JPWO2019167618A1 - Fused spherical silica powder and its manufacturing method - Google Patents

Fused spherical silica powder and its manufacturing method Download PDF

Info

Publication number
JPWO2019167618A1
JPWO2019167618A1 JP2020502920A JP2020502920A JPWO2019167618A1 JP WO2019167618 A1 JPWO2019167618 A1 JP WO2019167618A1 JP 2020502920 A JP2020502920 A JP 2020502920A JP 2020502920 A JP2020502920 A JP 2020502920A JP WO2019167618 A1 JPWO2019167618 A1 JP WO2019167618A1
Authority
JP
Japan
Prior art keywords
silica powder
molten
silica
spherical silica
molten spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020502920A
Other languages
Japanese (ja)
Other versions
JP7275100B2 (en
Inventor
浦川 孝雄
孝雄 浦川
尊凡 永野
尊凡 永野
政斗 柏木
政斗 柏木
俊重 梶山
俊重 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Publication of JPWO2019167618A1 publication Critical patent/JPWO2019167618A1/en
Priority to JP2023075989A priority Critical patent/JP2023087034A/en
Application granted granted Critical
Publication of JP7275100B2 publication Critical patent/JP7275100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本発明が解決しようとする課題は、流動性確保のために粒径の大きな粒子をある程度含みながらも、粒子内に存在する気泡の量を、ウェハーレベル・パッケージタイプ半導体の封止材用充填材等の用途に用いた際にも実質的に問題のないレベルまで低減したシリカ粉末を提供することである。本発明は、レーザー回折で測定した際に、累積体積95%径(d95)が5μm〜30μmの範囲にある溶融球状シリカ粉末であって、当該溶融球状シリカ粉末とエポキシ樹脂とを質量比1:1で混練、硬化させた硬化体の一部を研磨して、露出したシリカ断面を1,000倍で顕微鏡観察した際に検出できる最長径5μm以上の気泡の数が、前記硬化体研磨面10cm2当たり50個以下であることを特徴とする溶融球状シリカ粉末に関する。当該溶融球状シリカ粉末は、疎水化処理されたフュームドシリカを原料とし、シリカ供給量、火炎温度を特定の範囲として溶融・球状化させて得た溶融シリカを分級することにより得られる。The problem to be solved by the present invention is to reduce the amount of air bubbles existing in the particles while containing particles having a large particle size to some extent in order to ensure fluidity, as a filler for a wafer level package type semiconductor encapsulant. It is an object of the present invention to provide a silica powder reduced to a level at which there is substantially no problem even when used for such purposes. The present invention is a molten spherical silica powder having a cumulative volume of 95% diameter (d95) in the range of 5 μm to 30 μm when measured by laser diffraction, and the molten spherical silica powder and the epoxy resin have a mass ratio of 1: 1. The number of bubbles having a maximum diameter of 5 μm or more that can be detected when a part of the cured product kneaded and cured in 1 is polished and the exposed silica cross section is observed under a microscope at 1,000 times is 10 cm2 on the polished surface of the cured product. The present invention relates to molten spherical silica powder, which is characterized by having 50 or less per unit. The molten spherical silica powder is obtained by classifying fused silica obtained by melting and spheroidizing the hydrophobized fumed silica as a raw material and setting the silica supply amount and the flame temperature within specific ranges.

Description

本発明は、新規な溶融球状シリカ粉末とその製造方法にかかわる。詳しくは、半導体封止材の充填材等に好適に用いられ気泡含有量の少ない溶融球状シリカ粉末およびその製造方法にかかわる。 The present invention relates to a novel molten spherical silica powder and a method for producing the same. More specifically, the present invention relates to a molten spherical silica powder that is preferably used as a filler for a semiconductor encapsulant and has a low bubble content, and a method for producing the same.

シリカは様々な用途に使用されているが、その一つとして半導体封止材の充填材としての使用がある。半導体封止材の充填材として用いる場合、電気絶縁性の他、高熱伝導性、低熱膨張性が要求され、これら物性を満たすためフィラーの高充填化がのぞまれる。 Silica is used for various purposes, one of which is as a filler for semiconductor encapsulants. When used as a filler for a semiconductor encapsulant, high thermal conductivity and low thermal expansion are required in addition to electrical insulation, and high filler filling is desired to satisfy these physical properties.

高い充填性を得るためには、充填材として粒径が単一にそろっているものよりも、ある程度の粒度分布を有していた方がよい。さらに、粒径が大きなもののほうが充填率は高くできる傾向がある。 In order to obtain high filling property, it is better to have a certain particle size distribution as a filler rather than a material having a single particle size. Further, the larger the particle size, the higher the filling rate tends to be.

また同時に、高い成形性が要求され、フィラーが充填された樹脂の流動性、即ち低粘性(温度:25℃、シェアレート:1s−1にて粘度:1000Pa・s以下)が望まれている。このような流動性を得るために、近年では、充填材として用いるシリカは球状のものが使用されるのが通常である。At the same time, high moldability is required, and fluidity of the resin filled with the filler, that is, low viscosity (temperature: 25 ° C., share rate: 1s- 1 and viscosity: 1000 Pa · s or less) is desired. In order to obtain such fluidity, in recent years, silica used as a filler is usually spherical.

さらに、ますます進む半導体の薄型化、微細化、ウェハーレベルでの大量個数の一括封止化によって、フィラーの最大許容粒径が小粒径化し、高充填が困難になる中で、フィラーの高い充填率を維持する必要性がますます高まっている。 Furthermore, due to the ever-increasing thinning and miniaturization of semiconductors and the batch encapsulation of a large number of fillers at the wafer level, the maximum allowable particle size of the filler is reduced, making high filling difficult. There is an increasing need to maintain filling rates.

球状、且つ、適度な粒度分布を持つことによる充填特性の点で、また、製造コストが比較的低いという点で、溶融シリカが他の製法のシリカに比べて優れた点を有する。 Fused silica has advantages over silicas produced by other manufacturing methods in terms of filling characteristics due to its spherical shape and an appropriate particle size distribution, and in terms of relatively low manufacturing cost.

溶融シリカの製造方法としては、(1)シリコン粉末を溶融させつつ酸化させる方法、(2)微少なシリカ粉末を火炎中で溶融させ、複数の溶融粒子を融着させて粒成長と球状化させて製造する方法、(3)珪素原子を含む化合物を火炎中で燃焼・酸化させて微小シリカを生じさせ、さらに当該微小シリカをそのまま火炎中で溶融させ、溶融粒子の融着による粒成長と球状化をさせて製造する方法などが知られている。たとえば特許文献1では、有機シラン化合物の燃焼によって得られる微小シリカ粒子を、さらに火炎中で粒成長させ、平均粒子径0.05〜5μmの熔融球状シリカ粉末を得ている。特許文献2では、煙霧シリカを火炎中で溶融し、粒径3μm以下の粒子を多量に含む溶融シリカを得ている。 As a method for producing molten silica, (1) a method of oxidizing silicon powder while melting it, and (2) melting a minute silica powder in a flame and fusing a plurality of molten particles to cause grain growth and spheroidization. (3) A compound containing silicon atoms is burned and oxidized in a flame to generate fine silica, and the fine silica is melted in the flame as it is, and grain growth and spheres are formed by fusion of molten particles. There are known methods for manufacturing by converting the particles. For example, in Patent Document 1, fine silica particles obtained by burning an organic silane compound are further grown in a flame to obtain a molten spherical silica powder having an average particle diameter of 0.05 to 5 μm. In Patent Document 2, fumes silica is melted in a flame to obtain molten silica containing a large amount of particles having a particle size of 3 μm or less.

特開2003−137533号公報Japanese Unexamined Patent Publication No. 2003-137533 特開2000−191316号公報Japanese Unexamined Patent Publication No. 2000-191316

ところで、シリカ粒子内部に気泡が存在すると、半導体製造工程において、半導体を封止後に、封止材部分を切断、或いは、研削する工程がある場合、封止材に充填されたシリカ粒子が切断、或いは、研削され、粒子内部の気泡(空隙)が露出する。このため、封止材の切断面、或いは、研削面に凹部が発生することがある。図1に封止体の研削面の模式的平面図を示す。シリカ粒子は、通常は稠密粒子1であり研削面に空隙は生じないが、粒子内部に気泡を有する中空粒子2では、研削により気泡が露出し、研削面に空隙3が発生する。図2には、図1のA−A線断面図を示す。図2に示すように研削面の空隙3は凹部となる。このような凹部の発生は、特にFOWLP(Fan-Out wafer level package)による半導体製品の製造時に問題となる。FOWLPの製造は、たとえば以下のように行われる。個片化した複数の半導体チップを、電極面を上に向けてガラスなどの基板上に配置する。次いで、半導体チップを一括して封止する。その後、封止材を研削し、電極を露出させる。その後、フォトレジストを塗工、露光、現像し、フォトレジストが除去された部分に導電性金属を析出させて再配線層を形成する。最後に、封止された複数の半導体チップを、チップ毎に切り分けてFOWLP型の半導体製品を得る。封止材に含まれるシリカ粒子が気泡を含有すると、封止材を研削すると気泡が露出し、研削面に凹部が発生する。この凹部にフォトレジストを設けると、フォトレジストにも凹部が発生し、その凹部に次工程にて導電性金属が不均一に析出されてしまう。その結果、再配線層形成欠陥等による製品歩留まりの低下や、半導体製品の長期信頼性の低下等という問題が生じる可能性がある。 By the way, when air bubbles are present inside the silica particles, in the semiconductor manufacturing process, if there is a step of cutting or grinding the sealing material portion after sealing the semiconductor, the silica particles filled in the sealing material are cut. Alternatively, it is ground to expose air bubbles (voids) inside the particles. For this reason, recesses may occur on the cut surface or the ground surface of the sealing material. FIG. 1 shows a schematic plan view of the ground surface of the sealed body. The silica particles are usually dense particles 1 and no voids are generated on the ground surface, but in the hollow particles 2 having air bubbles inside the particles, the air bubbles are exposed by grinding and voids 3 are generated on the ground surface. FIG. 2 shows a cross-sectional view taken along the line AA of FIG. As shown in FIG. 2, the gap 3 on the ground surface is a recess. The generation of such recesses becomes a problem especially when manufacturing semiconductor products by FOWLP (Fan-Out wafer level package). The production of FOWLP is carried out, for example, as follows. A plurality of fragmented semiconductor chips are arranged on a substrate such as glass with the electrode surface facing upward. Next, the semiconductor chips are collectively sealed. The encapsulant is then ground to expose the electrodes. After that, the photoresist is applied, exposed, and developed, and a conductive metal is deposited on the portion from which the photoresist has been removed to form a rewiring layer. Finally, a plurality of sealed semiconductor chips are cut into chips to obtain a FOWLP type semiconductor product. When the silica particles contained in the encapsulant contain air bubbles, the air bubbles are exposed when the encapsulant is ground, and recesses are generated on the ground surface. If the photoresist is provided in the recess, the photoresist also has a recess, and the conductive metal is unevenly deposited in the recess in the next step. As a result, there is a possibility that problems such as a decrease in product yield due to a rewiring layer formation defect and a decrease in long-term reliability of semiconductor products may occur.

しかしながら、溶融シリカの製造時には上記の通り、火炎中での微小なシリカ粒子同士の溶融と融着による粒成長が伴うため、当該融着時に気泡も巻き込み、その結果、製造されたシリカにも気泡を有するものが存在するという問題が避け得なかった。 However, as described above, when the molten silica is produced, the fine silica particles in the flame are melted and fused to grow, so that bubbles are also involved in the fusion, and as a result, the produced silica also has bubbles. It was unavoidable that there was something with.

当該気泡の巻き込みは、製造時の燃焼条件等の改良によって低減されている。この結果、従来の検査方法では検知し得ないほどに気泡の含有量を少なくすることが可能になっている。しかし、前記したような、封止材部分を切断、或いは、研削する工程があるWLPタイプの半導体の封止材用充填材といった用途への使用を試みた場合、なお、問題を生じうるレベルである。WLPタイプの半導体製品の製造では、研削工程はほぼ最終工程であり、この段階での欠陥の発生はコストの増大に直結する。 Entrainment of the bubbles has been reduced by improving the combustion conditions at the time of manufacture. As a result, it is possible to reduce the content of air bubbles so that it cannot be detected by the conventional inspection method. However, when an attempt is made to use it for an application such as a filler for a WLP type semiconductor encapsulant having a step of cutting or grinding the encapsulant portion as described above, a problem may still occur. is there. In the manufacture of WLP type semiconductor products, the grinding process is almost the final process, and the occurrence of defects at this stage directly leads to an increase in cost.

むろん粒径よりも大きな気泡は存在し得ないため、粉末から粒径の大きな粒子を完全に排除すれば上記問題は生じない。したがって、シリカ粒子が小粒径の場合には、気泡による悪影響は少ない。しかし、前記の通り、高充填率を得るためにはある程度粒径の大きな粒子も存在していた方がよい。粒径が大きくなるほど、気泡が含まれやすくなる。 Of course, since bubbles larger than the particle size cannot exist, the above problem does not occur if the particles having a large particle size are completely removed from the powder. Therefore, when the silica particles have a small particle size, the adverse effect of the bubbles is small. However, as described above, in order to obtain a high filling rate, it is preferable that particles having a large particle size to some extent also exist. The larger the particle size, the easier it is for bubbles to be contained.

従って本発明は、粒径の大きな粒子をある程度含みながらも、このような気泡の量をWLPタイプ半導体の封止材用充填材等の用途に用いた際にも実質的に問題のないレベルまで低減した新規なシリカ粉末を提供することを目的とする。 Therefore, the present invention has a level that does not cause any problem even when the amount of such bubbles is used as a filler for a sealing material of a WLP type semiconductor, even though it contains particles having a large particle size to some extent. It is an object of the present invention to provide a reduced novel silica powder.

本発明者等は、上記課題に鑑み鋭意検討を行った。そして、微小シリカ粉末を火炎中で融着・球状化させて溶融球状シリカ粉末を製造する方法において、原料シリカ粉末及び燃焼条件を特定のものとし、かつ回収する溶融シリカの粒径も限定することにより、上記課題が解決できることを見出し、本発明を完成した。 The present inventors have conducted diligent studies in view of the above problems. Then, in the method of producing the molten spherical silica powder by fusing and spheroidizing the fine silica powder in a flame, the raw material silica powder and the combustion conditions are specified, and the particle size of the molten silica to be recovered is also limited. The present invention was completed by finding that the above problems can be solved.

即ち、本発明はレーザー回折で測定した際に、累積体積95%径(d95)が5μm〜30μmの範囲にある溶融球状シリカ粉末であって、
当該溶融球状シリカ粉末とエポキシ樹脂とを質量比1:1で混練、硬化させた硬化体の一部を研磨して、露出したシリカ断面を1,000倍で顕微鏡観察した際に検出できる最長径5μm以上の気泡の数が、前記硬化体研磨面10cm当たり50個以下であることを特徴とする溶融球状シリカ粉末に関する。
That is, the present invention is a molten spherical silica powder having a cumulative volume of 95% diameter (d95) in the range of 5 μm to 30 μm when measured by laser diffraction.
The longest diameter that can be detected when the molten spherical silica powder and the epoxy resin are kneaded at a mass ratio of 1: 1 and a part of the cured product is polished and the exposed silica cross section is observed under a microscope at a magnification of 1,000. The present invention relates to a molten spherical silica powder characterized in that the number of bubbles having a size of 5 μm or more is 50 or less per 10 cm 2 of the cured product polished surface.

本発明の溶融球状シリカ粉末は気泡量が極めて少ない。そのため、WLPタイプ半導体の封止材用充填材に使用した際に、半導体の製品歩留まりと長期信頼性を向上させるという効果を奏する。 The molten spherical silica powder of the present invention has an extremely small amount of bubbles. Therefore, when used as a filler for a WLP type semiconductor encapsulant, it has the effect of improving the product yield and long-term reliability of the semiconductor.

図1は封止体の研削面の模式的平面図を示す。FIG. 1 shows a schematic plan view of the ground surface of the sealed body. 図2は、図1のA−A線断面図を示す。FIG. 2 shows a cross-sectional view taken along the line AA of FIG.

本発明の溶融球状シリカ粉末は、レーザー回折で測定した際に、累積体積95%径(d95)が5μm〜30μmの範囲にある。d95が小さすぎると、充填材として用いた場合の樹脂組成物への高い充填率が得にくくなる。一方、d95が大きすぎると、充填材として用いた場合に樹脂組成物の狭隘部への浸透性が劣る等の問題がある。好ましくは、d95が20μm以下である。 The molten spherical silica powder of the present invention has a cumulative volume of 95% diameter (d95) in the range of 5 μm to 30 μm when measured by laser diffraction. If d95 is too small, it becomes difficult to obtain a high filling rate in the resin composition when used as a filler. On the other hand, if d95 is too large, there is a problem that the permeability of the resin composition into a narrow portion is inferior when used as a filler. Preferably, d95 is 20 μm or less.

粗大粒子を除くという意味で、レーザー回折で測定した際に100μmを上回る粒子が0質量%であることが好ましく、75μmを上回る粒子が0質量%であることがより好ましく、50μmを上回る粒子が0質量%であることが特に好ましい。 In the sense of excluding coarse particles, particles exceeding 100 μm are preferably 0% by mass, particles exceeding 75 μm are more preferably 0% by mass, and particles exceeding 50 μm are 0 when measured by laser diffraction. It is particularly preferably mass%.

レーザー回折での測定の詳細は、後述の実施例において説明する。 Details of the measurement by laser diffraction will be described in Examples described later.

さらに、本発明のシリカ粉末は、上記条件で測定した際、累積体積50%粒径(d50)が1〜20μmの範囲にあることが好ましく、3〜15μmの範囲にあることがより好ましい。粗大粒子を排除するという点から、本発明の溶融球状シリカ粉末は、湿式篩で測定した際に、106μm残の粒子の量が0質量%であり、さらに45μm残の粒子の量が0.1質量%以下であることが好ましく、0.05質量%以下であることがより好ましく、0.01質量%以下であることが特に好ましい。なお、「106μm残」は、目開き106μmのメッシュをパスせずにメッシュ上に残留する粒子の割合を言う。 Further, the silica powder of the present invention preferably has a cumulative volume of 50% particle size (d50) in the range of 1 to 20 μm, more preferably 3 to 15 μm, when measured under the above conditions. From the viewpoint of eliminating coarse particles, the molten spherical silica powder of the present invention has an amount of 106 μm remaining particles of 0% by mass and a further 45 μm remaining particles of 0.1 when measured with a wet sieve. It is preferably 0% by mass or less, more preferably 0.05% by mass or less, and particularly preferably 0.01% by mass or less. The “106 μm residue” refers to the proportion of particles remaining on the mesh without passing through the mesh having a mesh opening of 106 μm.

このような粒径および粒度分布を有することにより、半導体封止材の充填材、特にWLPタイプ半導体といった用途の液状封止材の充填材として用いた際に高い流動性や狭隘部への浸透性の良さなどが得られる。 Having such a particle size and particle size distribution provides high fluidity and permeability to narrow spaces when used as a filler for semiconductor encapsulants, especially liquid encapsulants for applications such as WLP type semiconductors. You can get the goodness of.

本発明のシリカ粉末は球状である。そのため、各種樹脂の充填材として用いた際に樹脂組成物の流動性に優れる。ここで、球状とは、Wadellの実用円形度(円相当径/最大径)が0.7〜1.0であることを意味する。ここで、上記円相当径とは粒子の投影断面積と等しい面積を持つ円の直径であり、最長径とは粒子の投影外周上の任意の2点間の最大距離と定義される。好ましいWadellの実用円形度は0.8〜1.0である。一般に、溶融法で製造されたシリカは球状である。 The silica powder of the present invention is spherical. Therefore, the resin composition is excellent in fluidity when used as a filler for various resins. Here, the spherical shape means that the practical circularity (circle equivalent diameter / maximum diameter) of Waddell is 0.7 to 1.0. Here, the equivalent circle diameter is the diameter of a circle having an area equal to the projected cross-sectional area of the particles, and the longest diameter is defined as the maximum distance between any two points on the projected outer circumference of the particles. The preferred practical circularity of Waddell is 0.8-1.0. Generally, silica produced by the melting method is spherical.

本発明のシリカ粉末は、実質的に気泡を含有しない。具体的には、シリカ粉末とエポキシ樹脂とを質量比1:1で混練、硬化させた硬化体の一部を研磨して、露出したシリカ断面を1,000倍で顕微鏡観察した際に検出できる最長径5μm以上の気泡の数が、前記硬化体研磨面10cm当たり50個以下である。The silica powder of the present invention is substantially free of bubbles. Specifically, it can be detected when a part of the cured product obtained by kneading and curing the silica powder and the epoxy resin at a mass ratio of 1: 1 is polished and the exposed silica cross section is observed under a microscope at a magnification of 1,000. The number of bubbles having a maximum diameter of 5 μm or more is 50 or less per 10 cm 2 of the cured product polished surface.

この評価の方法をより詳細に述べると、常温硬化型エポキシ樹脂に対して、シリカ粉末が50質量%となるように混合し、均一になるまで練和する。次いで、練和物を適当な型に気泡を巻き込まないように充填して、常温で硬化させる。硬化のための型は、硬化体を研磨した際に、研磨面が1cm以上確保できるような形状のものが好ましい。To describe this evaluation method in more detail, the silica powder is mixed with the room temperature curable epoxy resin so as to be 50% by mass, and kneaded until uniform. Next, the kneaded product is filled in an appropriate mold so as not to entrap air bubbles, and cured at room temperature. The mold for curing is preferably shaped so that a polished surface of 1 cm 2 or more can be secured when the cured product is polished.

十分に硬化した硬化体は、続いて観察面を確保するために一部を研磨する。研磨条件は、まず1〜3μm程度のダイヤモンド砥粒で粗研磨を行い、続いてコロイダルシリカを砥粒として2時間程度を目安として表面のざらつきがなく光沢が出るまで表面を研磨する。 The fully cured cured product is subsequently partially polished to secure an observation surface. As for the polishing conditions, first, rough polishing is performed with diamond abrasive grains of about 1 to 3 μm, and then the surface is polished using colloidal silica as abrasive grains for about 2 hours until the surface is not rough and glossy.

得られた研磨面を1000倍で顕微鏡観察する。顕微鏡は、光学顕微鏡、偏光顕微鏡、電子顕微鏡等いずれでも良いが、好ましくは光学顕微鏡である。当該顕微鏡観察では、研磨面のうち少なくとも1cm以上の面積を観察する。The obtained polished surface is observed under a microscope at 1000 times. The microscope may be an optical microscope, a polarizing microscope, an electron microscope, or the like, but is preferably an optical microscope. In the microscopic observation, an area of at least 1 cm 2 or more of the polished surface is observed.

前記研磨により、エポキシ樹脂硬化体中のシリカ粒子の断面(研磨面)が観察できる状態になっているため、上記顕微鏡観察によって観察範囲中で確認可能な全てのシリカ断面を観察し、気泡の有無を把握する。そして、気泡のうち最長径(対象物の周上の任意の2点間の距離の内、最大の長さ)が5μm以上の気泡の数を数える。なおここで、一つのシリカ粒子が複数の気泡を有する場合には、気泡数は複数個として数え、個々の気泡の最長径を測定する。 Since the cross section (polished surface) of the silica particles in the epoxy resin cured product can be observed by the polishing, all the silica cross sections that can be confirmed in the observation range by the microscopic observation are observed, and the presence or absence of air bubbles is observed. To grasp. Then, the number of bubbles having the longest diameter (the maximum length among the distances between arbitrary two points on the circumference of the object) of 5 μm or more is counted. Here, when one silica particle has a plurality of bubbles, the number of bubbles is counted as a plurality, and the longest diameter of each bubble is measured.

このような観察によって計測された最長径5μm以上の気泡の数と観察面積とから、硬化体研磨面10cm当たりの気泡の数が算出できる。From the number of bubbles having a maximum diameter of 5 μm or more and the observed area measured by such observation, the number of bubbles per 10 cm 2 of the polished surface of the cured product can be calculated.

上記気泡数の計測は肉眼によってもよいが、デジタル顕微鏡を用い、画像解析ソフトを用いて行うのが時間的にも労力的にも有利である。 The number of bubbles may be measured with the naked eye, but it is advantageous in terms of time and labor to use a digital microscope and image analysis software.

本発明の溶融球状シリカ粉末は、上記最長径5μm以上の気泡の数が、硬化体研磨面10cm当たり10個以下であることが好ましく、5個以下であることがより好ましい。なお、最長径5μm未満の気泡についても、その数が少ないほど好ましい。しかし、かかる微小な気泡は再配線層形成時のレジスト樹脂により埋め込まれる傾向が強いため、本願出願時点での半導体の配線微細化レベルであれば、その存在は許容できる。In the molten spherical silica powder of the present invention, the number of bubbles having the longest diameter of 5 μm or more is preferably 10 or less per 10 cm 2 of the polished surface of the cured product, and more preferably 5 or less. The smaller the number of bubbles having a maximum diameter of less than 5 μm, the more preferable. However, since such minute bubbles tend to be embedded by the resist resin at the time of forming the rewiring layer, their existence is acceptable at the level of semiconductor wiring miniaturization at the time of filing the application.

本発明の溶融球状シリカ粉末は、半導体封止材の充填材等として使用することを考慮すると、不純物含有量が以下の範囲であることが好ましい。即ち、Feが10ppm以下、好ましくは7ppm以下、Alが0.7ppm以下、好ましくは0.6ppm以下、U及びThは各々0.1ppb以下、Na及びKが各々1ppm以下、Clが1ppm以下である。 Considering that the molten spherical silica powder of the present invention is used as a filler for a semiconductor encapsulant, the impurity content is preferably in the following range. That is, Fe is 10 ppm or less, preferably 7 ppm or less, Al is 0.7 ppm or less, preferably 0.6 ppm or less, U and Th are 0.1 ppb or less, Na and K are 1 ppm or less, and Cl is 1 ppm or less. ..

同様の理由により、本発明の溶融球状シリカ粉末は、イオン性の不純物が含まれないことが好ましい。したがって、溶融球状シリカ粉末の水分散液の電気伝導度が低く、pHは中性に近いことが好ましい。具体的には、シリカ粉末0.8gを純水80mlに分散させた際の電気伝導度は1.5μS/cm以下が好ましく、1.4μS/cm以下がさらに好ましく、1.3μS/cm以下がより好ましく、pHが5.0〜7.0であることが好ましく、5.5〜7.0であることがより好ましい。 For the same reason, the molten spherical silica powder of the present invention preferably does not contain ionic impurities. Therefore, it is preferable that the aqueous dispersion of the molten spherical silica powder has a low electrical conductivity and a pH close to neutral. Specifically, the electrical conductivity when 0.8 g of silica powder is dispersed in 80 ml of pure water is preferably 1.5 μS / cm or less, more preferably 1.4 μS / cm or less, and 1.3 μS / cm or less. More preferably, the pH is preferably 5.0 to 7.0, and more preferably 5.5 to 7.0.

また窒素を用いたBET1点法による比表面積は1〜5m/gであることが好ましく、1.5〜4m/gであることがより好ましい。Also it is preferable that the specific surface area according BET1 point method using nitrogen is 1 to 5 m 2 / g, more preferably 1.5~4m 2 / g.

本発明の溶融球状シリカ粉末は、水分量が少ないことが好ましく、具体的には0.05質量%以下であることが好ましく、0.02質量%以下であることがより好ましい。 The molten spherical silica powder of the present invention preferably has a small water content, specifically, preferably 0.05% by mass or less, and more preferably 0.02% by mass or less.

本発明の溶融球状シリカ粉末は、樹脂との相溶性や反応性を高くする目的で、各種表面処理剤で処理されていてもよい。表面処理剤としては各種シラン化合物やシランカップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤、シリコーンオイル等が挙げられる。 The molten spherical silica powder of the present invention may be treated with various surface treatment agents for the purpose of increasing compatibility and reactivity with the resin. Examples of the surface treatment agent include various silane compounds, silane coupling agents, titanate-based coupling agents, aluminate-based coupling agents, silicone oils, and the like.

シラン化合物やシランカップリング剤を具体的に例示すると、ヘキサメチルジシラザン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、n−プロピルトリメトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、フェニルトリメトキシシラン、ジメチルジエトキシシラン、ジメトキシジフェニルシラン、1,6−ビス(トリメトキシシリル)ヘキサン、トリフルオロプロピルトリメトキシシラン、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、3−クロロプロピルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−(2−アミノエチルアミノ)プロピルトリメトキシシラン、3−(2−アミノエチルアミノ)プロピルメチルジメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、トリス−(トリメトキシシリルプロピル)イソシアヌレート、3−ウレイドプロピルトリアルコキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−イソシアネートプロピルトリエトキシシラン等が挙げられる。 Specific examples of silane compounds and silane coupling agents include hexamethyldisilazane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, hexyltrimethoxysilane, and decyltrimethoxysilane. , Phenyltrimethoxysilane, dimethyldiethoxysilane, dimethoxydiphenylsilane, 1,6-bis (trimethoxysilyl) hexane, trifluoropropyltrimethoxysilane, methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, 3-chloropropyltri Chlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- (2-aminoethylamino) propylmethyldimethoxysilane, N-phenyl-3-aminopropyltrimethoxy Silane, 3-Triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxy Silane, 3-glycidoxypropylmethyldiethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltri Methoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, tris- (trimethoxysilylpropyl) isocyanurate, 3-ureidopropyltrialkoxysilane, Examples thereof include 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, and 3-isocyanuppropyltriethoxysilane.

本発明の溶融球状シリカ粉末の製造方法は限定されないが、以下の方法により好適に製造することができる。即ち、疎水化処理されたフュームドシリカを、多重管バーナーを用い、前記フュームドシリカの割合が0.3kg/Nm〜3kg/Nmとなるように、酸素ガス又は/酸素含有ガスを同伴させて前記多重管バーナーの中心管から供給して、火炎内で1400℃〜1700℃で溶融、球状化させた後、0.01μm〜100μmの溶融シリカを回収する方法である。The method for producing the molten spherical silica powder of the present invention is not limited, but it can be preferably produced by the following method. That is, the hydrophobized fumed silica is accompanied by oxygen gas or / oxygen-containing gas so that the ratio of the fumed silica is 0.3 kg / Nm 3 to 3 kg / Nm 3 using a multi-tube burner. This is a method in which molten silica of 0.01 μm to 100 μm is recovered after being supplied from the central tube of the multi-tube burner, melted and spheroidized at 1400 ° C. to 1700 ° C. in a flame.

原料として用いるフュームドシリカ(Pyrogenic silicaなどとも呼ばれる)は、疎水化処理されたものを用いる。親水性のフュームドシリカを用いて本発明の溶融球状シリカ粉末を得ることは、本発明者の検討した限りでは困難であった。疎水化の程度としては、フュームドシリカが純水には完全には分散しない程度であればよいが、好ましくは、メタノール滴定法による疎水化度(M値)が25体積%以上、より好ましくは30体積%以上である。なお、原料として、Si粉や石英粉を用いても溶融球状シリカは得られるが、これらを原料として用いると、得られる溶融球状シリカ中の不純物含有量が増大する傾向にある。 The fumed silica (also called Pyrogenic silica or the like) used as a raw material is hydrophobized. It has been difficult to obtain the fused spherical silica powder of the present invention using hydrophilic fumed silica as far as the present inventor has examined. The degree of hydrophobization may be such that fumed silica is not completely dispersed in pure water, but the degree of hydrophobization (M value) by the methanol titration method is preferably 25% by volume or more, more preferably. It is 30% by volume or more. Although fused spherical silica can be obtained by using Si powder or quartz powder as a raw material, when these are used as raw materials, the impurity content in the obtained molten spherical silica tends to increase.

疎水化の方法としては、前記したようなシラン類(具体的には、ヘキサメチルジシラザン、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン等が好適である)により、フュームドシリカを表面処理する方法が好適である。 As a method for hydrophobizing, a method of surface-treating fumed silica with the above-mentioned silanes (specifically, hexamethyldisilazane, methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, etc. are preferable). Is preferable.

原料として用いるシリカの粒子性状は特に限定はされないが、窒素吸着BET1点法による比表面積が好ましくは80〜250m/g、さらに好ましくは100〜230m/gである。また、溶融球状シリカ粉末の金属不純物量を少なくするためには、原料シリカの不純物量は少ないことが好ましく、具体的にはFe、Al、U、Th、Na、K含有量は前記溶融球状シリカ粉末における金属不純物量と同程度以下であることが好ましい。The particle properties of silica used as a raw material are not particularly limited, but the specific surface area by the nitrogen adsorption BET 1-point method is preferably 80 to 250 m 2 / g, and more preferably 100 to 230 m 2 / g. Further, in order to reduce the amount of metal impurities in the molten spherical silica powder, it is preferable that the amount of impurities in the raw material silica is small, and specifically, the contents of Fe, Al, U, Th, Na, and K are the molten spherical silica. It is preferably equal to or less than the amount of metal impurities in the powder.

本発明の溶融球状シリカ粉末の製造方法では、上記疎水化された原料フュームドシリカを火炎中で溶融させ、溶融粒子の融着による粒成長と球状化を行う。 In the method for producing molten spherical silica powder of the present invention, the hydrophobized raw material fumed silica is melted in a flame, and grain growth and spheroidization are performed by fusion of the molten particles.

火炎中での溶融等に当たっては、多重管バーナーを用い、原料フュームドシリカの割合が0.3kg/Nm〜3kg/Nmとなるように、酸素ガス又は/酸素含有ガスを同伴させて多重管バーナーの中心管から供給して行う。多重管バーナーは二重管バーナー、三重管バーナー等が使用できる。For melting in a flame, use a multi-tube burner and multiplex with oxygen gas or / oxygen-containing gas so that the ratio of the raw material fumed silica is 0.3 kg / Nm 3 to 3 kg / Nm 3. It is supplied from the central tube of the tube burner. As the multiple tube burner, a double tube burner, a triple tube burner, etc. can be used.

火炎中に供給される原料フュームドシリカの割合が少なすぎると、得られる溶融球状シリカ粉末中の1μm以下の粒子割合が多くなりすぎ、高充填に適さない粒度分布の粉体となりやすい。また火炎中に供給される原料フュームドシリカが多すぎると、未溶融フュームドシリカ粒子や溶融が不十分で球形度の低い粒子を含む粉体となりやすい。当該原料フュームドシリカの割合は、好ましくは0.5kg/Nm〜2.0kg/Nmである。また同伴させる酸素含有ガスとしては、空気が好適である。If the proportion of the raw material fumed silica supplied into the flame is too small, the proportion of particles of 1 μm or less in the obtained molten spherical silica powder becomes too large, and the powder tends to have a particle size distribution unsuitable for high filling. Further, if the amount of the raw material fumed silica supplied into the flame is too large, it tends to be a powder containing unmelted fumed silica particles or particles having a low sphericity due to insufficient melting. The proportion of the raw fumed silica is preferably 0.5kg / Nm 3 ~2.0kg / Nm 3 . Air is preferable as the oxygen-containing gas to be accompanied.

多重管バーナーとして、例えば三重管バーナーを用いる場合、第2環状管からは酸素を、最外周管からは水素を供給することが好ましい。 When, for example, a triple tube burner is used as the multi-tube burner, it is preferable to supply oxygen from the second annular tube and hydrogen from the outermost tube.

火炎温度は1400℃〜1700℃、好ましくは1500℃〜1600℃とする。1400℃未満では溶融球状化が不十分な粉体となり、一方、1700℃を超えるとプロセス温度が上昇するため冷却能力を上げる必要があったり、燃料使用量が増え製造コストが増大する。また、高温ほど小粒径粒子の割合が多くなる傾向も強い。 The flame temperature is 1400 ° C to 1700 ° C, preferably 1500 ° C to 1600 ° C. If the temperature is lower than 1400 ° C., the powder becomes insufficiently melted and spheroidized. On the other hand, if the temperature exceeds 1700 ° C., the process temperature rises, so that it is necessary to increase the cooling capacity, the amount of fuel used increases, and the manufacturing cost increases. In addition, the higher the temperature, the higher the proportion of small particle particles.

火炎温度は、バーナーに供給する酸素や水素、窒素等のガス組成や供給速度により調整することができる。 The flame temperature can be adjusted by adjusting the gas composition and supply rate of oxygen, hydrogen, nitrogen and the like supplied to the burner.

本発明の溶融球状シリカ粉末の製造方法では、火炎中で生じた溶融球状シリカのうち、粒子径が0.01μm〜100μmの範囲のものを回収する。回収手段としては、まず平均粒径0.01μm〜1000μmの粒子をサイクロンを用いて回収し、ついで、ふるい及び/又は風力分級機を用いて分級点8μm〜100μmで分級して、その細粒側(分級点以下)を回収する方法が効率がよく好適である。ふるい及び/又は風力分級機を用いる場合の分級点は10μm〜50μmの範囲におくことが好ましい。このような分級点に調整することにより、上記方法で製造したものの細粒側のd95を5μm〜30μmの範囲とすることが容易となる。なお、あらゆる条件下でd95が5μm〜30μmの範囲に収まるわけではないので、用いた分級機の特性に応じて、適宜、条件を設定する必要はある。 In the method for producing molten spherical silica powder of the present invention, among the molten spherical silica generated in a flame, those having a particle size in the range of 0.01 μm to 100 μm are recovered. As a recovery means, particles having an average particle size of 0.01 μm to 1000 μm are first recovered using a cyclone, then classified at a classification point of 8 μm to 100 μm using a sieve and / or a wind power classifier, and the fine grain side thereof. The method of collecting (below the classification point) is efficient and suitable. When using a sieve and / or a wind classifier, the classification point is preferably in the range of 10 μm to 50 μm. By adjusting to such a classification point, it becomes easy to set the d95 on the fine grain side of the product produced by the above method in the range of 5 μm to 30 μm. Since d95 does not fall within the range of 5 μm to 30 μm under all conditions, it is necessary to appropriately set the conditions according to the characteristics of the classifier used.

ふるいによる回収は、用いたふるいの目開き以上の粒子が回収されるおそれが実質的にないという利点がある。反面、回収の際の手間が大きく、工業的な生産性は風力分級機の方が高い。しかしながら、風力分級機では、分級点を上回る粒子も少量回収される傾向があるため、目的とする上限粒子径以上の粒子が少量含まれてしまうおそれも有する。このようなメリット・デメリットを認識し、目的とする粒径範囲や生産性等に応じて適宜選択すればよい。なお、ふるい分級と風力分級機による分級を併用してもよい。また、ふるいで分級する場合には、乾式分級でも湿式分級でもよい。 Recovery by sieving has the advantage that there is virtually no risk of recovery of particles larger than the opening of the sieve used. On the other hand, it takes a lot of time and effort to recover, and the industrial productivity of the wind classifier is higher. However, since the wind power classifier tends to collect a small amount of particles exceeding the classification point, there is a possibility that a small amount of particles having a target upper limit particle size or more may be contained. Recognizing such merits and demerits, it may be appropriately selected according to the target particle size range, productivity and the like. In addition, the sieving classification and the classification by the wind power classification machine may be used together. Further, when the classification is performed by a sieve, either a dry classification or a wet classification may be performed.

溶融球状シリカ粉末を表面処理する場合には、上記ふるい及び/又は風力分級機による分級の前に行ってもよいし、後に行ってもよい。 When the molten spherical silica powder is surface-treated, it may be performed before or after the classification by the above-mentioned sieving and / or wind classifier.

表面処理は、用いるシラン化合物・シランカップリング剤に応じて公知の方法を適用すれば良く、乾式でも湿式でもよい。表面処理、特に湿式での表面処理では粒子の凝集が生じる場合があるので、必要に応じて、適宜解砕を行ったり、さらなる分級を行ってもよい。機械的応力を付与する装置で処理することで、凝集解砕、嵩密調整、気泡含有粒子の粉砕の効果を得ることができる。尚、機械的応力を付与する装置としては、自由渦型遠心分級機、強制渦型遠心分級機、ボールミル、ジェットミル、二本ロール、三本ロール、石臼式解砕機、回転羽式撹拌機等が使用できる。 As the surface treatment, a known method may be applied depending on the silane compound / silane coupling agent used, and it may be dry or wet. Since particle agglutination may occur in the surface treatment, particularly the wet surface treatment, the particles may be appropriately crushed or further classified as necessary. By treating with a device that applies mechanical stress, the effects of coagulation crushing, bulkiness adjustment, and crushing of bubble-containing particles can be obtained. As a device for applying mechanical stress, a free vortex type centrifugal classifier, a forced vortex type centrifugal classifier, a ball mill, a jet mill, a double roll, a triple roll, a millstone crusher, a rotary blade stirrer, etc. Can be used.

以下、本発明をより具体的に説明するために実施例及び比較例を示すが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, examples and comparative examples will be shown to more specifically explain the present invention, but the present invention is not limited to these examples.

なお、実施例、比較例での溶融球状シリカ製造条件、並びに、各種物性評価方法は以下の通りである。 The conditions for producing molten spherical silica in Examples and Comparative Examples, and various methods for evaluating various physical properties are as follows.

溶融シリカの製造の製造方法を以下に記す。 The production method for producing molten silica is described below.

(1)バーナーでの溶融・球状化
三重管バーナーを用い、中心管から原料フュームドシリカ及び酸素を、第2環状管からは酸素を、最外周管からは水素を供給した。火炎温度は、水素/酸素比及びシリカ量により調整した。
(1) Melting and spheroidizing with a burner Using a triple tube burner, raw material fumed silica and oxygen were supplied from the central tube, oxygen was supplied from the second annular tube, and hydrogen was supplied from the outermost tube. The flame temperature was adjusted by the hydrogen / oxygen ratio and the amount of silica.

(2)分級
上記で得られた溶融シリカは、まずサイクロンにより0.1μm〜1000μmの粒子を回収し、続いて回収されたシリカを、風力分級機を用いて所定の分級点で分級して細粒側を回収した。
(2) Classification In the molten silica obtained above, particles of 0.1 μm to 1000 μm are first recovered by a cyclone, and then the recovered silica is classified at a predetermined classification point using a wind power classifier to be finely divided. The grain side was recovered.

物性評価方法を以下に示す。 The physical characteristic evaluation method is shown below.

(1)原料フュームドシリカの疎水化度(M値)
原料フュームドシリカが純水表面に浮遊した状態において、攪拌しながらメタノールを滴下した。シリカを全量純水中に懸濁させるに要したメタノール量を体積%で求めた。
(1) Degree of hydrophobization (M value) of raw material fumed silica
In a state where the raw material fumed silica was suspended on the surface of pure water, methanol was added dropwise with stirring. The amount of methanol required to suspend the entire amount of silica in pure water was determined in% by volume.

(2)シリカ濃度
溶融球状化バーナーのシリカ供給ノズルに導入されるシリカ重量を、中心管へ供給される酸素ガス体積で除して単位体積当たりのシリカ濃度を求めた。
(2) Silica concentration The weight of silica introduced into the silica supply nozzle of the molten spheroidizing burner was divided by the volume of oxygen gas supplied to the central tube to obtain the silica concentration per unit volume.

(3)火炎温度
シリカ溶融球状化バーナーに導入する水素、酸素並びに、フュームドシリカの量にて、断熱計算火炎温度計算式を用いてバーナー火炎温度を求めた。
(3) Flame temperature The burner flame temperature was determined using the adiabatic calculation flame temperature calculation formula with the amounts of hydrogen, oxygen, and fumed silica introduced into the silica molten spheroidized burner.

(4)累積体積径
マイクロトラック製レーザー回折散乱式粒度分布測定装置(MT−3300EX2)を用いて水分散媒による測定を行ない、累積体積50%径(d50)及び95%径(d95)を算出した。なお、測定装置の試料スラリー循環槽に、分散媒250mL、試料0.02g〜0.1を投入した。続いて、試料スラリーを循環させながら、1分間40W超音波分散した後、d50及びd95を測定した。ここで、上記試料投入量は、装置の使用説明書に従い、装置制御用のパソコン画面に表示される試料スラリー濃度値(Sample Loading値)が0.85〜0.90の間に入るように調整した。
(4) Cumulative volume diameter The cumulative volume 50% diameter (d50) and 95% diameter (d95) are calculated by measuring with an aqueous dispersion medium using a Microtrack laser diffraction scattering type particle size distribution measuring device (MT-3300EX2). did. In addition, 250 mL of the dispersion medium and 0.02 g to 0.1 of the sample were put into the sample slurry circulation tank of the measuring device. Subsequently, while circulating the sample slurry, 40 W ultrasonic dispersion was performed for 1 minute, and then d50 and d95 were measured. Here, the sample loading amount is adjusted so that the sample slurry concentration value (Sample Loading value) displayed on the personal computer screen for device control is between 0.85 and 0.90 according to the instruction manual of the device. did.

(5)BET比表面積
柴田理化学社製比表面積測定装置(SA−1000)を用い、窒素吸着BET1点法により測定した。
(5) BET Specific Surface Area The measurement was performed by the nitrogen adsorption BET 1-point method using a specific surface area measuring device (SA-1000) manufactured by Shibata Rikagaku Co., Ltd.

(6)Fe,Al濃度の測定
シリカ粒子をフッ硝酸にて溶液化し、ICP発光分光分析法で測定した。
(6) Measurement of Fe and Al concentrations Silica particles were solubilized with fluorinated nitric acid and measured by ICP emission spectroscopy.

(7)水分
シリカ粒子中の水分を乾燥減量法(110℃で6時間)により測定した。
(7) Moisture Moisture in silica particles was measured by a dry weight loss method (at 110 ° C. for 6 hours).

(8)pH、電気伝導度の測定
シリカ粒子の水分散液(シリカ8.0g/純水80mL、25℃)を作製し、ガラス電極法pH計でpHを、交流二電極法電気伝導度計にて電気伝導度を測定した。
(8) Measurement of pH and electrical conductivity An aqueous dispersion of silica particles (silica 8.0 g / pure water 80 mL, 25 ° C.) was prepared, and the pH was measured with a glass electrode method pH meter and an AC two-electrode method electric conductivity meter. The electrical conductivity was measured at.

(9)U濃度
シリカ粒子をフッ硝酸にて溶液化し、ICP−MSにて測定した。
(9) U-concentration Silica particles were solubilized with fluorine and measured by ICP-MS.

(10)Na、Cl濃度
シリカ粒子を110℃の純水に24時間浸漬し、溶出水溶液を作製し、原子吸光光度計にてNa濃度を、イオンクロマトグラフィーにてCl濃度を測定した。
(10) Na + and Cl - concentration Silica particles are immersed in pure water at 110 ° C. for 24 hours to prepare an elution aqueous solution, and the Na + concentration is measured by an atomic absorption spectrophotometer and the Cl- concentration is measured by ion chromatography. did.

(11)樹脂コンパウンド粘度
エポキシ樹脂(東都化成製ビスフェノールA/F混合樹脂 ZX-1059)と、各実施例、比較例のシリカ粒子をシリカ78:樹脂22(重量比)の割合で配合し、自転公転式プラネタリーミキサー(シンキー社製AR−250)を用いて、攪拌時間8分、回転数1000rpmで撹拌し、さらに脱泡時間2分、回転数2000rpmの条件で混練しエポキシ樹脂組成物を得た。
(11) Resin compound viscosity Epoxy resin (Toto Kasei bisphenol A / F mixed resin ZX-1059) and silica particles of each example and comparative example are blended in a ratio of silica 78: resin 22 (weight ratio), and rotate. Using a revolving planetary mixer (AR-250 manufactured by Shinky), the mixture is stirred at a stirring time of 8 minutes and a rotation speed of 1000 rpm, and further kneaded under the conditions of a defoaming time of 2 minutes and a rotation speed of 2000 rpm to obtain an epoxy resin composition. It was.

続いて、エポキシ樹脂組成物を、レオメータ粘度計(ハーケ製レオストレスRS600)を用いて、温度25℃、プレートギャップ50μm、シェアレート1s−1の条件で粘度を測定した。Subsequently, the viscosity of the epoxy resin composition was measured using a rheometer viscometer (Rheometer RS600 manufactured by Harke) under the conditions of a temperature of 25 ° C., a plate gap of 50 μm, and a shear rate of 1s-1.

(12)気泡含有数
常温硬化型エポキシ樹脂(BUEHLER社製エポキュア2)に対して、シリカ粉末が50質量%となるように混合し、均一になるまで練和した。次いで、練和物を埋込成形型(BUEHLER社製 プラスチックリング 内径1インチ(25.4mm))に気泡を巻き込まないように充填して、常温で十分に硬化させた。
(12) Number of Bubbles The silica powder was mixed with a room temperature curable epoxy resin (Epocure 2 manufactured by BUEHLER) so as to have 50% by mass of silica powder, and kneaded until uniform. Next, the kneaded product was filled in an embedded molding mold (plastic ring manufactured by BUEHLER with an inner diameter of 1 inch (25.4 mm)) so as not to entrap air bubbles, and was sufficiently cured at room temperature.

続いて観察面を確保するために硬化体の一部を研磨した。研磨条件は、まず砥粒径3μm及び1μmの研磨剤(BUEHLER社製メタダイ 単結晶ダイアモンドサスペンション 水性/砥粒径3μm、その後で1μmを使用)で粗研磨を行い、続いて、本研磨用の研磨剤(マスターメット2 コロイダルシリカ)で表面に光沢が出るまで研磨した。 Subsequently, a part of the cured product was polished to secure an observation surface. The polishing conditions are as follows: First, rough polishing is performed with an abrasive having an abrasive particle size of 3 μm and 1 μm (BUEHLER Metadai single crystal diamond suspension water-based / abrasive particle size 3 μm, and then 1 μm is used), and then polishing for the main polishing. Polished with an agent (Mastermet 2 colloidal silica) until the surface became glossy.

得られた研磨面の1cmの範囲を光学顕微鏡(KEYENCE社製 MICROSCOPE VHX−5000)を用いて、落射照明/同軸落射にて、1000倍で観察し、気泡のうち最長径(対象物の周上の任意の2点間の距離の内、最大の長さ)が5μm以上のものの数を数えた。 The range of 1 cm 2 of the obtained polished surface was observed with an optical microscope (MICROSCOPE VHX-5000 manufactured by KEYENCE) at 1000 times by epi-illumination / coaxial epi-illumination, and the longest diameter of the bubbles (periphery of the object). Among the distances between any of the above two points, the number of those having the maximum length) of 5 μm or more was counted.

なおここで、一つのシリカ粒子が複数の気泡を有する場合には、複数個として数えた。この観察を検体数10にて行い、観察された気泡数を合計し、硬化体研磨面断面積10cm当たりの気泡数を算出した。Here, when one silica particle has a plurality of bubbles, it is counted as a plurality. This observation was performed with 10 samples, and the number of observed bubbles was totaled to calculate the number of bubbles per 10 cm 2 of the polished surface cross-sectional area of the cured product.

(13)Wadellの実用円形度
スライドガラス(2cm×4cm)の中央にシリカ粉末1mg程度を置き、純水2〜3滴を垂らしシリカスラリーを作製し、同シリカスラリーの上に気泡が入らないようにカバーガラスを置き、観察用プレパラートを作製した。同プレパラートをライカ製光学顕微鏡DMLB(透過型光源、倍率400倍)にて観察し、シリカ粒子の画像を画像解析装置(ライカ製Q500IW)を用いて、各粒子毎に円相当径/最長径を求めた。測定粒子数が、合計500個以上になるまで観察視野を移動させながら計測を繰り返し、その測定値の相加平均値をそのシリカ粉末のWadellの実用円形度の値とした。
(13) Practical roundness of Wadell Place about 1 mg of silica powder in the center of a slide glass (2 cm x 4 cm) and drop 2-3 drops of pure water to prepare a silica slurry so that air bubbles do not enter the silica slurry. A cover glass was placed on the surface to prepare an observation preparation. Observe the slide with a Leica optical microscope DMLB (transmission light source, magnification 400 times), and use an image analyzer (Leica Q500IW) to obtain an image of silica particles with a circle equivalent diameter / longest diameter for each particle. I asked. The measurement was repeated while moving the observation field of view until the total number of measured particles was 500 or more, and the arithmetic mean value of the measured values was taken as the value of the practical circularity of Wadell of the silica powder.

実施例1
M値が47、BET比表面積が120m/gの疎水化フュームドシリカを用い、バーナーへのフュームドシリカ供給量を0.7kg/Nmで行い、火炎温度1600℃として溶融シリカ粉末を得た。次いで得られたシリカ粉末を、分級点を10μmとして分級後、回収した。得られた溶融球状シリカ粉末の物性を表1に示す。
Example 1
Using hydrophobic fumed silica with an M value of 47 and a BET specific surface area of 120 m 2 / g, the amount of fumed silica supplied to the burner was 0.7 kg / Nm 3 , and the flame temperature was 1600 ° C. to obtain molten silica powder. It was. Then, the obtained silica powder was classified with a classification point of 10 μm and then recovered. Table 1 shows the physical characteristics of the obtained molten spherical silica powder.

実施例2〜5
表1に記載のM値およびBET比表面積の疎水化フュームドシリカを用い、表1に記載のシリカ供給量、火炎温度、分級点として実施例1と同様に溶融球状シリカ粉末を製造した。得られた溶融球状シリカ粉末の物性を表1に示す。
Examples 2-5
Using the hydrophobic fumed silica having the M value and the BET specific surface area shown in Table 1, molten spherical silica powder was produced in the same manner as in Example 1 as the silica supply amount, flame temperature, and classification point shown in Table 1. Table 1 shows the physical characteristics of the obtained molten spherical silica powder.

比較例1
M値が47、BET比表面積が126m/gの疎水化フュームドシリカを用い、バーナーへのフュームドシリカ供給量を0.3kg/Nm、火炎温度1800℃、分級点を3μmとした以外は実施例1と同様に溶融シリカを製造した。得られた溶融シリカの物性を表1に示すが、火炎温度が高く小粒径の粒子の割合が高くなり、さらに製造時の分級点も小さすぎるためにd95が小さく、そのため樹脂コンパウンド調製時の増粘が著しく、樹脂コンパウンドは形成できなかった。
Comparative Example 1
Except for using hydrophobic fumed silica with an M value of 47 and a BET specific surface area of 126 m 2 / g, the amount of fumed silica supplied to the burner was 0.3 kg / Nm 3 , the flame temperature was 1800 ° C, and the classification point was 3 μm. Produced fused silica in the same manner as in Example 1. The physical characteristics of the obtained molten silica are shown in Table 1. The flame temperature is high, the proportion of particles having a small particle size is high, and the classification point at the time of production is too small, so that d95 is small. Therefore, at the time of preparing the resin compound. The thickening was remarkable, and the resin compound could not be formed.

比較例2
M値が47、BET比表面積が115m/gの疎水化フュームドシリカを用い、バーナーへのフュームドシリカ供給量を0.7kg/Nm、火炎温度1600℃、分級点を5μmとした以外は実施例1と同様に溶融シリカを製造した。得られた溶融シリカの物性を表1に示すが、製造時の分級点が小さすぎるためにd95が小さい。比較例1と異なり樹脂コンパウンドの形成は可能であったが、著しく粘度が高いものとなった。
Comparative Example 2
Except for using hydrophobic fumed silica with an M value of 47 and a BET specific surface area of 115 m 2 / g, the amount of fumed silica supplied to the burner was 0.7 kg / Nm 3 , the flame temperature was 1600 ° C, and the classification point was 5 μm. Produced fused silica in the same manner as in Example 1. The physical characteristics of the obtained molten silica are shown in Table 1, and d95 is small because the classification point at the time of production is too small. Unlike Comparative Example 1, it was possible to form a resin compound, but the viscosity was extremely high.

ただし、比較例1や比較例2の溶融シリカは、実施例の溶融シリカと混合して用いれば、樹脂コンパウンド粘度は低くなり、かつ気泡数も少ないままとできると考えられる。 However, if the fused silica of Comparative Example 1 and Comparative Example 2 is used in combination with the fused silica of Examples, it is considered that the viscosity of the resin compound can be lowered and the number of bubbles can be kept small.

比較例3
原料フュームドシリカとして親水性のもの(M値=O)を用いた以外は、実施例1と同様にして溶融シリカを製造した。この場合には気泡含有数が著しく多かった。
Comparative Example 3
Fused silica was produced in the same manner as in Example 1 except that hydrophilic silica (M value = O) was used as the raw material fumed silica. In this case, the number of bubbles contained was remarkably high.

比較例4
原料フュームドシリカとして親水性(M値=O)、BET比表面積が125m/gのものを用いた以外は、実施例2と同様にして溶融シリカを製造した。この場合には気泡含有数が著しく多かった。
Comparative Example 4
Fused silica was produced in the same manner as in Example 2 except that the raw material fumed silica used was hydrophilic (M value = O) and had a BET specific surface area of 125 m 2 / g. In this case, the number of bubbles contained was remarkably high.

比較例5
市販の溶融シリカ(d95が29.5μm、d50が10μm)を評価したが、気泡含有数が著しく多かった。さらに、前記比較例1又は2の小粒径の溶融シリカと混合して用いることにより大粒径粒子と小粒径粒子を組み合わせることになり、充填特性が向上して樹脂コンパウンド粘度は下げられるが、気泡含有数を十分に低下させることはできないと判断された。
Comparative Example 5
Commercially available molten silica (d95: 29.5 μm, d50: 10 μm) was evaluated, and the number of bubbles was remarkably high. Further, by mixing and using the molten silica having a small particle size of Comparative Example 1 or 2, the large particle size particles and the small particle size particles are combined, and the filling characteristics are improved and the viscosity of the resin compound is lowered. , It was judged that the bubble content could not be sufficiently reduced.

Figure 2019167618
Figure 2019167618

1…稠密シリカ粒子
2…中空シリカ粒子
3…研削により露出した空隙(凹部)
1 ... Dense silica particles 2 ... Hollow silica particles 3 ... Voids (recesses) exposed by grinding

Claims (11)

レーザー回折で測定した際に、累積体積95%径(d95)が5μm〜30μmの範囲にある溶融球状シリカ粉末であって、
当該溶融球状シリカ粉末とエポキシ樹脂とを質量比1:1で混練、硬化させた硬化体の一部を研磨して、露出したシリカ断面を1,000倍で顕微鏡観察した際に検出できる最長径5μm以上の気泡の数が、前記硬化体研磨面10cm当たり50個以下であることを特徴とする溶融球状シリカ粉末。
A molten spherical silica powder having a cumulative volume of 95% diameter (d95) in the range of 5 μm to 30 μm as measured by laser diffraction.
The longest diameter that can be detected when the molten spherical silica powder and the epoxy resin are kneaded at a mass ratio of 1: 1 and a part of the cured product is polished and the exposed silica cross section is observed under a microscope at a magnification of 1,000. A molten spherical silica powder characterized in that the number of bubbles of 5 μm or more is 50 or less per 10 cm 2 of the cured product polished surface.
粒子表面がシラン化合物及び/又はシランカップリング剤で処理されている請求項1記載の溶融球状シリカ粉末。 The molten spherical silica powder according to claim 1, wherein the particle surface is treated with a silane compound and / or a silane coupling agent. BET比表面積が1.0m/g〜5.0m/gの範囲にある請求項1記載の溶融球状シリカ粉末。Fused spherical silica powder of claim 1, wherein the BET specific surface area in the range of 1.0m 2 /g~5.0m 2 / g. BET比表面積が1.0m/g〜5.0m/gの範囲にある請求項2記載の溶融球状シリカ粉末。Fused spherical silica powder according to claim 2, wherein the BET specific surface area in the range of 1.0m 2 /g~5.0m 2 / g. 液状半導体封止材の充填材用である請求項1記載の溶融球状シリカ粉末。 The molten spherical silica powder according to claim 1, which is used as a filler for a liquid semiconductor encapsulant. 液状半導体封止材の充填材用である請求項2記載の溶融球状シリカ粉末。 The molten spherical silica powder according to claim 2, which is used as a filler for a liquid semiconductor encapsulant. 液状半導体封止材の充填材用である請求項3記載の溶融球状シリカ粉末。 The molten spherical silica powder according to claim 3, which is used as a filler for a liquid semiconductor encapsulant. 疎水化処理されたフュームドシリカを、
多重管バーナーを用い、
前記フュームドシリカの割合が0.3kg/Nm〜3kg/Nmとなるように、酸素ガス又は/酸素含有ガスを同伴させて前記多重管バーナーの中心管から供給して、
火炎内で1400℃〜1700℃で溶融、球状化させた後、
0.01μm〜100μmの溶融シリカを回収する
ことを特徴とする請求項1記載の溶融球状シリカ粉末の製造方法。
Hydrophobized fumed silica,
Using a multi-tube burner
It is supplied from the central tube of the multi-tube burner with oxygen gas or / oxygen-containing gas so that the ratio of the fumed silica is 0.3 kg / Nm 3 to 3 kg / Nm 3.
After melting and spheroidizing in a flame at 1400 ° C to 1700 ° C,
The method for producing a molten spherical silica powder according to claim 1, wherein the molten silica having a thickness of 0.01 μm to 100 μm is recovered.
疎水化処理されたフュームドシリカを、
多重管バーナーを用い、
前記フュームドシリカの割合が0.3kg/Nm〜3kg/Nmとなるように、酸素ガス又は/酸素含有ガスを同伴させて前記多重管バーナーの中心管から供給して、
火炎内で1400℃〜1700℃で溶融、球状化させた後、
0.01μm〜100μmの溶融シリカを回収する
ことを特徴とする請求項3記載の溶融球状シリカ粉末の製造方法。
Hydrophobized fumed silica,
Using a multi-tube burner
It is supplied from the central tube of the multi-tube burner with oxygen gas or / oxygen-containing gas so that the ratio of the fumed silica is 0.3 kg / Nm 3 to 3 kg / Nm 3.
After melting and spheroidizing in a flame at 1400 ° C to 1700 ° C,
The method for producing a molten spherical silica powder according to claim 3, wherein the molten silica having a thickness of 0.01 μm to 100 μm is recovered.
0.01μm〜100μmの溶融シリカを回収する方法が、まず平均粒径0.01μm〜1000μmの粒子をサイクロンを用いて回収し、ついで、ふるい及び/又は風力分級機を用いて分級点8μm〜100μmで分級して、その細粒側を回収する方法である請求項8記載の溶融球状シリカ粉末の製造方法。 The method of recovering molten silica of 0.01 μm to 100 μm is to first recover particles having an average particle size of 0.01 μm to 1000 μm using a cyclone, and then using a sieve and / or a wind classifier to classify points 8 μm to 100 μm. The method for producing a molten spherical silica powder according to claim 8, which is a method of classifying with and recovering the fine particle side thereof. 0.01μm〜100μmの溶融シリカを回収する方法が、まず平均粒径0.01μm〜1000μmの粒子をサイクロンを用いて回収し、ついで、ふるい及び/又は風力分級機を用いて分級点8μm〜100μmで分級して、その細粒側を回収する方法である請求項9記載の溶融球状シリカ粉末の製造方法。 The method of recovering molten silica of 0.01 μm to 100 μm is to first recover particles having an average particle size of 0.01 μm to 1000 μm using a cyclone, and then using a sieve and / or a wind classifier to classify points 8 μm to 100 μm. The method for producing a molten spherical silica powder according to claim 9, which is a method of classifying with and recovering the fine particle side thereof.
JP2020502920A 2018-03-01 2019-02-13 Fused spherical silica powder and method for producing the same Active JP7275100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023075989A JP2023087034A (en) 2018-03-01 2023-05-02 Fused spherical silica powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018036100 2018-03-01
JP2018036100 2018-03-01
PCT/JP2019/005011 WO2019167618A1 (en) 2018-03-01 2019-02-13 Fused spherical silica powder and manufacturing method therefor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023075989A Division JP2023087034A (en) 2018-03-01 2023-05-02 Fused spherical silica powder

Publications (2)

Publication Number Publication Date
JPWO2019167618A1 true JPWO2019167618A1 (en) 2021-02-25
JP7275100B2 JP7275100B2 (en) 2023-05-17

Family

ID=67805329

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020502920A Active JP7275100B2 (en) 2018-03-01 2019-02-13 Fused spherical silica powder and method for producing the same
JP2023075989A Pending JP2023087034A (en) 2018-03-01 2023-05-02 Fused spherical silica powder

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023075989A Pending JP2023087034A (en) 2018-03-01 2023-05-02 Fused spherical silica powder

Country Status (5)

Country Link
JP (2) JP7275100B2 (en)
KR (1) KR102649474B1 (en)
CN (1) CN111629998B (en)
TW (1) TWI809042B (en)
WO (1) WO2019167618A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7003075B2 (en) * 2019-02-15 2022-01-20 信越化学工業株式会社 Wafer-level optical semiconductor device resin composition and wafer-level optical semiconductor device using the composition
CN115515899A (en) * 2020-04-24 2022-12-23 电化株式会社 Spherical silicon dioxide powder
EP4317065A1 (en) 2021-03-31 2024-02-07 Denka Company Limited Inorganic oxide powder
WO2023153355A1 (en) * 2022-02-09 2023-08-17 デンカ株式会社 Spherical silica powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062902A (en) * 2004-08-26 2006-03-09 Denki Kagaku Kogyo Kk Spherical inorganic hollow powder and method for producing the same, and resin composition
JP2008031409A (en) * 2006-06-27 2008-02-14 Matsushita Electric Works Ltd Low dielectric resin composition, prepreg, metal-clad laminate, printed circuit board

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191315A (en) * 1998-12-25 2000-07-11 Tokuyama Corp Production of molten silica particle
JP2000191316A (en) 1998-12-25 2000-07-11 Tokuyama Corp Fused silica having low aggregability
JP4112125B2 (en) * 1999-08-13 2008-07-02 電気化学工業株式会社 Method for producing fine spherical silica powder
JP4614214B2 (en) * 1999-12-02 2011-01-19 信越化学工業株式会社 Hollow package for semiconductor device elements
JP4313924B2 (en) * 2000-03-16 2009-08-12 電気化学工業株式会社 Spherical silica powder and method for producing the same
JP3796565B2 (en) * 2000-08-15 2006-07-12 信越化学工業株式会社 Method for producing spherical silica fine particles
JP5230051B2 (en) 2002-09-11 2013-07-10 株式会社トクヤマ Fine fused silica particles
JP2005119884A (en) * 2003-10-14 2005-05-12 Mitsubishi Rayon Co Ltd Non-porous spherical silica and method of manufacturing the same
JP4691321B2 (en) * 2003-12-26 2011-06-01 三菱レイヨン株式会社 Method for producing high-purity silicon oxide powder
CN101454246A (en) * 2006-06-09 2009-06-10 株式会社德山 Dry-process fine silica particle
WO2009017058A1 (en) * 2007-08-01 2009-02-05 Denki Kagaku Kogyo Kabushiki Kaisha Silica powder, method for production of the same, and composition using the same
JP2010143806A (en) * 2008-12-19 2010-07-01 Tokuyama Corp Surface-treated silica-based particle and process of manufacturing same
KR101260346B1 (en) * 2012-11-16 2013-05-07 주식회사 신아티앤씨 Epoxy resin composition
JP2015086120A (en) * 2013-10-31 2015-05-07 株式会社トクヤマ Spherical silica fine powder and production method thereof
CN105084373A (en) * 2015-07-24 2015-11-25 陈林 Method for preparing low-dielectric-constant silica powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062902A (en) * 2004-08-26 2006-03-09 Denki Kagaku Kogyo Kk Spherical inorganic hollow powder and method for producing the same, and resin composition
JP2008031409A (en) * 2006-06-27 2008-02-14 Matsushita Electric Works Ltd Low dielectric resin composition, prepreg, metal-clad laminate, printed circuit board

Also Published As

Publication number Publication date
KR102649474B1 (en) 2024-03-20
WO2019167618A1 (en) 2019-09-06
JP2023087034A (en) 2023-06-22
TWI809042B (en) 2023-07-21
CN111629998A (en) 2020-09-04
KR20200127159A (en) 2020-11-10
JP7275100B2 (en) 2023-05-17
CN111629998B (en) 2023-06-30
TW201936498A (en) 2019-09-16

Similar Documents

Publication Publication Date Title
JP7275100B2 (en) Fused spherical silica powder and method for producing the same
EP2351709B1 (en) Zinc oxide particles, process for producing same, heat-releasing filler, resin composition, heat-releasing grease, and heat-releasing coating composition
TW460963B (en) Polishing slurry and polishing method
EP3390297A1 (en) Gas purging for melting furnace and production method for quartz glass
JP2015086120A (en) Spherical silica fine powder and production method thereof
JPH1067883A (en) Inorganic filler, epoxy resin composition, and semiconductor device
KR100793503B1 (en) Non-porous spherical silica and method for production thereof
JP2015145336A (en) spherical alumina powder
JP4043103B2 (en) Fused spherical silica and method for producing the same
JP6305007B2 (en) Spherical amorphous silica particles, method for producing the same, and resin composition containing the same
JP6112888B2 (en) Dry silica fine particles
TW202304811A (en) Silica powder and production method therefor
KR101394808B1 (en) Amorphous silica powder, method for production thereof, and semiconductor sealing material
JP5116968B2 (en) Method for producing spherical alumina powder
JP2017119621A (en) Hydrophilic dry silica powder
KR20210130138A (en) Silica powder, resin composition and dispersion
JP2004203664A (en) Spherical siliceous powder and manufacturing method and utilization of the same
JP6752658B2 (en) Variant silica powder, its production method, resin composition containing it
WO2020121511A1 (en) Method for producing opaque quartz glass
WO2022210139A1 (en) Inorganic oxide powder
JP2016079278A (en) Inorganic filler and method for producing the same, resin composition and molded article
WO2023176812A1 (en) Method for manufacturing spherical particle material
JPH02158637A (en) Silica filler and sealing resin composition using the same
JP5506883B2 (en) Spherical alumina powder
WO2023153352A1 (en) Inorganic powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230502

R150 Certificate of patent or registration of utility model

Ref document number: 7275100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150