JPWO2021049016A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JPWO2021049016A1
JPWO2021049016A1 JP2020536821A JP2020536821A JPWO2021049016A1 JP WO2021049016 A1 JPWO2021049016 A1 JP WO2021049016A1 JP 2020536821 A JP2020536821 A JP 2020536821A JP 2020536821 A JP2020536821 A JP 2020536821A JP WO2021049016 A1 JPWO2021049016 A1 JP WO2021049016A1
Authority
JP
Japan
Prior art keywords
output terminal
terminal
ground fault
output
half bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020536821A
Other languages
English (en)
Other versions
JP7043607B2 (ja
Inventor
嗣大 宅野
嗣大 宅野
拓志 地道
拓志 地道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2021049016A1 publication Critical patent/JPWO2021049016A1/ja
Application granted granted Critical
Publication of JP7043607B2 publication Critical patent/JP7043607B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

電力変換装置の直流側で地絡した場合においても地絡を検出することができることを可能とする電力変換装置を得る。直流出力側の正側端子である第一の直流出力端子、直流出力側の負側端子である第二の直流出力端子、および直流出力側の中性端子である第三の直流出力端子を有し、一相が接地された接地相である三相交流電力を直流電力に変換して出力する交流直流変換部と、一端が前記第一の直流出力端子と接続され、他端が前記第三の直流出力端子と接続される第一のコンデンサと、一端が前記第三の直流出力端子と接続され、他端が前記第二の直流出力端子と接続される第二のコンデンサと、を備え、前記第三の直流出力端子は、前記接地相と同電位である電力変換装置。

Description

この発明は、三相交流のうち一相が接地された系統の三相交流電力を直流電力に変換する電力変換装置に関するものである。
従来、交流電力を直流電力に変換する種々の電力変換装置が提案されている。従来の電力変換装置として、整流用ダイオードを備えた整流用ブリッジ回路と整流用ダイオードの端子と接続されたコンデンサと直流電力を出力するための一対の出力端子を備えた例がある。また、この一対の出力端子と接続され、直流電力を降圧する降圧チョッパ回路を組み合わせた例がある。(例えば、特許文献1参照)。
特開2011−30329公報(第4項〜第7項、図1)
特許文献1に記載の電力変換装置においては、電力変換装置の直流側の回路が地絡した場合、直流側に地絡電流が流れる経路が無いため、地絡を検出できないという課題があった。
本発明は、上述の課題を解決するためになされたもので、電力変換装置の直流側で地絡した場合においても地絡を検出することが容易な電力変換装置を提供することを目的とする。
本発明における電力変換装置は、直流出力側の正側端子である第一の直流出力端子、直流出力側の負側端子である第二の直流出力端子、および直流出力側の中性端子である第三の直流出力端子を有し、一相が接地された接地相である三相交流電力を直流電力に変換して出力する交流直流変換部と、一端が前記第一の直流出力端子と接続され、他端が前記第三の直流出力端子と接続される第一のコンデンサと、一端が前記第三の直流出力端子と接続され、他端が前記第二の直流出力端子と接続される第二のコンデンサと、を備え、前記第三の直流出力端子は、前記接地相と同電位である。
この発明によれば、電力変換装置の直流側で地絡した場合においても地絡の検出が容易な電力変換装置を得ることができる。
本発明の実施の形態1における電力変換装置の回路図である。 本発明の実施の形態1における電力変換装置の通常時の電流経路を示す模式図である。 本発明の実施の形態1における電力変換装置の直流出力の正側で地絡が生じたときの電流経路を示す模式図である。 本発明の実施の形態1における電力変換装置の直流出力の負側で地絡が生じたときの電流経路を示す模式図である。 本発明の実施の形態2における電力変換装置の回路図である。 本発明の実施の形態2における電力変換装置の変更例を示す回路図である。 本発明の実施の形態3における交流直流変換部の回路図である。 本発明の実施の形態3における交流直流変換部の変更例を示す回路図である。 本発明の実施の形態4における電力変換装置の回路図である。 本発明の実施の形態4における電力変換装置の地絡判定部のハードウエア構成図である。 本発明の実施の形態4における電力変換装置の回路図である。 本発明の実施の形態4における電力変換装置の回路図である。 本発明の実施の形態4における電力変換装置の回路図である。 本発明の実施の形態4における電力変換装置の回路図である。 本発明の実施の形態4における電力変換装置の回路図である。 本発明の実施の形態4における電力変換装置の回路図である。 本発明の実施の形態4における電力変換装置の回路図である。 本発明の実施の形態5におけるチョッパ部の電圧波形の一例である。 本発明の実施の形態5におけるチョッパ部の電圧波形の一例である。 本発明の実施の形態5における電力変換装置の回路図である。 本発明の実施の形態5における電力変換装置の制御部のハードウエア構成を示す図である。
実施の形態1.
図1は、本発明の実施の形態1における電力変換装置の回路図である。本発明の実施の形態1における電力変換装置100は、三相交流電力と直流電力との電力変換を行う交流直流変換部1と、コンデンサ21(第一のコンデンサ)と、コンデンサ22(第二のコンデンサ)と、で構成される。
また、本発明の実施の形態1における電力変換装置100は、受電用変圧器91を介して三相交流電源90と接続されている。受電用変圧器91の巻線間の絶縁が失われた際に、変圧器巻線の低圧側と高圧側が接触し、低圧側端子に高圧側の電圧が印加されることを避けるために、低圧側の一相が接地されることが多い。
本発明の実施の形態1における電力変換装置100に接続する三相交流についても、一相が接地されたものである。なお、受電用変圧器91については周知技術であるため、その詳細な説明は省略する。また、図1以外の図において、受電用変圧器91の記載は省略する。
交流直流変換部1は、受電用変圧器91を介して得られる三相交流電源90からの三相交流電力を直流電力に変換して出力する。受電用変圧器91から交流直流変換部1に接続される三相のうち一相は接地されている(以下、接地相とよぶ)。
交流直流変換部1は、直流電力が出力される直流出力の正側端子である直流出力端子11(第一の直流出力端子)と、直流出力の負側端子である直流出力端子12(第二の直流出力端子)と、直流中性点から引き出される中性端子13(第三の直流出力端子)と、の3端子を有する。
直流中性点すなわち中性端子13は、三相交流電力の入力のうちの接地相と同電位になるように設けられる。すなわち、中性端子13は接地相と接続されている。
本発明の実施の形態1における電力変換装置100において、三相交流電力が入力される側を前段とし、三相交流電力が電力変換されて直流電力が出力される側を後段と定義する。
このときコンデンサ21およびコンデンサ22は、交流直流変換部1の後段に設けられる。コンデンサ21は、一端が直流出力端子11と接続され、他端が中性端子13と接続される。コンデンサ22は、一端が直流出力端子12と接続され、他端は中性端子13と接続される。すなわち、コンデンサ21とコンデンサ22は、中性端子13に対して直流出力の正側と直流出力の負側とに対称に接続される。
このように接続することで、急な電圧上昇や低下をすることなく、電力変動に対応することができる。したがって、直流電圧を安定化させる効果を奏する。
このような回路の場合、通常、交流直流変換部1は、直流出力の正側のコンデンサ21と直流出力の負側のコンデンサ22の電圧が等しくなるように動作が制御される。
図2は、本発明の実施の形態1における電力変換装置100の通常動作時の電流経路を示す模式図である。図2における実線および点線は電流の流れを示している。上述のとおり、交流直流変換部1は、コンデンサ21とコンデンサ22との電圧が等しくなるように動作が制御されている。通常、直流出力の正側と直流出力の負側との間の負荷10はバランスを保っている。すなわち、正側と負側の電圧は等しく、正側と負側の負荷に同じ大きさの電流を供給している。ここで、負荷10は、直流出力の正側と直流出力の負側との間に一体接続されているものとする。
図2における点線は、直流出力の正側から負荷10に供給される電流と、直流出力の負側から負荷10に供給される電流を示している。このとき、負荷10の中性点と中性端子13とを結ぶ線路(以下、直流中性線とよぶ)は、直流出力の正側から負荷10の正側を通り直流中性線に流れる負荷電流と、直流中性線から直流出力の負側へと流れる負荷電流とが流れる。上述の通り、このときの各負荷電流は等しい。
この結果、直流中性線において、直流出力の正側から負荷10の正側を通り直流中性線に流れる負荷電流と直流中性線から直流出力の負側へと流れる負荷電流とが打ち消しあい、電流はほとんど流れなくなる。すなわち、図2において実線で示したように、直流出力の正側から負荷10を通り、直流出力の負側へ戻る経路を通る負荷電流が流れる。
図3は、発明の実施の形態1における電力変換装置100の交流直流変換部1後段の直流出力の正側で地絡が生じたときの電流経路を示す模式図である。図4は、本発明の実施の形態1における電力変換装置100の交流直流変換部1より後段の直流出力の負側で地絡が生じたときの電流経路を示す模式図である。
例えば、交流直流変換部1後段の直流出力の正側で地絡が生じた場合を、図3を用いて説明する。図3における実線および一点鎖線は電流の流れを示している。
図3における実線は、直流出力の正側で地絡が生じた場合に直流出力の正側から地絡点Pおよび三相交流の接地相を通り、直流中性点を通る地絡電流の経路である。すなわち地絡点Pからアースを介して接地相と同電位とした中性端子13へ電流が還流する。
また、図3における一点鎖線は、直流出力の正側で地絡が生じた場合に直流中性点から負荷10の負側を通り、直流出力の負側を通る負荷電流の経路である。
このように、直流出力の正側で地絡が生じた場合には、負荷10を経由する経路を流れる負荷電流と、直流中性点を経由する経路を流れる地絡電流とが生じる。
次に、交流直流変換部1より後段の直流出力の負側で地絡が生じた場合を、図4を用いて説明する。図4における実線および一点鎖線は電流の流れを示している。
図4における実線は、直流中性点から三相交流の接地相を通り、地絡点Pから直流出力の負側を通る地絡電流の経路である。また、図4における一点鎖線は、直流出力の正側から負荷10の正側を通り、直流中性点を通る負荷電流の経路である。
このように、直流出力の負側で地絡が生じた場合にも、負荷10を経由する経路を流れる負荷電流と、直流中性点を経由する経路を流れる地絡電流とが生じる。
したがって、接地相と中性端子13とを同電位とする構成とすることにより、直流出力の正側または負側で地絡が発生したいずれの場合においても、接地相と直流中性端子とを経由する電流が流れる。また、直流中性線を流れる電流は打ち消されることなく、負荷10の大きさに応じた電流が流れる。
いずれの場合も通常の運転時と比べ大きな電流が流れることになる。これらの各電流を例えば電流検出部66、67、68などを用いて計測することにより地絡を検出可能である。電流検出部66、67、68は交流直流変換部1の直流出力の各出力端子11、12、13が引き出された配線に流れる電流を測定する。これにより電流検出部66、67、68は地絡時の電流を検出することができる。なお、電流検出部66、67、68の検出位置は一例であり、上述した地絡時の各電流の経路の電流を検出できるように設けられていればよい。この検出された電流値に応じて地絡の判定をすることができる。
すなわち、電力変換装置100の交流側および直流側の少なくとも一方において地絡時に流れる電流を検出することにより地絡を容易に検出することができる。なお、以上の説明は、負荷10の中性点と中性端子13を明示的に接続した場合に基づくが、負荷10の中性点が接地され、中性端子13と接続されていない場合においても、負荷10の中性点と中性端子13は同電位となるため同様である。
このように、本発明の実施の形態1は、直流中性点を三相交流の接地相と同電位とする構成により、直流の出力側で地絡した場合において、電力変換装置100の交流側または直流側で地絡を検出することが容易な電力変換装置を得ることができる。
実施の形態2.
従来、交流電圧を整流する整流器と直流電力の変換回路とで構成され、複数の出力端子をもち、必要電圧に適した電圧を供給する例がある(例えば、特開2012−95450公報(図2))。しかしながら、このような例においても直流側の回路が地絡した場合、地絡電流が流れる経路が無いため、地絡検出できないという課題があり、さらには複数の電圧出力に対応する場合には構成要素が増加する課題もあった。これらの課題を解決するための形態を本発明の実施の形態2において説明する。
図5は、本発明の実施の形態2における電力変換装置の回路図、図6は本発明の実施の形態2における電力変換装置の変更例を示す回路図である。図1と同じ符号をつけたものは、同一または対応する構成を示しており、その説明を省略する。実施の形態1とは交流直流変換部1よりも後段側の構成が相違している。実施の形態1と構成および動作の異なる部分のみを説明する。
実施の形態2の電力変換装置101は、コンデンサ21およびコンデンサ22よりも後段側にチョッパ回路3、直流フィルタリアクトル41(第一の直流フィルタリアクトル)および直流フィルタリアクトル42(第二の直流フィルタリアクトル)、直流フィルタコンデンサ51(第一の直流フィルタコンデンサ)および直流フィルタコンデンサ52(第二の直流フィルタコンデンサ)とを備えている。
チョッパ回路3は、その直流入力側に直流出力端子11と接続される第一の直流入力端子、直流出力端子12と接続される第二の直流入力端子および中性端子13と接続される第三の直流入力端子を有する。また、チョッパ回路3は、その直流出力側に直流電力を出力する正側の出力端子(第四の直流出力端子)と負側の出力端子(第五の直流出力端子)、出力中性端子(第六の直流出力端子)とを有する。チョッパ回路3は、各入力端子から入力される直流電力を電力変換して各出力端子から出力する。
チョッパ回路3は、第3の直流入力端子に対して、第1の直流入力端子側と第2の直流入力端子側に対称に接続されるハーフブリッジ301(第一のハーフブリッジ)およびハーフブリッジ302(第二のハーフブリッジ)で構成される。
ハーフブリッジ301は、直列接続された半導体スイッチ303および半導体スイッチ304により構成され、半導体スイッチ303と半導体スイッチ304との接続点からハーフブリッジ301の出力端子が引き出される。この出力端子は、チョッパ回路3の正側の出力端子である。
ハーフブリッジ302は、ハーフブリッジ301と同様に直列接続された半導体スイッチ305および半導体スイッチ306により構成される。そして、半導体スイッチ305と半導体スイッチ306との接続点からハーフブリッジ302の出力端子が引き出される。この出力端子は、チョッパ回路3の負側の出力端子である。
ハーフブリッジ301とハーフブリッジ302との接続点から出力端子が引き出される。この出力端子は、チョッパ回路3の出力中性端子である。この出力中性端子は中性端子13と接続されている。すなわち、三相交流の接地相と同電位となるように接続されている。
直流フィルタリアクトル41は、一端がハーフブリッジ301から引き出された出力端子と接続される。また、直流フィルタリアクトル42は、一端がハーフブリッジ302から引き出された出力端子と接続される。
直流フィルタコンデンサ51は、直流フィルタリアクトル41の後段に一端が接続され、他端が出力中性端子と接続される。直流フィルタコンデンサ52は、直流フィルタリアクトル42の後段に一端が接続され、他端が出力中性端子と接続される。
直流フィルタコンデンサ51および直流フィルタコンデンサ52よりも後段に引き出された電力変換装置101の各出力端子は、実施の形態1と同様に例えば負荷(図示なし)と接続される。各出力端子のうち出力中性端子は、負荷の中性点と接続される。
このような構成において、チョッパ回路3では、直流出力の正側の直流出力電圧と直流出力の負側の直流出力電圧が等しくなるように各半導体スイッチが制御される。これにより、交流側の電圧に関わらず、所望の直流電圧が出力できるという効果を奏する。
次に、図6を用いて本発明の実施の形態2における電力変換装置101の変更例を説明する。図1から図5と同じ符号をつけたものは、同一または対応する構成を示しており、その説明を省略する。
図6に示す電力変換装置101の変更例は、さらにチョッパ回路31、直流フィルタリアクトル43および直流フィルタリアクトル44、直流フィルタコンデンサ53および直流フィルタコンデンサ54、を備える。
チョッパ回路31は、上述したチョッパ回路3と同様の構成である。すなわち、ハーフブリッジ301およびハーフブリッジ302と同様の構成であるハーフブリッジ311とハーフブリッジ312で構成される。チョッパ回路3とチョッパ回路31の各直流入力端子は並列に接続される。
ハーフブリッジ311を構成する各半導体スイッチの接続点から出力端子が引き出される。この出力端子は、チョッパ回路31の正側の出力端子である。同様に、ハーフブリッジ312を構成する各半導体スイッチの接続点から出力端子が引き出される。この出力端子は、チョッパ回路31の負側の出力端子である。
ハーフブリッジ311とハーフブリッジ312との接続点から出力端子が引き出される。この出力端子は、チョッパ回路31の出力中性端子である。この出力中性端子はチョッパ回路3の出力中性端子と接続されている。すなわち、三相交流の接地相と同電位となるように接続されている。
直流フィルタリアクトル43および直流フィルタリアクトル44、直流フィルタコンデンサ53および直流フィルタコンデンサ54は、チョッパ回路31の後段に接続される。これらは直流フィルタリアクトル41および直流フィルタリアクトル42、直流フィルタコンデンサ51および直流フィルタコンデンサ52がチョッパ回路3の後段に接続されたものと同様の配置でチョッパ回路31に接続される。
また、各チョッパ回路3、31を異なる出力電圧になるように制御する。これによりチョッパ回路を追加することで異なる電圧を出力することが可能となる。すなわち、複数の電圧の直流出力を同時に得ることが可能となる。
また、直流フィルタコンデンサ53および直流フィルタコンデンサ54よりも後段に引き出された出力中性端子は、三相交流の接地相と同電位になるように接続されている。この場合における複数の出力電圧の基準電位は直流中性点となる。
したがって、実施の形態1と同様に直流出力側で地絡した場合において、交流直流変換部1の交流側または直流側で地絡を検出することが容易な電力変換装置を得ることができる効果を奏する。さらに、基準電位のそろった所望の複数の直流電圧を得ることができる効果を奏する。
なお、本発明の実施の形態2では、チョッパ回路を2組接続したが、チョッパ回路は3組以上であってもよい。また、MOSFETの記号によって半導体スイッチを表現しているが、半導体素子としてMOSFETに限られるものではなく、バイポーラトランジスタ、IGBT、JFETなど他の種類の素子であっても良い。この場合においても、上述の各効果を奏する。
実施の形態3.
図7は本発明の実施の形態3における交流直流変換部1の回路図である。図8は本発明の実施の形態3における交流直流変換部1の変更例を示す回路図である。実施の形態1および実施の形態2と構成および動作の異なる部分のみを説明する。
本発明の実施の形態3における交流直流変換部1は、図7に示すように、半導体スイッチ1001と1002で構成されるハーフブリッジ(第三のハーフブリッジ)と、半導体スイッチ1003と1004で構成されるハーフブリッジ(第四のハーフブリッジ)を用いたフルブリッジで構成される。また、フルブリッジの交流側には、系統側の高調波規制値に合わせた交流フィルタが接続される。なお、交流フィルタの構成については、各コンデンサ501、502および各リアクトル401、402で構成されるものを図示しているが周知技術であるためその詳細な説明を省略する。
本発明の実施の形態3におけるフルブリッジは一端が、直流出力端子11と接続され、他端が直流出力端子12と接続される各ハーフブリッジが並列に接続されて構成される。
フルブリッジの正側の直流端子は、交流直流変換部1の直流出力の正側にあたる。また、フルブリッジの負側の直流端子は、交流直流変換部1の直流出力の負側にあたる。そして直流中性点が三相交流の接地相と同電位になるように接続される。
半導体スイッチ1001と1002の接続点は、三相交流の接地相以外の一相と接続される。また、半導体スイッチ1003と1004の接続点は三相交流の接地相および前記一相以外の相と接続される。
このように交流直流変換部1は、各半導体スイッチを用いたフルブリッジで構成される交流直流変換回路である。これにより、交流側が電圧変動した場合でも、直流リンク電圧を一定に保つように制御可能となる効果を奏する。また、電源周波数よりも充分高い周波数でスイッチングすることで、交流側の低次高調波を抑制する効果を奏する。
図8は、上述したフルブリッジの各半導体スイッチを、各ダイオード1005,1006,1007,1008を用いて構成したものである。各ダイオードを用いてフルブリッジを構成した交流直流変換回路は、各半導体スイッチで構成するよりも安価であることや、制御系が不要となるため、コスト面で有利な効果を奏する。
すなわち、高調波を抑制したい場合においては、図7に示した交流直流変換回路を選択し、高調波を許容できる場合においては、図8に示した交流直流変換回路を選択する。これにより、本発明の実施の形態1および実施の形態2の効果に加え、本発明の実施の形態3において上述した各交流直流変換回路による効果を奏する。
さらに、実施の形態1および実施の形態2と同様に直流出力側で地絡した場合において、交流直流変換部1の交流側または直流側で地絡の検出することが容易な電力変換装置を得ることができる効果を奏する。また、所望の直流電圧を得ることができる効果を奏する。
また、本発明の実施の形態2で示すように、交流直流変換部1の直流出力の後段側にチョッパ回路3を接続した場合には、チョッパ回路3の制御によって交流入力電圧変動が直流出力に与える影響を抑制できる効果を奏する。
なお、図7および図8に示した交流フィルタは一例であり、他の形式のフィルタを用いてもよい。また、三相交流の接地された相と、直流中性点が同電位になるように接続された交流直流変換回路であれば適用可能であり、他の回路形式であっても良い。
また、MOSFETの記号によって半導体スイッチを表現しているが、半導体素子としてMOSFETに限られるものではなく、バイポーラトランジスタ、IGBT、JFETなど他の種類の素子であっても良い。これらの場合においても上述の各効果を奏する。
実施の形態4.
本発明の実施の形態1から実施の形態3で示したように、本発明の実施の形態における各電力変換装置では直流出力側で地絡した場合において、交流直流変換部1の交流側または直流側で地絡を検出することが容易となる。
地絡電流は、通常動作では想定されない大きさの電流であるため、電力変換装置や地絡電流が流れる経路の配線などに損傷を与えることがある。このため、地絡の有無を判断する必要がある。さらには、地絡を検出した後、適切に地絡電流を遮断する必要がある。
本発明の実施の形態4においては、地絡の検出が可能な電力変換装置を説明する。図9は、本発明の実施の形態4における電力変換装置の回路図である。図1から図8と同じ符号をつけたものは、同一または対応する構成を示しており、その説明を省略する。
図9を用いて地絡電流を検出する例を説明する。図9から図16は、本発明の実施の形態における交流直流変換部1の交流側または直流側の少なくともいずれかの電流を検出する地絡判定手段60を有している。
図9は電力変換装置102の交流側で地絡の検出を行う例を示す図である。図9における地絡判定手段60は、電流検出部61と地絡判定部70とを有する。
電流検出部61は、交流直流変換部1の交流側に設けられる。具体的には、接地相が接地されている箇所と交流直流変換部1との間に設けられる。そして、この間の三相電流を一括して測定する。
地絡判定部70は、電流検出部61で検出された検出電流値に基づいて地絡の有無を判定する。
交流直流変換部1の交流側は、通常運転時に三相平衡状態もしくは三相平衡に近い状態にある。このとき交流側の三相電流の和は0もしくは非常に小さな値となる。一方で、地絡時には、各相の電流にアンバランスが発生する。地絡の発生は、その各相の電流のアンバランスを測定することで検知が可能となる。そこで電流検出部61は、三相交流電流の零相成分を測定することにより各相の電流のアンバランスを測定する。
そして、地絡判定部70は、電流検出部61によって検出された零相成分が予め決められた大きさを超過した場合に、地絡が発生したと判定する。したがって、交流直流変換部1の交流側で地絡を検出することが可能となる。
図10は、図9の地絡判定部70のハードウエア構成図である。図10において地絡判定部70はプロセッサ33と、記憶部34を有する。プロセッサ33は、記憶部34に記憶されたプログラムを実行することにより、上述の地絡判定部70の処理を行う。ここで、記憶部34は、判定に必要なパラメータ、上記の処理を記述したプログラムなどが記憶されたメモリにより構成される。プロセッサ33は、マイコン(マイクロコンピュータ)やDSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)などのハードウエア回路に論理構成されたプロセッサにより構成される。また、複数のプロセッサ33および複数の記憶部34が連携して上記機能を実行してもよい。以下で説明する地絡判定部70についても同様である。
次に、図11に示す、電力変換装置102の交流側で地絡の検出を行う例を説明する。図11における地絡判定手段60は、各電流検出部62、63、64と地絡判定部70とを有する。
各電流検出部62、63、64は、接地相が接地されている箇所と交流直流変換部1との間に設けられる。各電流検出部62、63、64はそれぞれ異なった相の電流を検出する。
各電流検出部62、63、64で個別に測定された測定値の総和をとることにより零相成分すなわち零相電流を求めることができる。
そして、地絡判定部70は、電流検出部62、63、64によって検出された電流検出値から算出された零相電流が予め決められた大きさを超過した場合に、地絡が発生したと判定する。したがって、交流直流変換部1の交流側で地絡を検出することが可能となる。
次に、図12に示す、電力変換装置102の交流側で地絡の検出を行う例を説明する。
図12における地絡判定手段60は、電流検出部63と地絡判定部70を有する。これは、図11に示す構成から、電流検出部62および64を省略したものである。
電流検出部63は、接地相が接地されている箇所と交流直流変換部1との間の接地相に設けられる。接地相には、通常運転時に電流は流れないが、地絡が発生すると、地絡電流が流れる。電流検出部63で接地相の電流を測定することにより、地絡電流の検出が可能となる。
そして、地絡判定部70は、電流検出部63によって検出された電流検出値が予め決められた大きさを超過した場合に、地絡が発生したと判定する。したがって、交流直流変換部1の交流側で地絡を検出することが可能となる。
次に、図13に示す、電力変換装置102の交流側で地絡の検出を行う例を説明する。図13における地絡判定手段60は、三相交流の接地相を接地している線路の電流を検出する電流検出部65と地絡判定部70とを有する。
三相交流の接地相を接地している線路は、通常運転時に電流は流れないが、地絡が発生すると、地絡電流が流れる。電流検出部65は、この三相交流の接地相を接地する線路に流れる地絡電流を測定するものである。
そして、地絡判定部70は、電流検出部65によって検出された電流検出値が予め決められた値よりも大きい場合に地絡が発生したと判定する。これにより、交流直流変換部1の交流側で地絡を検出することが可能となる。
次に、図14に示す、電力変換装置102の直流側で地絡の検出を行う例を説明する。図14における地絡判定手段60は、電流検出部66、67と地絡判定部70を有する。
具体的には、電流検出部66は、コンデンサ21の後段に設けられ、交流直流変換部1の直流出力の正側の線路に流れる電流を検出する。電流検出部67は、コンデンサ22の後段に設けられ、交流直流変換部1の直流出力の負側の線路に流れる電流を検出する。
また、電流検出部66は、直流出力側に各直流フィルタリアクトルおよび各直流コンデンサが設けられている場合には、各直流フィルタリアクトルと各直流フィルタコンデンサの後段に設けられる。電流検出部67は、直流出力側に各直流フィルタリアクトルおよび各直流コンデンサが設けられている場合には、各直流フィルタリアクトルと各直流フィルタコンデンサの後段に設けられる。
交流直流変換部1の直流出力の正側の線路に流れる電流値と直流出力の負側の線路に流れる電流値は、通常運転時は同等になる。すなわち、直流中性線に流れる電流は0もしくは非常に小さい値となる。一方で地絡が発生すると、直流出力の正側と直流出力の負側の線路に流れる電流値は異なり、直流中性線に地絡電流が流れる。
したがって、地絡判定部70は、地絡発生時に直流出力の正側と負側との電流値は異なることを利用し、電流検出部66および電流検出部67で測定された各電流検出値を用いて地絡を判定することができる。
地絡の判定方法として、例えば各電流検出値の差分を用いる方法がある。各電流検出値の差分を求め、この差分が大きくなったときに地絡を検出できる。具体的には、地絡が発生した際の差分の基準値を予め設けており、この基準値と検出した差分の値とを比較し、基準値よりも差分の値が大きくなったときに地絡したと判定するようにする。または、通常時の各電流検出値の差分の値を基準値とし、これと各電流検出値との差分の値を比較し、通常時の基準値からの増加に基づいて判定してもよい。
また、別の判定方法として、各電流検出値を足し合わせた値を用いる方法がある。この場合は、通常運転時には足し合わせた値がほぼ0となり、地絡時はそれと比較して大きな値となることを利用する。すなわち、各電流検出値を足し合わせた値が、予め設けた基準値より大きくなったときに、地絡したと判定する。これらのように、各電流検出値を用いた値と予め決められた基準値との比較により地絡を検出することができる。
次に、図15に示す電力変換装置102の直流側で地絡の検出を行う例を説明する。図15における地絡判定手段60は、電流検出部68と地絡判定部70を有する。電流検出部68は、直流中性線に設けられ、直流中性線の電流を検出する。
本発明の実施の形態1でも説明したように、直流中性線には、通常運転時に電流がほとんど流れない。
一方で、地絡時には、直流中性線に地絡電流が流れる。すなわち、電流検出部68で検出された直流中性線の電流検出値を用いて地絡を検出することが可能となる。
したがって、電流検出部68の電流検出値と予め決められた基準値との比較により地絡を検出することができる。また、電流検出部68の電流検出値の増加により地絡を検出することができる。
次に、図16に示す電力変換装置102の直流側で地絡の検出を行う例を説明する。図16における地絡判定手段60は、電流検出部69と地絡判定部70を有する。この電流検出部69は、交流直流変換部1の直流出力の正側と直流出力の負側を一括して測定するものであり、直流中性線の電流を測定しないように設置する。
通常運転時に、直流電流を一括して検出すると、正側を流れる電流と負側を流れる電流が打ち消しあい、ほとんど電流は検出されない。一方で、地絡が発生すると、直流出力の正側の電流と直流出力の負側の電流が打ち消されないため、通常運転時と比較して大きな電流が流れる。これを利用することで地絡を検出することが可能となる。
すなわち、電流検出部69の電流検出値と予め決められた基準値との比較により地絡が発生したことを判定できる。
したがって、各電力変換装置の直流側で地絡した場合において、交流直流変換部1の交流側または直流側で地絡の検出が可能となる効果を奏する。
なお、図9から図16において、地絡判定部70は、地絡を判定したら地絡電流を遮断するように電力変換装置102の動作を停止するような制御を行ってもよい。
例えば、チョッパ回路3やチョッパ回路31を有する各電力変換装置において地絡検出した際には、各チョッパ回路3、31の前記半導体スイッチのスイッチングを停止するようにすることで地絡電流を遮断することが可能となる。これにより地絡電流による各電力変換装置や経路の配線などへの損傷を防止することができる効果を奏する。
また、図9から図16で地絡判定手段60を有する電力変換装置102を説明したが、図17に示すように、電力変換装置102は遮断器80を有する構成としてもよい。遮断器80には、例えば、MCCB(Molded Case Circuit Breaker)や漏電遮断器などが用いられる。この場合、各電流検出部によって検出された電流値に応じて、上述した各方法によって地絡を判定し、地絡を検出した後、遮断器80をオフにすることで地絡電流を遮断することができる。
すなわち、遮断器80と組み合わせることで地絡判定手段60の検出電流値を利用し、地絡電流を遮断することを可能とする効果を奏する。
上述の各電流検出部は、例えば、CT(Current Transformer)を用いるが、例えば、遮断器80としてMCCBや漏電遮断器等を用いる場合、各電流検出部および地絡判定部70は遮断器80に内蔵していても良い。この場合、遮断器80外の地絡判定部70は、補助接点などによって遮断器80の動作を検出することで、地絡を検出しても良い。
したがって、本実施の形態によれば、直流側で地絡した場合において、交流直流変換部1の交流側または直流側で地絡の検出が容易となる効果を奏する。また、各電流検出部の電流測定値と、地絡判定部70または遮断器80とを用いることにより、地絡を検出した後、地絡電流を遮断することができる効果を奏する。さらに、地絡電流による各電力変換装置や経路の配線などの損傷を防止することができる効果を奏する。
なお、本実施の形態4において、各電流検出部を設けた各例を示したが、交流側または直流側のいずれかに図9から図16のいずれかの電流検出部があればよく、図9から図16に示した各電流検出部は組み合わせて用いてもよい。この場合においても、上述した効果を奏する。
また、電流検出部の電流検出値に基づいて地絡電流を遮断できるものであれば、上述した遮断器80以外でも適用可能である。
実施の形態5.
本発明の実施の形態2において、チョッパ回路3を備えた電力変換装置101について図5および図6を用いて説明した。本発明の実施の形態5においては、チョッパ回路3の各ハーフブリッジのスイッチングタイミングの制御について説明する。
図18は、本発明の実施の形態5におけるチョッパ回路の各ハーフブリッジのスイッチタイミングが同一のときの電圧波形を示したものである。図19は、本発明の実施の形態5におけるチョッパ回路の各ハーフブリッジのスイッチタイミングが同一のときおよび異なるときの各電圧波形を示したものである。
スイッチング型の変換器では、一般的に半導体スイッチのスイッチングに伴って、コモンモード電圧が発生することが知られている。このコモンモード電圧は、変換器と基準電位間の浮遊容量などに印加されることでコモンモード電流となる。コモンモード電流は、通常動作時の電流に対してノイズ成分であるコモンモードノイズや、損失増加の原因となる。このため、コモンモード電圧の発生を抑制することが望ましい。
本発明の実施の形態におけるチョッパ回路3の回路は、直流中性線に対して、直流の出力正側と負側に対称に各ハーフブリッジ301、302が接続されている。このような回路形式においては、直流出力の正側のハーフブリッジ301のスイッチングタイミングと直流出力の負側のハーフブリッジ302のスイッチングタイミングとを揃えることにより、コモンモード電圧の発生を抑制することができる。
図18を用いて詳細に説明する。図18上段の各横軸は時間tを示している。図18上段に示す正側ハーフブリッジ出力電圧は、直流中性点電位を基準に取った、図5に示した直流フィルタコンデンサ51の両端にかかる電圧を示している。また、図18上段に示す負側ハーフブリッジ出力電圧は、直流中性点電位を基準に取った、図5に示した直流フィルタコンデンサ52の両端にかかる電圧を示している。
コモンモード電圧は正側ハーフブリッジ出力電圧と負側ハーフブリッジ出力電圧の和である。すなわち、直流フィルタコンデンサ51の両端にかかる電圧と直流フィルタコンデンサ52の両端にかかる電圧との和である。
図18の上段は、各直流フィルタコンデンサ51、52と各直流フィルタリアクトル41、42によって構成されるLCフィルタが設けられている場合の各電圧を示している。
一方、図18下段は、回路動作をよりわかりやすくするため、各直流フィルタリアクトル41、42と各直流フィルタコンデンサ51、52から構成されるLCフィルタを接続していない場合の正側ハーフブリッジ出力電圧、負側ハーフブリッジ出力電圧およびコモンモード電圧を示したものである。
図18下段における横軸は時間tを示している。図18下段に示した正側ハーフブリッジ出力電圧および負側ハーフブリッジ出力電圧は、各ハーフブリッジ301、302を構成する各半導体スイッチ間の接続部と直流中性線間の各電圧である。この場合のコモンモード電圧も正側ハーフブリッジ出力電圧と負側ハーフブリッジ出力電圧との和である。
上述したように、直流出力の正側出力電圧と直流出力の負側の出力電圧は等しくなるように電力変換装置は制御される。また、正側のコンデンサ21にかかる電圧と、負側のコンデンサ22にかかる電圧も同様に等しくなるように制御される。
したがって、通常動作時に各ハーフブリッジ301、302がスイッチングした時の正側ハーフブリッジ出力電圧と負側ハーフブリッジ出力電圧の大きさは等しくなる。また、正側ハーフブリッジ出力電圧は、直流中性点電位に対して正の電圧になり、負側ハーフブリッジ出力電圧は直流中性点電位に対して負の電圧になる。このため、正側ハーフブリッジと負側ハーフブリッジがスイッチングするタイミングが揃っていれば、正側ハーフブリッジ出力電圧と負側ハーフブリッジ出力電圧の和で表されるコモンモード電圧は0となる。
図18上段に示すように、LCフィルタを接続した場合においても、正側と負側でそれぞれ等しいインダクタンスの直流フィルタリアクトルと、それぞれ等しいキャパシタンスの直流フィルタコンデンサを用いることで、正側直流出力電圧のリプル電圧と負側直流出力電圧のリプル電圧が逆極性で等しい大きさとなる。したがって、コモンモード電圧は0となる。
正側ハーフブリッジと負側ハーフブリッジのスイッチングタイミングを揃えるためには、例えば、周波数と位相が揃い、極性が逆転したキャリア信号を使用し、正側ハーフブリッジ出力電圧と負側ハーフブリッジ出力電圧のそれぞれの指令値を用いてキャリア比較し、半導体スイッチのゲート信号を生成する方法が考えられる。また、1つのキャリア信号に対して、正側ハーフブリッジ出力電圧指令値と極性を反転させた負側ハーフブリッジ出力電圧指令値を用いてキャリア比較し、各半導体スイッチのゲート信号を生成する方法などが考えられる。
上述のように各ハーフブリッジ301、302の制御を行うことにより、コモンモード電圧を抑制することができ、ノイズの低減や損失増加を抑制することが可能となる効果を奏する。
一方で、リプル電圧の観点から考えると、スイッチングタイミングを揃えた場合の直流出力電圧のリプル電圧に対して、スイッチングタイミングを揃えない場合の直流出力電圧のリプル電圧の方が抑制される。
図19を用いて詳細に説明する。図19の各横軸は時間tを示している。図19の上から順に正側ハーフブリッジ出力電圧、負側ハーフブリッジ出力電圧、正側直流出力電圧と負側直流出力電圧の差電圧である出力電圧をそれぞれ示している。
図19中の実線は、正側ハーフブリッジと負側ハーフブリッジとのスイッチタイミングが同一のときの出力電圧値をそれぞれ示したものである。一方、図19中の点線は、正側ハーフブリッジと負側ハーフブリッジとのスイッチタイミングが異なる場合の出力電圧値をそれぞれ示したものである。
負荷に供給される直流電圧は、正側の直流出力電圧と負側の直流出力電圧の差電圧になる。このため、各ハーフブリッジ301、302のスイッチングタイミングが揃い、それぞれの電圧がピークに至るタイミングが揃うときに、直流電圧のリプルが最大になることがわかる。リプル電圧が大きくなると、直流出力電圧の電圧変動を所望の値に抑えるために必要な直流フィルタコンデンサの容量が増加し、コストやサイズ増加の要因となってしまう。
一方で、スイッチングタイミングを揃えない場合、正側の直流出力電圧がピークに至るタイミングと負側の直流出力電圧がピークに至るタイミングがずれることが図19中からもわかる。これにより、直流出力電圧のリプル電圧ピーク値が抑制される。
スイッチタイミングをずらすことは、正側ハーフブリッジに与えるキャリア信号の位相と負側ハーフブリッジに与えるキャリア信号の位相をずらすことでできる。上述の通り、スイッチタイミングを異ならせる制御を行うことにより、直流出力電圧のリプル電圧ピーク値を抑制することが可能となる効果を奏する。
上述の制御は、例えば、図20に示すような制御部32によって実現される。図21は、図20の制御部のハードウエア構成図である。図21において、制御部32はプロセッサ33と、記憶部34を有する。プロセッサ33は、記憶部34に記憶されたプログラムを実行することにより、上述の制御部32の処理を行う。ここで、記憶部34は、制御に必要なパラメータ、上記の処理を記述したプログラムなどが記憶されたメモリにより構成される。プロセッサ33は、マイコン(マイクロコンピュータ)やDSP(Digital Signal Processor)、FPGAなどにより構成される。また、複数のプロセッサ33および複数の記憶部34が連携して上記機能を実行してもよい。
以上のように、実施の形態1から実施の形態4と同様に直流出力側で地絡した場合において、交流直流変換部1の交流側または直流側で地絡の検出が容易な電力変換装置を得ることができる検出させることができる効果を奏する。また、チョッパ回路におけるハーフブリッジのスイッチングのタイミングを制御することにより、ノイズの低減やリプルの低減可能な効果を奏する。
1 交流直流変換部、21、22 コンデンサ、3、31 チョッパ回路、32 制御部、33 プロセッサ、34 記憶部、301、302、311、312 ハーフブリッジ、303、304、305、306、1001,1002、1003、1004 半導体スイッチ、10 負荷、11、12 直流出力端子、13 中性端子、41、42、43、44 直流フィルタリアクトル、401、402 リアクトル、51、52、53、54 直流フィルタコンデンサ、501、502 コンデンサ、60 地絡判定手段、61、62、63、64、65、66、67、68、69 電流検出部、70 地絡判定部、80 遮断器、90 三相交流電源、91 受電用変圧器、1005、1006、1007、1008 ダイオード
本発明における電力変換装置は、直流出力側の正側端子である第一の直流出力端子、直流出力側の負側端子である第二の直流出力端子、および直流出力側の中性端子である第三の直流出力端子を有し、一相が接地された接地相である三相交流電力を直流電力に変換して出力する交流直流変換部と、一端が第一の直流出力端子と接続され、他端が第三の直流出力端子と接続される第一のコンデンサと、一端が第三の直流出力端子と接続され、他端が第二の直流出力端子と接続される第二のコンデンサと、第一の直流出力端子と接続される第一の直流入力端子、第二の直流出力端子と接続される第二の直流入力端子、および第三の直流出力端子と接続される第三の直流入力端子、正側端子である第四の直流出力端子、負側端子である第五の直流出力端子、および中性端子である第六の直流出力端子を有し、第一から第三の直流入力端子から入力された直流電力を電力変換して出力するチョッパ回路と、一端が第四の直流出力端子と接続される第一の直流フィルタリアクトルと、一端が第五の直流出力端子と接続される第二の直流フィルタリアクトルと、一端が第一の直流フィルタリアクトルの他端と接続され、他端が第六の直流出力端子に接続される第一の直流フィルタコンデンサと、一端が第六の直流出力端子と接続され、他端が第二の直流フィルタリアクトルの他端と接続される第二の直流フィルタコンデンサと、を備え、チョッパ回路は、複数の半導体スイッチを有し、一端が第一の直流入力端子と接続され、他端が第三の直流入力端子と接続される第一のハーフブリッジと、複数の半導体スイッチを有し、一端が第三の直流入力端子と接続され、他端が第二の直流入力端子と接続される第二のハーフブリッジと、を有し、第四の直流出力端子は、第一のハーフブリッジを構成する複数の半導体スイッチの接続点から引き出され、第五の直流出力端子は、第二のハーフブリッジを構成する複数の半導体スイッチの接続点から引き出され、第三の直流出力端子および第六の直流出力端子は、接地相と同電位である。
本発明における電力変換装置は、直流出力側の正側端子である第一の直流出力端子、直流出力側の負側端子である第二の直流出力端子、および直流出力側の中性端子である第三の直流出力端子を有し、一相が接地された接地相である三相交流電力を直流電力に変換して出力する交流直流変換部と、一端が第一の直流出力端子と接続され、他端が第三の直流出力端子と接続される第一のコンデンサと、一端が第三の直流出力端子と接続され、他端が第二の直流出力端子と接続される第二のコンデンサと、第一の直流出力端子と接続される第一の直流入力端子、第二の直流出力端子と接続される第二の直流入力端子、および第三の直流出力端子と接続される第三の直流入力端子、正側端子である第四の直流出力端子、負側端子である第五の直流出力端子、および中性端子である第六の直流出力端子を有し、第一から第三の直流入力端子から入力された直流電力を電力変換して出力するチョッパ回路と、一端が第四の直流出力端子と接続される第一の直流フィルタリアクトルと、一端が第五の直流出力端子と接続される第二の直流フィルタリアクトルと、一端が第一の直流フィルタリアクトルの他端と接続され、他端が第六の直流出力端子に接続される第一の直流フィルタコンデンサと、一端が第六の直流出力端子と接続され、他端が第二の直流フィルタリアクトルの他端と接続される第二の直流フィルタコンデンサと、を備え、チョッパ回路は、複数の半導体スイッチを有し、一端が第一の直流入力端子と接続され、他端が第三の直流入力端子と接続される第一のハーフブリッジと、複数の半導体スイッチを有し、一端が第三の直流入力端子と接続され、他端が第二の直流入力端子と接続される第二のハーフブリッジと、を有し、第四の直流出力端子は、第一のハーフブリッジを構成する複数の半導体スイッチの接続点から引き出され、第五の直流出力端子は、第二のハーフブリッジを構成する複数の半導体スイッチの接続点から引き出され、第三の直流出力端子および第六の直流出力端子、接地相と同電位であり、第六の直流出力端子に対する第四の直流出力端子の電圧と、第六の直流出力端子に対する第五の直流出力端子の電圧と、が互いに等しくなるようにチョッパ回路の動作が制御されるものである。
また、直流出力側の正側端子である第一の直流出力端子、直流出力側の負側端子である第二の直流出力端子、および直流出力側の中性端子である第三の直流出力端子を有し、一相が接地された接地相である三相交流電力を直流電力に変換して出力する交流直流変換部と、一端が第一の直流出力端子と接続され、他端が第三の直流出力端子と接続される第一のコンデンサと、一端が第三の直流出力端子と接続され、他端が第二の直流出力端子と接続される第二のコンデンサと、第一の直流出力端子と接続される第一の直流入力端子、第二の直流出力端子と接続される第二の直流入力端子、および第三の直流出力端子と接続される第三の直流入力端子、正側端子である第四の直流出力端子、負側端子である第五の直流出力端子、および中性端子である第六の直流出力端子を有し、第一から第三の直流入力端子から入力された直流電力を電力変換して出力するチョッパ回路と、一端が第四の直流出力端子と接続される第一の直流フィルタリアクトルと、一端が第五の直流出力端子と接続される第二の直流フィルタリアクトルと、一端が第一の直流フィルタリアクトルの他端と接続され、他端が第六の直流出力端子に接続される第一の直流フィルタコンデンサと、一端が第六の直流出力端子と接続され、他端が第二の直流フィルタリアクトルの他端と接続される第二の直流フィルタコンデンサと、を備え、チョッパ回路は、複数の半導体スイッチを有し、一端が第一の直流入力端子と接続され、他端が第三の直流入力端子と接続される第一のハーフブリッジと、複数の半導体スイッチを有し、一端が第三の直流入力端子と接続され、他端が第二の直流入力端子と接続される第二のハーフブリッジと、を有し、第四の直流出力端子は、第一のハーフブリッジを構成する複数の半導体スイッチの接続点から引き出され、第五の直流出力端子は、第二のハーフブリッジを構成する複数の半導体スイッチの接続点から引き出され、第三の直流出力端子および第六の直流出力端子は、接地相と同電位であり、第一のハーフブリッジと第二のハーフブリッジとは、第一の直流出力端子と第二の出力端子との間に直列に接続されるものである。
本発明における電力変換装置は、直流出力側の正側端子である第一の直流出力端子、直流出力側の負側端子である第二の直流出力端子、および直流出力側の中性端子である第三の直流出力端子を有し、一相が接地された接地相である三相交流電力を直流電力に変換して出力する交流直流変換部と、一端が第一の直流出力端子と接続され、他端が第三の直流出力端子と接続される第一のコンデンサと、一端が第三の直流出力端子と接続され、他端が第二の直流出力端子と接続される第二のコンデンサと、第一の直流出力端子と接続される第一の直流入力端子、第二の直流出力端子と接続される第二の直流入力端子、および第三の直流出力端子と接続される第三の直流入力端子、正側端子である第四の直流出力端子、負側端子である第五の直流出力端子、および中性端子である第六の直流出力端子を有し、第一から第三の直流入力端子から入力された直流電力を電力変換して出力するチョッパ回路と、一端が第四の直流出力端子と接続される第一の直流フィルタリアクトルと、一端が第五の直流出力端子と接続される第二の直流フィルタリアクトルと、一端が第一の直流フィルタリアクトルの他端と接続され、他端が第六の直流出力端子に接続される第一の直流フィルタコンデンサと、一端が第六の直流出力端子と接続され、他端が第二の直流フィルタリアクトルの他端と接続される第二の直流フィルタコンデンサと、交流直流変換部の直流側における地絡を検出する地絡判定手段と、を備え、チョッパ回路は、複数の半導体スイッチを有し、一端が第一の直流入力端子と接続され、他端が第三の直流入力端子と接続される第一のハーフブリッジと、複数の半導体スイッチを有し、一端が第三の直流入力端子と接続され、他端が第二の直流入力端子と接続される第二のハーフブリッジと、を有し、第四の直流出力端子は、第一のハーフブリッジを構成する複数の半導体スイッチの接続点から引き出され、第五の直流出力端子は、第二のハーフブリッジを構成する複数の半導体スイッチの接続点から引き出され、第三の直流出力端子および第六の直流出力端子は、接地相と同電位であり、第六の直流出力端子に対する第四の直流出力端子の電圧と、第六の直流出力端子に対する第五の直流出力端子の電圧と、が互いに等しくなるようにチョッパ回路の動作が制御され、地絡判定手段は、交流直流変換部の直流側または交流側の少なくともいずれか一方で電流を検出する電流検出部と、電流検出部で検出された検出電流値に基づいて地絡を判定する地絡判定部と、を有し、電流検出部は接地相を流れる電流または、接地相を接地している線路の電流の少なくとも一方を検出し、地絡判定部は、電流検出部により検出された検出電流値が予め定められた値を超過したときに地絡したと判定する
本発明における電力変換装置は、、直流出力側の正側端子である第一の直流出力端子、直流出力側の負側端子である第二の直流出力端子、および直流出力側の中性端子である第三の直流出力端子を有し、一相が接地された接地相である三相交流電力を直流電力に変換して出力する交流直流変換部と、一端が第一の直流出力端子と接続され、他端が第三の直流出力端子と接続される第一のコンデンサと、一端が第三の直流出力端子と接続され、他端が第二の直流出力端子と接続される第二のコンデンサと、第一の直流出力端子と接続される第一の直流入力端子、第二の直流出力端子と接続される第二の直流入力端子、および第三の直流出力端子と接続される第三の直流入力端子、正側端子である第四の直流出力端子、負側端子である第五の直流出力端子、および中性端子である第六の直流出力端子を有し、第一から第三の直流入力端子から入力された直流電力を電力変換して出力するチョッパ回路と、一端が第四の直流出力端子と接続される第一の直流フィルタリアクトルと、一端が第五の直流出力端子と接続される第二の直流フィルタリアクトルと、一端が第一の直流フィルタリアクトルの他端と接続され、他端が第六の直流出力端子に接続される第一の直流フィルタコンデンサと、一端が第六の直流出力端子と接続され、他端が第二の直流フィルタリアクトルの他端と接続される第二の直流フィルタコンデンサと、交流直流変換部の直流側における地絡を検出する地絡判定手段と、を備え、チョッパ回路は、複数の半導体スイッチを有し、一端が第一の直流入力端子と接続され、他端が第三の直流入力端子と接続される第一のハーフブリッジと、複数の半導体スイッチを有し、一端が第三の直流入力端子と接続され、他端が第二の直流入力端子と接続される第二のハーフブリッジと、を有し、第四の直流出力端子は、第一のハーフブリッジを構成する複数の半導体スイッチの接続点から引き出され、第五の直流出力端子は、第二のハーフブリッジを構成する複数の半導体スイッチの接続点から引き出され、第三の直流出力端子および第六の直流出力端子は、接地相と同電位であり、第一のハーフブリッジと第二のハーフブリッジとは、第一の直流出力端子と第二の出力端子との間に直列に接続され、地絡判定手段は、交流直流変換部の直流側または交流側の少なくともいずれか一方で電流を検出する電流検出部と、電流検出部で検出された検出電流値に基づいて地絡を判定する地絡判定部と、を有し、電流検出部は接地相を流れる電流または、接地相を接地している線路の電流の少なくとも一方を検出し、地絡判定部は、電流検出部により検出された検出電流値が予め定められた値を超過したときに地絡したと判定する
本発明における電力変換装置は、直流出力側の正側端子である第一の直流出力端子、直流出力側の負側端子である第二の直流出力端子、および直流出力側の中性端子である第三の直流出力端子を有し、一相が接地された接地相である三相交流電力を直流電力に変換して出力する交流直流変換部と、一端が第一の直流出力端子と接続され、他端が第三の直流出力端子と接続される第一のコンデンサと、一端が第三の直流出力端子と接続され、他端が第二の直流出力端子と接続される第二のコンデンサと、交流直流変換部の直流側における地絡を検出する地絡判定手段と、を備え、第三の直流出力端子は、接地相と同電位であり、地絡判定手段は、接地相を流れる電流または、接地相を接地している線路の電流の少なくとも一方を検出する電流検出部と、電流検出部により検出された検出電流値が予め定められた値を超過したときに地絡したと判定する地絡判定部と、を有する。
本発明における電力変換装置は、直流出力側の正側端子である第一の直流出力端子、直流出力側の負側端子である第二の直流出力端子、および直流出力側の中性端子である第三の直流出力端子を有し、一相が接地された接地相である三相交流電力を直流電力に変換して出力する交流直流変換部と、一端が第一の直流出力端子と接続され、他端が第三の直流出力端子と接続される第一のコンデンサと、一端が第三の直流出力端子と接続され、他端が第二の直流出力端子と接続される第二のコンデンサと、交流直流変換部の直流側における地絡を検出する地絡判定手段と、を備え、第三の直流出力端子は、接地相と同電位であり、地絡判定手段は、第一の直流出力端子を流れる電流および、第二の直流出力端子を流れる電流を検出する電流検出部と、電流検出部により検出された第一の直流出力端子を流れる電流と第二の直流出力端子を流れる電流に基づいて地絡を判定する地絡判定部と、を有する。

Claims (15)

  1. 直流出力側の正側端子である第一の直流出力端子、直流出力側の負側端子である第二の直流出力端子、および直流出力側の中性端子である第三の直流出力端子を有し、一相が接地された接地相である三相交流電力を直流電力に変換して出力する交流直流変換部と、
    一端が前記第一の直流出力端子と接続され、他端が前記第三の直流出力端子と接続される第一のコンデンサと、
    一端が前記第三の直流出力端子と接続され、他端が前記第二の直流出力端子と接続される第二のコンデンサと、
    を備え、
    前記第三の直流出力端子は、前記接地相と同電位である電力変換装置。
  2. 前記第一の直流出力端子と接続される第一の直流入力端子、前記第二の直流出力端子と接続される第二の直流入力端子、および前記第三の直流出力端子と接続される第三の直流入力端子を有し、正側端子である第四の直流出力端子、負側端子である第五の直流出力端子、および中性端子である第六の直流出力端子を有し、前記第一から第三の直流入力端子から入力された直流電力を電力変換して出力するチョッパ回路と、
    一端が前記第四の直流出力端子と接続される第一の直流フィルタリアクトルと、
    一端が前記第五の直流出力端子と接続される第二の直流フィルタリアクトルと、
    一端が前記第一の直流フィルタリアクトルの他端と接続され、他端が前記第六の直流出力端子に接続される第一の直流フィルタコンデンサと、
    一端が前記第六の直流出力端子と接続され、他端が前記第二の直流フィルタリアクトルの他端と接続される第二の直流フィルタコンデンサと、
    を備え、
    前記第六の直流出力端子は、前記接地相と同電位である請求項1に記載の電力変換装置。
  3. 前記チョッパ回路は、
    複数の半導体スイッチを有し、一端が前記第一の直流入力端子と接続され、他端が前記第三の直流入力端子と接続される第一のハーフブリッジと、
    複数の半導体スイッチで構成され、一端が前記第三の直流入力端子と接続され、他端が前記第二の直流入力端子と接続される第二のハーフブリッジと、
    を有し、
    前記第四の直流出力端子は、前記第一のハーフブリッジを構成する前記複数の半導体スイッチの接続点から引き出され、
    前記第五の直流出力端子は、前記第二のハーフブリッジを構成する前記複数の半導体スイッチの接続点から引き出される請求項2に記載の電力変換装置。
  4. 前記チョッパ回路を制御する制御部を有し、
    前記制御部は、前記第一のハーフブリッジと前記第二のハーフブリッジのスイッチタイミングが揃うように制御する請求項3に記載の電力変換装置。
  5. 前記チョッパ回路を制御する制御部を有し、
    前記制御部は、前記第一のハーフブリッジと前記第二のハーフブリッジのスイッチタイミングをずらして制御する請求項3に記載の電力変換装置。
  6. 前記チョッパ回路を制御する制御部を有し、
    前記制御部は、地絡が発生したときに、前記チョッパ回路のスイッチングを停止する制御を行う、請求項3から請求項5のいずれか1項に記載の電力変換装置。
  7. 前記チョッパ回路と、前記第一および第二の直流フィルタリアクトルと、前記第一および第二の直流フィルタコンデンサと、をそれぞれ複数有し、複数の前記チョッパ回路の各直流入力端子は並列に接続され、
    複数の前記チョッパ回路の各第六の直流出力端子が互いに接続される請求項2から請求項6のいずれか1項に記載の電力変換装置。
  8. 前記交流直流変換部の直流側における地絡を検出する地絡判定手段を有し、
    前記地絡判定手段は、前記交流直流変換部の直流側または交流側の少なくともいずれか一方で電流を検出する電流検出部と、
    前記電流検出部で検出された検出電流値に基づいて地絡を判定する地絡判定部と、
    を有する請求項1から請求項7のいずれか1項に記載の電力変換装置。
  9. 前記電流検出部は前記接地相を流れる電流または、接地相を接地している線路の電流の少なくとも一方を検出し、前記地絡判定部は、前記電流検出部により検出された前記検出電流値が予め定められた値を超過したときに地絡したと判定する前記請求項8に記載の電力変換装置。
  10. 前記電流検出部は前記交流直流変換部の交流側の電流を検出し、前記地絡判定部は前記電流検出部で検出された前記検出電流値から求めた交流電流の零相成分が予め定められた値を超過した場合に地絡したと判定する請求項8に記載の電力変換装置。
  11. 前記電流検出部は前記交流直流変換部の直流側の電流を検出し、前記地絡判定部は前記電流検出部で検出された前記検出電流値と予め定められた値とを比較して地絡したと判定する請求項8に記載の電力変換装置。
  12. 前記交流直流変換部の交流側に遮断器を備え、地絡が発生したときに前記遮断器を遮断する請求項8から請求項11のいずれか1項に記載の電力変換装置。
  13. 前記交流直流変換部は、
    前記第三の直流出力端子が前記接地相と接続され、
    2つの半導体素子を直列接続した半導体素子で構成された第三のハーフブリッジと、
    2つの半導体素子を直列接続した半導体素子で構成された第四のハーフブリッジを有し、
    前記第三のハーフブリッジの正側端子と前記第四のハーフブリッジの正側端子が前記第一の直流出力端子と接続され、
    前記第三のハーフブリッジの負側端子と前記第四のハーフブリッジの負側端子が前記第二の直流出力端子と接続され、
    前記第三のハーフブリッジを構成する各半導体素子の接続点が、前記接地相以外の一相と接続され、
    前記第四のハーフブリッジを構成する各半導体素子の接続点が、前記接地相および前記一相と異なる相と接続された請求項1から請求項12のいずれか1項に記載の電力変換装置。
  14. 前記第三のハーフブリッジおよび前記第四のハーフブリッジは、それぞれ2つの半導体スイッチが直列接続されている請求項13に記載の電力変換装置。
  15. 前記第三のハーフブリッジおよび前記第四のハーフブリッジは、それぞれ2つのダイオードが直列接続されている請求項13に記載の電力変換装置。
JP2020536821A 2019-09-13 2019-09-13 電力変換装置 Active JP7043607B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/036158 WO2021049016A1 (ja) 2019-09-13 2019-09-13 電力変換装置

Publications (2)

Publication Number Publication Date
JPWO2021049016A1 true JPWO2021049016A1 (ja) 2021-09-27
JP7043607B2 JP7043607B2 (ja) 2022-03-29

Family

ID=74866331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020536821A Active JP7043607B2 (ja) 2019-09-13 2019-09-13 電力変換装置

Country Status (2)

Country Link
JP (1) JP7043607B2 (ja)
WO (1) WO2021049016A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2745759C1 (ru) 2020-04-03 2021-03-31 Борис Сергеевич Савельев Способ лечения острой легочной недостаточности и устройство для его осуществления савельева б.с.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515171A (ja) * 1991-06-27 1993-01-22 Isao Takahashi 定電圧・定周波数電源装置
JP2004015939A (ja) * 2002-06-10 2004-01-15 Meidensha Corp コンデンサの充電装置
JP2011196729A (ja) * 2010-03-18 2011-10-06 Kansai Electric Power Co Inc:The 直流回路の漏電検出装置および方法
JP2012170176A (ja) * 2011-02-10 2012-09-06 Fuji Electric Co Ltd 電力変換装置
JP2016197821A (ja) * 2015-04-03 2016-11-24 シャープ株式会社 ゲート駆動回路
US20180109201A1 (en) * 2016-10-18 2018-04-19 Abb Schweiz Ag Active neutral point clamped converter control system and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5659584B2 (ja) * 2010-07-09 2015-01-28 富士電機株式会社 電源装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515171A (ja) * 1991-06-27 1993-01-22 Isao Takahashi 定電圧・定周波数電源装置
JP2004015939A (ja) * 2002-06-10 2004-01-15 Meidensha Corp コンデンサの充電装置
JP2011196729A (ja) * 2010-03-18 2011-10-06 Kansai Electric Power Co Inc:The 直流回路の漏電検出装置および方法
JP2012170176A (ja) * 2011-02-10 2012-09-06 Fuji Electric Co Ltd 電力変換装置
JP2016197821A (ja) * 2015-04-03 2016-11-24 シャープ株式会社 ゲート駆動回路
US20180109201A1 (en) * 2016-10-18 2018-04-19 Abb Schweiz Ag Active neutral point clamped converter control system and method

Also Published As

Publication number Publication date
WO2021049016A1 (ja) 2021-03-18
JP7043607B2 (ja) 2022-03-29

Similar Documents

Publication Publication Date Title
KR102024821B1 (ko) 가변 속도 드라이브 내 지락 검출 및 가변 속도 드라이브 보호를 위한 시스템 및 방법
US8902621B2 (en) Power supply device for use with selectable AC power supply voltage
US20110170322A1 (en) Power conversion device
US20120275202A1 (en) Series multiplex power conversion apparatus
JP5939411B2 (ja) 電力変換装置
KR101862615B1 (ko) 하이브리드 능동 필터를 포함하는 전압형 컨버터
JP7086054B2 (ja) トランスレス単相ネットワークインバータのハイブリッドクロック方法
EP3093976B1 (en) Electric power conversion system
US11909305B2 (en) AC-to-DC power converter which removed a common mode component form the output current
JP2010239736A (ja) 電力変換装置
KR20140087450A (ko) 고장전류 감소기능을 가지는 컨버터
US10069438B2 (en) Power converter with capacitor voltage balancing
JP7043607B2 (ja) 電力変換装置
WO2022167388A1 (en) Interleaved power converter
WO2010038841A1 (ja) 三相整流装置
EP3595157B1 (en) Power conversion device
KR102349343B1 (ko) 3상 결상 및 n상 보호기능을 갖는 배전반
JP6628316B2 (ja) 試験用電源装置
US11722069B2 (en) Power conversion system
CN115733372A (zh) 变频器
KR102036578B1 (ko) 인버터 출력결상 검출장치
KR20230019957A (ko) 전원 장치
WO2020213183A1 (ja) 無停電電源装置
JP6643957B2 (ja) 電力変換装置及びその制御方法
JP2011196810A (ja) 直流回路の漏電検出システムおよび方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200630

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200630

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210517

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210517

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210525

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210601

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210716

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210720

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211026

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220125

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20220201

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220208

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220315

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220316

R150 Certificate of patent or registration of utility model

Ref document number: 7043607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150