JPWO2020066457A1 - Laminated body and manufacturing method of laminated body - Google Patents

Laminated body and manufacturing method of laminated body Download PDF

Info

Publication number
JPWO2020066457A1
JPWO2020066457A1 JP2019550870A JP2019550870A JPWO2020066457A1 JP WO2020066457 A1 JPWO2020066457 A1 JP WO2020066457A1 JP 2019550870 A JP2019550870 A JP 2019550870A JP 2019550870 A JP2019550870 A JP 2019550870A JP WO2020066457 A1 JPWO2020066457 A1 JP WO2020066457A1
Authority
JP
Japan
Prior art keywords
film
metal
layer
metal film
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019550870A
Other languages
Japanese (ja)
Other versions
JP7355648B2 (en
Inventor
絵美 山田
絵美 山田
佐藤 誠
佐藤  誠
輝明 都地
輝明 都地
藤 信男
信男 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Toray KP Films Inc
Original Assignee
Toray Industries Inc
Toray KP Films Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=69950528&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPWO2020066457(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toray Industries Inc, Toray KP Films Inc filed Critical Toray Industries Inc
Publication of JPWO2020066457A1 publication Critical patent/JPWO2020066457A1/en
Application granted granted Critical
Publication of JP7355648B2 publication Critical patent/JP7355648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

フッ素フィルム上に表面平滑で、フッ素フィルムとの密着力の強い金属膜を有する積層体を提供する。フッ素フィルムの少なくとも片面に、1層または2層以上の金属層を積層した金属膜を有する積層体であって、前記金属膜は、金属層として銅を主成分とする層(以下、銅層1という)を含み、前記フッ素フィルムと前記金属膜との界面で金属膜を剥離し、前記金属膜側の剥離面のX線光電子分光法(XPS)による分析で検出されるフッ素原子が50atomic%以上であり、金属原子が4atomic%以下であることを特徴とする、積層体である。 Provided is a laminate having a metal film having a smooth surface on a fluorine film and strong adhesion to the fluorine film. A laminate having a metal film in which one layer or two or more metal layers are laminated on at least one surface of a fluorine film, and the metal film is a layer containing copper as a main component as a metal layer (hereinafter, copper layer 1). The metal film is peeled off at the interface between the fluorine film and the metal film, and the fluorine atom detected by analysis by X-ray photoelectron spectroscopy (XPS) on the peeled surface on the metal film side is 50 atomic% or more. It is a laminated body characterized by having a metal atom of 4 atomic% or less.

Description

本発明は、配線基板用途、回路材料用途等に好適に用いることが可能な積層体に関する。 The present invention relates to a laminate that can be suitably used for wiring board applications, circuit material applications, and the like.

通信技術、情報処理技術の発達に伴って、情報通信分野で扱う電気信号は、近年ますます高速化・大容量化している。通信の高速・大容量化を達成するために電気信号は高周波化が進行しているが、高周波の電気信号は伝送損失が大きくなりやすいため、高周波の電気信号に対応した回路基板が求められている。伝送損失は導体損失と誘電体損失に分離でき、それぞれの損失低減が必要となる。電気信号が高周波になると、導体に流れる電流が導体の表面に集中する表皮効果の影響が大きくなることが知られている。したがって、導体表面に凹凸が存在する場合は伝送経路長が変化して損失が増大するため、導体表面は平滑である方が導体損失は小さくなる。一方、誘電体損失は、回路基板の絶縁体層に由来するもので、絶縁体層の誘電率と誘電正接が小さい方が、誘電体損失は小さくなることが知られている。 With the development of communication technology and information processing technology, the speed and capacity of electrical signals handled in the information and communication field have been increasing in recent years. Electric signals are becoming higher in frequency in order to achieve high speed and large capacity of communication, but high frequency electric signals tend to have large transmission losses, so a circuit board compatible with high frequency electric signals is required. There is. The transmission loss can be separated into a conductor loss and a dielectric loss, and it is necessary to reduce each loss. It is known that when the electric signal becomes high frequency, the influence of the skin effect in which the current flowing through the conductor is concentrated on the surface of the conductor becomes large. Therefore, when the conductor surface has irregularities, the transmission path length changes and the loss increases. Therefore, the smoother the conductor surface, the smaller the conductor loss. On the other hand, the dielectric loss is derived from the insulator layer of the circuit board, and it is known that the smaller the dielectric constant and the dielectric loss tangent of the insulator layer, the smaller the dielectric loss.

誘電率と誘電正接が小さい代表的な材料としてはフッ素樹脂が挙げられ、高周波でも伝送損失が小さい回路基板として、フッ素フィルムを使用した回路基板が開発されている(特許文献1)。 Fluororesin is a typical material having a small dielectric constant and dielectric loss tangent, and a circuit board using a fluorine film has been developed as a circuit board having a small transmission loss even at high frequencies (Patent Document 1).

導体層については、絶縁体に金属箔を貼り合わせる方法の他に、平滑な樹脂にスパッタリングによって薄い金属層を形成して回路基板の導体層とする方法も知られている。スパッタリングで形成される導体層は数百nm以下と非常に薄いため、スパッタリング層の上に電解銅めっきするなどして導体を厚くして配線加工し、回路基板としている(特許文献2)。配線加工の代表的な方法としては、サブトラクティブ法とセミアディティブ法がある。サブトラクティブ法とは、薄い金属層の全面を電解銅めっきによって厚くした後、配線にしたいパターンのみレジストを塗布して金属層が残るようにして、不要な領域を薬液でエッチングする方法である。セミアディティブ法は、薄い金属膜上に、加工したい配線パターンの金属部分を露出させて、それ以外の領域をレジストで覆い、配線パターン部分に電解めっきを施して導体層を厚く形成した後、レジストで覆っていた配線以外の領域の薄い金属層をソフトエッチングで除去する方法である。いずれの方法においても配線形成にはエッチングが不可欠で、これらの方法で微細なパターンを正確に形成しようとすると、配線部のエッチングばらつきが課題になる点からも、導体層表面は平滑性を要求される。 As for the conductor layer, in addition to the method of laminating a metal foil on an insulator, a method of forming a thin metal layer on a smooth resin by sputtering to form a conductor layer of a circuit board is also known. Since the conductor layer formed by sputtering is as thin as several hundred nm or less, the conductor is thickened by electrolytic copper plating on the sputtering layer and wiring is processed to form a circuit board (Patent Document 2). Typical methods for wiring processing include a subtractive method and a semi-additive method. The subtractive method is a method in which the entire surface of a thin metal layer is thickened by electrolytic copper plating, and then resist is applied only to the pattern to be wired so that the metal layer remains, and an unnecessary region is etched with a chemical solution. In the semi-additive method, the metal part of the wiring pattern to be processed is exposed on a thin metal film, the other area is covered with a resist, the wiring pattern part is electrolytically plated to form a thick conductor layer, and then the resist is formed. This is a method of removing a thin metal layer in a region other than the wiring covered with soft etching by soft etching. Etching is indispensable for wiring formation in either method, and if an attempt is made to accurately form a fine pattern by these methods, etching variation in the wiring portion becomes an issue, so that the surface of the conductor layer is required to be smooth. Will be done.

特開2004−6668号公報Japanese Unexamined Patent Publication No. 2004-6668 特許第4646580号公報Japanese Patent No. 4646580

高周波対応の回路基板で伝送損失を小さくするためには、誘電率と誘電損失が小さいフッ素フィルムが適するが、フッ素フィルムは離型性が高く、導体との密着が悪いという課題があった。特許文献1では、フッ素系樹脂電気絶縁層と伝導性金属箔を十分な密着力で直接接着するために、フッ素系樹脂電気絶縁層の表面に微細突起を形成し、伝導性金属箔の一面を粗面化して積層体を作製している。しかしながら、前述の通り、高周波対応の回路基板においては、伝送損失を小さくしたり、微細パターンを正確に形成したりするために、表面平滑性が求められており、微細突起や粗面の存在は課題である。 In order to reduce the transmission loss in a circuit board compatible with high frequencies, a fluorine film having a small dielectric constant and a small dielectric loss is suitable, but the fluorine film has a problem that it has high releasability and poor adhesion to a conductor. In Patent Document 1, in order to directly bond the fluororesin electrically insulating layer and the conductive metal foil with sufficient adhesion, fine protrusions are formed on the surface of the fluororesin electrically insulating layer to form one surface of the conductive metal foil. The surface is roughened to produce a laminated body. However, as described above, in a circuit board compatible with high frequencies, surface smoothness is required in order to reduce transmission loss and accurately form fine patterns, and the presence of fine protrusions and rough surfaces is required. It is an issue.

一方で、特許文献2でも議論されている通り、スパッタリングで金属層を形成しようとすると樹脂へのダメージにより、フッ素フィルムと金属層の密着を十分に確保できない課題がある。特にフッ素フィルムの場合、離型性が高く密着が悪い特性があるため、表面平滑なまま金属層との密着を向上させる技術が必要とされ、これまでにもコロナ処理やグロー放電処理、プラズマ処理などさまざまな手法が検討されている。しかしながら、化学的に安定なフッ素フィルムを表面処理して密着を向上させると、フッ素フィルム表層がダメージを受けてかえって密着が悪くなったり、フィルムにクラックが発生したり、さらには処理によって生成するフッ素原子が金属層と反応して密着を低下させたりする課題があった。 On the other hand, as discussed in Patent Document 2, when an attempt is made to form a metal layer by sputtering, there is a problem that sufficient adhesion between the fluorine film and the metal layer cannot be ensured due to damage to the resin. Especially in the case of fluorine film, since it has high releasability and poor adhesion, technology to improve adhesion with metal layer while keeping the surface smooth is required, and corona treatment, glow discharge treatment, and plasma treatment have been performed so far. Various methods such as are being studied. However, when a chemically stable fluorine film is surface-treated to improve the adhesion, the surface layer of the fluorine film is damaged and the adhesion is deteriorated, the film is cracked, and the fluorine generated by the treatment is formed. There is a problem that the atom reacts with the metal layer to reduce the adhesion.

上述した課題を達成するために鋭意検討した結果、金属膜と接するフッ素フィルム表層のダメージを小さくするように表面処理したり、金属層の構成を設計したりすることで、フッ素フィルム上に、微細配線に適した平滑な金属膜を有する積層体を得るに至った。 As a result of diligent studies to achieve the above-mentioned problems, the surface treatment of the surface layer of the fluorine film in contact with the metal film is reduced, and the composition of the metal layer is designed to make fine particles on the fluorine film. A laminate having a smooth metal film suitable for wiring has been obtained.

本発明の積層体は、フッ素フィルムの少なくとも片面に、1層または2層以上の金属層を積層した金属膜を有する積層体であって、前記金属膜は、金属層として銅を主成分とする層(以下、銅層1という)を含み、前記フッ素フィルムと前記金属膜との界面で金属膜を剥離し、前記金属膜側の剥離面のX線光電子分光法(XPS)による分析で検出されるフッ素原子が50atomic%以上であり、金属原子が4atomic%以下であることを特徴とする。 The laminate of the present invention is a laminate having a metal film in which one layer or two or more metal layers are laminated on at least one surface of a fluorine film, and the metal film contains copper as a main component as a metal layer. A layer (hereinafter referred to as copper layer 1) is included, the metal film is peeled off at the interface between the fluorine film and the metal film, and the peeled surface on the metal film side is detected by analysis by X-ray photoelectron spectroscopy (XPS). The fluorine atom is 50 atomic% or more, and the metal atom is 4 atomic% or less.

本発明によれば、フッ素フィルム上に密着良好かつ平滑な金属膜を有する積層体とすることができ、それによって高速・大容量の通信に有用な回路基板とすることができる。 According to the present invention, it is possible to obtain a laminate having a metal film having good adhesion and smoothness on a fluorine film, whereby it is possible to obtain a circuit board useful for high-speed and large-capacity communication.

積層体の構成を示す断面概略図である。It is sectional drawing which shows the structure of the laminated body.

以下、図面等を参照しながら、本発明の積層体について、さらに詳しく説明する。 Hereinafter, the laminate of the present invention will be described in more detail with reference to the drawings and the like.

本発明の積層体は、フッ素フィルムの少なくとも片面に、1層または2層以上の金属層を積層した金属膜を有する積層体である。 The laminate of the present invention is a laminate having a metal film in which one layer or two or more metal layers are laminated on at least one side of a fluorine film.

本発明にかかるフッ素フィルムは特に限定されるものではなく、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−エチレン共重合体(ETFE)、ポリフッ化ビニリデン(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン−エチレン共重合体(ECTFE)等が挙げられる。これらの樹脂の中でも、高度の耐熱性を有する点で、ETFE、PFA、FEPが好ましい。フッ素フィルムは上記フィルム単独であっても、フッ素樹脂以外のフィルムを複合したものであってもよい。また、フィルム表面に樹脂や粘着剤等をコーティングしたり、離型層を積層したりしてもよいし、フッ素フィルムの保護や搬送性向上のために、ポリエチレンテレフタレート(PETと略すことがある)フィルム等をフッ素樹脂フィルムの金属膜が積層されない面に貼り合せてもよい。 The fluorine film according to the present invention is not particularly limited, and is, for example, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), or tetrafluoroethylene-hexafluoropropylene copolymer. (FEP), tetrafluoroethylene-ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene-ethylene copolymer (ECTFE) and the like. Among these resins, ETFE, PFA, and FEP are preferable because they have a high degree of heat resistance. The fluorine film may be the above-mentioned film alone or a composite of films other than the fluororesin. Further, the surface of the film may be coated with a resin, an adhesive or the like, or a release layer may be laminated, and polyethylene terephthalate (sometimes abbreviated as PET) is used to protect the fluorofilm and improve the transportability. A film or the like may be attached to a surface of the fluororesin film on which the metal film is not laminated.

フッ素フィルムの厚みは、4μm以上100μm以下であることが好ましく、6μm以上75μm以下であることがより好ましい。フィルムの厚みが4μm未満の場合、フィルムが変形したり破れたりするおそれがある。一方、100μmを超えると、フィルムそのものの厚みムラが大きくなって基板としての性能が悪くなったり、加工性が低下したりする場合がある。 The thickness of the fluorine film is preferably 4 μm or more and 100 μm or less, and more preferably 6 μm or more and 75 μm or less. If the thickness of the film is less than 4 μm, the film may be deformed or torn. On the other hand, if it exceeds 100 μm, the thickness unevenness of the film itself becomes large, and the performance as a substrate may be deteriorated or the workability may be deteriorated.

本発明にかかる金属膜は、図1に示すように、金属を主成分とする層(以下、金属層という)を1層または2層以上積層した金属層の集合体全体のことである。金属膜に含まれる金属層は、1層であっても2層以上であってもよいが、銅を主成分とする層(以下、銅層1という)を含む。金属を主成分とするとは、金属元素を95質量%以上含むことをいう。金属膜は、厚みが0.05μm以上、20μm以下であることが好ましく、0.1μm以上18μm以下であることがより好ましく、0.5μm以上18μm以下であることがさらに好ましい。金属膜の厚みが0.05μm未満の場合は、金属膜に欠点が生じたり断線したりして、回路配線として機能しない場合がある。金属膜の厚みが20μmを超えると、エッチングで配線パターンを形成する際に、線幅の減少が大きくなり、加工精度が低下する。 As shown in FIG. 1, the metal film according to the present invention is an entire aggregate of metal layers in which one layer or two or more layers containing a metal as a main component (hereinafter referred to as a metal layer) are laminated. The metal layer contained in the metal film may be one layer or two or more layers, but includes a layer containing copper as a main component (hereinafter, referred to as copper layer 1). The term "metal as a main component" means that the metal element is contained in an amount of 95% by mass or more. The thickness of the metal film is preferably 0.05 μm or more and 20 μm or less, more preferably 0.1 μm or more and 18 μm or less, and further preferably 0.5 μm or more and 18 μm or less. If the thickness of the metal film is less than 0.05 μm, the metal film may have defects or disconnection, and may not function as circuit wiring. If the thickness of the metal film exceeds 20 μm, the line width is greatly reduced when the wiring pattern is formed by etching, and the processing accuracy is lowered.

本発明にかかる金属膜は、フッ素フィルムと接していない面の表面粗さRaが0.01μm以上0.10μm以下であることが好ましく、0.01μm以上0.08μm以下であることがより好ましく、0.01μm以上0.06μm以下であることがさらに好ましい。表面粗さRaは、JIS B 0601−2001で定義される算術平均粗さである。表面粗さが0.10μmよりも大きくなると回路基板の配線として使用するとき、特に高周波帯では表皮効果によって、伝達する信号の伝送損失が大きくなる場合がある。 The surface roughness Ra of the surface of the metal film according to the present invention that is not in contact with the fluorine film is preferably 0.01 μm or more and 0.10 μm or less, and more preferably 0.01 μm or more and 0.08 μm or less. It is more preferably 0.01 μm or more and 0.06 μm or less. Surface roughness Ra is the arithmetic mean roughness defined in JIS B 0601-2001. If the surface roughness is larger than 0.10 μm, the transmission loss of the transmitted signal may increase due to the skin effect, especially in the high frequency band when used as wiring for a circuit board.

本発明にかかる銅層1は、平均結晶粒径が50nm以上200nm以下であることが好ましく、50nm以上150nm以下であることがより好ましい。銅層1の平均結晶粒径は、積層体の金属膜断面について、透過EBSD(Electron Backscattered Diffraction)法を用いて調べることができる。まず、積層体の金属膜断面を薄く切り出し、回折パターンを取り込む。得られた回折パターンで、方位角差5°以内の測定点が2点以上連続して存在する場合を同一粒として結晶粒子を識別し、その個々の結晶粒について、その円相当径(同一面積の円の直径)を算出する。こうして得られた結晶粒径を下記式に従って平均した値を平均結晶粒径とする。なお、双晶は粒界として扱うものとする。式中、dは平均結晶粒径、Nは粒子の総数、Aiは個々の粒子の面積比、diは個々の粒子粒径(円相当径)を示す。The copper layer 1 according to the present invention preferably has an average crystal grain size of 50 nm or more and 200 nm or less, and more preferably 50 nm or more and 150 nm or less. The average crystal grain size of the copper layer 1 can be examined by using a transmission EBSD (Electron Backscattered Diffraction) method on the cross section of the metal film of the laminated body. First, the cross section of the metal film of the laminated body is cut out thinly, and the diffraction pattern is taken in. In the obtained diffraction pattern, crystal particles are identified as the same grain when two or more measurement points with an azimuth angle difference of 5 ° or less are continuously present, and the equivalent circle diameter (same area) of each crystal grain is identified. The diameter of the circle) is calculated. The value obtained by averaging the crystal grain sizes thus obtained according to the following formula is defined as the average crystal grain size. Twins shall be treated as grain boundaries. In the formula, d is the average crystal grain size, N is the total number of particles, A i is the area ratio of individual particles, and d i is the individual particle size (circle equivalent diameter).

Figure 2020066457
Figure 2020066457

平均結晶粒径が50nm未満の場合、結晶粒界が多く存在することになるため、不純物が増加したり、腐食が進行しやすくなったりするおそれがあり、200nmより大きい場合は、製膜時の金属層内の応力が分散できず、剥離の原因となる場合がある。 If the average crystal grain size is less than 50 nm, many crystal grain boundaries are present, so impurities may increase or corrosion may easily proceed. If the average crystal grain size is larger than 200 nm, the film may be formed. The stress in the metal layer cannot be dispersed, which may cause peeling.

本発明にかかる銅層1は、厚みが0.05μm以上3.0μm以下であることが好ましく、0.1μm以上0.5μm以下であることがより好ましい。銅層1の厚みが0.05μm未満では、金属膜に欠点が生じたり、膜厚がばらついたりする場合がある。一方、銅層1の厚みが3.0μmを超える場合は、生産性が悪くなったり、配線パターンを加工する際のエッチング工程で線幅がばらついたりして回路の性能が低下するおそれがある。 The copper layer 1 according to the present invention preferably has a thickness of 0.05 μm or more and 3.0 μm or less, and more preferably 0.1 μm or more and 0.5 μm or less. If the thickness of the copper layer 1 is less than 0.05 μm, the metal film may have defects or the film thickness may vary. On the other hand, if the thickness of the copper layer 1 exceeds 3.0 μm, the productivity may deteriorate or the line width may vary in the etching process when processing the wiring pattern, so that the performance of the circuit may deteriorate.

銅層1の製造方法は、生産性を考慮して適宜形成方法を選択することができるが、結晶粒を本願の好ましい範囲のサイズにするためには、真空蒸着法やスパッタリング法に代表される気相成膜法が好ましく、さらにはフッ素フィルムへのダメージを低減しつつ、銅層を厚くできる点で、真空蒸着法であることがさらに好ましい。真空蒸着法には誘導加熱蒸着法、抵抗加熱蒸着法、レーザービーム蒸着法、電子ビーム蒸着法などがあるが、高い成膜速度を有する観点から電子ビーム蒸着法が好適に用いられる。フィルムへの蒸着は、生産性の観点からロールトゥロールでの加工が好適に用いられるが、蒸着時はフィルムが熱にさらされるため、フィルムの蒸着面の裏面に接した冷却ロールにより冷却しながら蒸着する。フィルムを十分に冷却して銅層1を形成することができれば、蒸着時の熱によるフィルムの変形を抑制し、銅層の膜応力も小さく抑えることができるため、金属膜の剥離抑制に有利になる。 As the method for producing the copper layer 1, the forming method can be appropriately selected in consideration of productivity, but in order to make the crystal grains into a size within the preferable range of the present application, a vacuum deposition method or a sputtering method is typified. The vapor deposition method is preferable, and the vacuum deposition method is more preferable in that the copper layer can be thickened while reducing damage to the fluorine film. The vacuum vapor deposition method includes an induction heating vapor deposition method, a resistance heating vapor deposition method, a laser beam vapor deposition method, an electron beam vapor deposition method, and the like, and the electron beam vapor deposition method is preferably used from the viewpoint of having a high film formation rate. For film deposition, roll-to-roll processing is preferably used from the viewpoint of productivity, but since the film is exposed to heat during vapor deposition, it is cooled by a cooling roll in contact with the back surface of the film deposition surface. Evaporate. If the film can be sufficiently cooled to form the copper layer 1, the deformation of the film due to heat during vapor deposition can be suppressed and the film stress of the copper layer can be suppressed to be small, which is advantageous in suppressing the peeling of the metal film. Become.

本発明にかかる金属膜は、下地金属層を有していてもよい。下地金属層は、フッ素フィルムの側から下地金属層、銅層1の順に積層され、下地金属層と銅層1が接していることが好ましい。下地金属層は、銅、ニッケル、チタン、およびそれらの少なくとも1種を含む合金からなる群より選ばれる少なくとも1つを含むことが好ましい。その中でも、金属膜の酸化防止、耐食性からニッケル、チタン、および、ニッケルまたはチタンの少なくとも1種を含む合金からなる群より選ばれる少なくとも1つを含むことが好ましい。本発明の積層体を高速信号伝送用の回路基板用途に使用する場合は、磁性体のニッケルは信号を減衰させる効果が大きいため、下地金属層の金属は、チタン、または、チタンを含む合金であることが好ましい。下地金属層の厚みは、1nm以上50nm以下が好ましく、1nm以上20nm以下がより好ましい。下地金属層の厚みが1nm未満では、安定した層とならずに十分な密着力が得られない場合がある。下地金属層の厚みが50nmを超える場合は、下地金属層形成時にフッ素フィルムにダメージを与えてフッ素フィルムの柔軟性を低下させて樹脂自体にもクラックが入りやすくなり、断線の原因となる場合がある。また、特に、下地金属層の金属が銅以外で厚みが50nmを超える場合は、銅層と下地金属層のエッチング速度の違いによって配線パターンの加工性が低下したり、下地金属が磁性体の場合には、高速信号伝送において損失が大きくなって信号が減衰したりする、といった問題も生じ得る。下地金属層の製膜方法は、薄膜の厚さ精度と生産性の観点からスパッタリング法や真空蒸着法に代表される気相成膜法が好ましく、製膜時にごくわずかに表層を変質させる表面処理効果を伴うスパッタリング法であることが密着向上の点でより好ましい。 The metal film according to the present invention may have a base metal layer. It is preferable that the base metal layer is laminated in the order of the base metal layer and the copper layer 1 from the side of the fluorine film, and the base metal layer and the copper layer 1 are in contact with each other. The underlying metal layer preferably comprises at least one selected from the group consisting of copper, nickel, titanium, and alloys containing at least one of them. Among them, it is preferable to contain at least one selected from the group consisting of nickel, titanium, and an alloy containing at least one of nickel or titanium from the viewpoint of antioxidant and corrosion resistance of the metal film. When the laminate of the present invention is used for a circuit board for high-speed signal transmission, nickel as a magnetic material has a large effect of attenuating signals. Therefore, the metal of the base metal layer is titanium or an alloy containing titanium. It is preferable to have. The thickness of the base metal layer is preferably 1 nm or more and 50 nm or less, and more preferably 1 nm or more and 20 nm or less. If the thickness of the underlying metal layer is less than 1 nm, the layer may not be stable and sufficient adhesion may not be obtained. If the thickness of the base metal layer exceeds 50 nm, the fluorine film may be damaged when the base metal layer is formed, the flexibility of the fluorine film may be reduced, and the resin itself may be easily cracked, which may cause disconnection. be. Further, in particular, when the metal of the base metal layer is other than copper and the thickness exceeds 50 nm, the processability of the wiring pattern deteriorates due to the difference in the etching rate between the copper layer and the base metal layer, or when the base metal is a magnetic material. In addition, there may be a problem that the loss becomes large and the signal is attenuated in high-speed signal transmission. From the viewpoint of thin film thickness accuracy and productivity, a vapor deposition method typified by a sputtering method or a vacuum vapor deposition method is preferable as a film forming method for the underlying metal layer, and a surface treatment that slightly alters the surface layer during film forming. A sputtering method with an effect is more preferable in terms of improving adhesion.

本発明にかかる金属膜は、3層以上の金属層を積層した構造としてもよい。また、本発明にかかる金属膜は、銅層1の他に、銅を主成分とする層(以下、銅層2)を有する構造としてもよい。なお、銅層2を有する場合、基材に近い層から銅層1、2という。銅層2を設けることによって、回路に適した抵抗の導体とすることができる。銅層2は、銅層1等の金属層を給電層として、例えば、電解銅めっきにより形成することができる。銅層1と銅層2の間に他の金属層が存在する場合、層間の抵抗値差から伝送経路が変わって損失が増大する場合があるため、導体の銅層2は、銅層1と接して積層することが好ましい。 The metal film according to the present invention may have a structure in which three or more metal layers are laminated. Further, the metal film according to the present invention may have a structure having a layer containing copper as a main component (hereinafter, copper layer 2) in addition to the copper layer 1. When the copper layer 2 is provided, the layers closest to the base material are referred to as copper layers 1 and 2. By providing the copper layer 2, it can be used as a conductor of resistance suitable for a circuit. The copper layer 2 can be formed by, for example, electrolytic copper plating, using a metal layer such as the copper layer 1 as a feeding layer. When another metal layer exists between the copper layer 1 and the copper layer 2, the transmission path may change due to the difference in resistance between the layers and the loss may increase. Therefore, the copper layer 2 of the conductor is different from the copper layer 1. It is preferable to stack them in contact with each other.

本発明の積層体は、フッ素フィルムと金属膜の密着力を確保するため、フッ素フィルムの金属膜と接する表面をあらかじめ表面処理することもできる。フッ素フィルムの表面処理としては、コロナ処理、オゾン処理、プラズマ処理等、公知のものを用いることができるが、経時変化が小さく、温湿度の影響も受けにくい点からプラズマ処理が好ましい。プラズマ処理とは、高圧印加電極と対向電極の間に直流または交流の高電圧を印加して得られる放電に、被処理体であるフッ素フィルムを曝してフッ素樹脂フィルムの表面を改質することである。放電は大気圧下であっても、減圧下であってもよいが、安定した効率のよい処理が可能な点から、減圧下での処理が好ましい。一般的に減圧下でプラズマ処理する場合、活性種のエネルギーを高く保ち、効率よく表面処理するために、真空度は1×10−2Pa以下とすることが多い。しかしながら、本発明における被処理体のフッ素樹脂は、芳香環などの剛直な構造を持たないため、分子鎖が切断されやすい。分子鎖、特に主鎖が切断された場合は、ダメージとなってフィルム表層で凝集破壊されやすくなり、密着力が低下してしまう。したがって本発明においては、プラズマ処理によるダメージを抑制するため、処理時の圧力は、0.1Pa以上1,000Pa以下が好ましく、5Pa以上100Pa以下がより好ましい。0.1Pa未満では真空排気装置が大型化し、1,000Paより大きい場合は、放電を開始しづらくなる。In the laminate of the present invention, in order to secure the adhesion between the fluorine film and the metal film, the surface of the fluorine film in contact with the metal film can be surface-treated in advance. As the surface treatment of the fluorine film, known ones such as corona treatment, ozone treatment, and plasma treatment can be used, but plasma treatment is preferable because the change with time is small and it is not easily affected by temperature and humidity. Plasma treatment is the process of modifying the surface of a fluorine resin film by exposing the fluorine film to be treated to a discharge obtained by applying a high voltage of direct current or alternating current between the high voltage application electrode and the counter electrode. be. The discharge may be performed under atmospheric pressure or reduced pressure, but the treatment under reduced pressure is preferable from the viewpoint of enabling stable and efficient processing. Generally, when plasma treatment is performed under reduced pressure, the degree of vacuum is often 1 × 10-2 Pa or less in order to maintain high energy of the active species and efficiently perform surface treatment. However, since the fluororesin of the object to be treated in the present invention does not have a rigid structure such as an aromatic ring, the molecular chain is easily broken. When the molecular chain, particularly the main chain, is broken, it causes damage and is likely to be aggregated and broken on the film surface layer, resulting in a decrease in adhesion. Therefore, in the present invention, in order to suppress damage caused by plasma treatment, the pressure during treatment is preferably 0.1 Pa or more and 1,000 Pa or less, and more preferably 5 Pa or more and 100 Pa or less. If it is less than 0.1 Pa, the size of the vacuum exhaust device becomes large, and if it is larger than 1,000 Pa, it becomes difficult to start discharging.

本発明におけるプラズマ処理は、処理効率を上げたり、特定の官能基を導入したりする目的で、放電空間にガスを導入してプラズマ処理する際の雰囲気を調整してもよい。プラズマ処理の雰囲気は、Ar、N、He、Ne、CO、CO、空気、水蒸気、H、NH、C2n+2(ただしn=1〜4の整数)で表される炭化水素などの各種ガスを、単独または混合して使用できるが、雰囲気中に含まれる酸素濃度は500ppm以下であることが好ましく、300ppm以下であることがより好ましい。酸素は、放電によって生成したラジカル等の活性種を失活させる性質があるため、500ppmより濃度が高い場合は、処理効果が小さくなったり、効果が全くなくなったりする場合がある。また、酸素を多く含む場合は、ケミカルエッチングが進みやすく、表面粗さが大きくなる場合がある。一方で、フィルムと金属の密着に関しては、カルボニル基やカルボキシル基が寄与するといわれており、酸素原子を導入するために、使用するガスは、COやCOのようにその構造中に酸素原子を有するものを含むことが好ましい。In the plasma treatment in the present invention, the atmosphere at the time of plasma treatment by introducing a gas into the discharge space may be adjusted for the purpose of increasing the treatment efficiency or introducing a specific functional group. The atmosphere of plasma treatment is a hydrocarbon represented by Ar, N 2 , He, Ne, CO 2 , CO, air, water vapor, H 2 , NH 3 , C n H 2n + 2 (where n = an integer of 1 to 4). Various gases such as the above can be used alone or in combination, but the oxygen concentration contained in the atmosphere is preferably 500 ppm or less, more preferably 300 ppm or less. Since oxygen has a property of inactivating active species such as radicals generated by electric discharge, if the concentration is higher than 500 ppm, the treatment effect may be small or the effect may be completely lost. Further, when a large amount of oxygen is contained, chemical etching tends to proceed and the surface roughness may become large. On the other hand, it is said that carbonyl groups and carboxyl groups contribute to the adhesion between the film and the metal, and the gas used to introduce oxygen atoms has oxygen atoms in its structure, such as CO and CO 2. It is preferable to include those having.

高圧印加電極の形状は任意のものを用いることができるが、例えば、フィルムを搬送しながら連続的に処理することができる点で棒状のものが好ましい。対向電極は、フィルムを密着させて処理できるものであれば特に限定されないが、フィルム搬送を支持できるドラム状電極が好ましい。ドラム状電極の場合は、例えば前記棒状高圧印加電極の直径の2倍以上の直径を持つようにすることが好ましい。高圧印加電極と、対向電極は同数である必要はなく、対向電極1個に対して高圧印加電極を2個以上にすると、省スペースで処理効率を高めることができ好ましい。電極間の距離は、ガスの圧力条件、処理強度に応じて適切に設定すればよく、例えば0.05〜10cmの範囲である。 Any shape of the high-voltage application electrode can be used, but for example, a rod-shaped one is preferable in that the film can be continuously processed while being conveyed. The counter electrode is not particularly limited as long as the film can be brought into close contact with the film, but a drum-shaped electrode capable of supporting the film transfer is preferable. In the case of a drum-shaped electrode, it is preferable to have a diameter of, for example, twice or more the diameter of the rod-shaped high-voltage application electrode. The number of high-voltage application electrodes and counter electrodes need not be the same, and it is preferable to use two or more high-voltage application electrodes for one counter electrode because space saving and processing efficiency can be improved. The distance between the electrodes may be appropriately set according to the gas pressure condition and the processing intensity, and is, for example, in the range of 0.05 to 10 cm.

処理強度は、処理電力密度で10W・min/m以上2,000W・min/m以下であることが好ましく、50W・min/m以上1,000W・min/m以下であることがより好ましい。ここで処理電力密度とは、放電に投入した電力と時間の積を放電面積で割った値であり、長尺フィルムの処理の場合は投入電力を放電部分の幅とフィルムの処理速度で割った値である。処理電力密度が10W・min/m未満の場合は、十分なエネルギーを与えられずに処理効果が得られない場合があり、2,000W・min/mより大きい場合は、フィルムがダメージを受けて損傷する場合がある。The processing intensity is preferably 10 W ・ min / m 2 or more and 2,000 W ・ min / m 2 or less, and 50 W ・ min / m 2 or more and 1,000 W ・ min / m 2 or less in terms of processing power density. More preferred. Here, the processing power density is a value obtained by dividing the product of the power input to the discharge and the time by the discharge area, and in the case of processing a long film, the input power is divided by the width of the discharged portion and the processing speed of the film. The value. If the processing power density is less than 10 W ・ min / m 2 , the processing effect may not be obtained without giving sufficient energy, and if it is larger than 2,000 W ・ min / m 2 , the film will be damaged. It may be damaged by receiving it.

本発明の積層体は、フッ素フィルムと前記金属膜との界面で金属膜を剥離し、前記金属膜側の剥離面のX線光電子分光法(XPS)による分析で検出されるフッ素原子が50atomic%以上であり、金属原子が4atomic%以下であることを特徴とする。また、前記剥離面のXPS分析で検出される酸素原子は0.1atomic%以上3atomic%以下であることが好ましい。さらに、前記剥離面のXPS分析で検出されるC1sに帰属されるピークを100%とすると、結合状態がCFとなる割合が2.5%以下であることが好ましい。 In the laminate of the present invention, the metal film is peeled off at the interface between the fluorine film and the metal film, and 50 atomic% of fluorine atoms are detected by analysis of the peeled surface on the metal film side by X-ray photoelectron spectroscopy (XPS). As described above, the metal atom is 4 atomic% or less. Further, the oxygen atom detected by the XPS analysis of the peeled surface is preferably 0.1 atomic% or more and 3 atomic% or less. Further, assuming that the peak attributable to C1s detected by the XPS analysis of the peeled surface is 100%, the ratio of the bonded state to CF is preferably 2.5% or less.

XPSは、超高真空中で試料表面に軟X線を照射して表面から放出される光電子をアナライザーで検出し、物質中の束縛電子の結合エネルギー値から表面の元素情報を得たり、各ピークのエネルギーシフトから結合状態に関する情報を得たり、さらにはピーク面積比を用いて定量したりできる分析手法である。XPSは、光電子が物質中を進むことができる長さ(平均自由行程)に対応する深さ領域の分析となるため、測定面の表面情報を得ることができる。 XPS irradiates the sample surface with soft X-rays in an ultra-high vacuum, detects photoelectrons emitted from the surface with an analyzer, and obtains elemental information on the surface from the binding energy value of bound electrons in the substance, and each peak. It is an analytical method that can obtain information on the binding state from the energy shift of the above and further quantify it using the peak area ratio. Since XPS is an analysis of a depth region corresponding to the length (mean free path) at which photoelectrons can travel in a substance, surface information on the measurement surface can be obtained.

金属膜の剥離面は、温度23℃湿度50%に調整された雰囲気で、10mm幅の短冊状の積層体から、剥離速度100mm/minで180°の角度で金属膜とフッ素フィルムとの界面で剥離して作製する。フッ素フィルムと金属膜を剥離し、金属膜側の剥離面のXPSによる分析で検出されるフッ素原子は、50atomic%以上が好ましく、60atomic%以上がより好ましく、65atomic%以上が最も好ましい。フッ素原子が50atomic%未満の場合、フィルムの誘電率や誘電正接が大きくなり、積層体を回路基板として使用する際の伝送損失が大きくなって信号の伝達効率を低下させる場合がある。 The peeled surface of the metal film is at the interface between the metal film and the fluorine film at an angle of 180 ° at a peeling speed of 100 mm / min from a strip-shaped laminate with a width of 10 mm in an atmosphere adjusted to a temperature of 23 ° C. and a humidity of 50%. It is made by peeling. The fluorine atom detected by the XPS analysis of the peeled surface on the metal film side after peeling the fluorine film and the metal film is preferably 50 atomic% or more, more preferably 60 atomic% or more, and most preferably 65 atomic% or more. When the fluorine atom is less than 50 atomic%, the dielectric constant and the dielectric loss tangent of the film become large, and the transmission loss when the laminate is used as a circuit board may become large and the signal transmission efficiency may be lowered.

金属膜をフッ素フィルムから剥離すると、フッ素フィルムの深さ方向で強度が弱い位置が剥離界面となるため、金属膜の剥離面にはフッ素フィルムの表層の一部が薄く付着する。積層体の製造において、金属膜の密着を向上させるための表面処理や、スパッタリング、蒸着の工程で、フッ素フィルムはダメージを受けたり、熱を受けて酸化したりして表層が変質して脆弱になる場合がある。フッ素フィルムの金属膜近傍が脆弱になった場合、フッ素フィルムは金属膜にごく近い深さで剥離するため、金属膜に付着するフッ素フィルムは薄くなり、XPSで分析した際に金属膜の元素まで検出されることになる。一方、フッ素フィルムの金属膜近傍がダメージを受けていない場合は、剥離した金属膜に付着するフッ素フィルムが厚くなり、金属膜の元素まで検出されなくなる。フッ素フィルムと金属膜を剥離し、金属膜側の剥離面のXPSによる分析で検出される金属原子は4atomic%以下が好ましく、3atomic%であることがより好ましい。2種類以上の金属元素が検出される場合は、その合計を金属原子の量とする。検出される金属原子は、積層体の構成に依存する。例えば、積層体がフッ素フィルム上に銅層1のみの金属膜を有する場合は検出される金属原子は銅となる。また、例えば金属膜がフッ素フィルムに接する側から順にチタンを含む下地金属層と銅層1を積層したものである場合は、金属原子としてチタンと銅が検出される場合がある。フッ素フィルムと金属膜を剥離し、金属膜側の剥離面のXPSによる分析で検出される金属原子が4atomic%より多い場合は、フッ素フィルム表層と金属膜の結合が悪く、密着が低下している場合がある。 When the metal film is peeled from the fluorine film, a position where the strength is weak in the depth direction of the fluorine film becomes the peeling interface, so that a part of the surface layer of the fluorine film adheres thinly to the peeled surface of the metal film. In the manufacture of laminates, the fluorine film is damaged or oxidized by heat during the surface treatment, sputtering, and vapor deposition processes to improve the adhesion of the metal film, and the surface layer deteriorates and becomes fragile. May become. When the vicinity of the metal film of the fluorine film becomes fragile, the fluorine film peels off at a depth very close to the metal film, so the fluorine film adhering to the metal film becomes thin, and even the elements of the metal film are analyzed by XPS. It will be detected. On the other hand, when the vicinity of the metal film of the fluorine film is not damaged, the fluorine film adhering to the peeled metal film becomes thick, and even the elements of the metal film cannot be detected. The metal atom detected by the XPS analysis of the peeled surface on the metal film side after peeling the fluorine film and the metal film is preferably 4 atomic% or less, and more preferably 3 atomic%. When two or more kinds of metal elements are detected, the total is taken as the amount of metal atoms. The metal atoms detected depend on the composition of the laminate. For example, when the laminate has a metal film having only the copper layer 1 on the fluorine film, the detected metal atom is copper. Further, for example, when the base metal layer containing titanium and the copper layer 1 are laminated in order from the side where the metal film is in contact with the fluorine film, titanium and copper may be detected as metal atoms. When the fluorine film and the metal film are peeled off and the amount of metal atoms detected by the XPS analysis of the peeled surface on the metal film side is more than 4 atomic%, the bond between the fluorine film surface layer and the metal film is poor and the adhesion is reduced. In some cases.

フッ素フィルムは主骨格として、連続したCFまたは−CFCF(−R)−といった構造を有する。官能基Rは水素、塩素の他、アルキル基、アルケニル基、アリール基、アルコキシ基、アシル基、アルキルエステル基などが例として挙げられ、各官能基はCFなどのハロゲン化アルキル基のように元素が置換されてもよい。フッ素フィルムは、金属膜の形成や熱処理によるダメージ、表面処理や酸化などによって樹脂表面が変質すると、酸素が導入されたり、フッ素が脱離したりすることが知られている。フッ素フィルムと金属膜を剥離し、金属膜側の剥離面のXPSによる分析で検出される酸素原子は0.1atomic%以上3atomic%以下であることが好ましく、0.3atomic%以上2atomic%以下であることがより好ましい。酸素原子が0.1atomic%未満のときは、フッ素フィルムの密着に寄与する官能基が少なく、金属膜との十分な密着力を得られない場合がある。酸素原子が3atomic%を超える場合は、金属膜付近のフッ素樹脂が酸化されて脆弱化し、密着力を低下させるため、回路加工が困難になる場合がある。The fluorine film has a structure such as continuous CF 2 or -CF 2 CF (-R)-as a main skeleton. Functional group R is hydrogen, the other chlorine, alkyl group, alkenyl group, an aryl group, an alkoxy group, an acyl group, an alkyl ester group and the like as an example, the functional group as a halogenated alkyl group such as CF 3 The element may be substituted. It is known that when the resin surface of a fluorine film is denatured due to the formation of a metal film, damage due to heat treatment, surface treatment, oxidation, or the like, oxygen is introduced or fluorine is desorbed. The oxygen atom detected by the XPS analysis of the peeled surface on the metal film side after peeling the fluorine film and the metal film is preferably 0.1 atomic% or more and 3 atomic% or less, and 0.3 atomic% or more and 2 atomic% or less. Is more preferable. When the oxygen atom content is less than 0.1 atomic%, there are few functional groups that contribute to the adhesion of the fluorine film, and sufficient adhesion to the metal film may not be obtained. When the oxygen atom exceeds 3 atomic%, the fluororesin in the vicinity of the metal film is oxidized and weakened, and the adhesion is lowered, which may make circuit processing difficult.

フッ素フィルムがダメージを受けると、フッ素フィルムを構成するCFの構造からフッ素原子が脱離する場合がある。フッ素の脱離は元素組成比率でのフッ素比率低下からも確認することができるが、本発明のように元素組成比率に占めるフッ素比率が高い場合は、ごくわずかなフッ素量の変化は検出しづらいので、元素同士の結合状態で確認することができる。フッ素フィルムの骨格として存在するCFに着目すると、XPS分析によって検出される296〜283eVの領域にピークをもつシグナルがC1sに帰属される。このピークは比較的ブロードになるため、結合状態に対応するピークに分離することができる。スペクトル分離するシグナルのピーク位置と対応する構造を表1に示す。When the fluorine film is damaged, fluorine atoms may be eliminated from the structure of CF 2 constituting the fluorine film. Desorption of fluorine can be confirmed from the decrease in the fluorine ratio in the elemental composition ratio, but when the fluorine ratio in the elemental composition ratio is high as in the present invention, it is difficult to detect a slight change in the amount of fluorine. Therefore, it can be confirmed by the state of bonding between the elements. Focusing on CF 2 existing as the skeleton of the fluorine film, the signal having a peak in the region of 296 to 283 eV detected by XPS analysis is assigned to C1s. Since this peak is relatively broad, it can be separated into peaks corresponding to the bound state. Table 1 shows the structures corresponding to the peak positions of the signals to be spectrally separated.

Figure 2020066457
Figure 2020066457

このようにして分離したC1sスペクトルの全体を100%としたとき、CFからFが脱離したCFに対応する289.7eVの面積比率が、C1sに帰属されるピークを100%とすると結合状態がCFとなる割合、である。Assuming that the entire C1s spectrum separated in this way is 100%, the area ratio of 289.7 eV corresponding to the CF desorbed from CF 2 is 100%, and the peak assigned to C1s is 100%. Is the ratio of CF.

フッ素フィルムと金属膜を剥離し、金属膜側の剥離面のXPSによる分析で検出されるC1sに帰属されるピークを100%とすると、結合状態がCFとなる割合が2.5%以下であることが好ましい。結合状態がCFとなる割合が2.5%を超える場合は、金属膜近傍のフッ素フィルムが分解などによって変質していることで密着力を低下させて、回路加工が困難になる場合がある。 When the fluorine film and the metal film are peeled off and the peak attributed to C1s detected by XPS analysis of the peeled surface on the metal film side is 100%, the ratio of the bonded state to CF is 2.5% or less. Is preferable. When the ratio of the bonded state to CF exceeds 2.5%, the fluorine film in the vicinity of the metal film is deteriorated due to decomposition or the like, which lowers the adhesion force and may make circuit processing difficult.

本発明の積層体は、フッ素フィルムの少なくとも片面にスパッタリング法にて下地金属を形成し、前記下地金属層に真空蒸着法にて銅層1を形成して製造することができる。銅層1は、下地金属上に形成することによって、平均結晶粒径を安定させられるため、下地金属層上に形成することが好ましい。下地金属層と銅層1はいずれも気相成長法で製膜されるため、これらの層は1層ずつ2度に分けて製膜することもできるし、2層を連続して製膜することもできる。 The laminate of the present invention can be produced by forming a base metal on at least one surface of a fluorine film by a sputtering method and forming a copper layer 1 on the base metal layer by a vacuum deposition method. Since the average crystal grain size can be stabilized by forming the copper layer 1 on the base metal, it is preferable to form the copper layer 1 on the base metal layer. Since both the base metal layer and the copper layer 1 are formed by the vapor phase growth method, these layers can be formed one by one in two steps, or two layers are continuously formed. You can also do it.

本発明の積層体は、金属膜をパターニングして配線回路を形成し、フッ素樹脂回路基板とすることができる。積層体の配線回路は、サブトラクティブ法やセミアディティブ法など公知の方法で形成することができるが、回路の配線幅が狭い場合は、エッチングによる配線幅の減少が少ないセミアディティブ法がより好まれる。配線回路は、適切なインピーダンスに制御するため、銅層1上に、電解めっきで銅層2を形成して配線回路を形成することができる。 The laminate of the present invention can be used as a fluororesin circuit board by patterning a metal film to form a wiring circuit. The wiring circuit of the laminated body can be formed by a known method such as a subtractive method or a semi-additive method, but when the wiring width of the circuit is narrow, the semi-additive method in which the reduction in the wiring width due to etching is small is more preferable. .. In order to control the impedance of the wiring circuit to an appropriate level, the copper layer 2 can be formed on the copper layer 1 by electrolytic plating to form the wiring circuit.

本発明の積層体は、回路材料用途、タッチパネルなどに好適に用いることができる。 The laminate of the present invention can be suitably used for circuit material applications, touch panels and the like.

以下、実施例に基づいて本発明を具体的に説明するが、本発明は実施例のみに限定されるものではない。
[評価方法]
(1)X線光電子分光法(XPS)による金属膜剥離面の分析
積層体のフッ素フィルムと金属膜との界面で金属膜を剥離し、金属膜側の剥離面を分析した。剥離時の金属膜の厚みは10μmに統一した。積層体の金属膜の厚みが10μmに満たない場合は、厚さが10μmになるように電解銅めっきした。電解銅めっき液は、硫酸銅五水和塩50g/L、硫酸200g/L、塩素50ppm、メルテックス(株)の添加剤“カパーグリーム”ST−901A 2ml/L、“カパーグリーム”ST−901B 20ml/Lの液とした。めっき条件は噴流方式、電流密度1.0A/dm2とした。
Hereinafter, the present invention will be specifically described based on Examples, but the present invention is not limited to the Examples.
[Evaluation method]
(1) Analysis of metal film peeled surface by X-ray photoelectron spectroscopy (XPS) The metal film was peeled at the interface between the fluorine film and the metal film of the laminate, and the peeled surface on the metal film side was analyzed. The thickness of the metal film at the time of peeling was unified to 10 μm. When the thickness of the metal film of the laminate was less than 10 μm, electrolytic copper plating was performed so that the thickness was 10 μm. The electrolytic copper plating solution is copper sulfate pentahydrate 50 g / L, sulfuric acid 200 g / L, chlorine 50 ppm, Meltex Co., Ltd. additive "Capper Grim" ST-901A 2 ml / L, "Capper Grim" ST-901B. The solution was 20 ml / L. The plating conditions were a jet method and a current density of 1.0 A / dm 2 .

金属膜の剥離は、10mm幅の短冊状の積層体を平板に固定して、室温23℃湿度50%の環境下で、金属膜を剥離速度100mm/min、180°の角度でフッ素フィルムから剥離した。積層体の金属膜が片面の場合は、金属膜を把持して剥離した。
XPS法による分析は、以下の測定条件、データ処理条件で行った。
To peel off the metal film, a strip-shaped laminate with a width of 10 mm is fixed to a flat plate, and the metal film is peeled off from the fluorine film at a peeling speed of 100 mm / min and an angle of 180 ° in an environment of room temperature of 23 ° C. and humidity of 50%. bottom. When the metal film of the laminated body was single-sided, the metal film was gripped and peeled off.
The analysis by the XPS method was performed under the following measurement conditions and data processing conditions.

測定装置:ESCALAB220iXL(VG社製)
励起X線:monochromatic Al Kα1,2線 (1486.6eV)
X線経:1mm
光電子脱出角度:90°
スムージング:11−point smoothing
横軸補正:C1sメインピークを291.8eVとした。
Measuring device: ESCALAB220iXL (manufactured by VG)
Excited X-rays: monochromatic Al Kα 1 and 2 lines (1486.6 eV)
X-ray diameter: 1 mm
Photoelectron escape angle: 90 °
Smoothing: 11-point smoothing
Horizontal axis correction: The C1s main peak was set to 291.8 eV.

(2)EBSDによる平均結晶粒径の算出
銅層1の平均結晶粒径の算出は、本文中にも記載の以下の条件で算出した。回折パターンを取り込む条件は以下の通りである。
使用装置:
熱電界放射型走査電子顕微鏡(TFE−SEM)JSM−6500F(日本電子社製)
OIM方位解析装置 DigiViewIV スロースキャンCCDカメラ
OIM Data Collection ver.7.x
OIM Analysis ver.7.x
分析条件:加速電圧 30kV
照射電流 30nA
試料傾斜 −30deg(透過EBSD法)
表面測定倍率 20,000倍
領域 3.5×1.0μm
間隔 10nm/step。
(2) Calculation of average crystal grain size by EBSD The average crystal grain size of the copper layer 1 was calculated under the following conditions described in the text. The conditions for incorporating the diffraction pattern are as follows.
Equipment used:
Thermal field emission scanning electron microscope (TFE-SEM) JSM-6500F (manufactured by JEOL Ltd.)
OIM Orientation Analyzer DigiViewIV Slow Scan CCD Camera
OIM Data Collection ver. 7. x
OIM Analysis ver. 7. x
Analytical conditions: Acceleration voltage 30kV
Irradiation current 30nA
Sample tilt -30 deg (permeation EBSD method)
Surface measurement magnification 20,000 times
Area 3.5 x 1.0 μm
Interval 10 nm / step.

(3)下地金属層の厚み
下地金属層の厚みは、クライオFIB法によって積層体を断面方向から薄片化し、走査透過電子顕微鏡(STEM)で観察して計測した。
(3) Thickness of Underlayer Metal Layer The thickness of the underlayer metal layer was measured by slicing the laminate from the cross-sectional direction by the cryo-FIB method and observing it with a scanning transmission electron microscope (STEM).

測定装置は、日本電子株式会社製原子分解能分析電子顕微鏡JEM−ARM200Fを用いて、加速電圧200kV、2,000,000倍で3点観察した。観察した写真で厚みを計測し、その平均値を膜厚とした。 As a measuring device, an atomic resolution analysis electron microscope JEM-ARM200F manufactured by JEOL Ltd. was used, and three points were observed at an acceleration voltage of 200 kV and a magnification of 2,000,000. The thickness was measured from the observed photographs, and the average value was taken as the film thickness.

(4)金属膜および金属層の厚み
金属膜および金属層の厚みは、積層体断面を走査型電子顕微鏡(SEM)または透過電子顕微鏡(TEM)で観察して計測した。金属膜または金属層の厚みが0.05μmを超える場合は、SEMを使用し、0.05μm以下の場合はTEMを使用した。TEMを使用する場合は、上記の下地金属層の厚みと同じ方法で測定した。
(4) Thickness of Metal Film and Metal Layer The thickness of the metal film and metal layer was measured by observing the cross section of the laminate with a scanning electron microscope (SEM) or a transmission electron microscope (TEM). When the thickness of the metal film or the metal layer exceeded 0.05 μm, SEM was used, and when it was 0.05 μm or less, TEM was used. When TEM was used, it was measured by the same method as the thickness of the base metal layer described above.

SEMで観察する場合は、積層体を厚み方向に切削して積層体断面を観察した。積層体の切削は、株式会社日本ミクロトーム研究所製のミクロトームRMS型を使用し、SEMは株式会社日立ハイテクノロジーズ製日立走査型電子顕微鏡S−3400Nを使用した。観察倍率は後述の通り膜厚に応じて変更して3点観察してそれぞれ厚み測定し、その平均値を膜厚とした。観察倍率は、膜厚10μm以上の場合2,000倍、膜厚5μm以上10μm未満の場合5,000倍、膜厚1μm以上5μm未満の場合10,000倍、膜厚0.1μm以上1μm未満の場合50,000倍、膜厚0.05μmより厚く0.1μm未満の場合100,000倍とした。 When observing by SEM, the laminated body was cut in the thickness direction and the cross section of the laminated body was observed. A microtome RMS type manufactured by Nippon Microtome Research Institute Co., Ltd. was used for cutting the laminate, and a Hitachi scanning electron microscope S-3400N manufactured by Hitachi High-Technologies Corporation was used as the SEM. The observation magnification was changed according to the film thickness as described later, and the thickness was measured by observing three points, and the average value was taken as the film thickness. The observation magnification is 2,000 times when the film thickness is 10 μm or more, 5,000 times when the film thickness is 5 μm or more and less than 10 μm, 10,000 times when the film thickness is 1 μm or more and less than 5 μm, and 0.1 μm or more and less than 1 μm. In the case of 50,000 times, when the film thickness was thicker than 0.05 μm and less than 0.1 μm, it was 100,000 times.

(5)金属膜の表面粗さ
金属膜の表面粗さRaは、JIS B 0601−2001で定義される算術平均粗さのことである。測定は、株式会社キーエンス製レーザー顕微鏡VK9700を用いて、対物レンズ150倍で、金属膜の表面を観察した。
(5) Surface Roughness of Metal Film The surface roughness Ra of the metal film is the arithmetic mean roughness defined in JIS B 0601-2001. For the measurement, a laser microscope VK9700 manufactured by KEYENCE CORPORATION was used, and the surface of the metal film was observed with an objective lens of 150 times.

(6)密着力
積層体の金属膜厚みを10μmにしたものを用いて、フッ素フィルムと金属膜の密着力を測定した。積層体を幅10mmに切り出し、アクリル板に両面テープで固定して、テンシロン試験機で測定した。積層体の金属膜が片面の場合は、金属膜側を固定してフッ素フィルムを剥離した。剥離角度は180°、剥離速度は50mm/minとした。
(6) Adhesion force The adhesion force between the fluorine film and the metal film was measured using a laminated body having a metal film thickness of 10 μm. The laminate was cut out to a width of 10 mm, fixed to an acrylic plate with double-sided tape, and measured with a Tensilon tester. When the metal film of the laminate was single-sided, the metal film side was fixed and the fluorine film was peeled off. The peeling angle was 180 ° and the peeling speed was 50 mm / min.

また、耐熱密着力の評価として、金属厚みを10μmにしたものを150℃で5時間熱処理した後、上記と同じ方法で密着力を測定した。 Further, as an evaluation of the heat-resistant adhesion, the metal having a thickness of 10 μm was heat-treated at 150 ° C. for 5 hours, and then the adhesion was measured by the same method as described above.

(7)配線パターンの形成(方法(1))
本発明の積層体を用いて実際に配線パターンを加工して、その加工性を評価した。配線パターンの形成できたものを〇、配線パターンの形成できるものの不具合があるものを△、配線パターンの形成できなかったものを×とした。
(方法(1))本発明の積層体の金属膜表面に、東京応化株式会社製“PMER P−LA900PM”を使用して、レジスト厚20μm、L/S=10/10μmの配線パターンのめっきレジストを形成した。その後、金属膜厚みが10μmになるように電解銅めっきした。電解銅めっきは、硫酸銅五水和塩50g/L、硫酸200g/L、塩素50ppm、メルテックス(株)の添加剤“カパーグリーム”ST−901A 2ml/L、“カパーグリーム”ST−901B 20ml/Lの液を使用し、めっき条件は、噴流方式、電流密度1.0A/dmとした。電解銅めっき後、めっきレジストをアルカリ性の剥離液で除去し、過酸化水素―硫酸系のエッチング液を用いて配線間にある給電目的の金属膜を除去して配線パターンを形成した。なお、下地金属膜がニッケルやチタンを含む場合は、下地金属層が過酸化水素―硫酸系のエッチング液で除去しにくいため、銅層1を上記方法でエッチングした後、メック株式会社製“メックリムーバー”を使用して下地金属層を除去した。
(方法(2))本発明の積層体の金属膜の厚みが15μmになるように、方法(1)と同じ条件で電解銅めっきした。次に、電解めっきして厚くなった金属膜表面に、東京応化株式会社製“PMER P−LA900PM”を使用して、レジスト厚20μm、L/S=50/50μmの配線パターンのエッチングレジストを形成した。その後、塩化第二鉄系のエッチング液を用いてシャワー方式で金属膜をエッチングし、エッチングレジストをアルカリ性の剥離液で除去して配線パターンを形成した。
[実施例1]厚さ50μmのダイキン株式会社製フッ素フィルム“ネオフロン”PFAフィルムの片面にプラズマ処理した。処理条件は、Ar/CH/CO混合ガス雰囲気下で圧力50Pa、処理強度は500W・min/mとした。フッ素フィルムのプラズマ処理した面に、電子ビーム蒸着法によって銅を成膜速度2.0μm・m/min、ライン速度4.0m/minで0.5μmの厚さに銅層1を積層して、積層体を得た。
[実施例2]厚さ50μmのダイキン株式会社製フッ素フィルム“ネオフロン”PFAフィルムの片面に実施例1と同じ条件でプラズマ処理した。フッ素フィルムのプラズマ処理した面に、下地金属層としてマグネトロンスパッタリング法で銅を20nm形成した。スパッタリング条件としては、50mm×550mmサイズのターゲットを用い、アルゴンガスを導入しての真空到達度は1×10−2Pa以下、スパッタリング出力はDC電源を用いて5kwを採用した。続いて、下地金属層の上に実施例1と同じ条件で銅層1を積層して積層体を得た。
[実施例3]下地金属層を、5nmの厚さのニッケルにした以外は実施例2と同様にして積層体を得た。
[実施例4]下地金属層を、10nmの厚さのチタンにした以外は実施例2と同様にして積層体を得た。
[実施例5]厚さ50μmの東レフィルム加工株式会社製フッ素フィルム“トヨフロン”ETFEフィルムの片面にプラズマ処理した。処理条件は、Ar/CH/CO混合ガス雰囲気下で圧力50Pa、処理強度は200W・min/mとした。とした。フッ素フィルムのプラズマ処理した表面に、実施例4と同様にして、下地金属層、銅層1を積層して積層体を得た。
[実施例6]厚さ50μmの東レフィルム加工株式会社製フッ素フィルム“トヨフロン”FEPフィルムの片面にプラズマ処理した。処理条件は、Ar/CH/CO混合ガス雰囲気下で圧力50Pa、処理強度は300W・min/mとした。とした。フッ素フィルムのプラズマ処理した表面に、実施例4と同様にして、下地金属層、銅層1を積層して積層体を得た。
[実施例7]下地金属層の厚さを1nmの厚さにした以外は実施例3と同様にして積層体を得た。
[実施例8]下地金属層の厚さを20nmの厚さにした以外は実施例3と同様にして積層体を得た。
[実施例9]下地金属層の厚さを50nmの厚さにした以外は実施例3と同様にして積層体を得た。
[実施例10]下地金属層の厚さを1nmの厚さにした以外は実施例4と同様にして積層体を得た。
[実施例11]下地金属層の厚さを50nmの厚さにした以外は実施例4と同様にして積層体を得た。
[実施例12]銅層1の厚さを0.1μmにした以外は実施例3と同様にして積層体を得た。
[実施例13]銅層1の厚さを2.0μmにした以外は実施例3と同様にして積層体を得た。
[実施例14]プラズマ処理強度を750W・min/mとした以外は、実施例5と同様にして積層体を得た。
[実施例15]プラズマ処理の処理雰囲気をAr/CH/N混合ガス雰囲気下としたこと以外は、実施例4と同様にして積層体を得た。
[実施例16]厚さ50μmのダイキン株式会社製フッ素フィルム“ネオフロン”PFAフィルムを、プラズマ処理をせずに使用した以外は実施例4と同様にして積層体を得た。
[実施例17]厚さ50μmのダイキン株式会社製フッ素フィルム“ネオフロン”PFAフィルムの片面に実施例1と同じ条件でプラズマ処理した。フッ素フィルムのプラズマ処理した面に、下地金属層として、マグネトロンスパッタリング法でニッケルを5nm形成した。スパッタリング条件としては、50mm×550mmサイズのターゲットを用い、アルゴンガスを導入しての真空到達度は1×10−2Pa以下、スパッタリング出力はDC電源を用いて5kwを採用した。続いて、ターゲットを銅に変更して、マグネトロンスパッタリング法で銅を0.1μmの厚さで積層して銅層1とした積層体を得た。
[比較例1]厚さ50μmのダイキン株式会社製フッ素フィルム“ネオフロン”PFAフィルムの片面にプラズマ処理した。処理条件は、Ar/CH/CO混合ガス雰囲気下で圧力50Pa、処理強度は5000W・min/mとした。とした。その後、実施例8と同様にして、厚さ20nmのニッケルの下地金属層と、厚さ0.5μmの銅層1を積層して積層体を得た。
[比較例2]下地金属層の厚さを90nmにした以外は実施例2と同様にして積層体を得た。
[比較例3]フッ素フィルムのプラズマ処理条件をAr/CH/CO混合ガス雰囲気下で圧力50Pa、処理強度は5000W・min/mとした以外は、実施例5と同様にして積層体を得た。
(7) Formation of wiring pattern (method (1))
The wiring pattern was actually processed using the laminate of the present invention, and its processability was evaluated. Those in which the wiring pattern could be formed were evaluated as ◯, those in which the wiring pattern could be formed but had defects were evaluated as Δ, and those in which the wiring pattern could not be formed were evaluated as ×.
(Method (1)) A plating resist having a wiring pattern with a resist thickness of 20 μm and L / S = 10/10 μm was used on the metal film surface of the laminate of the present invention using “PMER P-LA900PM” manufactured by Tokyo Ohka Co., Ltd. Was formed. Then, electrolytic copper plating was performed so that the metal film thickness was 10 μm. Electrolytic copper plating is performed with copper sulfate pentahydrate 50 g / L, sulfuric acid 200 g / L, chlorine 50 ppm, Meltex Inc. additive "Capper Grim" ST-901A 2 ml / L, "Capper Grim" ST-901B 20 ml. A liquid of / L was used, and the plating conditions were a jet flow method and a current density of 1.0 A / dm 2 . After electrolytic copper plating, the plating resist was removed with an alkaline stripping solution, and a metal film for feeding purposes was removed between the wirings using a hydrogen peroxide-sulfuric acid-based etching solution to form a wiring pattern. When the base metal film contains nickel or titanium, the base metal layer is difficult to remove with a hydrogen peroxide-sulfuric acid-based etching solution. Therefore, after etching the copper layer 1 by the above method, "Mech" manufactured by MEC Co., Ltd. The underlying metal layer was removed using a "remover".
(Method (2)) Electrolytic copper plating was performed under the same conditions as in method (1) so that the thickness of the metal film of the laminate of the present invention was 15 μm. Next, on the surface of the metal film thickened by electroplating, an etching resist with a wiring pattern of 20 μm resist thickness and L / S = 50/50 μm is formed using “PMER P-LA900PM” manufactured by Tokyo Oka Co., Ltd. bottom. Then, the metal film was etched by a shower method using a ferric chloride-based etching solution, and the etching resist was removed with an alkaline stripping solution to form a wiring pattern.
[Example 1] One side of a 50 μm-thick fluorine film “Neoflon” PFA film manufactured by Daikin Corporation was plasma-treated. The treatment conditions were a pressure of 50 Pa and a treatment intensity of 500 W · min / m 2 in an Ar / CH 4 / CO 2 mixed gas atmosphere. Copper layer 1 was laminated on the plasma-treated surface of the fluorine film by an electron beam vapor deposition method to a thickness of 0.5 μm at a film formation rate of 2.0 μm · m / min and a line speed of 4.0 m / min. A laminate was obtained.
[Example 2] One side of a 50 μm-thick fluorine film “Neoflon” PFA film manufactured by Daikin Corporation was plasma-treated under the same conditions as in Example 1. Copper was formed at 20 nm as a base metal layer on the plasma-treated surface of the fluorine film by a magnetron sputtering method. As the sputtering conditions, a target having a size of 50 mm × 550 mm was used, the degree of vacuum reached by introducing argon gas was 1 × 10-2 Pa or less, and the sputtering output was 5 kW using a DC power supply. Subsequently, the copper layer 1 was laminated on the base metal layer under the same conditions as in Example 1 to obtain a laminated body.
[Example 3] A laminate was obtained in the same manner as in Example 2 except that the base metal layer was made of nickel having a thickness of 5 nm.
[Example 4] A laminate was obtained in the same manner as in Example 2 except that the base metal layer was made of titanium having a thickness of 10 nm.
[Example 5] One side of a fluorine film "Toyoflon" ETFE film manufactured by Toray Film Processing Co., Ltd. having a thickness of 50 μm was plasma-treated. The treatment conditions were a pressure of 50 Pa and a treatment intensity of 200 W · min / m 2 in an Ar / CH 4 / CO 2 mixed gas atmosphere. And said. A base metal layer and a copper layer 1 were laminated on the plasma-treated surface of the fluorine film in the same manner as in Example 4 to obtain a laminated body.
[Example 6] One side of a fluorine film "Toyoflon" FEP film manufactured by Toray Film Processing Co., Ltd. having a thickness of 50 μm was plasma-treated. The treatment conditions were a pressure of 50 Pa and a treatment intensity of 300 W · min / m 2 in an Ar / CH 4 / CO 2 mixed gas atmosphere. And said. A base metal layer and a copper layer 1 were laminated on the plasma-treated surface of the fluorine film in the same manner as in Example 4 to obtain a laminated body.
[Example 7] A laminate was obtained in the same manner as in Example 3 except that the thickness of the base metal layer was set to 1 nm.
[Example 8] A laminated body was obtained in the same manner as in Example 3 except that the thickness of the base metal layer was set to 20 nm.
[Example 9] A laminate was obtained in the same manner as in Example 3 except that the thickness of the base metal layer was set to 50 nm.
[Example 10] A laminated body was obtained in the same manner as in Example 4 except that the thickness of the base metal layer was set to 1 nm.
[Example 11] A laminated body was obtained in the same manner as in Example 4 except that the thickness of the base metal layer was set to 50 nm.
[Example 12] A laminate was obtained in the same manner as in Example 3 except that the thickness of the copper layer 1 was set to 0.1 μm.
[Example 13] A laminate was obtained in the same manner as in Example 3 except that the thickness of the copper layer 1 was set to 2.0 μm.
[Example 14] A laminate was obtained in the same manner as in Example 5 except that the plasma treatment intensity was set to 750 W · min / m 2.
[Example 15] A laminate was obtained in the same manner as in Example 4 except that the treatment atmosphere of the plasma treatment was an Ar / CH 4 / N 2 mixed gas atmosphere.
[Example 16] A laminate was obtained in the same manner as in Example 4 except that a 50 μm-thick fluorine film “Neoflon” PFA film manufactured by Daikin Corporation was used without plasma treatment.
[Example 17] One side of a 50 μm-thick fluorine film “Neoflon” PFA film manufactured by Daikin Corporation was plasma-treated under the same conditions as in Example 1. Nickel was formed at 5 nm on the plasma-treated surface of the fluorine film as a base metal layer by a magnetron sputtering method. As the sputtering conditions, a target having a size of 50 mm × 550 mm was used, the degree of vacuum reached by introducing argon gas was 1 × 10-2 Pa or less, and the sputtering output was 5 kW using a DC power supply. Subsequently, the target was changed to copper, and copper was laminated to a thickness of 0.1 μm by a magnetron sputtering method to obtain a laminated body as a copper layer 1.
[Comparative Example 1] One side of a 50 μm-thick fluorine film “Neoflon” PFA film manufactured by Daikin Corporation was plasma-treated. The treatment conditions were a pressure of 50 Pa and a treatment intensity of 5000 W · min / m 2 in an Ar / CH 4 / CO 2 mixed gas atmosphere. And said. Then, in the same manner as in Example 8, a nickel base metal layer having a thickness of 20 nm and a copper layer 1 having a thickness of 0.5 μm were laminated to obtain a laminate.
[Comparative Example 2] A laminate was obtained in the same manner as in Example 2 except that the thickness of the base metal layer was 90 nm.
[Comparative Example 3] A laminate in the same manner as in Example 5 except that the plasma treatment conditions for the fluorine film were a pressure of 50 Pa and a treatment intensity of 5000 W · min / m 2 in an Ar / CH 4 / CO 2 mixed gas atmosphere. Got

Figure 2020066457
Figure 2020066457

Figure 2020066457
Figure 2020066457

1:フッ素フィルム
2:金属膜
3:銅層1
4:下地金属層
5:銅層2
1: Fluorine film 2: Metal film 3: Copper layer 1
4: Base metal layer 5: Copper layer 2

Claims (14)

フッ素フィルムの少なくとも片面に、1層または2層以上の金属層を積層した金属膜を有する積層体であって、
前記金属膜は、金属層として銅を主成分とする層(以下、銅層1という)を含み、
前記フッ素フィルムと前記金属膜との界面で金属膜を剥離し、前記金属膜側の剥離面のX線光電子分光法(XPS)による分析で検出されるフッ素原子が50atomic%以上であり、金属原子が4atomic%以下である、積層体。
A laminate having a metal film in which one layer or two or more metal layers are laminated on at least one surface of a fluorine film.
The metal film includes a layer containing copper as a main component (hereinafter referred to as copper layer 1) as a metal layer.
The metal film is peeled off at the interface between the fluorine film and the metal film, and the fluorine atom detected by the analysis by X-ray photoelectron spectroscopy (XPS) on the peeled surface on the metal film side is 50 atomic% or more, and the metal atom. Is 4 atomic% or less, a laminated body.
前記フッ素フィルムと前記金属膜との界面で金属膜を剥離し、前記金属膜側の剥離面のX線光電子分光法(XPS)による分析で検出される酸素原子が0.1atomic%以上3atomic%以下である、請求項1に記載の積層体。 The metal film is peeled off at the interface between the fluorine film and the metal film, and the oxygen atom detected by the analysis by X-ray photoelectron spectroscopy (XPS) on the peeled surface on the metal film side is 0.1 atomic% or more and 3 atomic% or less. The laminate according to claim 1. 前記フッ素フィルムと前記金属膜との界面で金属膜を剥離し、前記金属膜側の剥離面のX線光電子分光法(XPS)による分析で検出されるC1sに帰属されるピークを100%とすると、結合状態がCFとなる割合が2.5%以下である、請求項1または2に記載の積層体。 It is assumed that the metal film is peeled off at the interface between the fluorine film and the metal film, and the peak assigned to C1s detected by the analysis of the peeled surface on the metal film side by X-ray photoelectron spectroscopy (XPS) is 100%. The laminate according to claim 1 or 2, wherein the ratio of the bonded state to CF is 2.5% or less. 前記銅層1は、平均結晶粒径が50nm以上200nm以下である、請求項1から3のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the copper layer 1 has an average crystal grain size of 50 nm or more and 200 nm or less. 前記金属膜は、前記フッ素フィルムの側から下地金属層、および、前記銅層1の順に積層され、前記下地金属層と前記銅層1とが接している、請求項1から4のいずれかに記載の積層体。 The metal film is laminated in the order of the base metal layer and the copper layer 1 from the side of the fluorine film, and the base metal layer and the copper layer 1 are in contact with each other, according to any one of claims 1 to 4. The laminate described. 前記下地金属層は、銅、ニッケル、チタン、およびそれらの少なくとも1種を含む合金からなる群より選ばれる少なくとも1つを含む、請求項5に記載の積層体。 The laminate according to claim 5, wherein the base metal layer contains at least one selected from the group consisting of copper, nickel, titanium, and an alloy containing at least one of them. 前記下地金属層は、厚みが1nm以上50nm以下である請求項5または6に記載の積層体。 The laminate according to claim 5 or 6, wherein the base metal layer has a thickness of 1 nm or more and 50 nm or less. 前記金属膜は、厚みが0.05μm以上20μm以下である、請求項1から7のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 7, wherein the metal film has a thickness of 0.05 μm or more and 20 μm or less. 前記銅層1は、厚みが0.05μm以上3.0μm以下である、請求項1から8のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 8, wherein the copper layer 1 has a thickness of 0.05 μm or more and 3.0 μm or less. 前記金属膜は、フッ素フィルムと接していない面の表面粗さRaが0.01μm以上0.10μm以下である、請求項1から9のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 9, wherein the metal film has a surface roughness Ra of 0.01 μm or more and 0.10 μm or less on a surface that is not in contact with the fluorine film. 前記金属膜は、3層以上の金属層を積層した金属膜である、請求項1〜10のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 10, wherein the metal film is a metal film in which three or more metal layers are laminated. 前記金属膜は、金属層として銅を主成分とする層(以下、銅層2という)を含み、
前記銅層2は、一方の面が前記銅層1と接する、請求項1〜11のいずれかに記載の積層体。
The metal film includes a layer containing copper as a main component (hereinafter referred to as copper layer 2) as a metal layer.
The laminate according to any one of claims 1 to 11, wherein the copper layer 2 is in contact with the copper layer 1 on one surface.
請求項1〜12のいずれかに記載の積層体の製造方法であって、
フッ素フィルムの少なくとも片面にスパッタリング法にて下地金属層を形成し、前記下地金属層上に真空蒸着法にて銅層1を形成する、積層体の製造方法。
The method for producing a laminate according to any one of claims 1 to 12.
A method for producing a laminate, in which a base metal layer is formed on at least one surface of a fluorine film by a sputtering method, and a copper layer 1 is formed on the base metal layer by a vacuum deposition method.
請求項1〜12のいずれかに記載の積層体を用いたフッ素樹脂回路基板の製造方法であって、
積層体の銅層1上に電解めっきを用いて銅層2を形成して配線回路を形成する、フッ素樹脂回路基板の製造方法。
A method for manufacturing a fluororesin circuit board using the laminate according to any one of claims 1 to 12.
A method for manufacturing a fluororesin circuit board, in which a copper layer 2 is formed on a copper layer 1 of a laminate by electroplating to form a wiring circuit.
JP2019550870A 2018-09-25 2019-08-30 Laminate and method for manufacturing the laminate Active JP7355648B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018178660 2018-09-25
JP2018178660 2018-09-25
PCT/JP2019/034082 WO2020066457A1 (en) 2018-09-25 2019-08-30 Layered body and layered body production method

Publications (2)

Publication Number Publication Date
JPWO2020066457A1 true JPWO2020066457A1 (en) 2021-08-30
JP7355648B2 JP7355648B2 (en) 2023-10-03

Family

ID=69950528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019550870A Active JP7355648B2 (en) 2018-09-25 2019-08-30 Laminate and method for manufacturing the laminate

Country Status (5)

Country Link
JP (1) JP7355648B2 (en)
KR (1) KR20210067983A (en)
CN (1) CN112423983A (en)
TW (1) TWI825179B (en)
WO (1) WO2020066457A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230159393A (en) * 2021-03-26 2023-11-21 미쓰이금속광업주식회사 Carrier equipped with copper foil, copper clad laminate and printed wiring board

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214095A (en) * 1988-02-22 1989-08-28 Furukawa Electric Co Ltd:The Manufacture of flexible printed board
JPH03260056A (en) * 1990-03-08 1991-11-20 Sekisui Chem Co Ltd Metal oxide-coated plastic
JPH0955575A (en) * 1995-08-10 1997-02-25 Mitsui Toatsu Chem Inc Laminate
JPH11222666A (en) * 1998-02-05 1999-08-17 Toyo Metallizing Co Ltd Metal evaporated fluororesin film and its production
JP2004031370A (en) * 2002-06-07 2004-01-29 Matsushita Electric Ind Co Ltd Flexible printed circuit board and its manufacturing method
JP2005007668A (en) * 2003-06-17 2005-01-13 Matsushita Electric Ind Co Ltd Metal film/fluoroplastic substrate, its evaluating method and its manufacturing method
JP2014223799A (en) * 2013-04-19 2014-12-04 ダイキン工業株式会社 Metal-clad laminate body and printed circuit board
WO2016021666A1 (en) * 2014-08-07 2016-02-11 日本化薬株式会社 Double-sided circuit substrate suitable for high-frequency circuits
JP2018135561A (en) * 2017-02-21 2018-08-30 住友金属鉱山株式会社 Copper-clad laminated substrate, method for manufacturing the same, and wiring board
WO2018179904A1 (en) * 2017-03-28 2018-10-04 東レKpフィルム株式会社 Metalized film and production method therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100502179B1 (en) 2002-02-25 2005-08-08 스마트알앤씨 주식회사 Preparation of Metal Clad Laminate for Printed Circuit Board
JP4646580B2 (en) 2004-09-02 2011-03-09 住友電気工業株式会社 Method for producing composite film and surface modification method for resin film
KR101299652B1 (en) * 2011-09-07 2013-08-23 주식회사 엘지화학 Flexible metal laminate containing fluoropolymer
JP2014080686A (en) * 2012-09-28 2014-05-08 Toray Ind Inc Method of producing laminate
JP5358740B1 (en) * 2012-10-26 2013-12-04 Jx日鉱日石金属株式会社 Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214095A (en) * 1988-02-22 1989-08-28 Furukawa Electric Co Ltd:The Manufacture of flexible printed board
JPH03260056A (en) * 1990-03-08 1991-11-20 Sekisui Chem Co Ltd Metal oxide-coated plastic
JPH0955575A (en) * 1995-08-10 1997-02-25 Mitsui Toatsu Chem Inc Laminate
JPH11222666A (en) * 1998-02-05 1999-08-17 Toyo Metallizing Co Ltd Metal evaporated fluororesin film and its production
JP2004031370A (en) * 2002-06-07 2004-01-29 Matsushita Electric Ind Co Ltd Flexible printed circuit board and its manufacturing method
JP2005007668A (en) * 2003-06-17 2005-01-13 Matsushita Electric Ind Co Ltd Metal film/fluoroplastic substrate, its evaluating method and its manufacturing method
JP2014223799A (en) * 2013-04-19 2014-12-04 ダイキン工業株式会社 Metal-clad laminate body and printed circuit board
WO2016021666A1 (en) * 2014-08-07 2016-02-11 日本化薬株式会社 Double-sided circuit substrate suitable for high-frequency circuits
JP2018135561A (en) * 2017-02-21 2018-08-30 住友金属鉱山株式会社 Copper-clad laminated substrate, method for manufacturing the same, and wiring board
WO2018179904A1 (en) * 2017-03-28 2018-10-04 東レKpフィルム株式会社 Metalized film and production method therefor

Also Published As

Publication number Publication date
CN112423983A (en) 2021-02-26
TWI825179B (en) 2023-12-11
WO2020066457A1 (en) 2020-04-02
JP7355648B2 (en) 2023-10-03
KR20210067983A (en) 2021-06-08
TW202019691A (en) 2020-06-01

Similar Documents

Publication Publication Date Title
JP4350263B2 (en) Metallized polyimide film and method for producing the same
JPH08330728A (en) Flexible printed-wiring board
KR20170143466A (en) Copper foil with release layer, laminate, method of manufacturing printed wiring board and method of manufacturing electronic device
JPH11268183A (en) Polyimide-metal laminate and its manufacture
JP5345955B2 (en) Adhesive flexible laminate
JP2005219259A (en) Metallized polyimide film
JP2014053410A (en) Production method and production apparatus of double side metal laminate film, and manufacturing method of flexible double side printed wiring board
JP2004327931A (en) Metal coated polyimide substrate and its manufacturing method
JP7355648B2 (en) Laminate and method for manufacturing the laminate
JP4397702B2 (en) Method for producing metallized polyimide film
JP2006306009A (en) Two-layer film, method for producing two-layer film and method for manufacturing printed wiring board
JP7145428B2 (en) Metallized film and manufacturing method thereof
JPH05259596A (en) Board for flexible printed wiring
WO2021020289A1 (en) Polyarylene sulfide resin film, metal layered product, production method for polyarylene sulfide resin film, and production method for metal layered product
JP2014222689A (en) Method and apparatus for manufacturing double-side metal laminated film, and manufacturing method of flexible double-side printed wiring board
JP2005262707A (en) Copper-clad laminated film and material for flexible circuit board
JP2012244056A (en) Method for manufacturing fluororesin substrate
JP2010109275A (en) Coiled copper foil for printed circuit board
JP2007208251A (en) Substrate for flexible board, flexible board using it, and manufacturing method thereof
JPH05299820A (en) Flexible printed wiring board
JP2011100846A (en) Two-layer flexible board, method of manufacturing the same, two-layer flexible wiring board, method of manufacturing the same, and plasma processing device
JP6349641B2 (en) Film with transfer copper foil, method for producing laminated copper foil laminate, film intermediate with transfer copper foil
JP2017030350A (en) Copper foil with release film and method for manufacturing copper foil with release film
JPH05283848A (en) Flexible printed wiring board
JP2023037942A (en) flexible substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220719

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220719

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230921

R150 Certificate of patent or registration of utility model

Ref document number: 7355648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150