JPWO2018037752A1 - Hydrogen-containing liquid, hydrogen-containing liquid manufacturing method, hydrogen-containing liquid manufacturing apparatus, and biogenic hydrogen generator - Google Patents

Hydrogen-containing liquid, hydrogen-containing liquid manufacturing method, hydrogen-containing liquid manufacturing apparatus, and biogenic hydrogen generator Download PDF

Info

Publication number
JPWO2018037752A1
JPWO2018037752A1 JP2018535516A JP2018535516A JPWO2018037752A1 JP WO2018037752 A1 JPWO2018037752 A1 JP WO2018037752A1 JP 2018535516 A JP2018535516 A JP 2018535516A JP 2018535516 A JP2018535516 A JP 2018535516A JP WO2018037752 A1 JPWO2018037752 A1 JP WO2018037752A1
Authority
JP
Japan
Prior art keywords
hydrogen
silicon fine
water
nanoparticles
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018535516A
Other languages
Japanese (ja)
Inventor
小林 光
光 小林
悠輝 小林
悠輝 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIT CO. LTD.
Original Assignee
KIT CO. LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016162520A external-priority patent/JP2017104848A/en
Application filed by KIT CO. LTD. filed Critical KIT CO. LTD.
Publication of JPWO2018037752A1 publication Critical patent/JPWO2018037752A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/026Treating water for medical or cosmetic purposes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

シリコン微細粒子をエタノール中で粉砕して得られるシリコン微細ナノ粒子及び/又はその一部が凝集体となったものを、過酸化水素(H2O2)水に接触させた後、水又は水溶液に接触させることにより水素を発生させて、該水又は該水溶液中に所定の制御された水素濃度を有する水素含有液又は水素水を得る。この水素含有液又は水素水の製造には、シリコン微細粒子を出発材料として、実用に耐え得る濃度と量の溶存水素を含む水素水を、安全に効率よく製造することが可能である。従って、シリコン微細粒子の有効活用にもなり、環境保護に貢献するとともに、特に健康・医療分野での有効な水素発生材及び水素水の生体安全性の向上や製造コストの大幅削減にも寄与する。Silicon fine nanoparticles obtained by pulverizing silicon fine particles in ethanol and / or those in which a part thereof is aggregated are brought into contact with hydrogen peroxide (H 2 O 2) water, and then brought into contact with water or an aqueous solution. Thus, hydrogen is generated to obtain a hydrogen-containing liquid or hydrogen water having a predetermined controlled hydrogen concentration in the water or the aqueous solution. In the production of this hydrogen-containing liquid or hydrogen water, it is possible to safely and efficiently produce hydrogen water containing dissolved hydrogen in a concentration and amount that can withstand practical use, starting from silicon fine particles. Therefore, it will be an effective use of silicon fine particles, contributing to environmental protection, as well as improving the biosafety of hydrogen generating materials and hydrogen water, which are particularly effective in the health and medical fields, and greatly reducing manufacturing costs. .

Description

本発明は、水素含有液、水素含有液の製造方法、及び水素含有液の製造装置、又は水素水、水素水の製造方法、及び水素水の製造装置、並びに生体用水素発生材に関する。   The present invention relates to a hydrogen-containing liquid, a method for producing a hydrogen-containing liquid, and a device for producing a hydrogen-containing liquid, or hydrogen water, a method for producing hydrogen water, a device for producing hydrogen water, and a biogenic hydrogen generator.

水素を水に溶解させた水素水は、1ppm以上の溶存水素濃度が必要とされる。水素水を利用することにより、活性酸素を除去することが可能となるため、健康飲料水、洗顔水、入浴水、医療分野や電子部品の洗浄水、又は植物の生育促進水などの多方面の利用が進みつつある。一般的には、水素水の製造技術や製造装置としては、水素ガスを水に導入することや水の電気分解法によって行われている(例えば、特許文献1)。   Hydrogen water in which hydrogen is dissolved in water requires a dissolved hydrogen concentration of 1 ppm or more. By using hydrogen water, it becomes possible to remove active oxygen, so that it can be used in many areas such as health drinking water, facial wash water, bathing water, medical field and electronic component washing water, or plant growth promoting water. Usage is progressing. In general, hydrogen water is produced by introducing hydrogen gas into water or electrolyzing water as a production technique or production apparatus for hydrogen water (for example, Patent Document 1).

なお、本願発明者らは、シリコンナノ粒子による水の分解と水素濃度について研究し、その結果を開示している(非特許文献1、特許文献2)。   The inventors of the present application have studied water decomposition and hydrogen concentration by silicon nanoparticles and disclosed the results (Non-patent Document 1 and Patent Document 2).

特開2006−95389号公報JP 2006-95389 A 特開2016−155118号公報JP 2016-155118 A

松田真輔ほか、シリコンナノ粒子による水の分解と水素濃度、第62回応用物理学会春季学術講演会 講演予稿集、2015、11a−A27−6Shinsuke Matsuda et al., Water decomposition and hydrogen concentration by silicon nanoparticles, Proceedings of the 62nd JSAP Spring Meeting, 2015, 11a-A27-6

しかしながら、特許文献1において開示されている水素水を製造する技術においては、水素ガスを直接導入する過程を要し、その制御及び取扱いに課題がある。更に、低コストで生体及び生体内への安全性の高い水素発生材料を用いて、オンサイトで簡便な水素水、その製造方法及びその製造装置が求められている。   However, the technique for producing hydrogen water disclosed in Patent Document 1 requires a process of directly introducing hydrogen gas, and there are problems in its control and handling. Furthermore, there is a need for a simple on-site hydrogen water, a method for producing the same, and a device for producing the same by using a hydrogen generating material that is low in cost and highly safe to the living body.

本発明は、上述の技術課題の少なくとも1つを解消し、微細なシリコン粒子を有効活用し、安全性、経済性、及び工業性に優れた製造方法により水素を発生させることにより、簡単かつ安全な、水素含有液、水素含有液の製造方法、及び水素含有液の製造装置、又は水素水、水素水の製造方法、及び水素水の製造装置の実現に大いに貢献するものである。   The present invention solves at least one of the above technical problems, makes effective use of fine silicon particles, and generates hydrogen by a production method excellent in safety, economy, and industriality, thereby making it simple and safe. The present invention greatly contributes to the realization of a hydrogen-containing liquid, a hydrogen-containing liquid manufacturing method, and a hydrogen-containing liquid manufacturing apparatus, or hydrogen water, a hydrogen water manufacturing method, and a hydrogen water manufacturing apparatus.

本願発明者らは、半導体や発光素子において、シリコン微細粒子の有効活用に着眼し研究を進めてきた。一方、かかるシリコン微細粒子から、実用性及び工業性に優れた水素の製造技術について、鋭意研究に取り組んだ。その結果、室温で温和な条件下であっても、低コストで安全な材料である微細なシリコン粒子を水中に分散して、その水中から水素を発生し得ることを見出し、この水素を水中で溶存させ、制御された水素濃度を有する水素水を実現できることを見出した。   The inventors of the present application have been researching effective use of silicon fine particles in semiconductors and light emitting devices. On the other hand, intensive research was carried out on hydrogen production technology with excellent practicality and industriality from such silicon fine particles. As a result, it was found that even under mild conditions at room temperature, fine silicon particles, which are a low-cost and safe material, can be dispersed in water to generate hydrogen from the water. It has been found that hydrogen water can be dissolved and hydrogen water having a controlled hydrogen concentration can be realized.

本発明は、上述の視点に基づいて創出されたものである。   The present invention has been created based on the above viewpoint.

本発明の1つの水素含有液は、エタノール中でシリコン微細粒子を粉砕して得られるシリコン微細ナノ粒子及び/又は該シリコン微細ナノ粒子の凝集体に過酸化水素水を接触させたそのシリコン微細ナノ粒子及び/又は該凝集体と、水又は水溶液とが接触することによって生成される水素を前述の水又は前述の水溶液の中に溶存する。   One hydrogen-containing liquid of the present invention includes silicon fine nanoparticles obtained by pulverizing silicon fine particles in ethanol and / or silicon fine nanoparticles obtained by bringing hydrogen peroxide water into contact with aggregates of the silicon fine nanoparticles. Hydrogen produced by contacting the particles and / or the aggregates with water or an aqueous solution is dissolved in the water or the aqueous solution.

また、本発明の1つの生体用水素発生材は、エタノール中でシリコン微細粒子を粉砕して得られるシリコン微細ナノ粒子及び/又は該シリコン微細ナノ粒子の凝集体に過酸化水素水を接触させたそのシリコン微細ナノ粒子及び/又は該凝集体を含む。   One biogenic hydrogen generating material of the present invention is obtained by bringing hydrogen peroxide water into contact with silicon fine nanoparticles obtained by pulverizing silicon fine particles in ethanol and / or aggregates of the silicon fine nanoparticles. The silicon fine nanoparticles and / or the aggregates are included.

また、本発明の1つの水素含有液の製造方法は、エタノール中でシリコン微細粒子を粉砕することによってシリコン微細ナノ粒子及び/又は該シリコン微細ナノ粒子の凝集体を形成する工程と、そのシリコン微細ナノ粒子及び/又は該凝集体と過酸化水素水とを接触させる過酸化水素水処理工程と、その過酸化水素水処理工程の後、該シリコン微細ナノ粒子及び/又は該凝集体を、水又は水溶液に接触させることにより生成された水素を前述の水又は前述の水溶液の中に溶存させる溶存工程と、を備える。   In addition, one method for producing a hydrogen-containing liquid of the present invention includes a step of forming silicon fine nanoparticles and / or an aggregate of the silicon fine nanoparticles by pulverizing silicon fine particles in ethanol, and the silicon fine particles. After the hydrogen peroxide solution treatment step for bringing the nanoparticles and / or the aggregates into contact with the hydrogen peroxide solution, and the hydrogen peroxide solution treatment step, the silicon fine nanoparticles and / or the aggregates are treated with water or A dissolving step of dissolving hydrogen generated by contacting the aqueous solution in the water or the aqueous solution.

また、本発明の1つの水素含有液の製造装置は、エタノール中でシリコン微細粒子を粉砕することによってシリコン微細ナノ粒子及び/又は該シリコン微細ナノ粒子の凝集体を形成する粉砕部と、そのシリコン微細ナノ粒子及び/又は該凝集体と過酸化水素水とを接触させる過酸化水素水処理部と、その過酸化水素水と接触した該シリコン微細ナノ粒子及び/又は該凝集体を、水又は水溶液に接触させることにより生成された水素を前述の水又は前述の水溶液の中に溶存させる溶存処理部と、を備える。   In addition, one hydrogen-containing liquid production apparatus of the present invention includes a pulverization unit that forms silicon fine nanoparticles and / or aggregates of the silicon fine nanoparticles by pulverizing silicon fine particles in ethanol, and the silicon. A hydrogen peroxide solution treatment unit for bringing the fine nanoparticles and / or the aggregates into contact with the hydrogen peroxide solution, and the silicon fine nanoparticles and / or the aggregates in contact with the hydrogen peroxide solution with water or an aqueous solution. And a dissolved treatment section for dissolving hydrogen generated by contacting with water in the water or the aqueous solution.

また、本発明の1つの水素水は、シリコン微細粒子、あるいはシリコン微細粒子を更に粉砕したシリコン微細粒子(以下、「シリコン微細ナノ粒子」という)及び/又は該シリコン微細ナノ粒子の凝集体を水中に接触もしくは分散させて発生の水素を、直接的にその水中に溶存させて容器に密封した水素水である。   Further, one hydrogen water of the present invention contains silicon fine particles, silicon fine particles obtained by further pulverizing silicon fine particles (hereinafter referred to as “silicon fine nanoparticles”) and / or aggregates of the silicon fine nanoparticles. Hydrogen water generated in contact with or dispersed in water is directly dissolved in the water and sealed in a container.

本発明の1つの水素水の製造装置は、シリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子を形成する粉砕部とそのシリコン微細ナノ粒子及び/又はその凝集体を水又は水溶液内で接触もしくは分散させて直接的にその水中に溶存させて密封する水素水発生部とを備える。   One apparatus for producing hydrogen water according to the present invention comprises a pulverized portion for forming silicon fine particles or silicon fine nanoparticles obtained by further pulverizing silicon fine particles, and the silicon fine nanoparticles and / or aggregates thereof in water or an aqueous solution. And a hydrogen water generating section that is dissolved in the water directly by contact or dispersion and sealed.

この水素水の製造装置によれば、シリコン微細ナノ粒子及び/又はその凝集体を密封容器中で水又は水溶液中に接触もしくは分散させて、実用に耐え得る水素濃度と量の水素水を確度高く低コストに、かつ安全にオンサイトで製造することが可能である。この水素水の製造装置によれば、水素水の製造における工業生産性を格段に向上させることができる。   According to this hydrogen water production apparatus, silicon fine nanoparticles and / or aggregates thereof are brought into contact with or dispersed in water or an aqueous solution in a sealed container, so that the hydrogen concentration and amount of hydrogen water that can withstand practical use are highly accurate. It can be manufactured on-site at low cost and safely. According to this hydrogen water production apparatus, industrial productivity in the production of hydrogen water can be significantly improved.

また、本発明の1つの水素水の製造方法は、シリコン微細粒子を形成する粉砕工程と、シリコン微細ナノ粒子及び/又はその凝集体を水又は水溶液で接触もしくは分散させて水素を発生し、その水素をその水中に溶存させて密封する水素水の生成工程を含む。   Further, one method for producing hydrogen water according to the present invention includes a pulverization step for forming silicon fine particles, silicon fine nanoparticles and / or aggregates thereof are contacted or dispersed with water or an aqueous solution, and hydrogen is generated. It includes a hydrogen water generation step in which hydrogen is dissolved in the water and sealed.

この水素水の製造方法によれば、シリコン微細粒子を出発材料として、実用に耐え得る水素濃度と量の水素水を製造することが可能である。また、この水素水の製造方法は、シリコン微細ナノ粒子を有効活用し、環境保護に大きく貢献するのみならず、飲料水等ともなる。この水素水の製造方法によれば、その水素水の製造コストを大幅に削減することができ、工業生産性を格段に向上させることができる。   According to this method for producing hydrogen water, it is possible to produce hydrogen water having a hydrogen concentration and amount that can withstand practical use, starting from silicon fine particles. In addition, this method for producing hydrogen water not only greatly contributes to environmental protection by effectively utilizing silicon fine nanoparticles, but also serves as drinking water and the like. According to this method for producing hydrogen water, the production cost of the hydrogen water can be greatly reduced, and industrial productivity can be significantly improved.

また、本発明の1つの水素水の製造に使用するシリコン微細ナノ粒子及び/又はその凝集体は、その結晶子径の分布が100nm(ナノメートル)以下、好ましくは50nm以下の範囲である。この範囲を採用することが、水中で水素を発生し、その水素をその水中に溶存させて容器に密封する、水素水の生成に好適である。   The fine silicon nanoparticles and / or aggregates thereof used for the production of one hydrogenous water of the present invention have a crystallite size distribution of 100 nm (nanometers) or less, preferably 50 nm or less. Employing this range is suitable for producing hydrogen water in which hydrogen is generated in water, the hydrogen is dissolved in the water and sealed in a container.

なお、シリコン微細ナノ粒子の中でも、化学的処理(代表的には、後述する各実施形態における、フッ酸水溶液及び/又はフッ化アンモ二ウム水溶液による酸化膜の除去処理)されたものは、水素水の製造用シリコン微細ナノ粒子として好適な一例である。また、本発明の1つの水素水の製造方法は、シリコン微細ナノ粒子を形成する粉砕工程を含む。   Among the silicon fine nanoparticles, those that have been chemically treated (typically, removal of the oxide film with a hydrofluoric acid aqueous solution and / or an ammonium fluoride aqueous solution in each embodiment described later) are hydrogen. It is an example suitable as a silicon | silicone fine nanoparticle for manufacture of water. Moreover, the manufacturing method of one hydrogenous water of this invention includes the grinding | pulverization process which forms a silicon | silicone fine nanoparticle.

なお、シリコン微細ナノ粒子の中でも、化学的処理(代表的には、後述する各実施形態における、過酸化水素水溶液による加熱処理)されたものは、生体及び生体内での水素水の製造用シリコン微細ナノ粒子として好適な一例であり、本発明の1つの水素含有液又は水素水の製造方法は、シリコン微細ナノ粒子を形成するために、エタノール中での粉砕工程を含む。   In addition, among the silicon fine nanoparticles, those subjected to chemical treatment (typically heat treatment with an aqueous hydrogen peroxide solution in each embodiment described later) are silicon for producing living body and hydrogen water in the living body. It is an example suitable as a fine nanoparticle, and the manufacturing method of one hydrogen containing liquid or hydrogen water of this invention includes the grinding | pulverization process in ethanol in order to form a silicon | silicone fine nanoparticle.

上述の水素水製造用のシリコン微細ナノ粒子、及びその製造方法によれば、シリコン微細ナノ粒子及び/又はその凝集体が、実用に耐え得る水素濃度と量の水素水を効率よく製造するための生体安全性を有する材料として提供される。   According to the silicon fine nanoparticles for producing hydrogen water and the method for producing the same, the silicon fine nanoparticles and / or the aggregates thereof can efficiently produce hydrogen water having a hydrogen concentration and amount that can withstand practical use. It is provided as a material having biosafety.

本発明の1つの水素含有液又は水素水の製造装置、及び本発明の1つの水素含有液又は水素水の製造方法によれば、シリコン微細ナノ粒子が、水素含有液又は水素水の生成の出発材料として、実用に耐え得る水素濃度と量の水素含有液又は水素水を確度高く低コストに、かつ安全に、オンサイトで製造することに利用される。従って、シリコン微細ナノ粒子及び/又はその凝集体が有効活用されて、環境保護や生体安全性に貢献するとともに、水素含有液又は水素水の製造コストの大幅な削減に貢献する。   According to one hydrogen-containing liquid or hydrogen water production apparatus of the present invention and one hydrogen-containing liquid or hydrogen water production method of the present invention, the silicon fine nanoparticles are started from the generation of the hydrogen-containing liquid or hydrogen water. As a material, it is used to produce a hydrogen-containing liquid or hydrogen water having a hydrogen concentration and amount that can be practically used with high accuracy, low cost, and safely on-site. Therefore, silicon fine nanoparticles and / or aggregates thereof are effectively used to contribute to environmental protection and biosafety, and to greatly reduce the production cost of hydrogen-containing liquid or hydrogen water.

実施例における一段階粉砕後のシリコン微細ナノ粒子の結晶構造例を示す断面TEM(透過型電子顕微鏡)写真図である。It is a cross-sectional TEM (transmission electron microscope) photograph figure which shows the crystal structure example of the silicon | silicone fine nanoparticle after the one-step grinding | pulverization in an Example. 個別のシリコン微細ナノ粒子に着目した拡大TEM写真図である。It is an enlarged TEM photograph which paid its attention to individual silicon fine nanoparticles. 実施例の1段階粉砕で得られるシリコン微細ナノ粒子のX線回折装置(XRD)による結晶子径分布図である。It is a crystallite diameter distribution map by the X-ray-diffraction apparatus (XRD) of the silicon | silicone fine nanoparticle obtained by the 1 step grinding | pulverization of an Example. 実施例の2段階粉砕で得られるシリコン微細ナノ粒子のXRDによる結晶子径分布図である。It is a crystallite size distribution map by XRD of the silicon fine nanoparticle obtained by the two-step grinding of an Example. 実施例で得られる水素含有液又は水素水中の溶存水素濃度特性図である。It is a dissolved hydrogen concentration characteristic view in a hydrogen content liquid or hydrogen water obtained in an example. 実施例で得られる水素含有液又は水素水中の溶存水素濃度特性図である。It is a dissolved hydrogen concentration characteristic view in a hydrogen content liquid or hydrogen water obtained in an example. 実施例で得られる水素含有液又は水素水中の溶存水素濃度特性図である。It is a dissolved hydrogen concentration characteristic view in a hydrogen content liquid or hydrogen water obtained in an example. 実施例で得られる水素含有液又は水素水中の溶存水素濃度特性図である。It is a dissolved hydrogen concentration characteristic view in a hydrogen content liquid or hydrogen water obtained in an example. (a)他の実施例で得られる水素含有液又は水素水中の溶存水素濃度特性図である。(b)他の実施例で得られる水素含有液又は水素水中の、シリコン(Si)1g当たりに換算した水素発生量特性図である。(A) It is a dissolved hydrogen concentration characteristic figure in the hydrogen containing liquid or hydrogen water obtained in another Example. (B) It is the hydrogen generation amount characteristic figure converted per 1 g of silicon (Si) in the hydrogen containing liquid or hydrogen water obtained in another Example.

[実施例1] [Example 1]

本発明の実施形態を、添付する図面に基づいて詳細に述べる。   Embodiments of the present invention will be described in detail with reference to the accompanying drawings.

本実施形態のシリコン微細粒子の一例は、市販の高純度シリコン粉末(「高純度Si粉末」ともいう)(例えば、高純度化学研究所社製、粒度分布<φ5μm、純度99.9%、i型シリコン)である。また、本実施形態のシリコン微細ナノ粒子の一例は、該高純度シリコン粉末を出発材として、該高純度シリコン粉末をビーズミル法によって微細化したものである。シリコン微細粒子又はシリコン微細ナノ粒子と、複数の種類の水溶液とを、密閉容器内において接触させる。なお、該水溶液の1つは、pH値が8の弱アルカリのほう酸カリウムバッファー溶液を混合した水溶液であり、該水溶液の他の1つは、pH値が7の超純水である。また、該水溶液の他の1つは、pH値が7.1〜7.3の標準的な水道水である。それぞれの水溶液を個別に、シリコン微細粒子又はシリコン微細ナノ粒子に密閉容器内において接触させる。   An example of the silicon fine particles of this embodiment is a commercially available high-purity silicon powder (also referred to as “high-purity Si powder”) (for example, manufactured by High-Purity Chemical Laboratory, particle size distribution <φ5 μm, purity 99.9%, i Type silicon). In addition, an example of the silicon fine nanoparticles of the present embodiment is obtained by refining the high-purity silicon powder by a bead mill method using the high-purity silicon powder as a starting material. Silicon fine particles or silicon fine nanoparticles are brought into contact with a plurality of types of aqueous solutions in an airtight container. One of the aqueous solutions is an aqueous solution in which a weakly alkaline potassium borate buffer solution having a pH value of 8 is mixed, and the other one of the aqueous solutions is ultrapure water having a pH value of 7. The other one of the aqueous solutions is standard tap water having a pH value of 7.1 to 7.3. Each aqueous solution is individually brought into contact with silicon fine particles or silicon fine nanoparticles in a closed container.

なお、上述のシリコン微細ナノ粒子は、ビーズミル装置(アイメックス株式会社製:RMB型バッジ式レディーミル)を用いて、高純度シリコン粉末15gを99%以上のイソプロピルアルコール(IPA)300mlに分散させ、φ;0.5μmのジルコニア製ビーズ(容量300ml)を加えて4時間、回転数2500rpmで粉砕(一段階粉砕)を行った。その結果、X線回折装置(XRD)による測定により、平均結晶子径(体積分布)が20.0nmのシリコン微細ナノ粒子を得た。それを、さらにφ;0.3mmのジルコニア製ビーズ(容量300ml)を用いて、4時間、回転数2500rpmで粉砕(二段階粉砕)を行い、XRDによる測定により平均結晶子径(体積分布)が10.9nmのシリコン微細ナノ粒子を得た。   In addition, the above-mentioned silicon fine nanoparticles were dispersed in 300 ml of 99% or more of isopropyl alcohol (IPA) by using a bead mill apparatus (manufactured by Imex Corporation: RMB type badge-type ready mill), and φφ ; 0.5 μm zirconia beads (capacity: 300 ml) were added and pulverization (one-step pulverization) was performed at 2500 rpm for 4 hours. As a result, silicon fine nanoparticles having an average crystallite diameter (volume distribution) of 20.0 nm were obtained by measurement with an X-ray diffractometer (XRD). This was further pulverized using zirconia beads having a diameter of 0.3 mm (capacity: 300 ml) at a rotational speed of 2500 rpm (two-stage pulverization) for 4 hours, and the average crystallite diameter (volume distribution) was measured by XRD. 10.9 nm silicon fine nanoparticles were obtained.

図1は、本実施例におけるビーズミルの一段階粉砕工程後で得られたシリコン微細ナノ粒子の結晶構造例を示す断面TEM(透過型電子顕微鏡)写真である。図1は、シリコン微細ナノ粒子の一部が凝集することにより、不定形の約0.5μm以下のやや大きな微粒子が形成されている状態を示している。また、図2は、個別のシリコン微細ナノ粒子に着目して拡大したTEM写真図である。図2において白線で囲まれた領域に示すように、約5nmから10nmの大きさのシリコン微細ナノ粒子が確認された。また、このシリコン微細ナノ粒子は結晶性((111)面)を有していることが確認された。外観は不定形の形状で、一部にはシリコン微細ナノ粒子の凝集体も見られる。図示していないが、二段階粉砕後のTEM写真による解析により、一段階粉砕後の約1/2程度以下の結晶性((111)面)を有するシリコン微細ナノ粒子が得られた。   FIG. 1 is a cross-sectional TEM (transmission electron microscope) photograph showing an example of the crystal structure of silicon fine nanoparticles obtained after the one-step grinding process of the bead mill in this example. FIG. 1 shows a state in which a part of silicon fine nanoparticles are aggregated to form irregularly large particles of about 0.5 μm or less. FIG. 2 is an enlarged TEM photograph focusing on individual silicon fine nanoparticles. As shown in the region surrounded by the white line in FIG. 2, silicon fine nanoparticles having a size of about 5 nm to 10 nm were confirmed. Moreover, it was confirmed that the silicon fine nanoparticles have crystallinity ((111) plane). The appearance is irregular, and some silicon agglomerates are also found. Although not shown, silicon fine nanoparticles having a crystallinity (about (111) plane) of about ½ or less after one-stage grinding were obtained by analysis with a TEM photograph after two-stage grinding.

図3は、一段階粉砕の実施例の結果として得られたシリコン微細ナノ粒子の例の結晶子径分布をX線回折装置(株式会社リガク、製品名「SmartLab」)を用いて、測定及び解析した結果を示す図である。図3においては、横軸が結晶子径(nm)を表し、縦軸は、頻度を表している。また、実線は個数分布基準の結晶子径分布を示し、破線は体積分布基準の結晶子径分布を示している。個数分布においては、モード径が0.29nm、メジアン径(50%結晶子径)が0.75nm、平均径が1.2nmであった。また、体積分布においては、モード径が4.9nm、メジアン径が12.5nm、平均径が上述したように20.0nmであった。   FIG. 3 shows measurement and analysis of the crystallite size distribution of an example of silicon fine nanoparticles obtained as a result of the example of one-step grinding using an X-ray diffractometer (Rigaku Corporation, product name “SmartLab”). It is a figure which shows the result. In FIG. 3, the horizontal axis represents the crystallite diameter (nm), and the vertical axis represents the frequency. The solid line indicates the crystallite size distribution based on the number distribution, and the broken line indicates the crystallite size distribution based on the volume distribution. In the number distribution, the mode diameter was 0.29 nm, the median diameter (50% crystallite diameter) was 0.75 nm, and the average diameter was 1.2 nm. In the volume distribution, the mode diameter was 4.9 nm, the median diameter was 12.5 nm, and the average diameter was 20.0 nm as described above.

図4は、二段階粉砕の実施例の結果として得られたシリコン微細ナノ粒子の結晶子径分布をX線回折装置(XRD)によって、測定解析した結果を示す図である。図4では、横軸が結晶子径(nm)を表し、縦軸は、頻度を表している。また、実線は個数分布基準の結晶子径分布を示し、破線は体積分布基準の結晶子径分布を示している。図4に示すように、個数分布においては、モード径が0.14nm、メジアン径(50%結晶子径)が0.37nm、平均径が0.6nmであった。また、体積分布においては、モード径が2.6nm、メジアン径が6.7nm、平均径が上述したように10.9nmであった。これらの結果により、二段階粉砕後に得られるシリコン微細ナノ粒子は、一段階粉砕より、約1/2以下の微細化が達成されていることが分かった。上述の各実施例のビーズミル法を用いた粉砕処理により、結晶子径が、100nm以下の範囲、特に50nm以下の範囲に分布しているシリコン微細ナノ粒子が得られることが確認された。   FIG. 4 is a diagram showing the result of measurement and analysis of the crystallite size distribution of the silicon fine nanoparticles obtained as a result of the two-stage pulverization example using an X-ray diffractometer (XRD). In FIG. 4, the horizontal axis represents the crystallite diameter (nm), and the vertical axis represents the frequency. The solid line indicates the crystallite size distribution based on the number distribution, and the broken line indicates the crystallite size distribution based on the volume distribution. As shown in FIG. 4, in the number distribution, the mode diameter was 0.14 nm, the median diameter (50% crystallite diameter) was 0.37 nm, and the average diameter was 0.6 nm. In the volume distribution, the mode diameter was 2.6 nm, the median diameter was 6.7 nm, and the average diameter was 10.9 nm as described above. From these results, it was found that the silicon fine nanoparticles obtained after the two-stage pulverization had a fineness of about ½ or less achieved by the one-stage pulverization. It was confirmed that fine silicon nanoparticles having a crystallite size distributed in the range of 100 nm or less, particularly in the range of 50 nm or less can be obtained by the pulverization treatment using the bead mill method of each of the above Examples.

以下、一段階粉砕と二段階粉砕で作製されたシリコン微細ナノ粒子を用いた水素含有液又は水素水の生成とその溶存水素濃度の制御について詳細に述べる。   Hereinafter, generation of a hydrogen-containing liquid or hydrogen water using silicon fine nanoparticles produced by one-step pulverization and two-step pulverization and control of the dissolved hydrogen concentration will be described in detail.

上述の一段階粉砕と二段階粉砕で作製されたビーズを含むシリコン微細ナノ粒子は、次の工程を経て得られる。具体的には、ビーズ分離容器(アイメックス株式会社製)に装着したSUSフィルター(φ:0.5mmのビーズの場合はフィルターのメッシュは0.35mm、φ:0.3mmのビーズの場合はメッシュ0.06mmを使用)を用いて、その上部からビーズを含むシリコン微細ナノ粒子を含むイソプロピルアルコール(IPA)溶液を注ぐ。その後、分級処理し、吸引濾過し、ビーズを分離することにより、シリコン微細ナノ粒子を含むIPA溶液を得た。その後、減圧蒸発装置を用いて、40℃でIPAを蒸発処理することにより、シリコン微細ナノ粒子を得た。   Silicon fine nanoparticles containing beads produced by the above-described one-step pulverization and two-step pulverization are obtained through the following steps. Specifically, a SUS filter mounted in a bead separation container (manufactured by Imex Co., Ltd.) (for φ: 0.5 mm beads, the filter mesh is 0.35 mm; for φ: 0.3 mm beads, mesh 0) Is used to pour an isopropyl alcohol (IPA) solution containing fine silicon nanoparticles containing beads from the top. Thereafter, classification treatment, suction filtration, and separation of beads were performed to obtain an IPA solution containing fine silicon nanoparticles. Then, silicon fine nanoparticles were obtained by evaporating IPA at 40 ° C. using a vacuum evaporator.

次いで、フッ酸溶液に接触させる又はフッ酸溶液中に浸漬する処理(以下、単に「フッ酸処理」ともいう。)を行う場合は以下の処理を追加した。得られたシリコン微細ナノ粒子を5%濃度のフッ酸溶液中に10分間浸漬させた。その後、100nmのフッ素樹脂製のメンブレンフィルターで大気中濾過処理を行い、シリコン微細ナノ粒子をメンブレンフィルター上にトラップし層状に残存させた。このメンブレンフィルター上のシリコン微細ナノ粒子をフッ素樹脂製ビーカー上に保持して、フッ酸処理を行った場合はその上からエタノールを滴下して、フッ酸成分を除去した。メンブレンフルター上のシリコン微細ナノ粒子を空気中で30分程度乾燥処理し、フッ酸処理したシリコン微細ナノ粒子を得た。   Next, the following treatment was added in the case of performing a treatment (hereinafter also simply referred to as “hydrofluoric acid treatment”) that is brought into contact with or immersed in a hydrofluoric acid solution. The obtained silicon fine nanoparticles were immersed in a 5% concentration hydrofluoric acid solution for 10 minutes. Thereafter, filtration in air was performed with a 100 nm fluororesin membrane filter, and silicon fine nanoparticles were trapped on the membrane filter and left in layers. When the silicon fine nanoparticles on the membrane filter were held on a fluororesin beaker and hydrofluoric acid treatment was performed, ethanol was dropped from above to remove the hydrofluoric acid component. Silicon fine nanoparticles on the membrane filter were dried in air for about 30 minutes to obtain hydrofluoric acid-treated silicon fine nanoparticles.

これらのシリコン微細ナノ粒子表面のシリコン酸化膜厚の測定をXPS法により実施した。フッ酸処理しない場合は膜厚が1.6nm程度のシリコン酸化膜を有している。フッ酸処理をした場合は酸化膜がエッチング除去され、0.07nm以下となり、酸化膜をほとんど有していないことが分かった。   The silicon oxide film thickness on the surface of these silicon fine nanoparticles was measured by XPS method. When hydrofluoric acid treatment is not performed, a silicon oxide film having a thickness of about 1.6 nm is provided. In the case of hydrofluoric acid treatment, the oxide film was removed by etching, and the thickness was 0.07 nm or less, and it was found that the oxide film was hardly present.

得られたシリコン微細ナノ粒子10mgを容量30mlのガラス瓶(硼ケイ酸ガラス厚さ1mm程度、ASONE社製ラボランスクリュー管瓶)に入れて、その後、エタノール1mlを投入して、分散させ、全量が30mlになるように所定の水溶液約29mlを加え、ガラス瓶の口まで一杯にして、空気が入らないように内蓋をして、キャップ(長さ1cm)をし、完全密封をした。キャップはポリプロピレン(厚さ2mm)で、内蓋はポリエチレンとポリプロピレンの多層フィルター製を用いた。これらにより、発生する水素の透過や漏れを充分に抑えることができた。   10 mg of the obtained silicon fine nanoparticles were put into a glass bottle with a capacity of 30 ml (borosilicate glass thickness of about 1 mm, Labone screw tube manufactured by ASONE), and then 1 ml of ethanol was added and dispersed, About 29 ml of a predetermined aqueous solution was added so that the volume became 30 ml, the mouth of the glass bottle was filled up, the inner lid was closed so as not to enter air, a cap (length 1 cm) was attached, and the bottle was completely sealed. The cap was polypropylene (thickness 2 mm), and the inner lid was made of polyethylene and polypropylene multilayer filters. By these, the permeation | transmission and leakage of the generated hydrogen were fully suppressed.

この状態に保ったままで、室温にて、密閉したガラス瓶中でシリコン微細ナノ粒子から徐々に水素が発生し、水溶液中に所定の濃度を有する水素を溶存させることができ、安全な水素含有液又は水素水を得ることができた。   While maintaining this state, hydrogen is gradually generated from the silicon fine nanoparticles in a sealed glass bottle at room temperature, and hydrogen having a predetermined concentration can be dissolved in the aqueous solution. Hydrogen water could be obtained.

水溶液中の溶存水素濃度の反応時間依存性の測定には、東亜DKK社製のポータブル溶存水素濃度計を使用した。まず、図5にフッ酸処理しない場合のシリコン微細ナノ粒子を用いたpH値が7の超純水の場合の測定結果を示す。   A portable dissolved hydrogen concentration meter manufactured by Toa DKK was used to measure the reaction time dependence of the dissolved hydrogen concentration in the aqueous solution. First, FIG. 5 shows a measurement result in the case of ultrapure water having a pH value of 7 using silicon fine nanoparticles without hydrofluoric acid treatment.

図5は、未粉砕高純度シリコン粉末と、一段階粉砕(平均結晶粒子径20.0nm)と、二段階粉砕(平均結晶粒子径10.9nm)の超純水溶液中の溶存水素濃度の測定値を示す。粒子径(結晶子径)が小さくなることにより、シリコン微細ナノ粒子の表面積が増大し、表面で反応発生する水素が増加し、溶存水素濃度が増加していることが分かる。また、反応時間の増加とともに得られる溶存水素濃度が大きくなり、400分(約7時間)程度の反応で、超純水中でも0.4ppm程度の溶存水素濃度を達成した。1ppm以上の溶存水素濃度を得るためには、シリコン微細ナノ粒子の量を増やせば良い。   FIG. 5 shows measured values of dissolved hydrogen concentration in an ultrapure aqueous solution of unground high-purity silicon powder, one-step pulverization (average crystal particle size 20.0 nm), and two-step pulverization (average crystal particle size 10.9 nm). Indicates. It can be seen that as the particle size (crystallite size) decreases, the surface area of the silicon fine nanoparticles increases, the amount of hydrogen generated on the surface increases, and the dissolved hydrogen concentration increases. Moreover, the dissolved hydrogen concentration obtained with the increase in the reaction time increased, and the dissolved hydrogen concentration of about 0.4 ppm was achieved even in ultrapure water by the reaction of about 400 minutes (about 7 hours). In order to obtain a dissolved hydrogen concentration of 1 ppm or more, the amount of silicon fine nanoparticles may be increased.

また、水溶液中の溶存水素濃度は、水溶液のpH値にも依存性が見られた。具体的には、pH値を8.0にすると、水溶液中の溶存水素濃度が超純水に比べて、大きく増大することも明確になった。   The concentration of dissolved hydrogen in the aqueous solution was also dependent on the pH value of the aqueous solution. Specifically, it was also clarified that when the pH value is 8.0, the dissolved hydrogen concentration in the aqueous solution is greatly increased as compared with ultrapure water.

図6は、一段階粉砕を行ったシリコン微細ナノ粒子(平均結晶子径20.0nm)を、フッ酸処理を施すことにより酸化膜を除去した場合の例(図中の三角印)と、フッ酸処理を施していない場合の例(図中の×印)とを比較した結果を示す。なお、いずれも、該水溶液のpH値は、8であった。   FIG. 6 shows an example in which an oxide film is removed by applying hydrofluoric acid treatment to silicon fine nanoparticles (average crystallite diameter of 20.0 nm) that have been subjected to one-step pulverization. The result of having compared with the example (x mark in a figure) when not performing acid treatment is shown. In all cases, the pH value of the aqueous solution was 8.

フッ酸処理をしたシリコン微細ナノ粒子を用いた場合、20分程度で1ppmを超え、100分で1.4ppmを超える溶存水素濃度を達成した。更に短時間化したい場合はシリコン微細ナノ粒子の投入量を増加すれば良い。   When silicon fine nanoparticles treated with hydrofluoric acid were used, a dissolved hydrogen concentration exceeding 1 ppm in about 20 minutes and exceeding 1.4 ppm in 100 minutes was achieved. If it is desired to further shorten the time, the amount of silicon fine nanoparticles added may be increased.

また、我が国における標準的な飲料可能な水道水(pH値7.1〜7.3程度)を使用して、一段階粉砕を行った、フッ酸処理しない場合のシリコン微細ナノ粒子(平均結晶子径20.0nm)を水道水に混合して水素含有液又は水素水を作製した。図7は、その測定値を示すとともに、水道水の代わりに超純水を用いた場合の測定値も示している。   In addition, silicon fine nanoparticles (average crystallites) that have been subjected to one-step pulverization using tap water (pH value of about 7.1 to 7.3) that is standard in Japan and not treated with hydrofluoric acid. 20.0 nm in diameter) was mixed with tap water to produce a hydrogen-containing liquid or hydrogen water. FIG. 7 shows the measured values and also shows the measured values when ultrapure water is used instead of tap water.

図7に示すように、超純水(pH値7.0)に混合したときの溶存水素濃度よりも顕著な増大を示し、200分程度で1ppmを達成した。   As shown in FIG. 7, it showed a marked increase over the dissolved hydrogen concentration when mixed with ultrapure water (pH value 7.0), and achieved 1 ppm in about 200 minutes.

なお、二段階粉砕を行ったシリコン微細ナノ粒子(平均結晶子径、10.9nm)を水道水に混合して水素含有液又は水素水を製造した。その結果、図示していないが、一段階粉砕のシリコン微細ナノ粒子を用いた場合の溶存水素濃度よりも更に1.4〜1.6倍程度は増加することが分かった。   In addition, the hydrogen containing liquid or hydrogen water was manufactured by mixing silicon fine nanoparticles (average crystallite diameter, 10.9 nm) subjected to two-stage grinding with tap water. As a result, although not shown in the figure, it was found that the concentration increased by about 1.4 to 1.6 times the concentration of dissolved hydrogen in the case of using one-step pulverized silicon fine nanoparticles.

水道水を用いて、フッ酸処理しないで、低コストで安全な水素濃度1ppm以上の水素含有液又は水素水を得ることが可能であることが分かった。更に短時間化したい場合はシリコン微細ナノ粒子の投入量を増やせば良い。   It has been found that it is possible to obtain a hydrogen-containing liquid or hydrogen water having a hydrogen concentration of 1 ppm or more at low cost without using hydrofluoric acid treatment using tap water. If it is desired to further shorten the time, the amount of silicon fine nanoparticles to be charged can be increased.

図8は、フッ酸処理を施した場合と、フッ酸処理を施していない場合とを比較するために、一段階粉砕を行ったシリコン微細ナノ粒子を超純水(pH値7.0)中に分散したときの溶存水素濃度の時間変化の測定結果を示している。なお、フッ酸処理をした場合は20時間という比較的短いにもかかわらず溶存水素濃度が1ppmを達成した。フッ酸処理しない場合には、160時間(1週間程度)経過した後に溶存水素濃度が1ppmを達成した。   FIG. 8 shows a case where silicon fine nanoparticles subjected to one-step pulverization in ultrapure water (pH value 7.0) are compared with a case where hydrofluoric acid treatment is performed and a case where hydrofluoric acid treatment is not performed. The measurement result of the time change of dissolved hydrogen concentration when disperse | distributing to is shown. In the case of hydrofluoric acid treatment, the dissolved hydrogen concentration reached 1 ppm despite the relatively short time of 20 hours. When the hydrofluoric acid treatment was not performed, the dissolved hydrogen concentration reached 1 ppm after 160 hours (about one week).

上述の結果から、フッ酸処理をしていない場合、シリコン微細ナノ粒子の表面のシリコン酸化膜の存在のため、シリコン微細ナノ粒子による超純水中での水素発生反応が、そのシリコン酸化膜が超純水中に徐々に溶け出しながら極めてゆっくり起こると考えられる。その結果、水素濃度が長い時間、増加しながら持続すると考えられることを図8は示している。   From the above results, when the hydrofluoric acid treatment is not performed, the silicon oxide film on the surface of the silicon fine nanoparticles is present, so that the hydrogen generation reaction in the ultrapure water by the silicon fine nanoparticles is caused. It seems to occur very slowly while gradually dissolving in ultrapure water. As a result, FIG. 8 shows that the hydrogen concentration is considered to continue to increase for a long time.

[実施例2]
本発明の他の実施形態(実施例2)を、添付する図面に基づいて詳細に述べる。
[Example 2]
Another embodiment (Example 2) of the present invention will be described in detail with reference to the accompanying drawings.

シリコン微細ナノ粒子は、ビーズミル装置(アイメックス株式会社製:RMB型バッジ式レディーミル)を用いて、高純度シリコン(Si)粉末(例えば、高純度化学研究所社製、粒度分布、<φ5μm、純度99.9%、i型シリコン))60gを99・5wt%のエタノール250mlに分散させ、φ;0.5μmのジルコニア製ビーズ(容量300ml)を加えて4時間、回転数2500rpmで粉砕(一段階粉砕)を行い作製した。   Silicon fine nanoparticles can be obtained by using a bead mill (IMEX Co., Ltd .: RMB type badge-type ready mill) and using a high-purity silicon (Si) powder (for example, high-purity chemical laboratory, particle size distribution, <φ5 μm, purity 99.9%, i-type silicon)) is dispersed in 250 ml of 99.5 wt% ethanol, φ: 0.5 μm zirconia beads (capacity 300 ml) are added, and pulverized at a rotational speed of 2500 rpm for 4 hours (one step) Pulverization).

本実施例におけるビーズミルの一段階粉砕工程によって得られた体積分布、及びシリコン微細ナノ粒子の結晶構造は、実施例1と略同様の結果が得られると考えられる。   The volume distribution obtained by the one-step grinding process of the bead mill in this example and the crystal structure of the silicon fine nanoparticles are considered to give substantially the same results as in Example 1.

以下、エタノール中の一段階粉砕で作製され、後述する過酸化水素水処理されたシリコン微細ナノ粒子を用いた水素含有液又は水素水の生成とその溶存水素濃度及び水素発生量の制御について詳細に述べる。   Hereinafter, the production of hydrogen-containing liquid or hydrogen water and the control of the dissolved hydrogen concentration and hydrogen generation amount using silicon fine nanoparticles produced by one-step pulverization in ethanol and treated with hydrogen peroxide will be described in detail. State.

上述のエタノール中の一段階粉砕を行うことによって得られたビーズを含むシリコン微細ナノ粒子は、次の工程を経て得られる。具体的には、ビーズ分離容器(アイメックス株式会社製)に装着したSUSフィルター(φ:0.5mmのビーズの場合はフィルターのメッシュは0.35mm、φ:0.3mmのビーズの場合はメッシュ0.06mmを使用)を用いて、その上部からビーズを含むシリコン微細ナノ粒子を含むエタノール溶液を注ぐ。その後、分級処理し、吸引濾過し、ビーズを分離することにより、シリコン微細ナノ粒子を含むエタノール溶液を得た。その後、減圧蒸発装置を用いて、30℃〜35℃でエタノールを蒸発処理することにより、シリコン微細ナノ粒子及び/又はその凝集体(以下、総称して「シリコン微細ナノ粒子」ともいう)を得た。   Silicon fine nanoparticles containing beads obtained by carrying out the above-mentioned one-step grinding in ethanol are obtained through the following steps. Specifically, a SUS filter mounted in a bead separation container (manufactured by Imex Co., Ltd.) (for φ: 0.5 mm beads, the filter mesh is 0.35 mm; for φ: 0.3 mm beads, mesh 0) Is used to pour an ethanol solution containing fine silicon nanoparticles containing beads from the top. Thereafter, classification treatment, suction filtration, and separation of beads were performed to obtain an ethanol solution containing fine silicon nanoparticles. Thereafter, ethanol is evaporated at 30 ° C. to 35 ° C. using a vacuum evaporator to obtain silicon fine nanoparticles and / or aggregates thereof (hereinafter collectively referred to as “silicon fine nanoparticles”). It was.

得られたシリコン微細ナノ粒子を、過酸化水素水処理として、過酸化水素水(例えば、3.5wt%、100ml)を入れた耐熱性ガラス中に投入し、30分間加熱処理(温度約75℃)した。   The obtained silicon fine nanoparticles were put into a heat-resistant glass containing hydrogen peroxide solution (for example, 3.5 wt%, 100 ml) as a hydrogen peroxide solution treatment, and heat-treated for 30 minutes (temperature about 75 ° C. )did.

過酸化水素水処理したシリコン微細ナノ粒子を遠沈管に移し替えて、遠心分離処理で、固液分離し、液体を廃棄して、新たにエタノール(例えば、3.5%又は99.5%、100ml)を投入した。その後、シリコン微細ナノ粒子をエタノール中で撹拌して、同様の遠心分離を行い、上述と同様の処理をした。その後、同じく、上述と同量のエタノールを加えて、上述と同様の遠心分離処理を行い、シリコン微細ナノ粒子を得た。   The silicon nanoparticles treated with hydrogen peroxide solution are transferred to a centrifuge tube, solid-liquid separation is performed by centrifugation, the liquid is discarded, and ethanol (for example, 3.5% or 99.5%, 100 ml). Thereafter, the silicon fine nanoparticles were stirred in ethanol, centrifuged in the same manner, and the same treatment as described above was performed. Thereafter, similarly, the same amount of ethanol as described above was added, and the same centrifugal treatment as described above was performed to obtain fine silicon nanoparticles.

その後、自然乾燥を1日程度(長時間)行った。1日程度経過後の状態で、エタノール及び過酸化水素水は略完全に除去されていると考えられる。   Then, natural drying was performed for about 1 day (long time). It is considered that ethanol and hydrogen peroxide solution are almost completely removed after about 1 day.

また、上記の例とは別の例として、過酸化水素水60分間加熱処理(温度約75℃)し、同様の遠心分離処理し、シリコン微細粒子を得た。   Further, as another example different from the above example, a hydrogen peroxide solution was heated for 60 minutes (temperature: about 75 ° C.) and subjected to the same centrifugal separation to obtain silicon fine particles.

上述のとおり、過酸化水素水と混合されたシリコン微細ナノ粒子を、公知の遠心分離処理装置を用いて、固液分離処理によって過酸化水素水を除くことにより、過酸化水素水によって表面が処理されたシリコン微細ナノ粒子を得ることができる。なお、過酸化水素水によって表面が処理されることにより、シリコン微細ナノ粒子の表面に存在するアルキル基(例えば、メチル基)が除去され得る。その結果、該シリコン微細ナノ粒子及びその凝集体は、全体としては表面の親水性を保ちつつ、水含有液を含むことができる媒体と直接接し得る表面をも有する状態を形成し得る。このような特殊な表面処理が施されることによって、水素の発生はより確度高く促進され得る。   As described above, the surface of the silicon fine nanoparticles mixed with the hydrogen peroxide solution is treated with the hydrogen peroxide solution by removing the hydrogen peroxide solution by solid-liquid separation using a known centrifugal separator. Silicon nanoparticles can be obtained. In addition, the alkyl group (for example, methyl group) which exists in the surface of a silicon | silicone fine nanoparticle can be removed by processing the surface with hydrogen peroxide water. As a result, the silicon fine nanoparticles and aggregates thereof can form a state having a surface that can be in direct contact with a medium that can contain a water-containing liquid while maintaining the hydrophilicity of the surface as a whole. By performing such a special surface treatment, the generation of hydrogen can be more accurately promoted.

上述の各工程によって得られたシリコン微細ナノ粒子11mg(過酸化水素水処理(30分処理))を容量115mlのガラス瓶(硼ケイ酸ガラス厚さ1mm程度、ASONE社製ラボランスクリュー管瓶)に入れて、分散させ、全量が115mlになるように所定の水溶液(純水)約115mlと炭酸水素ナトリウム(日本薬局方準拠のもの約20g投入し1.88wt%とし、pH約8.3を得た)を加えた。その後、ガラス瓶の口まで一杯にして、空気が入らないように内蓋をして、キャップ(長さ1cm)をし、完全密封をした。キャップの材質はポリプロピレン(厚さ2mm)であり、内蓋がポリエチレンとポリプロピレンの多層フィルター製のものを用いた。これらにより、発生する水素の透過や漏れを充分に抑えることができた。シリコン微細ナノ粒子はそのままで均一に水溶液全体に混ざった状態となった。これは過酸化水素水処理により、シリコン微細ナノ粒子が有効に親水性となってためと考えられる。換言すれば、過酸化水素水処理により、シリコン微細粒子表面の親水性を適度に保ちつつ、該水溶液と直接接し得る十分な表面積を有する状態を実現し得ると考えられる。   Silicon fine nanoparticles 11 mg (hydrogen peroxide water treatment (30 minutes treatment)) obtained by the above-described steps are placed in a 115 ml capacity glass bottle (borosilicate glass thickness of about 1 mm, Labone screw tube made by ASONE). Add about 115 ml of a predetermined aqueous solution (pure water) and sodium bicarbonate (about 20 g according to Japanese Pharmacopoeia to 1.88 wt% to obtain a total pH of about 8.3 so that the total amount becomes 115 ml. Was added. After that, the glass bottle was filled up to the mouth, covered with an inner lid so that air could not enter, and a cap (length: 1 cm) was attached to complete sealing. The material of the cap was polypropylene (thickness 2 mm), and the inner lid was made of a multilayer filter made of polyethylene and polypropylene. By these, the permeation | transmission and leakage of the generated hydrogen were fully suppressed. The silicon fine nanoparticles were mixed uniformly in the entire aqueous solution as they were. This is considered to be because the silicon fine nanoparticles are effectively made hydrophilic by the hydrogen peroxide treatment. In other words, it is considered that a state having a sufficient surface area that can be in direct contact with the aqueous solution can be realized by maintaining the hydrophilicity of the surface of the silicon fine particles moderately by the hydrogen peroxide treatment.

なお、過酸化水素水処理(60分処理)については、シリコン微細ナノ粒子5mgを用いて、水素発生の実験を行った。   As for the hydrogen peroxide treatment (60 minutes treatment), hydrogen generation experiments were conducted using 5 mg of silicon fine nanoparticles.

完全密封の状態に保ったままで、室温にて、密閉したガラス瓶中でシリコン微細ナノ粒子から徐々に水素が発生し、水溶液中に所定の濃度を有する水素を溶存させることができた。従って、実施例2においては、実施例1のようにIPAやフッ酸を使用していないため、生体や生体内でより安全安心な薬液とプロセス処理によりシリコン微細ナノ粒子及び水素含有液又は水素水を得ることができたことは特筆に値する。   While maintaining a completely sealed state, hydrogen was gradually generated from silicon fine nanoparticles in a sealed glass bottle at room temperature, and hydrogen having a predetermined concentration could be dissolved in the aqueous solution. Therefore, in Example 2, since IPA and hydrofluoric acid are not used as in Example 1, silicon fine nanoparticles and hydrogen-containing liquid or hydrogen water can be obtained by a safer and safer chemical solution and process in the living body or in vivo. It is worth noting that I was able to get.

水溶液中の溶存水素濃度の反応時間依存性の測定には東亜DKK社製のポータブル溶存水素濃度計を使用した。図9(a)では、過酸化水素水処理しない場合のシリコン微細ナノ粒子、過酸化水素水を用いて30分処理したシリコン微細ナノ粒子、又は過酸化水素水を用いて60分処理したシリコン微細ナノ粒子を用いた溶存水素濃度の測定結果を示している。また、図9(b)は、前述の各条件について、シリコン(Si)1g当たりに換算したときの水素発生量を示す。図9(a)の縦軸は溶存水素濃度を示し、横軸は反応時間(h:時間)を示す。また、図9(b)の縦軸は水素発生量を示し、横軸は反応時間(h:時間)を示す。   A portable dissolved hydrogen concentration meter manufactured by Toa DKK was used to measure the reaction time dependence of the dissolved hydrogen concentration in the aqueous solution. In FIG. 9A, silicon fine nanoparticles not treated with hydrogen peroxide solution, silicon fine nanoparticles treated with hydrogen peroxide solution for 30 minutes, or silicon fine particles treated with hydrogen peroxide solution for 60 minutes. The measurement result of dissolved hydrogen concentration using nanoparticles is shown. Moreover, FIG.9 (b) shows the hydrogen generation amount when it converts per 1g of silicon (Si) about each above-mentioned conditions. In FIG. 9A, the vertical axis indicates the dissolved hydrogen concentration, and the horizontal axis indicates the reaction time (h: time). Moreover, the vertical axis | shaft of FIG.9 (b) shows hydrogen generation amount, and a horizontal axis shows reaction time (h: time).

図9に示すように、過酸化水素水処理により、水素発生が加速増大することが示された。これは、シリコン微細ナノ粒子が親水性となり、水溶液に均一に分散されたためである。「過酸化水素水処理(30分処理)」の条件を採用すれば、2時間で400ppb、4時間で1000ppb近くの特筆すべき濃度を得た。また、24時間では2000ppbに達した。   As shown in FIG. 9, it was shown that hydrogen generation accelerated and increased by the hydrogen peroxide treatment. This is because the silicon fine nanoparticles became hydrophilic and were uniformly dispersed in the aqueous solution. If the condition of “hydrogen peroxide treatment (30 minutes treatment)” was employed, a remarkable concentration of 400 ppb in 2 hours and nearly 1000 ppb in 4 hours was obtained. In 24 hours, it reached 2000 ppb.

一方、「過酸化水素水処理(60分処理)」の条件を採用した場合、水素発生量は「過酸化水素水処理(30分処理)」の条件よりも低減した。これは、「過酸化水素水処理(60分処理)」の条件を採用することにより、シリコン微細ナノ粒子の表面酸化膜が「過酸化水素水処理(30分処理)」の条件より膜厚が厚く、水素発生量が抑えられたためと考えられる。なお、図示していないが、「過酸化水素水処理(15分処理)」の条件で上述と同様の実験を行ったが、「過酸化水素水処理(30分処理)」の条件と略同一の実験結果を得た。1分〜2分処理では処理無と同程度で有効な水素発生が得られなかった。   On the other hand, when the condition of “hydrogen peroxide solution treatment (60 minutes treatment)” was adopted, the amount of hydrogen generation was lower than the condition of “hydrogen peroxide solution treatment (30 minutes treatment)”. This is because the surface oxide film of silicon fine nanoparticles has a film thickness larger than the condition of “hydrogen peroxide solution treatment (30 minutes treatment)” by adopting the condition of “hydrogen peroxide solution treatment (60 minutes treatment)”. This is thought to be because the generation of hydrogen was suppressed. Although not shown, an experiment similar to the above was performed under the conditions of “hydrogen peroxide solution treatment (15 minutes treatment)”, but the conditions were substantially the same as those of “hydrogen peroxide solution treatment (30 minutes treatment)”. The experimental results were obtained. The treatment for 1 minute to 2 minutes did not produce hydrogen as effectively as no treatment.

従って、過酸化水素水処理の時間は、5分〜30分が適当である。炭酸水素ナトリウムを混入することは、通常生体の小腸のpH状態に匹敵し、体内で有効な水素発生が起こることになる。図9(b)は、Si1g当たりに換算した水素発生量を示している。縦軸はSi1g当たりの水素発生量(ml)、横軸は反応時間(h:時間)を示す。図9(b)に示すように、過酸化水素水処理(30分処理)」の条件では、極めて有効な水素発生量(40ml)が2時間以上で継続的に得られている。   Therefore, the time for the hydrogen peroxide treatment is suitably 5 minutes to 30 minutes. When sodium hydrogen carbonate is mixed, it is usually comparable to the pH state of the small intestine of a living body, and effective hydrogen generation occurs in the body. FIG. 9B shows the hydrogen generation amount converted per gram of Si. The vertical axis represents the hydrogen generation amount per gram of Si (ml), and the horizontal axis represents the reaction time (h: time). As shown in FIG. 9B, under the condition of “hydrogen peroxide water treatment (30 minutes treatment)”, a very effective hydrogen generation amount (40 ml) is continuously obtained in 2 hours or more.

上述の実験結果から、IPAやフッ酸を用いずに、生体に用いても、より安全で安心なシリコン微細ナノ粒子を作製することができるため、生体内で安全に水素発生させることが可能となる。更に、このシリコン微細ナノ粒子を用いて、公知の添加剤や食品に含有させて生体用水素発生材を作製することが可能となる。   From the above experimental results, it is possible to produce safer and more secure silicon fine nanoparticles even when used in a living body without using IPA or hydrofluoric acid, so that hydrogen can be safely generated in the living body. Become. Furthermore, it becomes possible to produce a biogenic hydrogen generating material using these silicon fine nanoparticles by adding them to known additives and foods.

反応時間が数時間以内で1ppm以上の溶存水素濃度を得るためには、シリコン微細ナノ粒子の量を増やせば良い。   In order to obtain a dissolved hydrogen concentration of 1 ppm or more within a reaction time of several hours, the amount of silicon fine nanoparticles may be increased.

ところで、シリコン微細粒子としては、高純度シリコン(Si)粉末以外に、太陽電池グレードのシリコン基板の切削加工から発生するシリコン切粉や半導体グレードの研磨屑を利用しても、水素含有液又は水素水の生成は可能である。また、i型のみならず、n型、p型でも使用可能である。   By the way, as silicon fine particles, in addition to high-purity silicon (Si) powder, even if silicon chips generated from cutting of solar cell grade silicon substrate or semiconductor grade polishing scraps are used, hydrogen-containing liquid or hydrogen Water production is possible. Further, not only i-type but also n-type and p-type can be used.

産業上の利用分野Industrial application fields

本発明は、生体安全性を有するシリコン微細ナノ粒子を作製でき、それを有効活用して、安全性、実用性及び経済性に優れた水素含有液又は水素水とその製造技術に展開できるものであり、特に、健康・医療用のシリコン微細ナノ粒子を含有した水素発生材(剤)や洗浄水や健康飲料水等の健康・医療食品、製品分野への利用が可能である。   The present invention can produce fine silicon nanoparticles having biosafety, and can be effectively used to develop a hydrogen-containing liquid or hydrogen water excellent in safety, practicality and economics and its manufacturing technology. In particular, it can be used in the field of health and medical foods such as hydrogen generating materials (agents) containing silicon fine nanoparticles for health and medical use, washing water and health drinking water, and products.

Claims (21)

エタノール中でシリコン微細粒子を粉砕して得られるシリコン微細ナノ粒子及び/又は該シリコン微細ナノ粒子の凝集体に過酸化水素水を接触させた前記シリコン微細ナノ粒子及び/又は前記凝集体と、水又は水溶液とが接触することによって生成される水素を前記水又は前記水溶液の中に溶存する、
水素含有液。
Silicon fine nanoparticles obtained by pulverizing silicon fine particles in ethanol and / or an aggregate of the silicon fine nanoparticles, and the silicon fine nanoparticles and / or the aggregate obtained by bringing hydrogen peroxide water into contact therewith, water Alternatively, hydrogen generated by contact with an aqueous solution is dissolved in the water or the aqueous solution.
Hydrogen-containing liquid.
前記過酸化水素水を接触させた後にさらにエタノールを接触させた前記シリコン微細ナノ粒子及び/又は前記凝集体と、水又は水溶液とが接触することによって生成される水素を前記水又は前記水溶液の中に溶存する、
請求項1に記載の水素含有液。
Hydrogen produced by contacting the silicon fine nanoparticles and / or the agglomerates contacted with ethanol after contact with the hydrogen peroxide solution and water or an aqueous solution is contained in the water or the aqueous solution. Dissolved in the
The hydrogen-containing liquid according to claim 1.
前記水又は前記水溶液が、pH値が7の中性水、pH値が8〜9の水溶液、又はpH値が7.1〜7.5の水道水である、
請求項1又は請求項2に記載の水素含有液。
The water or the aqueous solution is neutral water having a pH value of 7, an aqueous solution having a pH value of 8 to 9, or tap water having a pH value of 7.1 to 7.5.
The hydrogen-containing liquid according to claim 1 or 2.
前記水又は前記水溶液が、密封された容器中の前記水又は前記水溶液である、
請求項1乃至請求項3のいずれか1項に記載の水素含有液。
The water or the aqueous solution is the water or the aqueous solution in a sealed container.
The hydrogen-containing liquid according to any one of claims 1 to 3.
エタノール中でシリコン微細粒子を粉砕して得られるシリコン微細ナノ粒子及び/又は該シリコン微細ナノ粒子の凝集体に過酸化水素水を接触させた前記シリコン微細ナノ粒子及び/又は前記凝集体を含む、
生体用水素発生材。
Including the silicon fine nanoparticles obtained by crushing silicon fine particles in ethanol and / or the silicon fine nanoparticles and / or the aggregates obtained by bringing hydrogen peroxide water into contact with the aggregates of the silicon fine nanoparticles.
Biogenic hydrogen generator.
前記過酸化水素水を接触させた後にさらにエタノールを接触させた前記シリコン微細ナノ粒子及び/又は前記凝集体を含む、
請求項5に記載の生体用水素発生材。
Including the silicon fine nanoparticles and / or the agglomerates contacted with ethanol after being contacted with the hydrogen peroxide solution,
The biogenic hydrogen generating material according to claim 5.
エタノール中でシリコン微細粒子を粉砕することによってシリコン微細ナノ粒子及び/又は該シリコン微細ナノ粒子の凝集体を形成する工程と、
前記シリコン微細ナノ粒子及び/又は前記凝集体と過酸化水素水とを接触させる過酸化水素水処理工程と、
前記過酸化水素水処理工程の後、前記シリコン微細ナノ粒子及び/又は前記凝集体を、水又は水溶液に接触させることにより生成された水素を前記水又は前記水溶液の中に溶存させる溶存工程と、を備える、
水素含有液の製造方法。
Forming silicon fine nanoparticles and / or aggregates of the silicon fine nanoparticles by grinding silicon fine particles in ethanol;
A hydrogen peroxide treatment process in which the silicon fine nanoparticles and / or the aggregates are contacted with hydrogen peroxide;
After the hydrogen peroxide solution treatment step, a dissolving step of dissolving hydrogen generated by bringing the silicon fine nanoparticles and / or the aggregates into contact with water or an aqueous solution in the water or the aqueous solution; Comprising
A method for producing a hydrogen-containing liquid.
前記過酸化水素水処理工程の後であって、前記溶存工程の前に、前記シリコン微細ナノ粒子及び/又は前記凝集体とエタノールとを接触させる、エタノール処理工程、をさらに含む、
請求項7に記載の水素含有液の製造方法。
An ethanol treatment step of bringing the silicon fine nanoparticles and / or the aggregates into contact with ethanol after the hydrogen peroxide solution treatment step and before the dissolution step;
The method for producing a hydrogen-containing liquid according to claim 7.
エタノール中でシリコン微細粒子を粉砕することによってシリコン微細ナノ粒子及び/又は該シリコン微細ナノ粒子の凝集体を形成する粉砕部と、
前記シリコン微細ナノ粒子及び/又は前記凝集体と過酸化水素水とを接触させる過酸化水素水処理部と、
前記過酸化水素水と接触した前記シリコン微細ナノ粒子及び/又は前記凝集体を、水又は水溶液に接触させることにより生成された水素を前記水又は前記水溶液の中に溶存させる溶存処理部と、を備える、
水素含有液の製造装置。
A pulverizing part that forms silicon fine nanoparticles and / or aggregates of the silicon fine nanoparticles by pulverizing the silicon fine particles in ethanol;
A hydrogen peroxide solution treatment section for bringing the silicon fine nanoparticles and / or the aggregates into contact with the hydrogen peroxide solution, and
A dissolved treatment unit for dissolving hydrogen produced by bringing the silicon fine nanoparticles and / or the aggregates in contact with the hydrogen peroxide solution into contact with water or an aqueous solution, in the water or the aqueous solution; Prepare
Equipment for producing hydrogen-containing liquid.
前記過酸化水素水と接触した前記シリコン微細ナノ粒子及び/又は前記凝集体とエタノールとを接触させる、エタノール処理部を、さらに備える、
請求項9に記載の 水素含有液の製造装置。
An ethanol treatment unit for bringing the silicon fine nanoparticles and / or the aggregates into contact with ethanol in contact with the hydrogen peroxide solution;
The apparatus for producing a hydrogen-containing liquid according to claim 9.
シリコン微細粒子、あるいは前記シリコン微細粒子を更に粉砕したシリコン微細ナノ粒子及び/又は該シリコン微細ナノ粒子の凝集体を水に接触及び/又は分散させて水素を発生させ、かつ前記水素を直接的に前記水の中に溶存させて容器に密封した、
水素水。
Silicon fine particles or silicon fine nanoparticles obtained by further pulverizing the silicon fine particles and / or aggregates of the silicon fine nanoparticles are brought into contact with and / or dispersed in water to generate hydrogen, and the hydrogen directly Dissolved in the water and sealed in a container,
Hydrogen water.
前記水が、水道水である、
請求項11に記載の水素水。
The water is tap water;
The hydrogen water according to claim 11.
シリコン微細粒子、あるいは前記シリコン微細粒子を更に粉砕したシリコン微細ナノ粒子及び/又は前記シリコン微細ナノ粒子の凝集体を、pH値が7の中性水、pH値が8〜9の水溶液、又はpH値が7.1〜7.5の水道水に接触及び/又は分散させて水素を発生させ、前記中性水、前記水溶液、又は前記水道水の中に前記水素を溶存させた、
水素水。
Silicon fine particles, or silicon fine nanoparticles obtained by further pulverizing the silicon fine particles and / or aggregates of the silicon fine nanoparticles, neutral water having a pH value of 7, an aqueous solution having a pH value of 8 to 9, or pH Contacting and / or dispersing in tap water having a value of 7.1 to 7.5 to generate hydrogen, and dissolving the hydrogen in the neutral water, the aqueous solution, or the tap water;
Hydrogen water.
前記シリコン微細ナノ粒子及び/又は前記シリコン微細ナノ粒子の凝集体の、X線回折装置(XRD)による結晶子径分布が100nm以下である、
請求項11乃至請求項13のいずれか1項に記載の水素水。
The crystallite diameter distribution by the X-ray diffractometer (XRD) of the silicon fine nanoparticles and / or the aggregates of the silicon fine nanoparticles is 100 nm or less,
The hydrogen water according to any one of claims 11 to 13.
シリコン微細粒子又は前記シリコン微細粒子を更に粉砕したシリコン微細ナノ粒子を形成する工程、及び
前記シリコン微細粒子、あるいは前記シリコン微細粒子を更に粉砕したシリコン微細ナノ粒子及び/又は該シリコン微細ナノ粒子の凝集体を、水又は水溶液に接触又は分散させて、直接的に水素水を生成する工程、を含む、
水素水の製造方法。
Forming silicon fine particles or silicon fine nanoparticles obtained by further pulverizing the silicon fine particles; and silicon fine particles obtained by further pulverizing the silicon fine particles or the silicon fine particles and / or agglomeration of the silicon fine nanoparticles. Contacting or dispersing the aggregate with water or an aqueous solution to produce hydrogen water directly,
A method for producing hydrogen water.
前記シリコン微細粒子、あるいは前記シリコン微細ナノ粒子及び/又は前記凝集体を、フッ酸又はフッ化アンモニウム水溶液に接触させる表面シリコン酸化膜除去工程をさらに含む、
請求項15に記載の水素水の製造方法。
A surface silicon oxide film removing step of bringing the silicon fine particles or the silicon fine nanoparticles and / or the aggregates into contact with hydrofluoric acid or ammonium fluoride aqueous solution;
The method for producing hydrogen water according to claim 15.
シリコン微細粒子又は前記シリコン微細粒子を更に粉砕したシリコン微細ナノ粒子を形成する工程、及び
前記シリコン微細粒子、あるいは前記シリコン微細ナノ粒子及び/又は該シリコン微細ナノ粒子の凝集体を、pH値が7の中性水又はpH値が8〜9の水溶液に接触及び/又は分散させて水素を発生させ、前記中性水又は前記水溶液の中に前記水素を溶存させる工程、を含む、
水素水の製造方法。
A step of forming silicon fine particles or silicon fine nanoparticles obtained by further pulverizing the silicon fine particles, and the silicon fine particles, or the silicon fine nanoparticles and / or aggregates of the silicon fine nanoparticles, having a pH value of 7 Contacting and / or dispersing in neutral water or an aqueous solution having a pH value of 8 to 9 to generate hydrogen, and dissolving the hydrogen in the neutral water or the aqueous solution,
A method for producing hydrogen water.
シリコン微細粒子、あるいは前記シリコン微細粒子を更に粉砕したシリコン微細ナノ粒子及び/又は該シリコン微細ナノ粒子の凝集体を、水道水に接触及び/又は分散させて水素を発生させ、前記水道水の中に前記水素を溶存させる工程、を含む、
水素水の製造方法。
Silicon fine particles or silicon fine nanoparticles obtained by further pulverizing the silicon fine particles and / or aggregates of the silicon fine nanoparticles are brought into contact with and / or dispersed in tap water to generate hydrogen, A step of dissolving the hydrogen in
A method for producing hydrogen water.
シリコン微細粒子又は前記シリコン微細粒子を更に粉砕したシリコン微細ナノ粒子を形成する粉砕部と、
前記シリコン微細粒子、あるいは前記シリコン微細ナノ粒子及び/又は該シリコン微細ナノ粒子の凝集体を、水又は水溶液内で接触又は分散させて直接的に前記水中に溶存させて密封する水素発生部と、を備える、
水素水の製造装置。
A pulverized part for forming silicon fine particles or silicon fine nanoparticles obtained by further pulverizing the silicon fine particles;
A hydrogen generation part that seals the silicon fine particles, or the silicon fine nanoparticles and / or the aggregates of the silicon fine nanoparticles, in contact with or dispersed in water or an aqueous solution and directly dissolved in the water; and Comprising
Hydrogen water production equipment.
シリコン微細粒子又はシリコン微細粒子を更にエタノール中で粉砕し、過酸化水素水処理したシリコン微細ナノ粒子及び/又はその凝集体を、水に接触及び/又は分散させて水素を発生させ、かつその水素を直接的に前記水の中に溶存させて容器に密封したことを特徴とする、
水素水。
Silicon fine particles or silicon fine particles are further pulverized in ethanol and treated with hydrogen peroxide water, and silicon fine nanoparticles and / or aggregates thereof are brought into contact with and / or dispersed in water to generate hydrogen, and the hydrogen Is directly dissolved in the water and sealed in a container,
Hydrogen water.
シリコン微細粒子又はシリコン微細粒子を更にエタノール中で粉砕し、過酸化水素水処理したシリコン微細ナノ粒子及び/又はその凝集体並びにそれらを含有した、
生体用水素発生材。
Silicon fine particles or silicon fine particles were further pulverized in ethanol, treated with hydrogen peroxide solution, and containing silicon fine nanoparticles and / or aggregates thereof, and
Biogenic hydrogen generator.
JP2018535516A 2015-02-24 2017-07-13 Hydrogen-containing liquid, hydrogen-containing liquid manufacturing method, hydrogen-containing liquid manufacturing apparatus, and biogenic hydrogen generator Pending JPWO2018037752A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015033643 2015-02-24
JP2015237328A JP2016155118A (en) 2015-02-24 2015-12-04 Hydrogen water, and method and apparatus for producing the same
JP2016162520A JP2017104848A (en) 2015-12-04 2016-08-23 Silicon nanoparticles and/or aggregate thereof, hydrogen generating material for organism and production method for the same, and hydrogen water and production method and production apparatus for the same
JP2016162520 2016-08-23
PCT/JP2017/025570 WO2018037752A1 (en) 2015-02-24 2017-07-13 Hydrogen-containing liquid, production method for hydrogen-containing liquid, and production device for hydrogen-containing liquid, and hydrogen generation material for living body

Publications (1)

Publication Number Publication Date
JPWO2018037752A1 true JPWO2018037752A1 (en) 2019-08-08

Family

ID=56824564

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015237328A Pending JP2016155118A (en) 2015-02-24 2015-12-04 Hydrogen water, and method and apparatus for producing the same
JP2018535516A Pending JPWO2018037752A1 (en) 2015-02-24 2017-07-13 Hydrogen-containing liquid, hydrogen-containing liquid manufacturing method, hydrogen-containing liquid manufacturing apparatus, and biogenic hydrogen generator

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015237328A Pending JP2016155118A (en) 2015-02-24 2015-12-04 Hydrogen water, and method and apparatus for producing the same

Country Status (3)

Country Link
JP (2) JP2016155118A (en)
TW (3) TWI783650B (en)
WO (1) WO2018037752A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016155118A (en) * 2015-02-24 2016-09-01 小林 光 Hydrogen water, and method and apparatus for producing the same
JP2017104848A (en) * 2015-12-04 2017-06-15 小林 光 Silicon nanoparticles and/or aggregate thereof, hydrogen generating material for organism and production method for the same, and hydrogen water and production method and production apparatus for the same
US10617712B2 (en) 2016-01-29 2020-04-14 Kit Co. Ltd. Solid preparation, method for producing solid reparation, and method for generating hydrogen
CN110191860A (en) 2016-08-23 2019-08-30 小林光 Composite and its manufacturing method and method of supplying hydrogen
EP3505151A4 (en) 2016-08-23 2020-03-11 Hikaru Kobayashi Hydrogen supply material and production method therefor, and hydrogen supply method
CN109126268B (en) * 2017-06-16 2021-07-02 友达晶材股份有限公司 Biological water composition, aggregate thereof, filter material, filter element thereof and water purification system thereof
TWI670236B (en) * 2017-06-16 2019-09-01 友達晶材股份有限公司 Filter material
JP6687963B2 (en) 2017-07-27 2020-04-28 国立大学法人大阪大学 Drug and manufacturing method thereof
US20190126178A1 (en) * 2017-10-30 2019-05-02 Auo Crystal Corporation Filter and Method of Preparing the Same
WO2019211960A1 (en) 2018-04-29 2019-11-07 株式会社Kit Composite composition
WO2019235577A1 (en) 2018-06-07 2019-12-12 国立大学法人大阪大学 Prophylactic or therapeutic agent for disease induced by oxidative stress
JP7333941B2 (en) * 2018-06-07 2023-08-28 国立大学法人大阪大学 Preventive or therapeutic agent for diseases caused by oxidative stress
JP7345824B2 (en) * 2018-07-02 2023-09-19 国立大学法人大阪大学 Agents for preventing or treating depression or depressive state
JP7461003B2 (en) 2018-11-13 2024-04-03 国立大学法人大阪大学 Preventive or therapeutic agents for Parkinson's disease
US20200188825A1 (en) * 2018-12-14 2020-06-18 Auo Crystal Corporation Filter, filter assembly, filter device and water purification system
JP7461011B2 (en) 2019-01-24 2024-04-03 国立大学法人大阪大学 Preventive or therapeutic agent for hearing loss
JP7461008B2 (en) 2019-01-24 2024-04-03 国立大学法人大阪大学 Preventive or therapeutic agent for disorders or symptoms after spinal cord injury
JP7461004B2 (en) 2019-01-24 2024-04-03 国立大学法人大阪大学 Preventive or therapeutic agent for memory disorders
JP7461009B2 (en) 2019-01-24 2024-04-03 国立大学法人大阪大学 Preventive or therapeutic agent for diabetes
JP7461006B2 (en) 2019-01-24 2024-04-03 国立大学法人大阪大学 Preventive or therapeutic agent for arthritis
JP7461005B2 (en) 2019-01-24 2024-04-03 国立大学法人大阪大学 Preventive or therapeutic agent for autism spectrum disorder
EP3915637A4 (en) * 2019-01-24 2022-03-16 Osaka University Medical agent and method for manufacturing same
JP7461007B2 (en) 2019-01-24 2024-04-03 国立大学法人大阪大学 Preventive or therapeutic agents for visceral discomfort
WO2021199850A1 (en) 2020-04-02 2021-10-07 株式会社ボスケシリコン Oxidative stress inhibitor and antioxidant agent
WO2021199644A1 (en) 2020-04-02 2021-10-07 株式会社ボスケシリコン Composite material

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466189A (en) * 1990-07-06 1992-03-02 Asahi Chem Ind Co Ltd Storing method of silicon fine powder-containing waste water
JP2006071330A (en) * 2004-08-31 2006-03-16 Tokyo Denki Univ Nanosilicon fluorescence element for detecting/visual sensing cancerous cells and its manufacturing method
JP2008019115A (en) * 2006-07-11 2008-01-31 Catalysts & Chem Ind Co Ltd Method for producing silicon fine particle
JP2009502157A (en) * 2005-07-27 2009-01-29 サイメデイカ リミテツド Food containing silicon
JP2010265158A (en) * 2009-05-18 2010-11-25 Mitsubishi Electric Corp Method for producing silicon fine particle
JP2011026211A (en) * 2009-07-21 2011-02-10 Niigata Univ Method for producing microcapsule containing hydrogen-generating powder
JP2011218340A (en) * 2010-04-06 2011-11-04 Norihiko Kabayama Method for production of electronic water
JP2011251873A (en) * 2010-06-02 2011-12-15 Sharp Corp Method for producing lithium-containing composite oxide
WO2012053472A1 (en) * 2010-10-18 2012-04-26 ミズ株式会社 Apparatus for hydrogenating biocompatible solution
US20120275981A1 (en) * 2009-11-12 2012-11-01 John Stuart Foord Preparation Of Silicon For Fast Generation Of Hydrogen Through Reaction With Water
JP2013199413A (en) * 2012-03-26 2013-10-03 Kurita Water Ind Ltd Method for cleaning fine particle
KR101318939B1 (en) * 2012-09-20 2013-11-13 한국화학연구원 Method of preparing silicon nanoparticles and method for preparing dispersions containing silicon nanoparticles
WO2015033815A1 (en) * 2013-09-05 2015-03-12 株式会社Kit Hydrogen production device, hydrogen production method, silicon fine particles for hydrogen production, and production method for silicon fine particles for hydrogen production
JP2016155118A (en) * 2015-02-24 2016-09-01 小林 光 Hydrogen water, and method and apparatus for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200722178A (en) * 2005-12-09 2007-06-16 Diamond Polymer Science Co Ltd Grinding method for the nanonization of hard material and product made thereby

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466189A (en) * 1990-07-06 1992-03-02 Asahi Chem Ind Co Ltd Storing method of silicon fine powder-containing waste water
JP2006071330A (en) * 2004-08-31 2006-03-16 Tokyo Denki Univ Nanosilicon fluorescence element for detecting/visual sensing cancerous cells and its manufacturing method
JP2009502157A (en) * 2005-07-27 2009-01-29 サイメデイカ リミテツド Food containing silicon
JP2008019115A (en) * 2006-07-11 2008-01-31 Catalysts & Chem Ind Co Ltd Method for producing silicon fine particle
JP2010265158A (en) * 2009-05-18 2010-11-25 Mitsubishi Electric Corp Method for producing silicon fine particle
JP2011026211A (en) * 2009-07-21 2011-02-10 Niigata Univ Method for producing microcapsule containing hydrogen-generating powder
US20120275981A1 (en) * 2009-11-12 2012-11-01 John Stuart Foord Preparation Of Silicon For Fast Generation Of Hydrogen Through Reaction With Water
JP2011218340A (en) * 2010-04-06 2011-11-04 Norihiko Kabayama Method for production of electronic water
JP2011251873A (en) * 2010-06-02 2011-12-15 Sharp Corp Method for producing lithium-containing composite oxide
WO2012053472A1 (en) * 2010-10-18 2012-04-26 ミズ株式会社 Apparatus for hydrogenating biocompatible solution
JP2013199413A (en) * 2012-03-26 2013-10-03 Kurita Water Ind Ltd Method for cleaning fine particle
KR101318939B1 (en) * 2012-09-20 2013-11-13 한국화학연구원 Method of preparing silicon nanoparticles and method for preparing dispersions containing silicon nanoparticles
WO2015033815A1 (en) * 2013-09-05 2015-03-12 株式会社Kit Hydrogen production device, hydrogen production method, silicon fine particles for hydrogen production, and production method for silicon fine particles for hydrogen production
JP2016155118A (en) * 2015-02-24 2016-09-01 小林 光 Hydrogen water, and method and apparatus for producing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EROGBOGBO, FOLARIN ,外: "On-Demand Hydrogen Generation using Nanosilicon: Splitting Water without Light, Heat, or Electricity", NANO LETTERS, vol. 13, JPN7019003226, 2013, pages 451 - 456, XP093093802, ISSN: 0004845068, DOI: 10.1021/nl304680w *
IMAMURA,KENTARO, ET AL.: "Hydrogen generation from water using Si nanopowder fabricated from swarf", JOURNAL OF NANOPARTICLE RESEARCH, vol. 18, no. 5, JPN6017032954, May 2016 (2016-05-01), pages 116 - 1, ISSN: 0004845067 *
松田 真輔 ほか: "シリコンナノ粒子による水の分解と水素濃度", 第62回応用物理学会春季学術講演会 講演予稿集, JPN6017008383, 2015, pages 27 - 6, ISSN: 0004845066 *

Also Published As

Publication number Publication date
TW202202453A (en) 2022-01-16
JP2016155118A (en) 2016-09-01
TWI757064B (en) 2022-03-01
WO2018037752A1 (en) 2018-03-01
TWI728158B (en) 2021-05-21
TWI783650B (en) 2022-11-11
TW201836990A (en) 2018-10-16
TW202128569A (en) 2021-08-01

Similar Documents

Publication Publication Date Title
WO2018037752A1 (en) Hydrogen-containing liquid, production method for hydrogen-containing liquid, and production device for hydrogen-containing liquid, and hydrogen generation material for living body
JP7085668B2 (en) Bio-hydrogen generators, foods and medical foods, and food manufacturing methods
US11752170B2 (en) Solid preparation, method for producing solid preparation, and method for generating hydrogen
Song et al. Synthesis of MnO2 nanostructures with sea urchin shapes by a sodium dodecyl sulfate-assisted hydrothermal process
Liu et al. Self-assembly of [101 [combining macron] 0] grown ZnO nanowhiskers with exposed reactive (0001) facets on hollow spheres and their enhanced gas sensitivity
JP6255471B1 (en) Silica particle dispersion and method for producing the same
RU2696439C2 (en) Nanodiamonds having acid functional group, and method for production thereof
CN106587035A (en) Eco-friendly safe reducing agent-based graphene and its preparation and application
JP2012229146A (en) METHOD FOR MANUFACTURING SILICON FINE PARTICLE, AND Si INK, SOLAR CELL AND SEMICONDUCTOR DEVICE USING THE SILICON FINE PARTICLE
Alinauskas et al. Nanostructuring of SnO2 via solution-based and hard template assisted method
Islam et al. Optical and structural characterization of TiO2 nanoparticles
Ge et al. Facile sonochemical synthesis of hierarchical Cu2O hollow submicrospheres with high adsorption capacity for methyl orange
JP2010274142A (en) Dispersion of photocatalyst particles, and method of producing the same
JPWO2009107674A1 (en) Zinc oxide ultrafine particle dispersion solution, method for producing the zinc oxide ultrafine particle dispersion solution, and zinc oxide thin film
Zhang et al. Three‐dimensional hierarchical ZnO nanostructures with controllable building units: hydrothermal synthesis, growth process and photocatalytic activities for organic dyes
Samoilov et al. Preparation of aqueous graphene suspensions by ultrasonication in the presence of a fluorine-containing surfactant
Khattar et al. Preparation of Cu2O nanoparticles as a catalyst in photocatalyst activity using a simple electrodeposition route
JP6075964B2 (en) Method for producing titanium oxide nanowire with reduced alkali metal content, and method for removing alkali metal content from titanium oxide nanowire
Jain Biogenic nanoparticles of elemental selenium: synthesis, characterization and relevance in wastewater treatment
JP2019085312A (en) Manufacturing method of amorphous titanium oxide fine particle dispersion
WO2023019175A2 (en) Mxene materials with enhanced stability
Shinde et al. Hydrothermally Synthesis Nanostructure ZnO Thin Film for Photocatalysis Application
Jain Nanoparticules de sélénium élémentaire d'origine biologique: synthèse, caractérisation et importance en traitement des eaux usées
Yang Morphology Control, Surface Functionalization and Optical Response of Silicon Nanocrystals

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200603

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200604

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220809