を含む急冷合金粉末
を金属製カプセル中に充填した後、熱間加工を施すこと
により構成組織中のTbCu7型構造からなる主相結晶
粒の磁化容易軸方向を配向させて異方性を付与し、熱間
加工後に前記金属製カプセル中より内部の加工物を取り
出し、該加工物を粉砕することを特徴とする。
Means for Solving the Problems To achieve the above object, the invention according to claim 1 is characterized in that R1xR2y (Fe100-uM
u) It is represented by a composition formula of 100-xy-zCoz (provided that R1
Is one or more of the rare earth elements containing Y, R2 is one or more elements selected from the group of Zr, Hf, Sc, and M is Ti, Si, V, Cr, Mo,
Mn, W, Ni, Ga, Cu, Al, Nb, Sn, A
one or more elements selected from the group consisting of g and Ta, wherein x, y, z, and u are 2 ≦ x and 0.0
1 ≦ y, 4 ≦ x + y ≦ 20, 0 ≦ z ≦ 40, 0 ≦ u ≦ 2
0) Further, after filling a quenched alloy powder containing impurities unavoidable in production into a metal capsule, hot working is performed to change the direction of the axis of easy magnetization of the main phase crystal grains having the TbCu7 type structure in the constitutional structure. It is characterized in that it is oriented to give anisotropy, and after hot working, a work inside is taken out of the metal capsule and the work is crushed.

【0024】請求項2記載の発明は、請求項1におい
て、前記急冷合金粉末が、合金の溶融物を液体急冷法で
凝固させて得られた急冷薄帯またはその急冷薄帯を粉砕
したものである事を特徴とする。
According to a second aspect of the present invention, in the first aspect, the quenched alloy powder is obtained by pulverizing a quenched ribbon obtained by solidifying a molten alloy by a liquid quenching method or the quenched ribbon. It is characterized by something.

【0025】請求項3記載の発明は、請求項1におい
て、前記急冷合金粉末が、合金の溶融物を液体急冷法で
凝固させて得られた急冷薄帯またはその急冷薄帯を粉砕
したものを400〜700℃で熱処理したものであるこ
とを特徴とする。
According to a third aspect of the present invention, in the first aspect, the quenched alloy powder is obtained by pulverizing a quenched ribbon obtained by solidifying a molten alloy by a liquid quenching method or the quenched ribbon. It is characterized by being heat-treated at 400 to 700 ° C.

【0026】請求項4記載の発明は、請求項1におい
て、前記熱間加工工程における、加工時の歪み速度が
0.1〜10s-1であることを特徴とする。
According to a fourth aspect of the present invention, in the first aspect, the strain rate during the working in the hot working step is 0.1 to 10 s -1 .

【0027】請求項5記載の発明は、請求項1におい
て、前記熱間加工工程における、加工時の温度が400
〜800℃であることを特徴とする。
According to a fifth aspect of the present invention, in the first aspect, the temperature during processing in the hot working step is 400
~ 800 ° C.

【0028】請求項6記載の発明は、R1xR2y(Fe
100-uMu)100-x-y-zCozなる組成式で表わされ(但
し、R1はYを含む希土類元素のうち1種またはそれ以
上の元素、R2はZr,Hf,Scの群から選ばれる1
種またはそれ以上の元素、MはTi,Si,V,Cr,
Mo,Mn,W,Ni,Ga,Cu,Al,Nb,S
n,Ag,Taの群から選ばれる1種またはそれ以上の
元素で、x、y、z、uは原子%でそれぞれ2≦x、
0.01≦y、4≦x+y≦20、0≦z≦40、0≦
u≦20)、さらに製造上不可避な不純物を含む急冷合
金粉末を金属製カプセル中に充填した後、熱間加工を施
すことにより構成組織中のTbCu7型構造からなる主
相結晶粒の磁化容易軸方向を配向させて異方性を付与
し、熱間加工後に前記金属製カプセル中より内部の加工
物を前記金属製カプセル中より取り出した後、400〜
800℃の温度範囲において熱処理し、さらに熱処理後
の該加工物を粉砕することを特徴とする。
The invention according to claim 6 is characterized in that R1xR2y (Fe
(100-uMu) 100-xy-zCoz (where R1 is one or more of the rare earth elements including Y, R2 is one selected from the group consisting of Zr, Hf and Sc)
Species or more, M is Ti, Si, V, Cr,
Mo, Mn, W, Ni, Ga, Cu, Al, Nb, S
one or more elements selected from the group consisting of n, Ag, and Ta, wherein x, y, z, and u are each in atomic% and 2 ≦ x;
0.01 ≦ y, 4 ≦ x + y ≦ 20, 0 ≦ z ≦ 40, 0 ≦
u ≦ 20), and after filling a quenched alloy powder containing impurities unavoidable in production into a metal capsule and subjecting it to hot working, the axis of easy magnetization of the main phase crystal grains having a TbCu7 type structure in the constitutional structure is formed. Orienting the direction to impart anisotropy, and after taking out a processed product inside the metal capsule from the metal capsule after hot working, from 400 to
The heat treatment is performed in a temperature range of 800 ° C., and the processed product after the heat treatment is pulverized.

【0029】請求項7記載の発明は、請求項6におい
て、前記急冷合金粉末が、合金の溶融物を液体急冷法で
凝固させて得られた急冷薄帯またはその急冷薄帯を粉砕
したものである事を特徴とする。
The invention according to claim 7 is the invention according to claim 6, wherein the quenched alloy powder is obtained by pulverizing a quenched ribbon or a quenched ribbon obtained by solidifying a molten alloy by a liquid quenching method. It is characterized by something.

【0030】請求項8記載の発明は、請求項6におい
て、前記急冷合金粉末が、合金の溶融物を液体急冷法で
凝固させて得られた急冷薄帯またはその急冷薄帯を粉砕
したものを400〜700℃で熱処理したものであるこ
とを特徴とする。
According to an eighth aspect of the present invention, in the sixth aspect, the quenched alloy powder is obtained by pulverizing a quenched ribbon or a quenched ribbon obtained by solidifying a molten alloy by a liquid quenching method. It is characterized by being heat-treated at 400 to 700 ° C.

【0031】請求項9記載の発明は、請求項6におい
て、前記熱間加工工程における、加工時の歪み速度が
0.1〜10s-1であることを特徴とする。
According to a ninth aspect of the present invention, in the sixth aspect, the strain rate at the time of working in the hot working step is 0.1 to 10 s -1 .

【0032】請求項10記載の発明は、請求項6におい
て、前記熱間加工工程における、加工時の温度が400
〜800℃であることを特徴とする。
According to a tenth aspect of the present invention, in the sixth aspect, the temperature during processing in the hot working step is 400 ° C.
~ 800 ° C.

【0033】請求項11記載の発明は、R1xR2y(F
e100-uMu)100-x-y-zCozなる組成式で表わされ(但
し、R1はYを含む希土類元素のうち1種またはそれ以
上の元素、R2はZr,Hf,Scの群から選ばれる1
種またはそれ以上の元素、MはTi,Si,V,Cr,
Mo,Mn,W,Ni,Ga,Cu,Al,Nb,S
n,Ag,Taの群から選ばれる1種またはそれ以上の
元素で、x、y、z、uは原子%でそれぞれ2≦x、
0.01≦y、4≦x+y≦20、0≦z≦40、0≦
u≦20)、さらに製造上不可避な不純物を含む急冷合
金粉末を、金属製カプセル中に充填した後、熱間加工す
ることにより構成組織中のTbCu7型構造を有する主
相結晶粒の磁化容易軸方向を配向させて異方性を付与
し、熱間加工後に前記金属製カプセル中より内部の加工
物を取り出し、該加工物を金属製カプセルから取り出し
て窒素ガスまたはアンモニアガスあるいはそれらの混合
ガス雰囲気中で300〜700℃の温度範囲において熱
処理し、その後粉砕することを特徴とする。
[0033] The eleventh aspect of the present invention is directed to the case where R1xR2y (F
e100-uMu) 100-xy-zCoz (where R1 is one or more rare earth elements including Y, and R2 is one selected from the group consisting of Zr, Hf, and Sc).
Species or more, M is Ti, Si, V, Cr,
Mo, Mn, W, Ni, Ga, Cu, Al, Nb, S
one or more elements selected from the group consisting of n, Ag, and Ta, wherein x, y, z, and u are each in atomic% and 2 ≦ x;
0.01 ≦ y, 4 ≦ x + y ≦ 20, 0 ≦ z ≦ 40, 0 ≦
u ≦ 20) and a quenched alloy powder containing impurities inevitable in production, filled in a metal capsule, and then hot worked to form an easy axis of magnetization of a main phase crystal grain having a TbCu7 type structure in a constitutional structure. Orienting the direction to impart anisotropy, taking out a work inside from the metal capsule after hot working, taking out the work from the metal capsule, and using a nitrogen gas or ammonia gas or a mixed gas atmosphere thereof. Heat treatment in a temperature range of 300 to 700 ° C., and then pulverization.

【0034】請求項12記載の発明は、請求項11にお
いて、前記急冷合金粉末が、合金の溶融物を液体急冷法
で凝固させて得られた急冷薄帯またはその急冷薄帯を粉
砕したものである事を特徴とする。
According to a twelfth aspect of the present invention, in the eleventh aspect, the quenched alloy powder is obtained by pulverizing a quenched ribbon obtained by solidifying a molten alloy by a liquid quenching method or the quenched ribbon. It is characterized by something.

【0035】請求項13記載の発明は、請求項11にお
いて、前記急冷合金粉末が、合金の溶融物を液体急冷法
で凝固させて得られた急冷薄帯またはその急冷薄帯を粉
砕したものを400〜700℃で熱処理したものである
ことを特徴とする。
According to a thirteenth aspect of the present invention, in the eleventh aspect, the quenched alloy powder is obtained by pulverizing a quenched ribbon obtained by solidifying a molten alloy by a liquid quenching method or the quenched ribbon. It is characterized by being heat-treated at 400 to 700 ° C.

【0036】請求項14記載の発明は、請求項11にお
いて、前記熱間加工工程における、加工時の歪み速度が
0.1〜10s-1であることを特徴とする。
According to a fourteenth aspect, in the eleventh aspect, in the hot working step, a strain rate at the time of working is 0.1 to 10 s -1 .

【0037】請求項15記載の発明は、請求項11にお
いて、前記熱間加工工程における、加工時の温度が40
0〜800℃であることを特徴とする。
According to a fifteenth aspect of the present invention, in the eleventh aspect, the temperature during processing in the hot working step is 40 or less.
The temperature is 0 to 800 ° C.

【0038】請求項16記載の発明は、(R1xR2yF
e100-x-y-zCoz)1-vNvなる組成式で表され(但
し、R1はYを含む希土類元素のうち1種またはそれ以
上の元素、R2はZr,Hf,Scの群から選ばれる1
種またはそれ以上の元素、MはTi,Si,V,Cr,
Mo,Mn,W,Ni,Ga,Cu,Al,Nb,S
n,Ag,Taの群から選ばれる1種またはそれ以上の
元素で、x、y、zは原子%でそれぞれ2≦x、0.0
1≦y、4≦x+y≦20、0≦z≦40、0≦z≦2
0、またvは原子比率で0≦v≦0.2)、さらに製造
上不可避な不純物を含む急冷合金粉末からなり、構成組
織中のTbCu7型構造を有する主相結晶粒の磁化容易
軸方向を配向させて異方性を付与してなることを特徴と
する。
According to a sixteenth aspect of the present invention, (R1xR2yF
e100-xy-zCoz) 1-vNv (where R1 is one or more rare earth elements including Y, and R2 is one selected from the group consisting of Zr, Hf and Sc).
Species or more, M is Ti, Si, V, Cr,
Mo, Mn, W, Ni, Ga, Cu, Al, Nb, S
one or more elements selected from the group consisting of n, Ag, and Ta, wherein x, y, and z are each 2% x, 0.0
1 ≦ y, 4 ≦ x + y ≦ 20, 0 ≦ z ≦ 40, 0 ≦ z ≦ 2
0 and v are atomic ratios of 0 ≦ v ≦ 0.2), and the direction of the easy axis of magnetization of the main phase crystal grains having a TbCu7 type structure in the constitutional structure is composed of a quenched alloy powder containing impurities inevitable in production. It is characterized by being oriented to give anisotropy.

【0039】請求項17記載の発明は、上記請求項1に
記載された製造方法により製造された異方性磁石粉末が
樹脂で結合されてなることを特徴とする。
The invention according to claim 17 is characterized in that the anisotropic magnet powder produced by the production method according to claim 1 is bonded with a resin.

【0040】請求項18記載の発明は、上記請求項6に
記載された製造方法により製造された異方性磁石粉末が
樹脂で結合されてなることを特徴とする。
The invention according to claim 18 is characterized in that the anisotropic magnet powder produced by the production method according to claim 6 is bonded with a resin.

【0041】請求項19記載の発明は、上記請求項11
に記載された製造方法により製造された異方性磁石粉末
が樹脂で結合されてなることを特徴とする異方性ボンド
磁石。
According to the nineteenth aspect of the present invention, the above-mentioned eleventh aspect is provided.
An anisotropic bonded magnet, wherein an anisotropic magnet powder produced by the production method described in 1) is bonded with a resin.

【0042】請求項20記載の発明は、上記請求項16
に記載された異方性磁石粉末が樹脂で結合されてなるこ
とを特徴とする。
According to a twentieth aspect of the present invention, there is provided the above-mentioned sixteenth aspect.
Wherein the anisotropic magnet powder described in (1) is bonded with a resin.

【0043】[0043]

【発明の実施の形態】以下、本発明について詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0044】まず本発明の異方性磁石粉末を構成する合
金元素とその構成要件について述べる。
First, the alloying elements constituting the anisotropic magnet powder of the present invention and their constituent requirements will be described.

【0045】R1はYを含む希土類元素の少なくとも1
種からなる元素であり、構成組織中の主相である硬磁性
特性を発現するTbCu7型構造を持つ六方晶相を構成
する主元素である。ここで前記主相とは、磁石の構成組
織中の体積率が最も大きい相を示すものである。また好
ましくはSm、Nd、Prのいずれか1種を必ず含むこ
とが望ましい。組成域としては原子比率で2%以上であ
ることが望ましい。なぜなら2%未満の組成では構成組
織中にα−Fe相などの軟磁性相が多量に析出し、磁石
特性、特に保磁力を劣化させてしまうためである。
R1 is at least one of the rare earth elements containing Y
It is an element composed of a seed, and is a main element constituting a hexagonal phase having a TbCu7 type structure exhibiting hard magnetic properties, which is a main phase in a constitutional structure. Here, the main phase refers to a phase having the largest volume ratio in the constituent structure of the magnet. Further, it is preferable that at least one of Sm, Nd, and Pr is included. The composition range is desirably 2% or more in atomic ratio. This is because, if the composition is less than 2%, a large amount of a soft magnetic phase such as an α-Fe phase precipitates in the constitutional structure, thereby deteriorating the magnet properties, particularly the coercive force.

【0046】R2は主相であるTbCu7型構造の金属
間化合物相中の希土類の占めるサイトを置換しうる元素
であり、その原子半径が比較的希土類元素に近いものが
望ましく、具体的にはZr、Hf、Scのいずれかの少
なくとも1種からなる元素である。このような元素の添
加により主相の結晶構造が安定化され、かつ主相の飽和
磁化の増大が実現される。このような効果を得るために
はR2は原子比率で0.1%以上であることが望まし
い。
R2 is an element capable of substituting a site occupied by a rare earth in the TbCu7 type intermetallic compound phase, which is the main phase, and preferably has an atomic radius relatively close to that of the rare earth element. , Hf, and Sc. By adding such an element, the crystal structure of the main phase is stabilized, and the saturation magnetization of the main phase is increased. In order to obtain such an effect, it is desirable that R2 be at least 0.1% in atomic ratio.

【0047】またR1元素とR2元素の添加量の和が原
子%で4〜20%であることが望ましい。これは4原子
%未満である場合には永久磁石として十分な保磁力を得
ることができず、一方20%を超える値であると、磁化
の低下が著しいためである。
It is desirable that the sum of the added amounts of the R1 element and the R2 element is 4 to 20% in atomic%. This is because if the content is less than 4 atomic%, a sufficient coercive force cannot be obtained as a permanent magnet, while if it exceeds 20%, the magnetization is significantly reduced.

【0048】Feは主相であるTbCu7型構造の金属
間化合物相の主たる構成元素で、この化合物相の磁化の
ほとんどはFe原子の有する磁気モーメントによるもの
である。またFeの一部はMで表される元素(MはT
i,Si,V,Cr,Mo,Mn,W,Ni,Ga,C
u,Al,Nb,Sn,Ag,Taから選ばれる1種ま
たはそれ以上の元素)で一部置換することができる。M
での置換により結晶粒径の微細・均質化による保磁力お
よび角型性の向上や、主相体積率の増大などが可能とな
る。ただしMの置換量が20%を越えるとFeの減少に
よる磁化の低下が顕著となり好ましくない。
Fe is a main constituent element of an intermetallic compound phase having a TbCu7 type structure, which is a main phase. Most of the magnetization of this compound phase is due to the magnetic moment of Fe atoms. Part of Fe is an element represented by M (M is T
i, Si, V, Cr, Mo, Mn, W, Ni, Ga, C
or one or more elements selected from u, Al, Nb, Sn, Ag, and Ta). M
Substitution by means of fine particles makes it possible to improve the coercive force and squareness by making the crystal grain size fine and homogenous, and to increase the volume ratio of the main phase. However, if the substitution amount of M exceeds 20%, the decrease in magnetization due to the decrease in Fe is remarkable, which is not preferable.

【0049】Coは主相中のFeのサイトの一部を置換
することにより、主相のキュリー点が向上するため熱安
定性を改善するという効果を有する。Coの組成域とし
ては40%以下とすることが望ましい。これは40%を
越えると保磁力の低下が顕著となるからである。さらに
比較的高価なCo使用量の増大はコスト上昇を招き、コ
ストパフォーマンスを低下させる。より好ましい範囲は
4〜30%である。このような範囲の組成とすることに
より主相の結晶構造の安定性が向上する。
By substituting a part of Fe sites in the main phase, Co has an effect of improving the thermal stability because the Curie point of the main phase is improved. The Co composition range is desirably 40% or less. This is because the coercive force is remarkably reduced when it exceeds 40%. Further, an increase in the use amount of Co, which is relatively expensive, causes an increase in cost and lowers cost performance. A more preferred range is 4 to 30%. By setting the composition in such a range, the stability of the crystal structure of the main phase is improved.

【0050】Nは主相であるTbCu7型相中に侵入型
に固溶する。この結果遷移金属元素間の原子間距離を増
大させ、その結果主相の飽和磁化の増大キュリー点の向
上に効果を有する。Nの組成域は原子%で20%以下が
望ましい。これは20%を越えると主相であるTbCu
7型相が相分解を起こして結晶構造を維持することがで
きなくなり、その結果磁気特性が劣化するためである。
またN以外にもCあるいはPはNと同様に侵入型に固溶
し、磁気特性を向上させる効果がある。
N forms an interstitial solid solution in the TbCu7 type phase as the main phase. As a result, the interatomic distance between the transition metal elements is increased, and as a result, the saturation magnetization of the main phase is increased and the Curie point is improved. The composition range of N is desirably 20% or less in atomic%. This is because when it exceeds 20%, the main phase becomes TbCu.
This is because the type 7 phase undergoes phase decomposition and cannot maintain the crystal structure, resulting in deterioration of magnetic properties.
In addition to N, C or P forms an interstitial solid solution similarly to N and has an effect of improving magnetic properties.

【0051】次に本発明の異方性磁石粉末の製造方法
を、各項目の限定理由も含めて工程に沿って詳細に述べ
る。
Next, the method for producing the anisotropic magnet powder of the present invention will be described in detail step by step, including the reasons for limiting each item.

【0052】1)急冷合金粉末製造工程 まず所定の合金組成となるように原料を秤量し、以下に
示すいずれかの方法で急冷合金粉末を作製する。本発明
における前記急冷合金粉末は、その構成組織が10nm
オーダーの平均結晶粒径からなっているか、あるいはそ
のような結晶組織とアモルファス組織の複合組織となっ
ていることが望ましい。このような急冷合金粉末を作製
するためには以下のような製造方法が挙げられる。
1) Production process of quenched alloy powder First, raw materials are weighed so as to have a predetermined alloy composition, and a quenched alloy powder is produced by any of the following methods. The quenched alloy powder according to the present invention has a constituent structure of 10 nm.
It is desirable that the average grain size be of the order or a composite structure of such a crystal structure and an amorphous structure. In order to produce such a quenched alloy powder, the following production method can be used.

【0053】a)不活性雰囲気中にて高周波加熱などで
溶融した合金溶湯を単ロールまたは双ロールを有する急
冷薄帯製造装置で前記ロールの上に溶湯を噴射すること
による、いわゆる液体急冷法で急冷薄帯を製造する。
A) A so-called liquid quenching method in which a molten alloy melted by high-frequency heating or the like in an inert atmosphere is sprayed onto the rolls by a quenching ribbon manufacturing apparatus having a single roll or twin rolls. Manufactures quenched ribbons.

【0054】b)不活性雰囲気中にて高周波加熱などで
溶融した合金溶湯を不活性ガスを噴射させて凝固させ
る、いわゆるガスアトマイズ法により急冷凝固させて合
金粉末を作製する。
B) An alloy powder is produced by rapidly solidifying a molten alloy melted by high-frequency heating or the like in an inert atmosphere by injecting an inert gas and solidifying the molten alloy by a so-called gas atomizing method.

【0055】c)不活性雰囲気中にて高周波加熱などで
溶融した合金溶湯を回転するディスク上に噴射させて急
冷凝固させた粉末を得る。
C) A molten alloy melted by high frequency heating or the like in an inert atmosphere is sprayed onto a rotating disk to obtain a rapidly solidified powder.

【0056】特にa)の液体急冷法によれば、非常に大
きな冷却速度を簡単に実現できるため、上述した10n
mオーダーの結晶組織や、そのような結晶組織とアモル
ファス組織との複合組織を有する急冷薄帯を生産性良く
製造することができ、本発明に最も適した製法であると
いえる。具体的には、単ロール法により急冷薄帯を製造
した場合、ロールスピードを10〜60m/sの回転ス
ピードとすればこのような組織が得られる。10m/s
未満の回転スピードでは100nmオーダーの粗大な結
晶粒の存在が顕著となり、最終的な磁石特性を低下させ
る。また60m/sを越える回転スピードでは、溶湯の
飛散が激しくなり、歩留まりを著しく低下させるため好
ましくない。ここで結晶粒径は上述のように10nmオー
ダーとすることが好ましい。
In particular, according to the liquid quenching method a), a very high cooling rate can be easily realized.
A quenched ribbon having an m-order crystal structure or a composite structure of such a crystal structure and an amorphous structure can be manufactured with high productivity, and it can be said that this is a production method most suitable for the present invention. Specifically, when a quenched ribbon is manufactured by a single roll method, such a structure can be obtained if the roll speed is set to a rotation speed of 10 to 60 m / s. 10m / s
At a rotation speed of less than 1, the presence of coarse crystal grains of the order of 100 nm becomes remarkable, and the final magnet properties are reduced. On the other hand, if the rotation speed exceeds 60 m / s, the molten metal is scattered so much that the yield is undesirably reduced. Here, the crystal grain size is preferably on the order of 10 nm as described above.

【0057】急冷合金粉末は上述したような方法で作製
するが、場合によっては得られた粉末に対して熱処理を
行うことが効果的である。特に構成組織を完全なアモル
ファス組織としてから、熱処理によって結晶化を起こさ
せることにより、均一な10nmオーダーの結晶粒径から
なる結晶組織が得られるという効果を有する。この場合
の熱処理温度としては400〜700℃が望ましい。こ
れは400℃未満では上述した結晶化の効果が十分に得
られず、得られたとしても非常に長時間の熱処理が必要
となり、量産性が欠如するためである。また700℃を
越える温度で熱処理した場合には、熱間加工後の結晶粒
粗大化が顕著となり最終的な磁石特性を劣化させる。
The quenched alloy powder is produced by the above-described method, but in some cases, it is effective to perform heat treatment on the obtained powder. In particular, by effecting crystallization by heat treatment after the constituent structure is converted to a completely amorphous structure, there is an effect that a crystal structure having a uniform crystal grain size of the order of 10 nm can be obtained. The heat treatment temperature in this case is desirably 400 to 700 ° C. This is because if the temperature is lower than 400 ° C., the above-mentioned crystallization effect cannot be sufficiently obtained, and even if it is obtained, a very long heat treatment is required, and mass productivity is lacking. If the heat treatment is performed at a temperature exceeding 700 ° C., the crystal grains after hot working are remarkably coarsened and the final magnet properties are deteriorated.

【0058】2)熱間加工工程 上述したような工程で作製した急冷合金粉末を、まず金
属製のカプセルに封入する。合金粉末を金属カプセル中
に一旦封入して熱間加工を施すことは以下のような効果
を有する。
2) Hot working step The quenched alloy powder produced in the above-described step is first encapsulated in a metal capsule. Having the alloy powder once encapsulated in a metal capsule and performing hot working has the following effects.

【0059】a)通常の大気中で加工しても合金粉末が
酸化することなく加工できる。
A) The alloy powder can be processed without being oxidized even in the normal atmosphere.

【0060】b)雰囲気制御が不要なため、比較的大量
の材料を一度で加工することができ、量産性に優れる。
B) Since atmosphere control is unnecessary, a relatively large amount of material can be processed at one time, and the mass productivity is excellent.

【0061】c)圧延、鍛造などの高歪み速度加工を行
うことができる。
C) High strain rate processing such as rolling and forging can be performed.

【0062】一方、従来の技術として、本発明のような
合金組成を有する磁石材料の加工の記述については、特
開平6−172936号公報第4頁5欄第21行〜29
行に記述がある。しかし、そこに記述してある製法は、
まず合金粉末をホットプレスまたはHIPにより圧縮成
形したバルク状の成形体を作製し、その後さらに熱間で
塑性変形させるという複雑な工程を経て作製されるもの
である。しかしこの方法は次のような課題を有してい
る。まず一旦高密度の圧粉体を作ってから、さらに塑性
変形させるという煩雑な工程を経なければならないとい
うことである。また高密度の圧粉体を作製するために
は、割れやクラックを生じてはいけないため、歪み速度
の小さいホットプレスやHIPを適用しなくてはなら
ず、結果として大幅なサイクルタイムの長時間化を招
き、量産性はほとんど望めない。さらに前記ホットプレ
スやHIPを行う場合には雰囲気制御が必要となり、こ
れも量産性を大きく低下させる。
On the other hand, as a conventional technique, description of processing of a magnetic material having an alloy composition as in the present invention is described in JP-A-6-172936, page 4, column 5, lines 21 to 29.
There is a description on the line. However, the manufacturing method described there,
First, a bulk compact is produced by compression-molding an alloy powder by hot pressing or HIP, and thereafter, it is produced through a complicated process of plastically deforming further by hot working. However, this method has the following problems. First, a high-density green compact must be produced and then subjected to a complicated process of further plastic deformation. Also, in order to produce a high-density green compact, cracks and cracks must not occur, so hot pressing or HIP with a low strain rate must be applied, resulting in a large cycle time and a long time. And mass production is hardly expected. Further, when performing the hot pressing or HIP, atmosphere control is required, which also greatly reduces mass productivity.

【0063】これに対して本発明の製造方法における熱
間加工工程では、従来技術に見られるような圧粉体を形
成する工程は無く、急冷合金粉末をそのまま熱間で加工
するものである。また最終的には粉末とするため、加工
中にはむしろ積極的に割れやクラックを生じさせる方が
好ましく、このため上述した効果b)、c)に見られる
ように、圧延などの歪み速度が早く、かつ量産性に優れ
る方法を採ることができる。加工時の歪み速度として表
した場合には、熱間加工中の歪み速度は0.1〜10s
-1とすることが望ましい。ここで歪み速度とは、加工前
の厚みT1と最終厚みT2とし、加工に要した時間をt
(s)とすると(1−T2/T1)/tで表すことがで
きる。歪み速度が0.1s-1未満の場合、加工に要する
時間が長くなりすぎて量産性に劣るだけでなく、金属カ
プセルと内部の急冷合金粉末との界面で拡散による固相
反応が起こって磁気特性を劣化させるという問題点を有
する。さらに磁石材料に割れ・クラックが入りづらく、
バルク状となり、後工程で粉末とするための粉砕工程へ
移る前に、バルク状の材料の切断・破砕などの工程を余
分に経なくてはならず、工程コストのアップを招く。こ
れに対し、0.1〜10s-1の歪み速度であれば熱間加
工も短時間で済み、カプセル界面との反応も起こらな
い。また割れ・クラックが入りやすくなり、熱間加工後
には適度な大きさの塊状、あるいは粉末状の材料が得ら
れ、その後の工程で粉砕粉を製造しやすく、また場合に
よってはそのままボンド磁石用の粉末として適用するこ
とができる。しかし10s-1を越える歪み速度の場合
は、加工機の大型化が必要となって大幅な工程コストの
アップを招く。
On the other hand, in the hot working step in the manufacturing method of the present invention, there is no step of forming a compact as in the prior art, and the quenched alloy powder is hot worked as it is. Further, it is preferable to generate cracks and cracks more actively during the processing in order to finally obtain the powder. Therefore, as seen in the effects b) and c), the strain rate of rolling or the like is reduced. A method that is quick and excellent in mass productivity can be adopted. When expressed as the strain rate during processing, the strain rate during hot working is 0.1 to 10 s.
It is desirable to set it to -1 . Here, the strain rate is the thickness T1 before processing and the final thickness T2, and the time required for processing is t
If (s) is set, it can be expressed by (1-T2 / T1) / t. If the strain rate is less than 0.1 s −1 , the time required for processing becomes too long, resulting in poor mass productivity. In addition, a solid-state reaction occurs due to diffusion at the interface between the metal capsule and the quenched alloy powder inside, resulting in a magnetic field. There is a problem that characteristics are deteriorated. Furthermore, it is difficult for cracks and cracks to enter the magnet material,
It becomes a bulk, and before moving on to a pulverization step for making a powder in a later step, an extra step such as cutting and crushing of the bulk material must be performed, resulting in an increase in process cost. On the other hand, if the strain rate is 0.1 to 10 s -1, the hot working is completed in a short time, and no reaction occurs with the capsule interface. In addition, cracks and cracks are likely to occur, and after hot working, a moderately sized lump or powdered material is obtained, and it is easy to produce pulverized powder in the subsequent process. It can be applied as a powder. However, when the strain rate exceeds 10 s −1 , it is necessary to increase the size of the processing machine, which causes a significant increase in process cost.

【0064】本発明で使用される金属製カプセル材質と
しては融点が900℃以上の材質が望ましい。特に好ま
しくは、廉価なSS材(JIS規格)などの汎用の低炭
素鋼やステンレス鋼などの鉄系の材質が望ましい。金属
製カプセルへの充填方法としては、たとえば所定の寸法
の板材を溶接して一面を解放した箱状の金属カプセルを
作製してその中に急冷合金粉末を充填する。急冷合金粉
末を充填する際には粉末をそのまま充填しても良いし、
比較的長い薄帯状となっている場合には充填率を上げる
目的で必要に応じて若干粉砕してから充填しても良い。
こうして箱状のカプセルに急冷合金粉末を充填してか
ら、解放された一面を板材にて周囲を溶接して密封す
る。この時カプセル中に残存する酸素によって熱間加工
中に内部の合金粉末の酸化が若干起こる。そのため、金
属カプセルの一部に真空引きできるような脱気口を設け
ておき、カプセル中に合金粉末を充填後カプセル内を前
記脱気口より真空脱気してから脱気口を封じて密封する
ことがより好ましい。
As the metal capsule material used in the present invention, a material having a melting point of 900 ° C. or more is desirable. Particularly preferably, general-purpose low-carbon steels such as inexpensive SS materials (JIS standards) and iron-based materials such as stainless steels are desirable. As a method for filling the metal capsule, for example, a box-shaped metal capsule having one open side is produced by welding a plate material of a predetermined size, and the quenched alloy powder is filled therein. When filling the quenched alloy powder, the powder may be filled as it is,
In the case of a relatively long ribbon, the powder may be slightly pulverized before filling, if necessary, in order to increase the filling rate.
After the box-shaped capsule is filled with the quenched alloy powder, the opened one side is welded around the periphery with a plate material and sealed. At this time, the internal alloy powder slightly oxidizes during hot working due to oxygen remaining in the capsule. For this reason, a deaeration port that can be evacuated is provided in a part of the metal capsule, and after filling the alloy powder into the capsule, the inside of the capsule is evacuated from the deaeration port and then the deaeration port is sealed and sealed. Is more preferable.

【0065】熱間加工時の加工温度は、400〜800
℃とすることが望ましい。このような温度域で加工した
場合、カプセル中に封入した合金粉末中の構成組織であ
るTbCu7型構造の主相結晶粒の磁化容易軸方向であ
るc軸方向が最大圧縮応力方向に揃うように優先的に結
晶成長し、結晶粒径が数十〜300nm程度の結晶粒と
なる。400℃未満で熱間加工を行った場合は上記のよ
うな結晶成長が十分起こらず、また800℃よりも高い
温度では結晶粒径の粗大化が起こり、磁気特性を劣化さ
せる。
The working temperature during hot working is 400 to 800
It is desirable to be set to ° C. When processed in such a temperature range, the c-axis direction, which is the direction of easy magnetization of the main phase crystal grains of the TbCu7 type structure, which is the constitutional structure in the alloy powder encapsulated in the capsule, is aligned with the direction of the maximum compressive stress. The crystal grows preferentially and becomes a crystal grain having a crystal grain size of about several tens to 300 nm. When the hot working is performed at a temperature lower than 400 ° C., the crystal growth as described above does not sufficiently occur, and at a temperature higher than 800 ° C., the crystal grain size becomes coarse and the magnetic properties deteriorate.

【0066】3)熱処理工程 熱間加工を施した後、金属カプセル中より内部の加工物
を取り出す。この加工物とは急冷合金粉末が加工された
ものである。熱間加工後この加工物を直接粉砕して磁石
粉末を得ることができる。しかし、さらにこの加工物に
対して熱処理を行うことがより好ましい。熱処理は酸化
を防ぐためArガスなどの不活性ガス雰囲気中で行うこ
とが望ましい。最適な熱処理温度範囲は400〜800
℃とする。これは400℃未満であると熱処理の効果が
無く、逆に800℃を越える温度で熱処理した場合に
は、結晶粒径の粗大化を招き、磁気特性が劣化するため
である。このような熱処理により、主相結晶粒の優先成
長による異方性化が促進されると共に、残留歪みの除去
効果もあり、これによって磁気特性、とくに角形性が向
上する。
3) Heat treatment step After the hot working, the work inside is taken out of the metal capsule. This processed product is obtained by processing quenched alloy powder. After hot working, the work can be directly crushed to obtain magnet powder. However, it is more preferable to perform a heat treatment on the workpiece. The heat treatment is desirably performed in an atmosphere of an inert gas such as Ar gas to prevent oxidation. The optimal heat treatment temperature range is 400-800
° C. This is because if the temperature is lower than 400 ° C., there is no effect of the heat treatment, and if the temperature is higher than 800 ° C., on the contrary, the crystal grain size becomes coarse and the magnetic properties deteriorate. Such heat treatment promotes anisotropy due to preferential growth of the main phase crystal grains and also has an effect of removing residual strain, thereby improving magnetic properties, particularly squareness.

【0067】4)窒化処理 窒化は、窒素ガスあるいはアンモニアガスまたはそれら
の混合雰囲気中にて熱処理することにより行われる。熱
処理温度は300〜700℃の温度域で行うことが望ま
しい。これは300℃以下では窒化が進まず、また70
0℃を超える温度では相分解が起こって主相の結晶構造
が維持できず、磁石特性が得られないためである。
4) Nitriding Treatment Nitriding is performed by heat treatment in a nitrogen gas, an ammonia gas, or a mixed atmosphere thereof. The heat treatment is preferably performed in a temperature range of 300 to 700 ° C. This is because nitriding does not proceed below 300 ° C.
If the temperature exceeds 0 ° C., phase decomposition occurs, the crystal structure of the main phase cannot be maintained, and magnet characteristics cannot be obtained.

【0068】5)粉砕工程 熱間加工工程の後、または上述のような熱処理あるいは
窒化処理を行った後に、粉砕工程を経て所望の粒度の磁
石粉末を得る。上述の従来例である特開平8−1910
06号公報に記載された実施例1では、保磁力を得るた
めに粉末粒度を3μm程度の微粉末とする必要があった
が、本発明では基本的に粉末粒度に関する制限は無く、
ボンド磁石としての成形性を考えれば平均粒度を100
μm以下とすればよい。
5) Pulverizing Step After the hot working step, or after performing the heat treatment or nitriding treatment as described above, a magnet powder having a desired particle size is obtained through a pulverizing step. JP-A-8-1910 which is the above-mentioned prior art
In Example 1 described in Japanese Patent Publication No. 06, it was necessary to obtain a fine powder having a particle size of about 3 μm in order to obtain a coercive force.
Considering the formability as a bonded magnet, the average particle size is 100
It may be set to μm or less.

【0069】次に本発明の異方性ボンド磁石について述
べる。
Next, the anisotropic bonded magnet of the present invention will be described.

【0070】上述のような製造方法により得られた異方
性磁石粉末をエポキシ樹脂などの熱硬化性樹脂、または
ナイロン樹脂などの熱可塑性樹脂のいずれかと混合し、
磁場配向させてから結合してボンド磁石を得る。エポキ
シ樹脂などの熱硬化性樹脂を用いる場合は、樹脂と混合
して混練後、磁場配向させながら成形し、その後キュア
処理を施して異方性ボンド磁石とする。ナイロン樹脂な
どの熱可塑性樹脂を用いる場合には、樹脂と混合・混練
後、加熱し、樹脂がほぼ溶融している状態で磁場配向さ
せながら成形し、その後冷却して異方性ボンド磁石とす
る。
The anisotropic magnet powder obtained by the above-described manufacturing method is mixed with either a thermosetting resin such as an epoxy resin or a thermoplastic resin such as a nylon resin,
After bonding in a magnetic field, bonding is performed to obtain a bonded magnet. When a thermosetting resin such as an epoxy resin is used, the resin is mixed with the resin, kneaded, molded while being oriented in a magnetic field, and then subjected to a curing treatment to form an anisotropic bonded magnet. When using a thermoplastic resin such as nylon resin, after mixing and kneading with the resin, it is heated, molded while orienting in a magnetic field while the resin is almost molten, and then cooled to form an anisotropic bonded magnet. .

【0071】以上のように作製された異方性ボンド磁石
は、上述した従来技術に比べて以下のような特徴を有し
ている。
The anisotropic bonded magnet manufactured as described above has the following characteristics as compared with the above-described conventional technology.

【0072】1)HDDR法によるNd−Fe−B系粉
末、あるいはSm−Fe−N系粉末を使用した異方性ボ
ンド磁石よりも高い磁気特性、具体的には最大エネルギ
ー積で18MGOe以上の磁気特性を量産性良く得るこ
とができる。
1) Magnetic properties higher than anisotropic bonded magnets using Nd-Fe-B-based powder or Sm-Fe-N-based powder by the HDDR method, specifically, a magnet having a maximum energy product of 18 MGOe or more. Characteristics can be obtained with good mass productivity.

【0073】2)粉末を数μm程度の微粉末とすること
が不要なため、Sm−Fe−N系、あるいは特開平8−
191006号公報に記載された実施例1中にはSm−
Zr−Fe−N系の粉末を使用した異方性ボンド磁石よ
りも磁粉体積率の増大による高密度化が可能で高い磁気
特性を得ることができる。さらに粉末の(表面積/体
積)比が小さくなるため、酸化の影響を受けにくく、工
程中のハンドリングが容易になると共に、高い熱安定性
を確保できる。
2) Since it is not necessary to make the powder into a fine powder having a size of about several μm, it is necessary to use an Sm—Fe—N based or
In Example 1 described in JP-A-191006, Sm-
Compared with an anisotropic bonded magnet using a Zr—Fe—N-based powder, the density can be increased by increasing the volume ratio of the magnetic powder, and high magnetic characteristics can be obtained. Further, since the (surface area / volume) ratio of the powder is small, the powder is not easily affected by oxidation, handling during the process is easy, and high thermal stability can be secured.

【0074】3)Smを主な希土類元素として使用する
ため、Ndが主元素のNd−Fe−B系に比べて耐食
性、熱安定性に優れる。
3) Since Sm is used as the main rare earth element, Nd is superior in corrosion resistance and thermal stability as compared with the main element Nd-Fe-B system.

【0075】2)窒化を行うことによりSm2Co17系
ボンド磁石と同等以上の20MGOe以上の磁気特性を
量産性良く得ることができる。またSm2Co17系に比
べて高価なCoの含有量が低いため、低コスト化の効果
も有する。
2) By performing nitriding, magnetic properties of 20 MGOe or more, which is equal to or more than that of the Sm 2 Co 17 based bonded magnet, can be obtained with good mass productivity. Further, since the content of expensive Co is lower than that of the Sm2Co17-based material, there is also an effect of cost reduction.

【0076】以下実施例に基づいて、本発明をさらに具
体的に述べる。
Hereinafter, the present invention will be described more specifically based on examples.

【0077】(実施例1)純度が99.9%のSm,Z
r,Fe,Coの原料メタルをSm9Zr3Fe81Co7
で表される組成となるように秤量し、これをArガス雰
囲気中で高周波誘導炉にて溶解し、銅製金型中に鋳造し
て重量約1kgの合金インゴットを作製した。該インゴ
ットからサンプル片を切り出し、これを底部に0.6mm
φのオリフィスを設けた透明石英管に入れ、次いでこの
石英管を直径300mmの銅製の単ロールを有する急冷
薄帯製造装置に装着した。その後Ar雰囲気中で、高周
波加熱にて該サンプル片を石英管内で溶解し、回転中の
該銅製ロール上に合金溶湯を噴射して、リボン状の急冷
薄帯を得た。このときのロール回転スピードは40m/
sとした。さらに同様の方法で、全部で約250gの同
組成の急冷薄帯を得た。これを後述するカプセル中に充
填しやすいようにフレーク状に粉砕して合金粉末を得
た。
(Example 1) Sm, Z having a purity of 99.9%
The raw metal of r, Fe, Co is Sm9Zr3Fe81Co7
Was weighed so as to have a composition represented by the following formula, was melted in a high-frequency induction furnace in an Ar gas atmosphere, and was cast in a copper mold to produce an alloy ingot having a weight of about 1 kg. Cut out a sample piece from the ingot and place it on the bottom at 0.6 mm
The tube was placed in a transparent quartz tube provided with an orifice of φ, and then this quartz tube was attached to a quenching ribbon manufacturing apparatus having a single roll of copper having a diameter of 300 mm. Thereafter, the sample piece was melted in a quartz tube by high-frequency heating in an Ar atmosphere, and a molten alloy was sprayed onto the rotating copper roll to obtain a ribbon-shaped quenched ribbon. The roll rotation speed at this time is 40 m /
s. Further, in a similar manner, a quenched ribbon of about 250 g in total having the same composition was obtained. This was pulverized into flakes so as to be easily filled into capsules described later, to obtain an alloy powder.

【0078】このようにして作製した急冷合金粉末をS
S41(JIS規格)製の箱状のカプセル中に充填し、
脱気口を設けたSS41の蓋材を外周溶接する。図1に
そのカプセルの断面概略図を示す。その後このSS41
製カプセルを電子ビーム溶接チャンバー内に置きチャン
バー内を真空吸引した。チャンバー内の真空度が10-2
torr以下となるまで真空引きし、その後脱気口を電
子ビーム溶接により封止した。
The quenched alloy powder produced in this way was
Fill into a box-shaped capsule made of S41 (JIS standard),
The outer periphery of the cover material of SS41 provided with the deaeration port is welded. FIG. 1 shows a schematic sectional view of the capsule. Then this SS41
The capsule was placed in an electron beam welding chamber, and the inside of the chamber was evacuated. The degree of vacuum in the chamber is 10 -2
The evacuation port was sealed by electron beam welding.

【0079】このようにして合金粉末を封入したSS4
1製カプセルを大気炉中にて750℃に加熱した後、炉
から取り出し、ただちに圧延機にて総加工度75%とな
るように圧延を行った。圧延終了後、圧延材の外部を水
冷して冷却を行い、十分冷却した後SS41製カプセル
内から内部の加工物を取り出した。取り出した加工物は
一体のバルクとはなっておらず、粉末状や塊状となって
いた。この加工物を直接ライカイ機にて粉砕し平均粒度
が約50μmの粉末を得た。得られた粉末にエポキシ樹
脂を1.6wt%添加し、混合した後、15kOeの磁場中に
て配向させながら7ton/cm2の成形圧で圧縮成形し、そ
の後窒素ガス雰囲気中で1.5時間のキュア処理を行い、
異方性ボンド磁石を作製した。得られた異方性ボンド磁
石について直流自記磁束計により、最大印加磁場25kO
eで磁気特性を測定した。得られた磁気特性はBr=9.
1kG、iHc=10.2kOe、(BH)max=18.6MGOeと、
高い磁気特性が得られた。またボンド磁石化を行う前の
磁石粉末についてX線回折を行った。X線はCu−Kα
を用い、回折角2θが20°〜60°の範囲で測定を行
った。その結果、主相であるTbCu7型構造の六方晶
相のピークが観測され、それらのピークのうち、主相の
(002)の回折ピークと思われるピークの反射強度は
主相の他のピークに比べて非常に強くなっており、異方
化が達成されていることが確認された。またTEM観察
を行った結果、主相結晶粒径は20〜100nmであっ
た。
The SS4 containing the alloy powder as described above
1 capsule was heated to 750 ° C. in an air furnace, taken out of the furnace, and immediately rolled by a rolling mill so as to have a total workability of 75%. After the completion of the rolling, the outside of the rolled material was cooled by water cooling, and after sufficiently cooling, the internal workpiece was taken out from the SS41 capsule. The removed workpiece was not in the form of an integral bulk, but was in the form of powder or lump. This processed product was directly pulverized with a raikai machine to obtain a powder having an average particle size of about 50 μm. 1.6 wt% of an epoxy resin was added to the obtained powder, mixed, and compression-molded at a molding pressure of 7 ton / cm2 while orienting in a magnetic field of 15 kOe, followed by a 1.5-hour cure treatment in a nitrogen gas atmosphere. Do
An anisotropic bonded magnet was produced. For the obtained anisotropic bonded magnet, the maximum applied magnetic field was 25 kO
The magnetic properties were measured in e. The obtained magnetic properties were Br = 9.
1 kG, iHc = 10.2 kOe, (BH) max = 18.6 MGOe,
High magnetic properties were obtained. Further, X-ray diffraction was performed on the magnet powder before forming the bond magnet. X-ray is Cu-Kα
And the diffraction angle 2θ was measured in the range of 20 ° to 60 °. As a result, peaks of the hexagonal phase of the TbCu7 type structure, which is the main phase, were observed, and among those peaks, the reflection intensity of the peak considered to be the (002) diffraction peak of the main phase was different from that of the other peaks of the main phase. Compared to the above, it was confirmed that anisotropy was achieved. As a result of TEM observation, the main phase crystal grain size was 20 to 100 nm.

【0080】(実施例2)表1に示す各組成の合金につ
いて、実施例1と同様の条件でインゴットの作製から圧
延、粉砕までを行い、平均粒度が約50μmの粉末を得
た。得られた粉末にエポキシ樹脂を1.6wt%添加
し、混合した後、15kOeの磁場中にて配向させながら
7ton/cm2の成形圧で圧縮成形し、その後窒素ガス雰囲
気中で1.5時間のキュア処理を行い、異方性ボンド磁石
を作製した。得られた異方性ボンド磁石について直流自
記磁束計により、最大印加磁場25kOeで磁気特性を測定
した。測定結果を表1に併せて示す。
Example 2 For the alloys having the respective compositions shown in Table 1, under the same conditions as in Example 1, from ingot production to rolling and pulverization, a powder having an average particle size of about 50 μm was obtained. 1.6 wt% of an epoxy resin is added to the obtained powder, mixed, compression-molded at a molding pressure of 7 ton / cm2 while orienting in a magnetic field of 15 kOe, and then cured in a nitrogen gas atmosphere for 1.5 hours. Was performed to produce an anisotropic bonded magnet. The magnetic properties of the obtained anisotropic bonded magnet were measured by a direct current magnetic flux meter at a maximum applied magnetic field of 25 kOe. Table 1 also shows the measurement results.

【0081】[0081]

【表1】 [Table 1]

【0082】表1から明らかなように、本発明の組成域
にある粉末を使用した異方性ボンド磁石では高い磁気特
性が得られる一方、比較例では低い磁気特性しか得られ
ない。
As is evident from Table 1, high magnetic properties can be obtained with the anisotropic bonded magnet using the powder in the composition range of the present invention, but low magnetic properties can be obtained with the comparative example.

【0083】(実施例3)純度が99.9%のSm,P
r,Zr,Fe,Co,Tiの原料メタルをSm7Pr4
Zr3Fe76Co8Ti2で表される組成となるように秤
量し、これをArガス雰囲気中で高周波誘導炉にて溶解
し、銅製金型中に鋳造して重量約1kgの合金インゴッ
トを作製した。次いで実施例1と同じ急冷薄帯製造装置
にてロール回転スピードを35m/sとしてリボン状の
急冷薄帯を製造した。次いでさらに実施例1と同様の条
件で熱間での圧延を行った。圧延後カプセル中より加工
物を取り出し、該加工物をAr雰囲気中にて300〜9
00℃の各温度で熱処理を行った。熱処理後、粉砕して
平均粒度が約50μmの粉末を得て、これを実施例1と
同様な方法で樹脂と結合して異方性ボンド磁石を得た。
表2に圧延後の熱処理温度と得られた磁気特性の測定結
果を示す。
(Example 3) Sm, P having a purity of 99.9%
The raw metal of r, Zr, Fe, Co, Ti is Sm7Pr4
It was weighed to have a composition represented by Zr3Fe76Co8Ti2, melted in a high-frequency induction furnace in an Ar gas atmosphere, and cast in a copper mold to produce an alloy ingot having a weight of about 1 kg. Next, a ribbon-shaped quenched ribbon was manufactured using the same quenched ribbon manufacturing apparatus as in Example 1 at a roll rotation speed of 35 m / s. Next, hot rolling was performed under the same conditions as in Example 1. After rolling, the work is taken out of the capsule, and the work is 300 to 9 in an Ar atmosphere.
Heat treatment was performed at each temperature of 00 ° C. After the heat treatment, the powder was pulverized to obtain a powder having an average particle size of about 50 μm, which was combined with a resin in the same manner as in Example 1 to obtain an anisotropic bonded magnet.
Table 2 shows the measurement results of the heat treatment temperature after rolling and the obtained magnetic properties.

【0084】[0084]

【表2】 [Table 2]

【0085】表から明らかなように、熱間加工後に40
0〜800℃の温度域で熱処理した場合に、より高い磁
気特性が得られる。
As is clear from the table, after hot working,
When heat treatment is performed in a temperature range of 0 to 800 ° C., higher magnetic properties can be obtained.

【0086】(実施例4)純度が99.9%のSm,N
d,Zr,Fe,Coの原料メタルをSm5Nd3Zr4
Fe83Co5で表される組成となるように秤量し、これ
をArガス雰囲気中で高周波誘導炉にて溶解し、銅製金
型中に鋳造して重量約1kgの合金インゴットを作製し
た。次いで実施例1と同様の条件で急冷薄帯の製造から
熱間圧延までを行った。圧延後カプセル中より加工物を
取り出し、該加工物を1気圧の窒素雰囲気中において表
3に示す各温度で2時間の熱処理を行うことにより窒化
処理を施した。窒化後の粉末を上記実施例と同様にして
作製した異方性ボンド磁石の磁気特性を表3中に合わせ
て示す。
(Example 4) Sm, N having a purity of 99.9%
The raw material metal of d, Zr, Fe, Co is Sm5Nd3Zr4
It was weighed to have a composition represented by Fe83Co5, melted in a high-frequency induction furnace in an Ar gas atmosphere, and cast in a copper mold to produce an alloy ingot having a weight of about 1 kg. Next, from the production of the quenched ribbon to the hot rolling, the same conditions as in Example 1 were used. After rolling, the processed product was taken out of the capsule, and the processed product was subjected to a heat treatment at each temperature shown in Table 3 for 2 hours in a nitrogen atmosphere at 1 atm, thereby performing a nitriding treatment. Table 3 also shows the magnetic properties of anisotropic bonded magnets prepared from the powder after nitriding in the same manner as in the above examples.

【0087】[0087]

【表3】 [Table 3]

【0088】表から明らかなように、熱間加工後に窒化
処理を300〜700℃の温度域で行うことにより、高
い磁気特性、特に20MGOeを越える最大エネルギー
積を得ることができる。
As is clear from the table, by performing the nitriding treatment in the temperature range of 300 to 700 ° C. after the hot working, it is possible to obtain high magnetic properties, particularly a maximum energy product exceeding 20 MGOe.

【0089】(実施例5)原料メタルを秤量し、実施例
4と同様な製造方法で、表4に示す各組成の窒化された
磁石粉末を得た。ただし窒化処理の温度は500℃とし
た。これらの粉末から実施例1と同様な条件で異方性ボ
ンド磁石を作製し、その磁気特性を測定した。測定結果
を表4に併せて示す。
Example 5 Raw metal was weighed, and nitrided magnet powders having the respective compositions shown in Table 4 were obtained in the same manner as in Example 4. However, the temperature of the nitriding treatment was 500 ° C. An anisotropic bonded magnet was prepared from these powders under the same conditions as in Example 1, and the magnetic properties were measured. Table 4 also shows the measurement results.

【0090】[0090]

【表4】 [Table 4]

【0091】表から明らかなように本発明で規定される
組成域において高い磁気特性を得ることができる。
As is clear from the table, high magnetic characteristics can be obtained in the composition range defined by the present invention.

【0092】(実施例6)純度が99.9%のSm,N
d,Zr,Fe,Coの原料メタルをSm6Pr2Zr2
Fe83Si2Co5で表される組成となるように秤量し、
これをArガス雰囲気中で高周波誘導炉にて溶解し、銅
製金型中に鋳造して重量約1kgの合金インゴットを作
製した。次いで急冷薄帯製造装置にてロール回転スピー
ドを55m/sとしてリボン状の急冷薄帯を製造した。
この時得られた急冷薄帯はTEM観察およびX線回折の
結果からほぼアモルファス相となっていることが確認さ
れた。これら急冷薄帯について300〜800℃の各温
度で20分の熱処理した後、実施例1と同様にカプセル
中に封入し、大気炉中にて700℃に加熱し、総加工度
75%となるように熱間圧延を行った。圧延終了後、圧
延材外部を水冷して冷却を行い、カプセル内より加工物
を取り出した。取り出した加工物を実施例1と同様にし
て平均粒度約50μmの粉末を得た。得られた粉末を用
いて実施例1と同様にしてボンド磁石を得て、磁気特性
を測定した。急冷薄帯に施した熱処理温度と最終的に得
られたボンド磁石の磁気特性を表5に示す。
(Example 6) Sm, N having a purity of 99.9%
The raw material metal of d, Zr, Fe, Co is Sm6Pr2Zr2
Weighed to a composition represented by Fe83Si2Co5,
This was melted in a high-frequency induction furnace in an Ar gas atmosphere and cast in a copper mold to produce an alloy ingot having a weight of about 1 kg. Next, a ribbon-shaped quenched ribbon was produced using a quenched ribbon production apparatus at a roll rotation speed of 55 m / s.
From the result of TEM observation and X-ray diffraction, it was confirmed that the quenched ribbon obtained at this time was almost in an amorphous phase. After heat-treating these quenched ribbons at each temperature of 300 to 800 ° C. for 20 minutes, they are encapsulated in capsules as in Example 1, and heated to 700 ° C. in an atmospheric furnace to reach a total workability of 75%. Hot rolling was performed as described above. After the completion of the rolling, the outside of the rolled material was cooled by water cooling, and the processed product was taken out from the capsule. The taken-out workpiece was treated in the same manner as in Example 1 to obtain a powder having an average particle size of about 50 μm. Using the obtained powder, a bonded magnet was obtained in the same manner as in Example 1, and the magnetic properties were measured. Table 5 shows the heat treatment temperature applied to the quenched ribbon and the magnetic properties of the finally obtained bonded magnet.

【0093】[0093]

【表5】 [Table 5]

【0094】表から明らかなように、急冷薄帯に400
〜700℃の温度で熱処理を施してから熱間圧延を行っ
てボンド磁石としたものにおいて良好な磁気特性を得る
ことができる。
As is clear from the table, 400 quenched ribbons
Good magnetic properties can be obtained in a bonded magnet obtained by performing a heat treatment at a temperature of about 700 ° C. and then performing a hot rolling.

【0095】(実施例7)Sm,Nd,Zr,Fe,C
u,Coからなる合金インゴットから、実施例1と同様
の条件で急冷薄帯を作製し、得られた急冷薄帯を以下に
示すそれぞれの加工方法にて熱間加工した。
(Embodiment 7) Sm, Nd, Zr, Fe, C
A quenched ribbon was produced from an alloy ingot composed of u and Co under the same conditions as in Example 1, and the resulting quenched ribbon was hot-worked by each of the processing methods described below.

【0096】A)得られた急冷薄帯をアルゴン雰囲気中
でHIP装置にて、まず650℃で熱間静水圧成形して
高密度のバルクを得た。これを冷却後HIP装置より取
り出し、さらにアルゴン雰囲気としたホットプレス装置
にて総加工度75%、歪み速度0.03s-1のホットプ
レスを行った。
A) The obtained quenched ribbon was first subjected to hot isostatic pressing at 650 ° C. by an HIP apparatus in an argon atmosphere to obtain a high-density bulk. After cooling, it was taken out of the HIP device, and hot-pressed with a total workability of 75% and a strain rate of 0.03 s -1 using a hot press device in an argon atmosphere.

【0097】B)得られた急冷薄帯をSS41製の円柱
状のカプセルに充填後、脱気・密封し、大気炉中にて5
00℃に加熱してから、直ちに鍛造機にて総加工度75
%、歪み速度0.1s-1の熱間鍛造を行った。
B) After filling the obtained quenched ribbon into a cylindrical capsule made of SS41, degassed and sealed, and placed in an air furnace for 5 minutes.
Immediately after heating to 00 ° C, a total forging degree of 75
%, And hot forging was performed at a strain rate of 0.1 s -1 .

【0098】C)得られた急冷薄帯をSUS304(J
IS規格)製の矩形状のカプセル内に充填後、脱気・密
封し、その後大気炉中にて600℃に加熱してから、直
ちに圧延機にて総加工度80%、歪み速度0.8s-1
熱間圧延を行った。
C) The obtained quenched ribbon was SUS304 (J
After filling into a rectangular capsule made of IS standard), degassing and sealing, and then heating to 600 ° C. in an atmospheric furnace, immediately using a rolling mill, a total workability of 80% and a strain rate of 0.8 s -1 was hot rolled.

【0099】D)得られた急冷薄帯をSS41製のカプ
セルに充填後、脱気・密封し、大気炉中700℃で加熱
してから、直ちに圧延機にて総加工度80%、歪み速度
3s-1の圧延を行った。
D) After filling the obtained quenched ribbon into capsules made of SS41, degassing and sealing, heating at 700 ° C. in an atmospheric furnace, and immediately, using a rolling mill, a total workability of 80%, strain rate Rolling of 3 s -1 was performed.

【0100】E)得られた急冷薄帯をSS41製の矩形
状のカプセル内に封入し、その後大気炉中にて750℃
に加熱してから、直ちに圧延機にて総加工度80%、歪
み速度10s-1の熱間圧延を行った。
E) The obtained quenched ribbon was sealed in a rectangular capsule made of SS41, and then 750 ° C. in an atmospheric furnace.
, And immediately hot-rolled by a rolling mill at a total working ratio of 80% and a strain rate of 10 s -1 .

【0101】F)得られた急冷薄帯をSS41製のカプ
セルに充填後、脱気・密封し、大気炉中780℃に加熱
してから、直ちに圧延機にて総加工度75%、歪み速度
15s-1の熱間圧延を行った。
F) After filling the obtained quenched ribbon into capsules made of SS41, degassing and sealing, heating to 780 ° C. in an atmospheric furnace, and immediately, using a rolling mill, a total work degree of 75% and a strain rate Hot rolling of 15 s -1 was performed.

【0102】以上のようなそれぞれの熱間加工を施した
後、加工物をカプセル中より取り出してから、1気圧の
窒素雰囲気中、450℃で2時間の熱処理を行った。そ
の後粉砕して平均粒度約50μmの粉末を得た。得られ
た粉末の組成はいずれも(Sm6.5Nd1.5Zr3Fe83
Cu2Co4)88N12であった。各粉末にエポキシ樹脂を
1.6wt%添加し、混合した後、15kOeの磁場中に
て配向させながら7ton/cm2の成形圧で圧縮成形し、そ
の後窒素ガス雰囲気中で1.5時間のキュア処理を行い、
異方性ボンド磁石を作製した。
After performing each of the above-mentioned hot working, the processed product was taken out of the capsule, and then heat-treated at 450 ° C. for 2 hours in a nitrogen atmosphere at 1 atm. Thereafter, it was pulverized to obtain a powder having an average particle size of about 50 μm. The composition of each of the obtained powders was (Sm6.5Nd1.5Zr3Fe83).
Cu2 Co4) 88N12. 1.6 wt% of epoxy resin is added to each powder, mixed, compression-molded at a molding pressure of 7 ton / cm2 while orienting in a magnetic field of 15 kOe, and then cured in a nitrogen gas atmosphere for 1.5 hours. ,
An anisotropic bonded magnet was produced.

【0103】表6に、上記A)〜F)の各熱間加工時の
歪み速度と、最終的に得られた異方性ボンド磁石の磁気
特性を併せて示す。
Table 6 also shows the strain rates at the time of each of the hot workings A) to F) and the magnetic properties of the finally obtained anisotropic bonded magnet.

【0104】[0104]

【表6】 [Table 6]

【0105】表から明らかなように本発明の歪み速度で
加工した場合に高い磁気特性が得られる。
As is clear from the table, high magnetic properties can be obtained when processing is performed at the strain rate of the present invention.

【0106】(実施例8)純度が99.9%のSm,P
r,Zr,Fe,Ag,Coの原料メタルをSm4Pr5
Zr3Fe79Ag2Co7で表される組成となるように秤
量し、合金インゴットを実施例1と同様に作製した後、
急冷薄帯製造装置にてロールスピード35m/sで急冷
薄帯を作製した。得られた急冷薄帯を実施例1と同様な
方法で金属カプセル内に封入した後、表7に示す各温度
で熱間圧延を施した。圧延時の歪み速度は圧延温度によ
ってばらつくが0.5〜5s-1の範囲であった。このよ
うな圧延を行った後、内部から加工物を取り出し、1気
圧の窒素雰囲気中450℃で該加工物を2時間熱処理し
た。熱処理後加工物を粉砕して平均粒度が約40μmの
粉末を得て、実施例1と同様の条件で異方性ボンド磁石
を作製した。熱間圧延温度と最終的に得られた異方性ボ
ンド磁石の特性を表7に併せて示す。
Example 8 Sm, P having a purity of 99.9%
The raw metal of r, Zr, Fe, Ag, Co is Sm4Pr5
After weighing to obtain a composition represented by Zr3Fe79Ag2Co7 and preparing an alloy ingot in the same manner as in Example 1,
A quenched ribbon was produced at a roll speed of 35 m / s by a quenched ribbon manufacturing apparatus. After the obtained quenched ribbon was sealed in a metal capsule in the same manner as in Example 1, hot rolling was performed at each temperature shown in Table 7. The strain rate during rolling varied depending on the rolling temperature, but was in the range of 0.5 to 5 s -1 . After such rolling, the work was taken out from the inside and heat-treated at 450 ° C. for 2 hours in a nitrogen atmosphere at 1 atm. After the heat treatment, the processed product was pulverized to obtain a powder having an average particle size of about 40 μm. Table 7 also shows the hot rolling temperature and the properties of the finally obtained anisotropic bonded magnet.

【0107】[0107]

【表7】 [Table 7]

【0108】表から明らかなように400〜800℃の
温度で圧延を行うことによって高い磁気特性が得られる
ことがわかる。
As is clear from the table, it is understood that high magnetic properties can be obtained by rolling at a temperature of 400 to 800 ° C.

【0109】(実施例9)純度が99.9%のSm,Z
r,Fe,Ni,Coの原料メタルをSm5Nd3Zr4
Fe83Co5で表される組成となるように秤量し、これ
をArガス雰囲気中で高周波誘導炉にて溶解し、銅製金
型中に鋳造して重量約1kgの合金インゴットを作製し
た。次いで実施例1と同様の条件で急冷薄帯の製造から
熱間圧延までを行った。圧延後カプセル中より加工物を
取り出し、該加工物を1気圧の窒素雰囲気中において表
3に示す各温度で2時間の熱処理を行うことにより窒化
処理を施し、その後粉砕して磁石粉末を得た。粉末の組
成は(Sm9Zr4Fe80Ni2Co5)0.88N0.12であっ
た。この粉末から実施例1と同様の方法で、異方性ボン
ド磁石を作製した。このサンプルについて高温測定用の
温度可変ユニットを時局部分に装着した直流自記磁束計
により、室温と100℃における減磁曲線を測定した。
その結果から、室温から100℃の範囲でのBrの温度
係数(α)とiHcの温度係数(β)を算出した結果、
(α、β)=(-0.04、-0.30)であった(但しα、βい
ずれも単位は%/℃)。
(Example 9) Sm, Z having a purity of 99.9%
The raw metal of r, Fe, Ni, Co is Sm5Nd3Zr4
It was weighed to have a composition represented by Fe83Co5, melted in a high-frequency induction furnace in an Ar gas atmosphere, and cast in a copper mold to produce an alloy ingot having a weight of about 1 kg. Next, from the production of the quenched ribbon to the hot rolling, the same conditions as in Example 1 were used. After rolling, the processed product was taken out of the capsule, and the processed product was subjected to a heat treatment at each temperature shown in Table 3 for 2 hours in a nitrogen atmosphere at 1 atm for nitriding treatment, followed by grinding to obtain a magnet powder. . The composition of the powder was (Sm9Zr4Fe80Ni2Co5) 0.88N0.12. An anisotropic bonded magnet was produced from this powder in the same manner as in Example 1. The demagnetization curves of the sample at room temperature and 100 ° C. were measured by a direct current magnetic flux meter having a temperature variable unit for high temperature measurement attached to a local area.
From the results, the temperature coefficient (α) of Br and the temperature coefficient (β) of iHc in the range from room temperature to 100 ° C. were calculated,
(Α, β) = (− 0.04, −0.30) (however, the unit of both α and β is% / ° C.).

【0110】またHDDR法で作製したNd12.6Fe8
1.3B6.0Ga0.1で表される組成の磁石粉末と、Sm−
Fe−N系のSm9.0Fe77.4N13.6で表される組成の
磁石粉末を使用したボンド磁石についても同様の測定を
行った。この結果、前者では(α、β)=(-0.10、-0.
53)、後者では(α、β)=(-0.06、-0.49)であっ
た。
Nd12.6Fe8 produced by the HDDR method
A magnet powder having a composition represented by 1.3B6.0Ga0.1;
The same measurement was performed on a bonded magnet using a magnetic powder having a composition represented by Fe-N-based Sm9.0Fe77.4N13.6. As a result, in the former case, (α, β) = (− 0.10, −0.
53), for the latter, (α, β) = (-0.06, -0.49).

【0111】このような結果から明らかなように、本発
明による異方性ボンド磁石では良好な熱安定性が得られ
る。
As is clear from these results, the anisotropic bonded magnet according to the present invention can obtain good thermal stability.

【0112】[0112]

【発明の効果】本発明のうち請求項1記載の発明は、微
細な結晶粒径を有する主相である硬磁性相を熱間加工に
より配向させて磁気特性、および信頼性にすぐれた異方
性磁石粉末の得ることができる。
According to the first aspect of the present invention, a hard magnetic phase which is a main phase having a fine crystal grain size is oriented by hot working to provide an anisotropic material having excellent magnetic properties and reliability. Magnetic powder can be obtained.

【0113】請求項6記載の発明は、熱間加工後に熱処
理を行うことによって、磁気特性をさらに改善し、また
特性ばらつきの少ない磁石粉末を得ることができる。
According to the sixth aspect of the present invention, by performing heat treatment after hot working, it is possible to further improve magnetic properties and to obtain a magnet powder with little property variation.

【0114】また請求項11記載の発明は窒化を行うこ
とにより、異方化した主相結晶中に窒素原子を侵入型で
固溶させて飽和磁化および異方性磁界を本質的に向上
し、さらに高特性な異方性磁石粉末を得ることができ
る。
According to the eleventh aspect of the present invention, by performing nitriding, nitrogen atoms are interstitially dissolved in the anisotropic main phase crystal to substantially improve the saturation magnetization and the anisotropic magnetic field. Further, anisotropic magnet powder having higher characteristics can be obtained.

【0115】請求項2,3,7,8,12および13記
載の発明は、加工を行う前の合金粉末を液体急冷法で作
製した急冷薄帯を基本とするもので、微細均一な結晶粒
径からなる組織を有する高特性な異方性磁石粉末を生産
性良く得ることができる。
The invention according to claims 2, 3, 7, 8, 12 and 13 is based on a quenched ribbon prepared by liquid quenching of an alloy powder before processing, and is characterized by fine uniform crystal grains. High-performance anisotropic magnet powder having a structure having a diameter can be obtained with high productivity.

【0116】さらに請求項4,5,9,10,14およ
び15記載の発明は、熱間加工工程における加工条件を
規定することにより、高い配向度を有して磁気特性に優
れる異方性磁石粉末の製造方法を提供することができ
る。
The invention according to claims 4, 5, 9, 10, 14 and 15 is an anisotropic magnet having a high degree of orientation and excellent magnetic properties by defining working conditions in the hot working step. A method for producing a powder can be provided.

【0117】請求項16記載の発明では、磁石粉末中の
N量を規定することにより、主相結晶構造を安定化し、
高い磁気特性を安定して得ることのできる異方性磁石粉
末が得られる。
According to the present invention, the crystal structure of the main phase is stabilized by defining the amount of N in the magnet powder.
An anisotropic magnet powder capable of stably obtaining high magnetic properties is obtained.

【0118】そして請求項17乃至20記載の発明は、
本発明の異方性磁石粉末を樹脂と結合して高い磁気特性
および信頼性を有する異方性ボンド磁石を得ることがで
きる。
The invention according to claims 17 to 20 is
By bonding the anisotropic magnet powder of the present invention to a resin, an anisotropic bonded magnet having high magnetic properties and reliability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 内部に急冷合金粉末を充填した金属製カプセ
ルの断面概略図。
FIG. 1 is a schematic cross-sectional view of a metal capsule filled with a quenched alloy powder.

【符号の説明】[Explanation of symbols]

1・・・急冷合金粉末 2・・・SS41製箱状カプセル 3・・・SS41製蓋材 4・・・脱気口 5・・・溶接部 DESCRIPTION OF SYMBOLS 1 ... Quenched alloy powder 2 ... SS41 box-shaped capsule 3 ... SS41 lid material 4 ... Deaeration port 5 ... Weld part

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】 R1xR2y(Fe100-uMu)100-x-y-z
Cozなる組成式で表わされ(但し、R1はYを含む希
土類元素のうち1種またはそれ以上の元素、R2はZ
r,Hf,Scの群から選ばれる1種またはそれ以上の
元素、MはTi,Si,V,Cr,Mo,Mn,W,N
i,Ga,Cu,Al,Nb,Sn,Ag,Taの群か
ら選ばれる1種またはそれ以上の元素で、x、y、z、
uは原子%でそれぞれ2≦x、0.01≦y、4≦x+
y≦20、0≦z≦40、0≦u≦20)、さらに製造
上不可避な不純物を含む急冷合金粉末を金属製カプセル
中に充填した後、熱間加工を施すことにより構成組織中
のTbCu7型構造からなる主相結晶粒の磁化容易軸方
向を配向させて異方性を付与し、熱間加工後に前記金属
製カプセル中より内部の加工物を取り出し、該加工物を
粉砕することを特徴とする異方性磁石粉末の製造方法。
1. R1xR2y (Fe100-uMu) 100-xyz
Coz is represented by a composition formula (where R1 is one or more of the rare earth elements including Y, R2 is Z
one or more elements selected from the group consisting of r, Hf, Sc, and M is Ti, Si, V, Cr, Mo, Mn, W, N
one or more elements selected from the group consisting of i, Ga, Cu, Al, Nb, Sn, Ag, Ta, and x, y, z,
u is atomic%, 2 ≦ x, 0.01 ≦ y, 4 ≦ x +
y ≦ 20, 0 ≦ z ≦ 40, 0 ≦ u ≦ 20) Further, after quenching alloy powder containing impurities inevitable in manufacturing is filled in a metal capsule, TbCu7 in the structural structure is subjected to hot working. It is characterized by orienting the direction of easy axis of magnetization of the main phase crystal grains having a mold structure to impart anisotropy, taking out a work inside from the metal capsule after hot working, and pulverizing the work. Method for producing anisotropic magnet powder.
【請求項2】 前記急冷合金粉末が、合金の溶融物を液
体急冷法で凝固させて得られた急冷薄帯またはその急冷
薄帯を粉砕したものである事を特徴とする請求項1記載
の異方性磁石粉末の製造方法。
2. The quenched alloy powder according to claim 1, wherein the quenched alloy powder is a quenched ribbon obtained by solidifying a melt of the alloy by a liquid quenching method or the quenched ribbon. A method for producing anisotropic magnet powder.
【請求項3】 前記急冷合金粉末が、合金の溶融物を液
体急冷法で凝固させて得られた急冷薄帯またはその急冷
薄帯を粉砕したものを400〜700℃で熱処理したも
のであることを特徴とする請求項1記載の異方性磁石粉
末の製造方法。
3. The quenched alloy powder is obtained by heat-treating a quenched ribbon obtained by solidifying a molten alloy by a liquid quenching method or a crushed ribbon thereof at 400 to 700 ° C. The method for producing anisotropic magnet powder according to claim 1, wherein:
【請求項4】 前記熱間加工工程における、加工時の歪
み速度が0.1〜10s-1であることを特徴とする請求
項1記載の異方性磁石粉末の製造方法。
4. The method for producing anisotropic magnet powder according to claim 1 , wherein a strain rate during the working in the hot working step is 0.1 to 10 s −1 .
【請求項5】 前記熱間加工工程における、加工時の温
度が400〜800℃であることを特徴とする請求項1
記載の異方性磁石粉末の製造方法。
5. The hot working step, wherein the working temperature is 400 to 800 ° C.
A method for producing the anisotropic magnet powder described in the above.
【請求項6】 R1xR2y(Fe100-uMu)100-x-y-z
Cozなる組成式で表わされ(但し、R1はYを含む希
土類元素のうち1種またはそれ以上の元素、R2はZ
r,Hf,Scの群から選ばれる1種またはそれ以上の
元素、MはTi,Si,V,Cr,Mo,Mn,W,N
i,Ga,Cu,Al,Nb,Sn,Ag,Taの群か
ら選ばれる1種またはそれ以上の元素で、x、y、z、
uは原子%でそれぞれ2≦x、0.01≦y、4≦x+
y≦20、0≦z≦40、0≦u≦20)、さらに製造
上不可避な不純物を含む急冷合金粉末を金属製カプセル
中に充填した後、熱間加工を施すことにより構成組織中
のTbCu7型構造からなる主相結晶粒の磁化容易軸方
向を配向させて異方性を付与し、熱間加工後に前記金属
製カプセル中より内部の加工物を前記金属製カプセル中
より取り出した後、400〜800℃の温度範囲におい
て熱処理し、さらに熱処理後の該加工物を粉砕すること
を特徴とする異方性磁石粉末の製造方法。
6. R1xR2y (Fe100-uMu) 100-xyz
Coz is represented by a composition formula (where R1 is one or more of the rare earth elements including Y, R2 is Z
one or more elements selected from the group consisting of r, Hf, Sc, and M is Ti, Si, V, Cr, Mo, Mn, W, N
one or more elements selected from the group consisting of i, Ga, Cu, Al, Nb, Sn, Ag, Ta, and x, y, z,
u is atomic%, 2 ≦ x, 0.01 ≦ y, 4 ≦ x +
y ≦ 20, 0 ≦ z ≦ 40, 0 ≦ u ≦ 20) Further, after quenching alloy powder containing impurities inevitable in manufacturing is filled in a metal capsule, TbCu7 in the structural structure is subjected to hot working. Orientation of the axis of easy magnetization of the main phase crystal grains having the mold structure is performed to impart anisotropy, and after hot working, after taking out a work inside from the metal capsule from the metal capsule, 400 A method for producing anisotropic magnet powder, characterized by heat-treating in a temperature range of -800 ° C, and further pulverizing the processed product after the heat treatment.
【請求項7】 前記急冷合金粉末が、合金の溶融物を液
体急冷法で凝固させて得られた急冷薄帯またはその急冷
薄帯を粉砕したものである事を特徴とする請求項6記載
の異方性磁石粉末の製造方法。
7. The quenched alloy powder according to claim 6, wherein the quenched alloy powder is a quenched ribbon obtained by solidifying a melt of the alloy by a liquid quenching method or a quenched ribbon thereof. A method for producing anisotropic magnet powder.
【請求項8】 前記急冷合金粉末が、合金の溶融物を液
体急冷法で凝固させて得られた急冷薄帯またはその急冷
薄帯を粉砕したものを400〜700℃で熱処理したも
のであることを特徴とする請求項6記載の異方性磁石粉
末の製造方法。
8. The quenched alloy powder is a quenched ribbon obtained by solidifying a melt of the alloy by a liquid quenching method or a crushed ribbon obtained by heat treatment at 400 to 700 ° C. The method for producing anisotropic magnet powder according to claim 6, characterized in that:
【請求項9】 前記熱間加工工程における、加工時の歪
み速度が0.1〜10s-1であることを特徴とする請求
項6記載の異方性磁石粉末の製造方法。
9. The method for producing anisotropic magnet powder according to claim 6, wherein a strain rate during the working in the hot working step is 0.1 to 10 s −1 .
【請求項10】 前記熱間加工工程における、加工時の
温度が400〜800℃であることを特徴とする請求項
6記載の異方性磁石粉末の製造方法。
10. The method for producing anisotropic magnet powder according to claim 6, wherein a temperature during the hot working step is 400 to 800 ° C.
【請求項11】 R1xR2y(Fe100-uMu)100-x-y-
zCozなる組成式で表わされ(但し、R1はYを含む希
土類元素のうち1種またはそれ以上の元素、R2はZ
r,Hf,Scの群から選ばれる1種またはそれ以上の
元素、MはTi,Si,V,Cr,Mo,Mn,W,N
i,Ga,Cu,Al,Nb,Sn,Ag,Taの群か
ら選ばれる1種またはそれ以上の元素で、x、y、z、
uは原子%でそれぞれ2≦x、0.01≦y、4≦x+
y≦20、0≦z≦40、0≦u≦20)、さらに製造
上不可避な不純物を含む急冷合金粉末を、金属製カプセ
ル中に充填した後、熱間加工することにより構成組織中
のTbCu7型構造を有する主相結晶粒の磁化容易軸方
向を配向させて異方性を付与し、熱間加工後に前記金属
製カプセル中より内部の加工物を取り出し、該加工物を
金属製カプセルから取り出して窒素ガスまたはアンモニ
アガスあるいはそれらの混合ガス雰囲気中で300〜7
00℃の温度範囲において熱処理し、その後粉砕するこ
とを特徴とする異方性磁石粉末の製造方法。
11. R1xR2y (Fe100-uMu) 100-xy-
where R1 is one or more of the rare earth elements containing Y, and R2 is Z
one or more elements selected from the group consisting of r, Hf, Sc, and M is Ti, Si, V, Cr, Mo, Mn, W, N
one or more elements selected from the group consisting of i, Ga, Cu, Al, Nb, Sn, Ag, Ta, and x, y, z,
u is atomic%, 2 ≦ x, 0.01 ≦ y, 4 ≦ x +
y ≦ 20, 0 ≦ z ≦ 40, 0 ≦ u ≦ 20) Further, a quenched alloy powder containing impurities inevitable in production is filled in a metal capsule, and then hot worked to form TbCu7 in the structural structure. Orientation of the axis of easy magnetization of the main phase crystal grains having a mold structure to impart anisotropy, take out a work inside from the metal capsule after hot working, and take out the work from the metal capsule 300 to 7 in an atmosphere of nitrogen gas or ammonia gas or a mixed gas thereof.
A method for producing anisotropic magnet powder, which comprises heat-treating in a temperature range of 00 ° C. and then pulverizing.
【請求項12】 前記急冷合金粉末が、合金の溶融物を
液体急冷法で凝固させて得られた急冷薄帯またはその急
冷薄帯を粉砕したものである事を特徴とする請求項11
記載の異方性磁石粉末の製造方法。
12. The quenched alloy powder obtained by solidifying a melt of the alloy by a liquid quenching method or a quenched ribbon obtained by pulverizing the quenched ribbon.
A method for producing the anisotropic magnet powder described in the above.
【請求項13】 前記急冷合金粉末が、合金の溶融物を
液体急冷法で凝固させて得られた急冷薄帯またはその急
冷薄帯を粉砕したものを400〜700℃で熱処理した
ものであることを特徴とする請求項11記載の異方性磁
石粉末の製造方法。
13. The quenched alloy powder is obtained by heat-treating a quenched ribbon obtained by solidifying a molten alloy by a liquid quenching method or a crushed ribbon thereof at 400 to 700 ° C. The method for producing anisotropic magnet powder according to claim 11, wherein:
【請求項14】 前記熱間加工工程における、加工時の
歪み速度が0.1〜10s-1であることを特徴とする請
求項11記載の異方性磁石粉末の製造方法。
14. The method for producing anisotropic magnet powder according to claim 11, wherein a strain rate during the working in the hot working step is 0.1 to 10 s −1 .
【請求項15】 前記熱間加工工程における、加工時の
温度が400〜800℃であることを特徴とする請求項
11記載の異方性磁石粉末の製造方法。
15. The method for producing anisotropic magnet powder according to claim 11, wherein a temperature during the hot working step is 400 to 800 ° C.
【請求項16】 (R1xR2yFe100-x-y-zCoz)1-
vNvなる組成式で表され(但し、R1はYを含む希土
類元素のうち1種またはそれ以上の元素、R2はZr,
Hf,Scの群から選ばれる1種またはそれ以上の元
素、MはTi,Si,V,Cr,Mo,Mn,W,N
i,Ga,Cu,Al,Nb,Sn,Ag,Taの群か
ら選ばれる1種またはそれ以上の元素で、x、y、zは
原子%でそれぞれ2≦x、0.01≦y、4≦x+y≦
20、0≦z≦40、0≦z≦20、またvは原子比率
で0≦v≦0.2)、さらに製造上不可避な不純物を含
む急冷合金粉末からなり、構成組織中のTbCu7型構
造を有する主相結晶粒の磁化容易軸方向を配向させて異
方性を付与してなることを特徴とする異方性磁石粉末。
16. (R1xR2yFe100-xy-zCoz) 1-
vNv (where R1 is one or more of the rare earth elements including Y, R2 is Zr,
One or more elements selected from the group consisting of Hf and Sc, M is Ti, Si, V, Cr, Mo, Mn, W, N
i, Ga, Cu, Al, Nb, Sn, Ag, Ta, or one or more elements selected from the group consisting of ≦ x + y ≦
20, 0 ≦ z ≦ 40, 0 ≦ z ≦ 20, and v is an atomic ratio of 0 ≦ v ≦ 0.2) and a quenched alloy powder containing impurities inevitable in production, and a TbCu7 type structure in a constitutional structure. Anisotropic magnet powder characterized by imparting anisotropy by orienting the direction of easy axis of main phase crystal grains having the following.
【請求項17】 請求項1に記載された製造方法により
製造された異方性磁石粉末が樹脂で結合されてなること
を特徴とする異方性ボンド磁石。
17. An anisotropic bonded magnet, wherein the anisotropic magnet powder produced by the production method according to claim 1 is bonded with a resin.
【請求項18】 請求項6に記載された製造方法により
製造された異方性磁石粉末が樹脂で結合されてなること
を特徴とする異方性ボンド磁石。
18. An anisotropic bonded magnet, wherein the anisotropic magnet powder produced by the production method according to claim 6 is bonded with a resin.
【請求項19】 請求項11に記載された製造方法によ
り製造された異方性磁石粉末が樹脂で結合されてなるこ
とを特徴とする異方性ボンド磁石。
19. An anisotropic bonded magnet, wherein the anisotropic magnet powder produced by the production method according to claim 11 is bonded with a resin.
【請求項20】 請求項16に記載された異方性磁石粉
末が樹脂で結合されてなることを特徴とする異方性ボン
ド磁石。
20. An anisotropic bonded magnet, wherein the anisotropic magnet powder according to claim 16 is bonded with a resin.
JP8314595A 1996-11-26 1996-11-26 Manufacturing method of anisotropic magnet powder, anisotropic magnet powder and anisotropic bond magnet Withdrawn JPH10154610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8314595A JPH10154610A (en) 1996-11-26 1996-11-26 Manufacturing method of anisotropic magnet powder, anisotropic magnet powder and anisotropic bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8314595A JPH10154610A (en) 1996-11-26 1996-11-26 Manufacturing method of anisotropic magnet powder, anisotropic magnet powder and anisotropic bond magnet

Publications (1)

Publication Number Publication Date
JPH10154610A true JPH10154610A (en) 1998-06-09

Family

ID=18055196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8314595A Withdrawn JPH10154610A (en) 1996-11-26 1996-11-26 Manufacturing method of anisotropic magnet powder, anisotropic magnet powder and anisotropic bond magnet

Country Status (1)

Country Link
JP (1) JPH10154610A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004074170A1 (en) * 2003-02-20 2006-06-01 富士通株式会社 COMPOSITE MATERIAL, STRUCTURE AND MANUFACTURING METHOD THEREOF
CN100449657C (en) * 2007-03-06 2009-01-07 俞葵 A making method of NdFeB magnetic powder
JP2015156436A (en) * 2014-02-20 2015-08-27 日立金属株式会社 Ferromagnetic alloy and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004074170A1 (en) * 2003-02-20 2006-06-01 富士通株式会社 COMPOSITE MATERIAL, STRUCTURE AND MANUFACTURING METHOD THEREOF
CN100449657C (en) * 2007-03-06 2009-01-07 俞葵 A making method of NdFeB magnetic powder
JP2015156436A (en) * 2014-02-20 2015-08-27 日立金属株式会社 Ferromagnetic alloy and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP0304054B1 (en) Rare earth-iron-boron magnet powder and process of producing same
JPH0974006A (en) Magnetic material and bonded magnet
JP2596835B2 (en) Rare earth anisotropic powder and rare earth anisotropic magnet
EP0860838B1 (en) Hard magnetic alloy, hard magnetic alloy compact, and method for producing the same
JP3317646B2 (en) Manufacturing method of magnet
US5486239A (en) Method of manufacturing magnetically anisotropic R-T-B-M powder material and method of manufacturing anisotropic magnets using said powder material
JP2703281B2 (en) Magnetic anisotropic material and method of manufacturing the same
JP3488358B2 (en) Method for producing microcrystalline permanent magnet alloy and permanent magnet powder
US20010054453A1 (en) Magnetic material and manufacturing method thereof, and bonded magnet using the same
JP3219865B2 (en) Magnetic materials, permanent magnets and bonded magnets
CN111655891A (en) Permanent magnet
JPH06235051A (en) Magnetic material
JP3792737B2 (en) Magnet material and permanent magnet using the same
US20210304933A1 (en) Synthesis of high purity manganese bismuth powder and fabrication of bulk permanent magnet
Kuhrt Processing of permanent magnet materials based on rare earth-transition metal intermetallics
JP3247508B2 (en) permanent magnet
JPH10154610A (en) Manufacturing method of anisotropic magnet powder, anisotropic magnet powder and anisotropic bond magnet
KR102632582B1 (en) Manufacturing method of sintered magnet
JPH01132106A (en) Rare earth-fe-b alloy magnet powder
JP3469496B2 (en) Manufacturing method of magnet material
JPS6318602A (en) Manufacture of permanent magnet of rare earth-iron system
JP3488354B2 (en) Method for producing microcrystalline permanent magnet alloy and isotropic permanent magnet powder
JPH09263913A (en) Hard magnetic alloy compacted body and its production
JP3386552B2 (en) Magnetic material
JP2623731B2 (en) Manufacturing method of rare earth-Fe-B based anisotropic permanent magnet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040203